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Understanding grain growth is key for controlling the microstructure and the mechanical properties of
most polycrystalline materials, including metals, alloys, and ceramics. However, the precise mechanisms
and kinetics of grain growth remain poorly understood both at the theoretical level and experimentally as
direct observation is cumbersome in atomic systems. Here, we study the grain growth process in a
polycrystalline monolayer of colloidal hard spheres. We find that the bond-orientational correlation
function satisfies the dynamic scaling hypothesis and has the general scaling form predicted for systems
containing random domain walls. However, the associated correlation length grows slower than ∼t1=2,
which corresponds to normal curvature-driven grain growth. To understand the origin of this anomalous
grain growth, we directly monitor the evolution of the grain boundary network by measuring the so-called
grain boundary character distribution. We show that there is a strong annihilation of large-angle grain
boundaries while small-angle grain boundaries become relatively more present. Using scaling arguments,
we derive the time dependence of the correlation length and show its good agreement with the data. We
conclude that the origin of anomalous grain growth is the curvature-driven coarsening of the large-angle
grain boundaries at a rate that depends on their relative length in the total grain boundary network.

DOI: 10.1103/PhysRevX.7.041064 Subject Areas: Condensed Matter Physics,
Materials Science, Soft Matter

I. INTRODUCTION

Coarsening phenomena correspond to the nonequili-
brium relaxation of a system following a quench from
the disordered phase into the ordered phase by quickly
varying an external control parameter such as the temper-
ature [1,2]. Ordering is achieved by the annihilation of
defects, commonly point defects or domain walls [3,4],
separated by a typical distance RðtÞ called the growth
length, which increases as a function of time [1,2]. Its time
dependence is usually a power law RðtÞ ∼ tα, referred to as
the growth law, which depends on the mechanism of
coarsening [2]. Analytically finding the value of the
exponent α from the growth mechanism is usually a hard
task because of the complexity of the system [1]. However,
in some cases, the growth laws can be derived theoretically
and have been verified experimentally. Examples include
disclination-driven ordering in striped patterns (α ¼ 1=4)
[5], spinodal decomposition in colloid-polymer mixtures
(α ¼ 1) [6], and curvature-driven growth in liquid crystals
(α ¼ 1=2) [7,8].

Grain growth is a particular kind of coarsening process,
which is encountered in polycrystalline materials that are
composed of adjacent crystalline domains of mismatching
orientations, called grains, and separated by domain walls,
termed grain boundaries (GBs) [9]. As the mechanical
properties of polycrystalline materials are directly related to
the size of the constituent crystalline grains [10–12],
understanding the underlying grain growth mechanism is
key in controlling them. Grain growth has been studied
extensively in simulations [13–17] and in experiments on
metallic systems [18,19]. Nevertheless, the mechanisms for
grain growth are still far from established, and it is in fact
possible that multiple mechanisms may contribute con-
currently [16,17,20–23]. It is often assumed that grain
growth is purely driven by the curvature of GBs [9,24,25],
which leads to a growth law of t1=2 and is referred to as
“normal” grain growth [9,24]. However, the growth law is
often found to be different from t1=2 [9], which is referred to
as “anomalous” grain growth [26]. Variability in the growth
exponents was observed for various metals [9,27], but also
for model systems, such as repulsive colloids [28,29]
and block-copolymer systems [30–32]. The possibility of
deriving a growth law for the case of grain growth is still an
open question because of uncertainties about the growth
mechanisms involved.
Colloidal polycrystalline monolayers are very conven-

ient model systems to study grain growth since they can be
imaged by means of simple optical microscopy at single-
particle resolution during a significant period of time,
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which is crucial for probing the coarsening dynamics with
sufficient accuracy [29,33–35]. Colloidal hard spheres
confined to a monolayer form a hexagonal close-packed
crystal when their area fraction exceeds the value 0.73 [36–
38]. Quenching the system into the crystal phase results in a
polycrystalline monolayer, with randomly oriented grains
[39,40], structurally analogous to polycrystalline graphene
sheets [41]. The grains are enclosed by GBs that are
characterized by (i) the difference in orientation between
the two adjacent crystals, called the “misorientation,” and
(ii) the orientation of the GB line, called the “inclination”
[25]. The GBs form a network whose detailed structure can
be specified by the relative amount of GBs of each
misorientation and inclination. This is quantified by the
“grain boundary character distribution” (GBCD), which is
the central link between the microscopic details and the
macroscopic properties of the GB network, such as the
average misorientation, inclination, or grain size [42,43].
Hence, the time evolution of the GBCD is at the heart of the
grain growth process.
In this work, we elucidate the origin of anomalous

grain growth observed in a polycrystalline monolayer of
colloidal hard spheres. The bond-orientational ordering
process satisfies dynamic scaling with a good agreement
between the experimental bond-orientational correlation
function and the general scaling form predicted for systems
containing random domain walls. Nevertheless, the bond-
orientational correlation length is found to grow slower
than expected for curvature-driven coarsening, suggesting
the presence of anomalous grain growth. By directly
measuring the GBCD, we show that the grain growth
kinetics strongly depends on the misorientation of GBs but
is not affected by their inclination. In particular, we find a
preferential annihilation of GBs with a high misorientation,
while the relative length of GBs with a low misorientation
increases. In addition, we find that the GBs with a small
misorientation are found to have little impact on the decay
of the bond-orientational correlation function. We derive
the scaling law for the correlation length and find good
agreement with the experimental data. This suggests that
the origin of anomalous grain growth lies in the fact that the
rate of coarsening of GBs with a high misorientation
depends on their relative length in the total GB network.

