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Recently, two reports [Krivanek et al. Nature (London) 514, 209 (2014), Lagos et al. Nature (London)
543, 529 (2017)] have demonstrated the amazing possibility to probe vibrational excitations from
nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength
using electron-energy-loss spectroscopy (EELS). While Lagos et al. evidenced a strong spatial and spectral
modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that
discrepancies among different EELS experiments as well as their relation to optical near- and far-field
optical experiments [Dai et al. Science 343, 1125 (2014)] can be understood by introducing the concept of
confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise
formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons
[Ouyang and Isaacson Philos. Mag. B 60, 481 (1989), García de Abajo and Aizpurua Phys. Rev. B 56,
15873 (1997), García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008), Boudarham and Kociak
Phys. Rev. B 85, 245447 (2012)]; it makes it straightforward to predict or interpret phenomena already
known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D
mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015)].

DOI: 10.1103/PhysRevX.7.041059 Subject Areas: Condensed Matter Physics,
Plasmonics

Electron-energy-loss spectroscopy experiments consist
of sending a free-electron beam onto a sample of interest and
retrieving information on its excitations through the analysis
of the energy lost by the electron beam. It can essentially be
performed without spatial resolution at low electron energy
(HREELS) or with a sub-angstrom resolution in a scanning
transmission electron microscope (STEM). In a pioneering
work, Ibach [1] used HREELS to analyze the vibrational
excitations of a ZnO surface. He could retrieve the measured
value of the surface phonon energyωs within what was later
called the local continuum dielectric model (LCDM) [2].
This simple and powerful model relies on the assumption
that the local dielectric constant ϵðωÞ ¼ ϵðω; q ¼ 0Þ [where
ω is the energy and ϵðωÞ is equal to its value at zero
transferred momentum q] is sufficient to describe electro-
magnetic excitations in a finite system. In Ibach’s simple
geometry, ωs was such that ϵðωsÞ ¼ −1. Kliewer and Fuchs
demonstrated the amazing efficiency of the LCDM to
describe more complicated geometries, such as slabs [3]
and infinite cylinders [4]. Already in these simple systems,
the electromagnetic coupling between surfaces induces
surface phonon splitting in so-called Fuchs-Kliewer (FK)

modes with different charge distribution symmetries
[Fig. 1(a)]. Most materials dielectric constants can be
described in the optical phononic range with a Drude-
Lorentz model requiring the sole knowledge of the longi-
tudinal and transverse optical phonon energies (ωLO and
ωTO) and the value of the dielectric constant at large energy
values (ϵ∞) of the bulk material; see the Appendix. One sees
in Fig. 1(a) that surface phonon (SPh) modes disperse as a
function of the transferred wave vector fromωTO orωLO and
converge to ωs at large transferred wave vector.
The Fuchs-Kliewer work has been extended with impres-

sive success [2] to the description of surface plasmons (SP)
in simple systems such as slabs and cylinders [4,6] [see
Fig. 1(b)].As already described inRef. [4], a practical reason
for this success is the close resemblance between the
dielectric constants of systems encompassing either optical
phonons or plasmons (see the Appendix). Given similar
electromagnetic boundary conditions, it is no surprise that
similar physics is involved; in particular, surface waves,
either SP or SPh can be regarded as surface charge density
waves. However, such a resemblance is valid in a long-
wavelength limit—precisely that of the LCDM. Of course,
beyond the LCDM, which will not be evoked hereafter,
themicroscopic origin of the surface charge densitywaves is
rather different at the atomic scale between SPs (free-
electron charges) and SPhs (ion vibrations).
Stimulated by the development of the research on

plasmons in nanoparticles systems, several simulation
schemes basically relying on the LCDM [boundary element
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method (BEM) [7–9] and discrete dipole approximation
[10]] have been extensively used to simulate optical and
EELS spectra dominated by localized SPs confined on
nanoparticles. BEM simulations have been recently
extended to the phonon range for STEM EELS [11] using
the MNPBEM [12] implementation.
Now, beyond their unique simulation capabilities,