II. THEORY

A. Normal grain growth

The migration velocity v of a GB is usually related to the
GB mobilityM and the driving force P per unit length of a
GB (in 2D) via the Herring relation [25,44]

v ¼ MP; ð1Þ
where M can be seen as the inverse of a friction coefficient
per unit length of a GB. In the case where the curvature of
the GB is the only driving force, one has P ¼ Γκ, with κ the

local curvature and Γ the GB stiffness [25,44]. The GB
stiffness is an energy per unit length (in 2D) given by
Γ ¼ γ þ γ00, where γ is the interfacial free energy of the GB
and γ00 is its second derivative with respect to the GB
inclination [44]. Rewriting the Herring relation for the case
of curvature-driven GB migration yields

v ¼ MΓκ; ð2Þ

which is equivalent to the Allen-Cahn equation for
curvature-driven domain wall migration [1,24]. The prod-
uct MΓ, called the “reduced mobility” and denoted M� in
the following [45], has the dimension of an area per unit
time. It corresponds to the migration rate of a GB as it is the
typical area spanned by a moving GB per unit time.
In a polycrystalline material, where GBs form a network,

the time dependence of the average grain size, RðtÞ, can be
obtained from Eq. (2). Assuming that v ∼ dR=dt and
κ ∼ 1=R, one obtains

dR
dt

∼
M�

R
: ð3Þ

This can be integrated to give

RðtÞ ∼ t1=2; ð4Þ

which is known as the growth law of the Allen-Cahn
universality class [1,2,24] or “normal” grain growth [9].

B. Anomalous grain growth

In most polycrystalline materials, however, normal grain
growth is not observed as the grain size increases with an
exponent different from 1=2 [9], which is referred to as
“anomalous” grain growth [26]. Indeed, as GBs are solid-
solid interfaces, their mobilityM, their stiffness Γ, and thus
their reduced mobility M� depend on both the misorienta-
tion θ between the two crystals and the inclination ψ of the
GB [9,25]. Though this does not modify the local GB
dynamics as described by Eq. (2), it does imply that GBs
with different misorientations and inclinations coarsen at
different rates, i.e., that the growth law depends on the
detailed structure of the GB network. The latter can be
described by the so-called GBCD, denoted pðθ;ψ ; tÞ,
which measures the length of GBs with a given misor-
ientation θ and inclination ψ at time t, lðθ;ψ ; tÞ, divided by
the total length of the GB network in the system [42,43]:

pðθ;ψ ; tÞ ¼ lðθ;ψ ; tÞR
Iθ

R
Iψ
lðθ;ψ ; tÞdψdθ : ð5Þ

Here, Iθ (Iψ ) denotes the interval of the possible values of
θ (ψ).
The GBCD is the fundamental quantity that relates

the details of the microstructure to average quantities
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describing the GB network [42,43,46]. For example, from
the misorientation and inclination-dependent reduced
mobility of each boundary M�ðθ;ψÞ, one can find its
time-dependent average in the system as

hM�iðtÞ ¼
Z
Iθ

Z
Iψ

M�ðθ;ψÞpðθ;ψ ; tÞdψdθ; ð6Þ

which thus depends on the detailed structure of the GB
network through pðθ;ψ ; tÞ.
For the case that the grain size RðtÞ is the only

relevant length scale in the growth process, one can
expect—analogous to normal grain growth described by
Eq. (3)—that at late times a scaling regime is reached where
the grain size evolves according to [46]

dR
dt

∼
hM�i
R

: ð7Þ

As hM�i is a function of time, one expects deviations from
the law of normal grain growth, i.e., RðtÞ does not scale like
t1=2 anymore. Note that if the GBCD does not depend on
time, hM�i is constant and integration of Eq. (7) leads back
to the law of normal grain growth, Eq. (4).

III. RESULTS AND DISCUSSION

A. Bond-orientational ordering

A two-dimensional colloidal hard sphere system [38,47]
is quenched into the crystalline phase [36], which