LCDM-derived theories have offered a deep understanding
of localized SP physics. In particular, they made explicit the
link between STEM EELS and optical near-field spectros-
copies as both are related to the electromagnetic local
density of states (EMLDOS) [13,14] and showed that
EELS is related to the extinction cross section for dipolar
modes [15,16].
The goal of this paper is to show how the reasoning once

made to explain SP confinement in nanoparticles and
interpret STEM-EELS experiments can now be used to
rationalize the interpretation of surface STEM-EELS
vibrational experiments in nano-objects and predict new
physical effects.
In the following, we introduce the confined surface

phonons (cSPh) modes as surface phonons whose proper-
ties are mostly defined by the classical confinement
that they experience in particles much smaller than the

free-space equivalent wavelength. In this sense, if normal
phonon modes are conceptually related to bulk plasmon
modes and surface phonons to surface plasmons, cSPhs are
the phononic counterpart to localized SPs. For the sake of
simplicity, we neglect retardation in the following, unless
otherwise specified. As we show, this is justified by the
relatively small sizes of phononic nanoparticles studied in
the literature [11,17]. A rigorous definition of the cSPh
modes can then be given in the quasistatic (QS) approxi-
mation using a modal decomposition form, first introduced
in the case of confined SPs [7,14,18]; see the Appendix.
cSPhs are then defined as a set of eigencharges fσig and
eigenvalues fλig, i being the mode index. In the general
case, λi, which depends only on the geometry of the
nanoparticle, has to be determined numerically, and cor-
responding eigenenergies can be deduced through a simple
implicit relation between λi and the energy-dependent
dielectric constant (see the Appendix). In the case of a
model Drude-Lorentz dielectric constant, a general expres-
sion for the cSPh eigenenergies is (see the Appendix)

ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ∞ω

2
LOðλi þ 1Þ − ω2

TOðλi − 1Þ
ϵ∞ðλi þ 1Þ − ðλi − 1Þ

s
: ð1Þ

FIG. 1. Analogy between surface phonons modes and surface plasmons modes. (a) Dispersion relation of the Fuchs-Kliewer modes for a
slab of thickness d (top) and a cylinder (bottom) of radius r made up of MgO. The charge symmetry of the modes is sketched in the inset.
For the cylinder, only the rotationally invariant mode branch is shown, as the other modes are essentially not dispersing [5]. Calculations
have been performed in the quasistatic approximation (b) Same for SP modes in silver. (c) Dispersion relation for the cSPh of nanorods,
reconstructed from a series of retarded simulation of nanorods of different lengths (diameter is 30 nm). The dotted line is the quasistatic
dispersion relation for an infinite cylinder of the same diameter, showing the remarkable agreement between both approximations even for
long lengths of rods. (d) Surface eigencharge distribution for cSPh of a nanorod, with the given mode orders and eigenvalues λi.
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cSPh energies lie between the bulk LO and TO energies, as
−1 < λi < 1 [18], and we directly see that the energy of
two well-known FK modes for an infinitely thin slab,
describing the charge-antisymmetric and charge-symmetric
modes [see Fig. 1(a)], are retrieved for λi ¼ �1. In
addition, other simple cases can be straightforwardly
deduced. λi ¼ 0 corresponds to the abovementioned
surface phonon [1] case (ϵ ¼ −1) with eigenenergy ωs ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵ∞ω2

LO þ ω2
TOÞ=ðϵ∞ þ 1Þ

p
in a Drude-Lorentz model,

and λi ¼ −1=3 [5] corresponds to the dipolar mode of a
sphere (ϵ ¼ −2, ωi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðϵ∞ω2
LO þ 2ω2

TOÞ=ðϵ∞ þ 2Þp
).

To exemplify the interest of this approach, we start with
the case of nanorods, which has been widely investigated in
surface plasmon physics [19], and especially by EELS
[20,21]. The simplicity of the structure makes it easy to
understand the intimate link between shape and modes
structures, and we adapt it here to the case of a phononic
material following arguments for localized SPs found in
Ref. [5]. Modes in a nanorod of radius r and length L are
similar to the SPh modes of the infinite rod, except that the
confinement restricts the available wave vectors to a
multiple of 1=2L. This is exemplified in Fig. 1(c), where
the discrete modes dispersion relation, simulated for a large
set of nanorod lengths, overlaps the one of an infinite rod.
Such modes are the cSPh modes of the nanorod. The cSPh
modes disperse between ωTO and ωs, in analogy with
the corresponding dispersion in localized SP in nanorods
restricted between 0 and ωSP [5]. Similarly to the

corresponding localized SP modes, each mode with eigen-
value λi corresponds to an oscillation of the surface
eigencharge, as depicted in Fig. 1(d). Despite the fact that
simulations have been performed in a retarded approxima-
tion (see the Appendix), the nanorod energies follow quite
closely the quasistatic dispersion relation (dotted line).
This is a strong evidence that in the prototypical case
of a nanorod the QS approximation is much more justified
for cSPh than for localized plasmons for objects of the
same sizes. Indeed, the length [top scale in Fig. 1(c)] of a
typical nanorod is much smaller than the equivalent
free-space wavelength of the cSPh [right-hand scale in
Fig. 1(c)]. Another difference with SPs is the pileup
of low-order modes for long nano-antennas close to
ωTO, which is obviously absent for localized surface
plasmons.
Figure 2(a) presents one EELS spectrum simulated for

beam impinging 10 nm away from one tip of a MgO rod
200 nm long and 30 nm in diameter. The simulations
performed in the full retarded approximation and using an
experimental dielectric constant as an input [22] reveal a
series of peaks. As shown in Table I, a direct comparison
of their energy values with that of the cSPhs deduced
from Eq. (1), which is purely quasistatic and based on
the sole knowledge of the λi, ωTO, ωLO and ϵ∞, shows
an almost perfect agreement. This validates conceptually
our approach, and also allows us to use a simple EELS
modal decomposition [see Eq. (A2)] for EELS simulations.

FIG. 2. Optical cross sections, EELS, EMLDOS, and eigenpotentials for the cSPh in a nanorod of MgO. (a) Simulated optical cross
sections for an incoming beam propagating perpendicular to the nanorod axis, and EELS spectrum for an electron beam located 10 nm
away from one tip of the nanorod. All spectra have been shifted for clarity. Optical cross section scales are the same for extinction and
absorption, and multiplied by 6 × 104 for scattering. The polarization of the electrical field is parallel to the nanorod axis, except for the
dotted curve. The nanorod is 200 nm in length and 30 nm in diameter. (b) EELS maps for the four first modes of the nanorod.
(c) Corresponding zEMLDOS maps taken at z ¼ 10 nm from the surface of the rod. (d) Corresponding z-integrated eigenpotentials.

VIBRATIONAL SURFACE ELECTRON-ENERGY-LOSS … PHYS. REV. X 7, 041059 (2017)

041059-3



In Fig. 2(a), we also compare EELS to macroscopic
optical quantities such as the absorption, extinction, and
scattering cross sections calculated in the retarded approxi-
mation. As in the case of EELS, the spectra do not peak at
the normal modes energies ωLO and ωTO. Instead, they are
dominated by the cSPh modes, in analogy with the well-
known case of a slab spectrum dominated by the FK modes
[3], or more generally, for an ensemble of nanoparticles
[23]. This is particularly justified from the modal decom-
position of the cross sections; see Eq. (A3) and Ref. [15]:
the optical cross sections are proportional to a spectral
function peaking at the dipolar cSPh mode energy.
Contrary to the case of EELS, only the dipolar modes
are observable (but a very slight contribution from the third-
order mode). The spectra obviously show a large depend-
ence on the incoming polarization. For polarizations along
the nanorod axis, the dipolar mode of the low-energy
branch is excited. For a polarization perpendicular to it, the
dipolar modes of the other branches, almost all arising at ωs
[24], are excited; see Fig. 2(a). This points to the fact that
EELS is sensitive to both bright (i.e., optically active) and
dark (i.e., not optically active) cSPhs, in contrast to optical
far-field techniques.

Obtaining truly dark (nonemitting or absorbing) local-
ized SPs is difficult due to the relatively large sizes of
plasmonic particles [15] with respect to the corresponding
free-space wavelengths. In contrast, for the cSPhs where
the QS approximation is justified for much larger particle
sizes, almost only dipolar modes are bright. We note that
the scattering cross section is several orders of magnitude
smaller than the extinction one. This is basically related to
the fact that, other things being equal, the ratio between
scattering and extinction scales as 1=ω3, where ω is the
energy of interest. This makes extinction and absorption
cross sections almost identical at the low energy of the
phonon regime, making EELS very close to the absorption
cross section for dipolar cSPh modes (see also the ana-
lytical proof in the Appendix). We note that this contrasts
with the case of a silver plasmonic nanorod of the same size
(see Fig. 3). In this case, scattering has a major contribution
in the extinction cross section.
We can now clarify the type of selection rules when

exciting cSPh optically or with electrons. To start with, in
the QS approximation, only dipolar modes can be excited
by a plane wave, and the electrical polarization of the plane
wave must be aligned with the dipole direction. Away from

TABLE I. Comparison between energy values for the nanoantenna in Fig. 1(d) calculated with Eq. (1) and as
extracted from the simulated spectra in Fig. 2. Inputs for Eq. (1) are ωTO ¼ 50.7 meV, ωLO ¼ 91.3 meV, ϵ∞ ¼ 3.01
[22]. Simulations have been performed in the full retarded approximation, with the experimental dielectric constant
found in Ref. [22].