results in the formation of a polycrystalline monolayer
subsequently monitored using video microscopy (see
Appendix A) [39,40]. The quench is achieved by the rapid
sedimentation—inherent to the large density mismatch
between the particles and the solvent—of the colloidal
particles to the bottom surface of the sample cell, causing
the in-plane area fraction to increase from 0 to 0.73 within a
few minutes only. Figures 1(a)–(c) show representative
microscopy images of a small area of the colloidal poly-
crystalline monolayer at different times, indicating local
hexagonal bond-orientational order and an evident increase
of the average grain size. The experimental time t is defined
such that t ¼ 0 corresponds to the injection of the particles
in the sample cell, i.e., the time of the start of the quench,
and we analyze the data from the moment the monolayer
has formed, typically a few minutes after injection. Note
that time is expressed in units of the Brownian time,
the time a colloidal sphere takes to diffuse over its own
diameter at infinite dilution, tB ¼ 28 s in our case (see
Appendix A). The polycrystalline structure is clearly
revealed in Figs. 1(d)–1(f) by the color maps of the
smoothed local orientation field [39,40] (see
Appendix B) for the whole field of view, where the color
of a grain corresponds to the local orientation of the
crystallite. Consistent with the microscopy images in
Figs. 1(a)–1(c), the average grain size clearly increases,
and the total grain boundary length decreases over time,
indicating that significant grain growth takes place within
the time scale of our experiments.

(a) (b) (c)

(d) (e) (f)

FIG. 1. (a)–(c) Microscopy images of the colloidal polycrystalline monolayer at different times during grain growth: (a) 32 tB,
(b) 100 tB, and (c) 1000 tB. The scale bar represents 20 μm. (d)–(f) The corresponding smoothed orientation fields (full field of view) at
the same times. The scale bar represents 100 μm.
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The grain growth process is quantitativelymonitored using
the bond-orientational correlation function, g6ðr; tÞ, com-
puted using the normalized smoothed bond-orientational
order parameter ψ̂6 to accurately probe the correlations in
the presence of GBs (see Appendix B). The behavior of g6
is shown in Fig. 2(a) as a function of the distance, r, and
for different values of the time, t. The range of the bond-
orientational correlations clearly increases with time, indicat-
ing the growing extent of the bond-orientational order in
the system, consistent with the images and orientation
fields in Figs. 1(a)–1(c) and 1(d)–1(f). A bond-orientational
correlation length R6 is defined by g6ðR6; tÞ ¼ 0.5 and is
determined at all times [8,48]. The time dependence of R6 is
shown in Fig. 2(b) and is fitted by R6 ∼ ðt − t6Þα6 following
Ref. [7], where t6 is the time at which the system enters the
scaling regime. The fit gives t6 ¼ 5tB, which roughly corre-
sponds to the time required for the monolayer to form. This
indicates that thescaling regimeisenteredalmost immediately
after the monolayer has formed and, as such, that t6 is very

close to—but not defined as—the moment that coarsening
starts. Because of its relatively small value compared to
the time scale of coarsening, the time t6 quickly becomes
irrelevant and the growth can be considered solely in terms of
the time t. Importantly, the growth exponent is found to be
α6 ¼ 0.35� 0.02, which is lower than the exponent expected
for normal grain growth, α ¼ 1=2, as in Eq. (4) [1,8,48].
Plotting g6 as a function of the rescaled distance

r=R6 shows an excellent collapse of the data [Fig. 2(c)],
indicating that the dynamic scaling hypothesis [1,2] is
satisfied by g6, i.e., g6ðr; tÞ ¼ fðr=R6ðtÞÞ, where f is a
time-independent scaling function. This indicates that the
domain structure is self-similar as long as the distances are
rescaled by the growth length R6, which is the only relevant
length scale in the bond-orientational ordering process
[1,2]. Note that redefining R6 by changing the constant
in the right-hand side of g6ðR6; tÞ ¼ 0.5 does not affect
these results as the new growth length is then proportional
to the former one as a consequence of dynamic scaling.

(a) (b)

(c) (d)

FIG. 2. (a) The bond-orientational correlation function g6ðr; tÞ as defined by Eq. (B3) for different times. (b) Time-evolution of the
bond-orientational correlation length R6. The red solid line is the result of the fit to R6 ∼ ðt − t6Þα6 . All error bars correspond to the
standard deviation of the different experimental runs. (c) The correlation function g6 as a function of the distance rescaled
by the correlation length R6. The solid black line is the correlation function given by OJK theory; see Eq. (8). (d) A log-log plot of 1 − g6
as a function of the rescaled distance x ¼ r=R6ðtÞ, which scales as x (black dashed line) following the prediction from Porod’s law;
see Eq. (9).
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We compare the scaling form of g6 to Ohta-Jasnow-
Kawasaki (OJK) theory, which states that the correlation
function for a growth process driven by the motion of
random domain walls after a quench into the ordered phase
is given by [49,50]

COJKðxÞ ¼
2

π
arcsinðe−x2=2Þ: ð8Þ

Here, x ¼ r=RðtÞ is the distance in units of a time-
dependent growth length RðtÞ. As R6 is the only relevant
length scale, Eq. (8) is directly tested by plotting g6 as a
function of x ¼ r=R6ðtÞ in Fig. 2(c). The excellent agree-
ment between g6ðr=R6Þ and COJK in Fig. 2(c) at all values
of x suggests that the GBs act as domain walls in the
orientation field. At short distances or late times, which is
equivalent to small values of x, the correlation function
behaves as COJKðxÞ≃ 1–2x=π [50,51]. This leads to a
linear decay of the correlations