Mode 1 Mode 2 Mode 3 Mode 4 Surface

λi ¼ −0.93 λi ¼ −0.80 λi ¼ −0.67 λi ¼ −0.56 λi ¼ 0

ω1 (meV) ω2 (meV) ω3 (meV) ω4 (meV) ωs (meV)

From Eq. (1) 56.0 63.4 68.7 72.3 83.1
Simulations [Fig. 2(a)] 56.8 63.6 68.6 72.0 82.9

FIG. 3. Optical extinction, absorption, and scattering cross sections for (a) A MgO nanoantenna and (b) a silver nanoantenna. Both
antennas have the same size (200 × 30 nm). Note the absolute cross section values.
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the QS, similar symmetry arguments arise: even modes
[modes 2 and 4 in Fig. 1(b)–1(d)] cannot be excited by a
plane wave with the electrical field in the plane containing
the axis of the nanoantenna, while odd modes (1 and 3) can
be excited. Tilting the beam direction with respect to the
antenna axis will break the symmetry and make it possible
to also detect even-order modes. More generally, for optical
experiments, the selection rules are completely determined
by the general symmetry of the surface charge distribution
with respect to the plane wave direction and polarization.
The interplay between the symmetries of the incoming

electron electrical field and the surface eigencharges is
different. As with optics, cSPh modes are also probed by
EELS, but contrary to optics, EELS is sensitive to all modes
even in the QS approximation. Also, the symmetry of the
surface eigencharges impacts rather the spatial distribution
of the EELS signal. Indeed, EELS maps [Fig. 2(b)] closely
resemble the EMLDOS projected along the electron propa-
gation direction z [zEMLDOS, Fig. 2(c)], with the
EMLDOS spatial and spectral distribution being essentially
determined by the size, shape, and symmetries of the
object of interest. The resemblance between EELS and
zEMLDOS is expected by analogy with the localized SP
case, where also a general analytical relation between these
two quantities can be determined [13]. Much as in the case
of localized SPs [14], EELS as well as near-field optical
techniques do not map directly the eigencharges [25].
Rather, they map the related zEMLDOS, itself related to
the z projection of the electric eigenfield in the QS limit
[9,14]. An even more precise description of EELS of cSPh
in terms of electromagnetic quantities is given by the
almost perfect identity between EELS and the z-integrated
eigenpotentials [26]; see Fig. 2(d).
We can sum up the results exemplified on the nanorods

but valid for any kind of phononic nanoobject.
First, surface EELS and optical IR absorption, extinction,

and scattering of nanoparticles probe the same physical
excitations, namely cSPh. The symmetry of the cSPh surface
eigencharges, which depends on the global shape and
symmetry of the subtending particle, determines the cou-
pling strength of the cSPh with the probing electrons or
photons. This is in stark contrast with bulk IR absorption or
bulk EELS [11,27,28], which are probing normal modes,
which depend on local (atomic) symmetries, i.e., the bulk
material properties. This is also a main difference between
our work, which relates surface vibrational EELS to the
concept of EMLDOS, and recent theoretical works describ-
ing the link between bulk EELS to the concept of phononic
density of states (pDOS). Again, pDOS is dependent on the
atomic structure symmetry while EMLDOS is dependent on
the global (shape) symmetry of the nanoparticle. Also, for
similar reasons, surface EELS is completely different from
Raman spectroscopy,which probes bulk properties of atomic
oscillations, although following selection rules different to
that of bulk IR absorption. Note that the LCDM can also be

used to predict the bulk EELS experiment results through a
term proportional to −Im½1=ϵðωÞ�, giving essentially a peak
at ωLO in the Drude-Lorentz model. The intensity of the
related peak may be influenced by the screening at the
surface, a phenomenon handled in the LCDM theory and
known as the “begrenzung” effect [11]. There are, however,
several limits explaining the need to develop dedicated
theories for bulk phonons beyond the LCDM [11,27,28],
related to the interpretation of angular resolved experiments
and possible failure of the local approximation [11,27,28].
Second, EELS maps are close to that obtained with

the near-field optical measurement, which is related to the
EMLDOS [29], and map quantities close to the cSPh
electric eigenfields, and more precisely the eigenpotentials,
along the electron direction integrated on the electron beam
path [see an analytical proof in Eq. (A2) and Ref. [26]]. The
typical spatial extent of the EELS signal is related to that of
the EMLDOS, and almost identical to that of the integrated
eigenpotentials.
Third, due to the large free-space wavelength of the cSPh

compared to typical dimensions of nano-objects, the QS
approximation holds essentially true for submicron nano-
particles, and any nanoparticle can be described by a series
of eigencharges and related λi that depends only on the
shape of the nanoparticle.
In addition, this theory works well for understanding

cSPhs, but will obviously fail to describe long-wavelength,
propagating surface phonons that may arise in the particular
case of very large particle or slabs. In the case of slabs or
infinite cylinders, however, alternative rigorous retarded
theories exist [3]. The differences in the predictions
between a quasistatic (such as presented here) and retarded
formalism weakly affect lowest-energy, charge-symmetric
modes that are usually dominant in slabs and cylinders.
Also, a rigorous modal decomposition of all relevant