g6ðr; tÞ≃ 1 −
2

π

r
R6ðtÞ

; ð9Þ

which is the real-space counterpart of the well-known
Porod’s law [1,50,51]. We directly test this feature by
plotting 1 − g6 in terms of x ¼ r=R6ðtÞ, as shown in
Fig. 2(d). The data exhibit a very clear linear behavior as
x → 0, which is in excellent agreement with Porod’s law. As
expected, Porod’s law breaks down at larger x, where the full
OJK expression, Eq. (8), needs to be considered. Note that
both the OJK scaling form and Porod’s law were found to
be valid in coarsening systems containing random domain
walls such as Potts models [48] and liquid crystals [7,8].
Finally, we stress that the OJK form in Eq. (8) is noticeably
different from the expressions of g6 in each of the equilibrium
phases of hard disks in 2D space, namely, liquid, hexatic, and
crystal, for which g6 is, respectively, a decaying exponential,
a power law, and a constant [4,36–38,52,53].

B. Grain boundary character distribution

The fact that the growth exponent, α6 ≃ 0.35, is different
from 1=2 suggests the presence of anomalous grain growth
in this system [26], which points towards a dependence of
the reduced mobility on the misorientation and inclination,
M�ðθ;ψÞ, as can be seen from Eqs. (6) and (7).

(d) (e)

(a) (b) (c)

FIG. 3. (a)–(c) Grain boundary character distribution (GBCD), pðθ;ψ ; tÞ, as a function of the misorientation, θ, and the inclination, ψ ,
for three different times during coarsening. (d) The ψ -averaged GBCD, pðθ; tÞ, as a function of the misorientation, θ, for different times
during coarsening. The LAGB regime is defined as GBs with misorientations above θL. The value θ� is a crossover point in the SAGB
regime corresponding to the value p� of the GBCD. (e) GBCD as a function of time for different misorientations, where each curve is
colored according to the misorientation as indicated by the color bar. The time dependence of the GBCD is strongly misorientation
dependent below θL, involving a transition from an increasing to a decreasing GBCD at the crossover value θ�, where the GBCD equals
p�. Above θL, the GBCD curves decay in the same fashion, which corresponds to an average master curve denoted pLðtÞ (magenta line).
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In order to check whether the kinetics of GBs depend on
their misorientation, we monitor the relative length of GBs
with a given misorientation θ and inclination ψ by directly
computing the GBCD, pðθ;ψ ; tÞ (see Appendix C). To
obtain pðθ;ψ ; tÞ, we sum the lengths of GB portions with a
misorientation in an interval ½θ; θ þ δθ� and an inclination
in an interval ½ψ ;ψ þ δψ � (with δθ and δψ small), and
divide by the total length of the GB network at time t (see
Appendix C). Surface plots of the GBCD are shown in
Figs. 3(a)–3(c) for three different times during coarsening.
There is a clear increase of the GBCD at low misorienta-
tions with time, but strikingly, the GBCD does not change
as a function of the inclination at all times. This may
originate from the fact that GBs are curved and exhibit
thermal fluctuations [54], allowing the inclinations to be
equiprobable. As the inclination ψ is not affecting the
coarsening kinetics, the GBCD can in fact be treated as a
function of the misorientation θ only. In the following, we
consider the ψ -averaged GBCD, pðθ; tÞ ¼ R

Iψ
pðθ;ψ ; tÞdψ ,

andmerely refer to it as “theGBCD” for simplicity. The same
applies to the ψ-averaged reduced mobility, M�ðθÞ ¼R
Iψ
M�ðθ;ψÞdψ .
The GBCD as a function of the misorientation θ only is

shown in Fig. 3(d), for different times during coarsening.
Additionally, the GBCD is also plotted as a function of time
for different values of the misorientation in Fig. 3(e).
Clearly from Fig. 3(d), the GBCD is a decaying function
of θ with a plateau at high θ, typically above a value
θL ≃ 15°. The height of the plateau decreases as a function
of time, which is clear from the time decay of the GBCD
curves for θ ≥ θL ≃ 15° in Fig. 3(e). Strikingly, one can see
from Fig. 3(e) that for misorientations above θL ≃ 15°, the
GBCD becomes independent of the misorientation, so that

pðθ; tÞ ¼ pLðtÞ for θ ≥ θL: ð10Þ
Experimentally, we determine pLðtÞ by averaging the
GBCD over the interval ½θL; 30°�, as shown by the purple
line in Fig. 3(e). One concludes that GBs with a misor-
ientation greater than θL ≃ 15° have the same kinetics in
the GB network, as it is governed by pLðtÞ, which does not

depend on θ. In the following, GBs with a misorientation
θ ∈ ½θL; 30°�, where θL ¼ 15°� 2°, are referred to as
“large-angle grain boundaries” (LAGBs). Otherwise they
are termed “small-angle grain boundaries” (SAGBs).
Interestingly, the kinetics of SAGBs strongly contrasts

with that of LAGBs. Indeed, the combined inspection of
Figs. 3(d) and 3(e) reveals that for misorientations below
θL, the GBCD can increase or decrease depending on
whether θ is smaller or larger than a crossover value θ�.
From the data in Fig. 3(d), we estimate the location of the
crossover to be θ� ¼ 8.5°� 1°, which corresponds to a
constant value of the GBCD, p� ≃ 0.03, as can be seen
from Fig. 3(e). This shows that unlike LAGBs, the kinetics
of SAGBs in the GB network strongly depends on the value
of their misorientation.