EELS and optical quantities for arbitrary shaped nano-
particles [see, e.g., Eqs. (A2) and (A3)] is possible,
simplifying both the understanding and predictions of
surface EELS experiments. Finally, the formalism pre-
sented here is not specific to the Drude-Lorentz model
[except, of course, Eqs. (1) and (A5)]. Therefore, any
situation where a local dielectric constant can be deduced,
either theoretically or experimentally, can be handled. For
example, ab initio models of the IR dielectric constant of a
crystal of molecules could be computed, and reinjected in
our model for interpreting quantitatively the experiments,
just as recently performed by Radtke et al. [30] in the case
of a planar interface to interpret results on guanine crystals
[31]. With all these considerations in mind, we are in
position to synthesize observations made in the literature on
surface phonons in terms of SPh modes or cSPh modes.
Krivanek et al. [17] reported the first observation of

vibrational signatures with STEM EELS. Among others,
they reported a resonance at 173 meV on a ≈50-nm thick
sheet of hexagonal boron nitride (hBN), and a resonance at
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138 meV in an ≈30-nm thick SiO2 slab. The resonance
energy did not change as a function of the electron beam
position whether it was impinging the objects or in vacuum
close to them. The 173-meV resonance was attributed to the
LO normal mode of hBN, and the other compared to IR
results without further assignment. Following the reasoning
of this paper, one can rationalize these results; see also
Table II. The 173-meV (hBN) modes and 138 meV (SiO2)
are likely to be charge symmetric (lower branch in Fig. 1(a),
λi close to −1) FK modes. Indeed, with the help of Eq. (1)
(see Table II), one can directly deduce that their energies
are between the ωTO and ωs (and very close to ωTO ¼
169.5 meV in the case of hBN) but largely different from
ωLO; see Table II. For symmetry reasons, the dipole
strength of the charge-antisymmetric mode vanishes with
the thickness of the slab [32]. It might explain why this
mode was not reported in Ref. [17]. On the other hand, as

summarized in Table II, Batson and Lagos [33] reported the
measurement of two peaks on an hBN flake, the first at
187 meV (below ωs) and the second at 203 meV (above
ωs). These are likely to be charge-symmetric and charge-
antisymmetric modes respectively—as confirmed by pre-
liminary simulations in Ref. [33]—for a slightly thicker
slab (as the symmetric mode energy is at higher energy and
the symmetric mode is still weaker but now measurable). It
is worth noting that in these cases the energy of the modes
depends on the geometry and symmetry of the nano-object,
and we expect of course the observation of thickness-
dependent modes when more experimental works will be
available in the literature. Finally, no mode energy spatial
variation has been reported on these two sorts of slabs
[17,33]. Recently, Schmidt et al. [34] showed that the
plasmonic modes in thin objects with edges can be
decomposed in slab modes and edge modes independently.

TABLE II. Comparison of theoretical and experimental values for λi ¼ −1; 1; 0;−1=3 (charge-symmetric or charge-antisymmetric
modes for infinitely thin slabs or cylinders, surface mode, dipolar spherical mode) and experimental values from Refs. [17,33]. In the
latter case, two modes (interpreted as charge-symmetric and charge-antisymmetric FK modes) are reported.

λi ¼ −1 λi ¼ 1 λi ¼ 0 λi ¼ −1=3

Material ϵ∞ ωTO (meV) ωLO (meV) ωs (meV) ωd (meV) Slab Experimental (meV)

SiO2 2.99 [36] 134 [36] 153 [36] 143.8 140.6 138
hBN (in plane) 4.95 [37] 169 [37] 200 [37] 195
hBN (out of plane) 4.1 [37] 187 [37] 197 [37] 195
hBN slab (Ref. [17]) 173
hBN slab (experiment, Ref. [33]) 187 and 203
hBN slab (theory, Ref. [33]) 181 and 197