C. Kinetics of the grain boundary network

To clarify the contributions of LAGBs and SAGBs to the
coarsening kinetics, the GB network is directly visualized
in Figs. 4(a)–4(c), which shows snapshots of the GBs
colored according to the magnitude of their local misor-
ientation θ for the whole field of view (see Appendix C).
These snapshots indicate a significant annihilation of
LAGBs, leaving large areas containing mainly SAGBs,
which enclose smaller grains. This can be quantified by
monitoring the evolution of the total lengths of GBs,
SAGBs, and LAGBs, defined by

Λk ¼
Z
k
lðθ; tÞdθ; ð11Þ

with k corresponding to I ¼ ½0; 30°�, S ¼ ½0; θLÞ, and
L ¼ ½θL; 30°�, respectively, and such that ΛI ¼ ΛS þ ΛL.
The time evolution of the Λk’s is shown in Fig. 5(a).
While ΛI decreases slightly over time, there is a strong
decrease of ΛL, indicating significant annihilation of
LAGBs, consistent with the behavior of the GBCD in
Figs. 3(d) and 3(e). This is in clear contrast with the
behavior of ΛS, which increases very weakly throughout
the process. From this, we deduce that the SAGBs become
relatively more present as they constitute the majority of the
grain boundaries at long times.

(a) (b) (c)

FIG. 4. (a)–(c) View of the GBs colored according to the value of their misorientation at the exact same times as in Figs. 1(a)–1(c) and
1(d)–1(f). This provides a direct way to visualize the SAGBs and LAGBs during coarsening. The scale bar represents 100 μm.
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In light of the snapshots in Figs. 4(a)–(c) and the
differences in the kinetics between SAGBs and LAGBs
visible in Fig. 5(a), the network of GBs can be seen as
having two components: the LAGBs, which are in the
minority, and the SAGBs. Based on this, we define two
typical length scales,

Rk ¼
A
Λk

; ð12Þ

where A is the area of the field of view and k ¼ S, L. Within
this definition, RS (RL) corresponds to the average distance
from one SAGB (LAGB) to another. It is important to
note that RS and RL are different from the grain size,
RI ¼ A=ΛI , which is the mean distance from one GB to
another, regardless of their types.
In order to derive the growth laws corresponding to RS

and RL, it is reasonable to assume that the kinetics of
SAGBs and LAGBs are driven by the curvature of the GBs
of their own type. Consequently, the kinetics can be
described by two equations analogous to Eq. (7) corre-
sponding to each network as

dRk

dt
¼ hM�ik

Rk
: ð13Þ

Here, the hM�ik’s with k ¼ S, L are two time-dependent
reduced mobilities defined by

hM�ikðtÞ ¼
Z
k
M�ðθÞpðθ; tÞdθ ð14Þ

and such that

hM�iI ¼ hM�iS þ hM�iL; ð15Þ
where hM�iI is the total reduced mobility. Note that all
hM�ik’s with k ¼ I, S, L represent time-dependent average
coarsening rates, which depend on the configuration of the
GB network via the GBCD, pðθ; tÞ. As they are averaged
over many GBs belonging to either of the different groups
I, S, and L, they differ from the misorientation-dependent
reduced mobilities M�ðθÞ of single GBs.
From the experimental data in Fig. 5(a), it is clear thatΛS

hardly changes at all, so dRS=dt≃ 0, and therefore we
focus on the case of LAGBs in Eq. (13). Using successively
the definition of hM�iL in Eq. (14) and the property of the
GBCD for LAGBs as given by Eq. (10), we obtain

hM�iL ¼
Z
L
M�ðθÞpðθ; tÞdθ

¼ pLðtÞ
Z
L
M�ðθÞdθ

∼ pLðtÞ; ð16Þ
as the remaining integral over θ is time independent. Note
that, importantly, the last equation means that the behavior
of the GBCD for LAGBs, pL, is directly proportional to
the average reduced mobility of LAGBs, hM�iL. As pL
decreases during coarsening [see Fig. 3(e)], we deduce that
hM�iL decreases as well, without a priori knowledge
of M�ðθÞ.
Finally, we derive the time dependence of RL by

combining its definition, RL ∼ 1=ΛL, with Eq. (11), which
gives

RL ∼
�Z

L
lðθ; tÞdθ

�
−1
: ð17Þ

(a) (b)

FIG. 5. (a) Time evolution of the total lengths of GBs, SAGBs, and LAGBs, namely, ΛI , ΛS, and ΛL, in units of particle diameters.
(b) Time evolution of the length scale RL, obtained from A=ΛL, where A is the area of the field of view. The quantity RLΛ

1=3
I behaves as

t1=3 (black dashed line) at long times. The bond-orientational correlation length, R6, exhibits the same scaling properties as RL. The
offsets of the curves are arbitrary to facilitate visualization and the differences in time range are attributable to difficulties in accessing R6

(RL and ΛI) accurately at long (short) times.
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This can be rewritten using successively Eqs. (5), (10),
and (11) as

RL ∼
�Z

L
pðθ; tÞ

Z
I
lðθ0; tÞdθ0dθ

�
−1

∼
�Z

L
pLðtÞΛIðtÞdθ

�
−1

∼ ðpLðtÞΛIðtÞÞ−1; ð18Þ

since the integrand in the second line does not depend on θ.
Combining Eqs. (16) and (18) yields hM�iL ∼ 1=ðRLΛIÞ,
which can be inserted into Eq. (13) to give

dRL

dt
∼

1

ΛIR2
L
: ð19Þ

Assuming that RL can be described by a power law in the
scaling regime probed here, one has dRL=dt ∼ RL=t, and a
simple rearrangement of Eq. (19) finally leads to

RLΛ
1=3
I ∼ t1=3: ð20Þ

We directly test the growth law corresponding to Eq. (20)
on the experimental data in Fig. 5(b). One can see that the
quantity RLΛ

1=3
I is parallel to the ∼t1=3 curve at long times,

indicating that Eq. (20) is satisfied. This means that
Eq. (13) is valid to describe the kinetics of the LAGB
network, and combining this with Eq. (16), hM�iL ∼ pLðtÞ,
leads to

dRL

dt
∼
pLðtÞ
RL

: ð21Þ

Importantly, this implies that the coarsening of the LAGBs
is driven by their curvature only, 1=RL, but with a time-
dependent reduced mobility, pLðtÞ, that is nothing but the
fraction of LAGBs in the whole GB network at a given
time.
As observed in Fig. 5(b), the quantity R6Λ

1=3
I obeys the

same scaling as RLΛ
1=3
I , which means that RL and R6

correspond to the same length scale [see Fig. 5(b)]. This
indicates that the bond-orientational ordering process is
equivalent to the coarsening of the LAGB network,
suggesting that the bond-orientation correlation function
g6 is quite insensitive to the presence of SAGBs. Note that
RL and R6 follow power laws close to ∼t1=3 [see Fig. 5(b)],
indicating that these quantities dominate ΛI , which
decreases only very weakly with time. In fact, the small
decrease of ΛI implies that RL and R6 grow only slightly
faster than t1=3, consistent with the experimental data.

IV. CONCLUSION

In summary, we have shown that grain growth in a
colloidal polycrystalline monolayer of hard spheres is

characterized by a strong bond-orientational ordering,
which has general scaling features of systems with random
domain walls. However, it exhibits anomalous grain growth
as the correlation length grows slower than ∼t1=2. By
monitoring the kinetics of the grain boundaries as a
function of their misorientation, we have shown the
preferential annihilation of large-angle grain boundaries,
while the relative length of small-angle grain boundaries
increases. The experimental growth law is consistent with
curvature-driven coarsening of the large-angle grain boun-
daries, but with a time-dependent reduced mobility,
which depends on their relative length with respect to
the whole network of grain boundaries. Finally, the bond-
orientational ordering process was found to be equivalent to
the coarsening of the large-angle grain boundary network,
which dominates the decay of the correlations.
The relevance of our results is underlined by the recent

surge of interest in two-dimensional materials such as
graphene and other atomically thin materials, like silica
glasses [55], semiconductor molybdenum disulphide
[56,57], or the insulator boron nitrate [58]. The portability
of our findings to 3D materials is complex, as the
description of GBs in 3D requires a much larger five-
dimensional parameter space [25]. However, the scaling of
normal grain growth is always t1=2 regardless of the
dimension. While the deviations from normal grain growth
that we observe can depend on dimensionality, their
physical origin may be the same, thus illustrating the
potential use of our approach in 3D materials. We hope
that our work will provide a starting point for the develop-
ment of a theoretical description of the time evolution of the
GBCD, based on GB interfacial properties such as their
stiffness, mobility, dislocation density, or roughness, for
example. This would bridge the gap between the micro-
scopic level and the much larger length scales involved in
coarsening that are responsible for the deviations from
normal grain growth.
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APPENDIX A: EXPERIMENTAL METHODS