FIG. 4. Dielectric environment effect. (a) Simulated EELS spectra for a cube of MgO (100-nm edge long) in vacuum, exhibiting a
corner (C), an edge (E), and a face (F) mode depending on the beam position. (b) Simulated EELS spectra for a nanorod (200 × 30 nm)
in vacuum (black) and embedded into a dielectric of refractive index equal to 1.4. The beam is positioned at 10 nm from the tip of the
nanorod in both cases. (c) Same simulations as in (a), but for a cube deposited on a substrate of refractive index n ¼ 2.3. The former C,
E, and F mode split into two bands. The distal band is essentially consisting in a series of C, E, F modes arising at almost the energy of
the corresponding vacuum modes, while the proximal band is shifted towards the ωTO energy. Spectra corresponding to a given
trajectory are indicated by their colors.
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The slab modes follow the infinite slab dispersion relations,
and edges the nanoantennas ones [35]. The modes of
lowest-energy branches have the same charge symmetry
with respect to the slab or cylinder midplane, so that the
slab and edge lowest-energy modes share the same sym-
metry. Translated to surface phonons in SiO2 slabs, it
means that we should expect two different modes of the
same symmetry with respect to the slab midplane; however,
both dispersion curves are very close [see, e.g., Fig. 1(a)],
and for very thin objects both slab and edge mode energies
tend to a unique and same value (ωTO), making it difficult to
detect experimentally any spectral or spatial variation
except an intensity decrease in vacuum.
In contrast, Lagos et al. [11] observed outside of MgO

nanocubes an EELS signal with different energies and clear

spatial modulations. They identified essentially three
modes [see also Fig. 4(a)]: a corner (C) mode at lower
energy, an edge (E) mode, and a face (F) mode at higher
energies. All the modes could be simulated without taking
into account any substrate. Table III sums up the exper-
imental and simulation results of Lagos et al., as well as our
simulations and the energies as deduced from Eq. (1). Our
simulations are in good agreement with the simulations and
experimental results of Lagos et al., not a strong surprise as
our simulations and and those of Lagos et al. are performed
with the same tool (MNPBEM), similar cube parametrization,
and the same full retarded approximation. More interest-
ingly, we see in Table III how well Eq. (1) reproduces our
simulations and those of Lagos et al., which were pointed
out to be in very good agreement with experiments [11].
Our theory gives, however, a stronger insight into the nature
of the probed modes. In Ref. [11], modes are denominated
through their EELS spatial distribution, with no discussion
on their symmetries, which are known to be complex for
cube plasmons [38,39]. Indeed, as shown in Fig. 5, the
corner mode can be decomposed in dipolar, quadrupolar,
and octupolar contributions (see also Table III) that are
degenerated in the quasistatic approximation. Because one
of its components is dipolar, the corner mode is likely to be
bright (i.e., theoretically measurable through an IR extinc-
tion experiment) although weakly scattering compared to a
plasmonic cube of the same size. Quite interestingly, the
edge mode is in fact composed of a large number of cSPhs
of close λi; see Table III. The symmetry of all these
constituting modes makes the edge mode a dark one.
Concerning the face mode, the number of polygons
required for convergence was too high to deduce a definite
value or set of values for λi. However, this highest-energy
mode has an energy very close to ωs for MgO, correspond-
ing to λi ¼ 0 (see the Appendix). This is expected from
localized SPs analogy, as high momenta modes converge
systematically to this value.
We now turn to a point that has not been considered so far

butmay have important implications for the interpretation of
forthcoming experiments. Indeed, the effect of the substrate,
known to be essential in plasmon physics, has not been
discussed in the context of surface vibrational STEM-EELS
experiments. It is well known that localized SP energy and
spatial distribution drastically depend on the close presence
of other materials, like a substrate or an embedding matrix.
In Fig. 4(b), we show the effect of embedding a phononic
nanorod into a material of constant dielectric constant
different from one. It produces an expected redshift of the
excitation, yet still constrained between ωTO and ωLO. The
case of a nanoparticle on a substrate is more subtle. In
particular, in the case of a nanocube, it is well known from
localized SP physics that the modes will split into modes at
low energy localized close to the substrate (proximalmodes)
and at higher energy close to thevacuum (distal modes) [38].
In Ref. [11], only the distal modes were reported, although

FIG. 5. Modes symmetry for a cube in the quasistatic approxi-
mation. Values of λi are given on top of the corresponding
eigencharge distributions (red is minimum and blue maximum).
(a)–(g) Corner modes and (h)–(l) edge modes. Corner modes
have been separated with respect to their symmetries.
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both types of modes are actually predicted (see Fig. 4). We
note that the distal mode energies are very close to the mode
of a free-space cube, explaining the good agreement
between our theory, Lagos et al.’s and our simulations
without substrate, and experimental results. Observation of
the proximal band would however require a spectral reso-
lution even better than is actually available.
Finally, the theory presented here can be extended to

understand more complicated situations. This is in analogy
with the success of the theory presented for localized SPs
[7,13,14,16,18], which has been extended to the 3Dmapping
of the EMLDOS [40] or of the surface eigencharges [41], the
simulation of the cathodoluminescence signals [15,16], the
interactionof surface excitationswith phase-shaped incoming
beams [25], or the coupling between localized SP. Also, this
model can be refined by developing a retarded model or a
nonlocal approximation extension [42].