Our colloidal model system consists of a dispersion
of 2.78-μm-diameter melamine-formaldehyde spheres
(Microparticles GmbH) in a 20=80 v/v% isopropanol/
water mixture. The stabilization of the dispersion is
ensured by the presence of carboxylic-acid surface
groups, which give the particles a negative surface charge.
The particles are contained in a 200-μm-thick quartz cell
(Hellma Analytics) and because of their high mass density
(1.51 g=cm3), they sediment to the bottom wall of the cell
to form a monolayer. The out-of-plane fluctuations are
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negligible, resulting in a quasi-two-dimensional system
[38,47]. In these conditions, our colloidal particles
interact as hard spheres, as was recently shown in
Refs. [38,47,59]. The system is fully characterized by
the area fraction in the midplane of the colloidal particles
in the monolayer, ϕ ¼ πNσ2=ð4AÞ, where σ is the particle
diameter and N is the number of particles located in an
area A. Because of the high mass density of the particles
(1.51 g=cm3), the formation of a monolayer with a final
area fraction ϕ ¼ 0.73 happens within a few minutes only,
which thus quenches the system into the crystalline phase
[36–38], and the particles assemble in a polycrystalline
monolayer with local hexagonal order [39,40]. The
subsequent grain growth is monitored using an inverted
optical microscope (Olympus CKX41) and a CMOS
camera (Ximea XiQ) with a 20× objective. Images
containing ∼4 × 104 particles [see Fig. 6(a) for a partial
view] are recorded at a frame rate of 1/min for 16 h from
the time of filling the cell, defined as t ¼ 0, and five
equivalent runs are performed to improve statistics. The
particle coordinates are extracted in each frame using
standard routines [60]. This procedure is facilitated by
adjusting the focus so that a bright dot appears in
the middle of each particle, as can be seen in Fig. 6(a).
Time is expressed in units of the Brownian time,
tB ¼ σ2=ð4D0Þ ¼ 28 s, where D0 is the experimentally
determined diffusion coefficient at infinite dilution.

APPENDIX B: BOND-ORIENTATIONAL
ORDER ANALYSIS

The local bond-orientational order parameter ψ6ðr⃗j; tÞ is
used to quantify the local crystalline order of a particle j
located at r⃗j and is defined as [4,39,40]

ψ6ðr⃗j; tÞ ¼
1

NjðtÞ
XNjðtÞ

k¼1

ei6ΔθjkðtÞ; ðB1Þ

where Δθjk is the angle between the x direction and the
bond vector connecting the particle j to one of its Nj

nearest neighbors k, defined using a Delaunay triangulation
[see Fig. 6(b)]. The local orientation of the particle j is then
given by

θ6ðr⃗j; tÞ ¼
1

6
arg (ψ6ðr⃗j; tÞ); ðB2Þ

and it varies from 0° to 60° as a result of the hexagonal
symmetry of the 2D hexagonal close-packed crystal; see
Fig. 6(b). A plot of the θ6 field for a local view of the
sample is shown in Fig. 6(c) as an example.
The decay of the bond-orientational order as a function

of the distance is measured in terms of the bond-
orientational correlation function, g6ðr; tÞ, which requires
a specific computation procedure in the case of a poly-
crystalline sample because of the presence of grain boun-
daries. First, the field ψ6 is smoothed by replacing ψ6ðr⃗i; tÞ
with its average over the particles constituting the first
two coordination shells of the particle i [see Fig. 6(b)].
The smoothed field is denoted ~ψ6ðr⃗i; tÞ, and the smoothed
local orientation field is defined by ~θ6 ¼ argð ~ψ6Þ=6;
see Fig. 6(d) for an illustration. This operation prevents
the correlation function from sharply dropping at small
distances because of noise in the ψ6 field [8]. The field ~ψ6

is then normalized according to ψ̂6 ¼ ~ψ6=j ~ψ6j, which
enables a more accurate probing of the correlations at
short distances [51]. Eventually, the bond-orientational
correlation function g6ðr; tÞ is computed as

g6ðr; tÞ ¼ Re(hψ̂�
6ðr⃗þ r⃗0; tÞψ̂6ðr⃗0; tÞi); ðB3Þ

where h:i denotes the average over all the pairs of particles
separated by a distance r. Within this definition, g6ðr; tÞ is
simply the average cosine of 6(~θ6ðr⃗þ r⃗0; tÞ − ~θ6ðr⃗0; tÞ)
and thus only probes the spatial correlations in the argu-
ment of the bond-orientational order parameter at differ-
ent times.

APPENDIX C: DETECTION OF
GRAIN BOUNDARIES

To extract the GBs and their misorientation θ, the grains
are first detected using a procedure similar to the one used
by Dillmann et al. [29]. An example for a small part of

(a) (b)

(c) (d)

FIG. 6. (a) Microscopy image of a small area of the colloidal
polycrystalline monolayer. The scale bar represents 20 μm. (b) A
particle j (black disk) with k, one of its six nearest neighbors in
the hexagonal lattice (purple disks). The angle between the bond
j − k and the x direction is denoted Δθjk, and it is used for the
computation of ψ6 and the local orientation θ6 (see text). The
smoothing of the ψ6 field requires the particles in the second shell
of nearest neighbors (white disks). (c) Voronoi tessellation, where
each cell is colored according to the value of θ6 as indicated by
the color bar. (d) Smoothed orientation field ~θ6.
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the system is shown in Fig. 7(a). The set of crystal-like
particles is defined as those particles for which j ~ψ6j is
greater that 0.7. If a crystal-like particle has at least three
crystal-like neighbors whose ~θ6 values differ by less than
0.75°, then these particles belong to the same grain. A grain
containing less than 19 particles is discounted as this
corresponds to the size of a cluster formed by a particle
and its two shells of nearest neighbors [61]. The output is
shown in Fig. 7(b), where the particles of each grain have
been colored according to the average ~θ6 value of the
particles within that grain.
Next, the GBs are determined by constructing the

Delaunay triangulation of the crystal-like particles only,
as shown in Fig. 7(c). From this, the triangulation edges
forming the envelope of the grains are detected and form
the grain edges, such as i − j in the inset Fig. 7(c).
The triangulation edges that connect the particles belonging
to two neighboring grains are detected as well. These edges
are called the “GB connectors”, such as k − i or k − j in the
inset of Fig. 7(c). Linking the centers of two consecutive
GB connectors such as k − i and k − j gives a “GB
segment,” as seen in the inset of Fig. 7(c). It is clear from
Fig. 7(c) that the GB segments determined by such a
method provide a reasonably good representation of the
GBs in the system.

To compute the misorientation of GBs, one starts by
defining the misorientation of a GB connector as

θik ¼minðj~θ6;i− ~θ6;kj;60°− j~θ6;i − ~θ6;kjÞ∈ ½0;30°�; ðC1Þ

where ~θ6;i is the smoothed orientation at the site i. Note that
the expression of θik respects the symmetry θ → 60° − θ of
hexagonal closed-packed crystals. The misorientation θkij
associated to a GB segment involving the two GB con-
nectors k − i and k − j is then calculated via

θkij ¼ min

����� θki þ θkj
2

����; 60°−
���� θki þ θkj

2

����
�
; ðC2Þ

which lies in the range 0°–30° as well. The GB segments,
colored according to their misorientation, are plotted in
Fig. 7(d) to directly visualize the local misorientation of the
GBs. One can see that the algorithm is able to detect most
GBs present in the snapshot, including two GBs with a
small misorientation ≃5°. The reason why LAGBs appear
wider than SAGBs in Figs. 7(b) and 7(d) comes from the
fact that LAGBs have a higher dislocation density than
SAGBs [9,25,62]. As a consequence, crystalline order is
more disrupted by a LAGB, which leads to lower values of
the modulus of ψ6 and a noisier orientation field, and thus
results in more GB particles being detected in a LAGB than
in a SAGB.
The GB inclination is obtained using the GB construc-

tion procedure shown in Figs. 8(a)–8(c) [25,62]. Starting
with a perfect lattice of primitive vectors a⃗1 and a⃗2 [63],
one draws a line that corresponds to the GB, thus separating
two grains labeled ① and ②, as illustrated in Fig. 8(a). The
inclination ψ is then defined as the angle between a⃗1 and
the GB line [see Fig. 8(a)]. The GB is then obtained by
rotating grains ① and ② by −θ=2 and þθ=2, respectively,
where θ is the misorientation [see Fig. 8(b)]. The situation
actually encountered in an experiment is that illustrated in
Fig. 8(c), where grain ① has an orientation α with respect to
the x axis. In this case, the inclination can be measured
using

ψ ¼ β − θ=2 − α; ðC3Þ

where β is the direction of the GB line with respect to the x
axis [see Fig. 8(c)]. For a GB segment as considered in
Fig. 7(c), the inclination is thus

ψkij ¼ βkij − θkij=2 − αkij; ðC4Þ

where θkij is the misorientation as obtained from Eq. (C2);

αkij ¼ minð~θ6;k; ~θ6;i; ~θ6;jÞ; and βkij is the direction of the
GB segment. However, the outcome of βkij would be
subject to noise from the thermal fluctuations of the
detected GB. Instead, the local direction at a point of
the GB is computed from the positions of GB points located

(a) (b)

(c) (d)

FIG. 7. (a) Local view of the smoothed orientation map ~θ6. The
inset on the left of the snapshot shows the raw orientation map θ6
before smoothing. The scale bar represents 20 μm. (b) The output
of the grain detection algorithm adapted from Dillmann et al.
[29]. Each grain is colored according to the average ~θ6 of the
particles within it. (c) Delaunay triangulation of the crystal-like
particles. The grain edges are colored in black, the GB connectors
in red, and the GB segments in blue. The inset shows the
construction of a GB segment involving three particles i, j, and k
(see text). (d) The output of the grain detection together with the
GB segments colored according to their misorientation as
indicated by the color bar.
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within some cutoff distance from the point of interest, using
principal component analysis [39]. Here, we choose the
cutoff distance to be 2σ, which matches our cutoffs used for
the ψ6 smoothing and the grain detection. As by symmetry,
ψkij lies within the range 0°–30°, and we define a reduced
inclination

ψ̄kij ¼ min½ψkij mod 60°; 60° − ðψkij mod 60°Þ�; ðC5Þ

which is referred to as “the inclination” in this work. The
inclination of the GB segment as determined by this
procedure can be directly visualized in Fig. 8(d).
Finally, the GBCD is determined from the length l of

each GB segment. The lengths of the GB segments with a
misorientation in the interval ½θ; θ þ δθ� and an inclination
in the interval ½ψ ;ψ þ δψ � are added together and this sum
is denoted lðθ;ψ ; tÞ. Dividing lðθ;ψ ; tÞ by the total length
of GB segments yields the value of the GBCD, pðθ;ψ ; tÞ,
according to Eq. (5). The values of δθ and δψ are set to
0.75°, consistently with the grain detection step.
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