This work has received support from the National
Agency for Research under the program of future invest-
ment TEMPOS-CHROMATEM with the reference ANR-
10-EQPX-50.

APPENDIX: MODAL FORM OF SEVERAL
OBSERVABLES, ANALOGY BETWEEN SP AND
cSPh MODES, TYPICAL MATERIAL VALUES,

SIMULATIONS DETAILS

A. Modal form of the cSPh, modal EELS,
and application to a Drude-Lorentz model

Following Refs. [7,18], the electromagnetic properties in
the quasistatic approximation of an object of dielectric
constant ϵðωÞ in vacuum can be entirely determined by the
set fσiðs⃗Þ; λig, respectively, the surface eigencharge and

the eigenvalue for the mode i, i being an integer and s⃗ the
surface position vector. Actual eigenenergies can be deter-
mined through the dispersion relation λi ¼ (1þ ϵðωiÞ)=
(1 − ϵðωiÞ). From this set, which can be determined
numerically [7,12,18], one can deduce all eigenquantities
such as the eigenpotential or the electrical eigenfield E⃗iðr⃗Þ
at all points r⃗, or any observable such as the EMLDOS
ρααðr⃗;ωÞ (here, α represents the projection direction),

ρααðr⃗;ωÞ ¼
1

2π2ω

X
i

Im( − giðωÞ)jEi
αðr⃗Þj2; ðA1Þ

and the EELS probability (simplified here to the case where
the beam is outside of the object of interest) [14],

ΓðR⃗⊥;ωÞ ¼
1

πω2

X
i

Im( − giðωÞ)jEi
zðR⃗⊥;ω=vÞj2; ðA2Þ

where v is the speed of the electron, z the direction of
electron propagation, R⃗⊥ the position of the beam in the
plane perpendicular to z, and the extinction cross section,
which is equal to the absorption cross section in the QS
limit, reads [15]

CextðωÞ ∝
X
i;d

AiωIm( − giðωÞ); ðA3Þ

where Ai is a mode-dependent prefactor, and the sum runs
over the dipolar d cSPh modes only.
giðωÞ is a spectral function for mode i depending only on

ϵ and λi [14] with the imaginary part peaking at the cSPh
energy ωi.
The above formulation clearly points out the fact that the

EELS spectra are a superposition of cSPh spectral functions
weighted spatially by the modulations of the associated

TABLE III. Comparison between energy values for the MgO nanocube modes calculated with Eq. (1), from
retarded simulations with experimental dielectric constant found in Ref. [22], from retarded simulation in Ref. [11],
and from experimental results from Ref. [11]. Inputs for Eq. (1) are ωTO ¼ 50.7 meV, ωLO ¼ 91.3 meV, ϵ∞ ¼ 3.01
[22]. Energies are given in meV. Note the apparent discrepancy for the face mode values between simulations and
experiments, proven in Ref. [11] to be an effect of finite spectral resolution in the experiments.

Mode Corner

Symmetry Dipolar Quadrupolar Octupolar

λi −0.56 −0.56 −0.53 −0.53 −0.53 −0.54 −0.52
ω [from Eq. (1)] 72.3 72.3 73.1 73.1 73.1 72.8 73.1
ω (simulations, this paper) 72.0
ω (simulations, Ref. [11]) 72
ω (experiments, Ref. [11]) 69

Mode Edge Face

λi −0.44 −39 � � � All summed Not applicable
ω [from Eq. (1)] 75.4 76.5 � � � Not applicable Not applicable
ω (simulations, this paper) 77.7 83.3
ω (simulations, Ref. [11]) 76 83
ω (experiments, Ref. [11]) 72 78
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electrical eigenfields. Also, it shows the close resemblance
between EELS and EMLDOS, as well as the spectral
similarities between EELS and extinction cross section. In
the case where the phonon response can be characterized
with LO and TO energies, ωLO, ωTO, a dissipation
parameter Γ, and a dielectric constant at large energy
ϵ∞, a Drude-Lorentz form of the dielectric constant reads:

ϵðωÞ ¼ ϵ∞

�
1þ ω2

LO − ω2
TO

ω2
TO − ω2 þ iωΓ

�
; ðA4Þ

then

Im(−giðωÞ)¼
Γω

ðω2−ω2
i Þ2þΓ2ω2

�
2ðω2

i −ω2
TOÞ2

ϵ∞ðω2
LO−ω2

TOÞð1þλiÞ
�
:

ðA5Þ

The spectral function then takes the simple form of a
Lorentzian peaking at the cSPh mode energy ωi [solution
of Eq. (1); this is the energy of the ith cSPh in absence
of dissipation], weighted by some energy-independent
prefactor.
EMLDOS, EELS, and absorption cross section can be

straightforwardly deduced from this expression of the
spectral function.
The above deductions can be extended analytically to the

case where the object of interest is embedded in a medium.
Similar developments (see Supplemental Material of
Ref. [16] or Ref. [40]) can be done in the retarded regime
assuming a model dielectric function.

B. Analogy between localized SP and cSPh modes

From the point of view of the local continuum dielectric
model, there is no functional difference between SPs and
surface phonons, SP in slabs and cylinders and FK modes,
and localized SP and cSPhs, as long as the details of the
dielectric constant are not disclosed. In the case where the
SPs are described by a Drude model and the cSPhs by a
Drude-Lorentz model, the analogy between SPs and cSPhs
can be simply made by replacing ωTO by 0, ωLO by ωp, and
ϵ∞ by 1. Then, all expressions presented in this paper can
be compared to that for SPs, especially those found in
Ref. [14]. For example, one retrieves the familiar values of
ωp=

ffiffiffi
2

p
and ωp=

ffiffiffi
3

p
for the surface and dipolar surface

plasmons.

C. Normal mode, surface phonon, and dipolar
surface phonons for some materials

For SiO2 and MgO, the energy of simple FK and cSPh
modes can be straightforwardly deduced from Eq. (1)
and the values given in Table II. Limit analytical cases
for the energy of the surface phonon (ωs), the charge-
symmetric and charge-antisymmetric FK modes for an

infinitely thin slab (converging to ωTO and ωLO), and the
dipolar mode for a sphere (ωd) are given in the main
text. Main values calculated with Eq. (1) are given in
Table II.
The case of hBN is a bit more involved, as hBN is a

uniaxial anisotropic material. Nevertheless, the FK theory
can be extended to anisotropic materials for slabs [4]. The
charge-symmetric mode converges to the in-plane TO
mode energy ωTO⊥ and the charge-antisymmetric mode
to the out-of-plane LO mode energy ωLO∥

. The terminology
⊥; ∥ is related to the anisotropy axis. Likewise, the surface
phonon energy will be a combination of in-plane and
out-of-plane phonon energy given by the conditionffiffiffiffiffiffiffiffiffi
ϵ⊥ϵ∥

p ¼ −1, with ϵ⊥ and ϵ∥ the in- and out-of-plane
dielectric constant [43]. We note that a HREELS study [44]
reported a value for the LO mode of a single hBN sheet
around 173 meV, similar to the value reported by Ref. [17].
Given the similarities pointed out in the paper between
HREELS and STEM EELS and the symmetry arguments,
the reported LO mode is most likely to rather be a charge-
symmetric FK mode.

D. Simulations

Dispersion relations in Figs. 1(a) and 1(b) have been
calculated using formulas from Ref. [45] and using a Drude
model adapted to silver and a Drude-Lorentz adapted to
MgO. All the other simulations have been carried out using
the MNPBEM toolbox [12] using experimental values for the
dielectric function of the MgO [22]. Figure 1(d) has
been calculated using the quasistatic eigensolver while
Figs 1(c), 2, 4, and 5 employ a retarded formulation of
the Maxwell equations. Rods have been simulated using
approximately 1000 polygons, cubes in vacuum with 5000
polygons, and cubes on substrate with 5000 polygons as
well. We simulated a 100-nm long cube with approximately
6000 polygons and calculated the corresponding eigen-
charges and geometrical eigenvalues λi using the
PLASMONMODE solver. The radii of curvature of the cube
corners in the xy plane are fixed at 3 nm. The rounding in
the yz (xz) direction is not precisely controlled within the
MNPBEM toolbox [12] (when using the tripolygon and
edgeprofile functions). However, we estimate the radius of
curvature in these planes to be much shorter than 3 nm.
Because of the slight asymmetry of the mesh, the three
dipoles (quadrupole and edge dipolar) are slightly non-
degenerated; see λi values in Fig. 5.
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