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Dissipative solitons can be found in a variety of systems resulting from the double balance between
dispersion and nonlinearity, as well as gain and loss. Recently, they have been observed to spontaneously
form in Kerr nonlinear microresonators driven by a continuous wave laser, providing a compact source of
coherent optical frequency combs. As optical microresonators are commonly multimode, intermode
interactions, which give rise to avoided mode crossings, frequently occur and can alter the soliton
properties. Recent works have shown that avoided mode crossings cause the soliton to acquire a single-
mode dispersive wave, a recoil in the spectrum, or lead to soliton decay. Here, we show that avoided mode
crossings can also trigger the formation of breather solitons, solitons that undergo a periodic evolution in
their amplitude and duration. This new breather soliton, referred to as an intermode breather soliton, occurs
within a laser detuning range where conventionally stationary (i.e., stable) dissipative Kerr solitons are
expected. We experimentally demonstrate the phenomenon in two microresonator platforms (crystalline
magnesium fluoride and photonic chip-based silicon nitride microresonators) and theoretically describe the
dynamics based on a pair of coupled Lugiato-Lefever equations. We show that the breathing is associated
with a periodic energy exchange between the soliton and a second optical mode family, a behavior that can
be modeled by a response function acting on dissipative solitons described by the Lugiato-Lefever model.
The observation of breathing dynamics in the conventionally stable soliton regime is relevant to
applications in metrology such as low-noise microwave generation, frequency synthesis, or spectroscopy.
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I. INTRODUCTION

Dissipative solitons are self-localized structures resulting
from the double balance of dispersion by nonlinearity and
dissipation by a driving force, and have been observed in a
variety of fields, such as plasma physics, atomic physics,
chemistry, and biology [1]. In optics, dissipative solitons
describe a range of both spatial and temporal self-
organization phenomena leading to stable self-similar
structures in optical cavities, known as spatial or temporal
cavity dissipative solitons. Beyond such stable states,
cavity dissipative solitons can also exhibit oscillatory or
periodic evolutions such as pulsating dynamics [2], soliton
molecular vibrations [3,4], and temporal breather solitons
[5–7]. In particular, temporal breather solitons undergo
periodic oscillations in their amplitude and duration. First
studied in the context of the Fermi-Pasta-Ulam recurrence
[8], they have been observed in a wide range of optical
systems, including nonlinear fiber optics [9], optical mode-
locked lasers [10], nonlinear fiber cavities [5], and recently

in the context of dissipative Kerr solitons (DKS) in optical
microresonators [11–13]. DKS in Kerr nonlinear micro-
resonators , first observed in crystallinemicroresonators [14],
can spontaneously form when pumping the microresonator
with an external continuous-wave (cw) laser [14,15], and
have emerged as an ideal platform for the study of dissipative
soliton physics. Likewise, DKS constitute a way to generate
coherent optical frequency combs. In recent years, DKShave
been extensively studied and have been observed in a variety
ofmicroresonator platforms [16–21]. Their spectrally broad-
band and fully coherent nature, exhibiting a large repetition
rate (in the GHz to THz range), have been successfully
applied in a number of applications, including spectroscopy
[22,23], counting of optical frequencies [24,25], coherent
communication [26], low-noise microwave generation [17],
dual comb based distance measurements [27,28], and have
provided even a route to a fully integrated optical frequency
synthesizer [29]. In addition to stable DKS, breather solitons
in microresonators have recently been observed and studied
[11–13]. In those studies, the breathing phenomenon corre-
sponds to an intrinsic dynamical instability of dissipative
Kerr cavity systems [5–7,30] described by a standard
Lugiato-Lefever equation (LLE) model (or equivalently a
set of coupled-mode equations) [31–34], which exists near
the low-detuning boundary of the soliton existence domain.
For stable single and multiple DKS, the detuning-dependent
existence range has also been experimentally analyzed and
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compared to theory [35], and is modified by the thermal
effect enabling the number of DKS in a given state to be
reduced deterministically [36].
In this work, we demonstrate a novel type of dissipative

breather soliton triggered by avoided mode crossings
(abbreviated as AMX hereafter) that are ubiquitous phe-
nomena in multimode microresonators. Indeed, most
microresonator platforms today are multimode either
inherently or as a result of waveguide dispersion engineer-
ing. For instance, to support DKS, thick (typically >
800 nm at 1550 nm wavelength) silicon nitride (Si3N4)
waveguide-based microresonators [37,38] are required to
obtain the necessary anomalous group velocity dispersion.
Therefore, they are prone to having intermode coupling.
AMX then describe a situation when two modes exhibit a
similar resonance frequency and, through coupling, a pair
of symmetric and asymmetric modes is formed with new
resonance frequencies [39]. It has been shown that AMX
can prevent soliton formation or, if sufficiently weak and
rare, lead to local alterations in the spectrum of the soliton-
based frequency comb [40]. In particular, AMX can lead to
the formation of dispersive waves [41,42] that induce a
soliton spectral recoil, and in recent work have been shown
to enable the reduction of the repetition rate noise [43] by
balancing the Raman self-frequency shift [16,44,45]. Yet,
to date, little is known about soliton dynamics in the
presence of intermode coupling.
Here, we discover that DKS can feature breathing by a

periodic energy exchange between the soliton and another
mode family. We term this phenomenon an intermode
breather soliton. Remarkably, the breathing dynamics
occur in a regime where the conventional LLE predicts
stable cavity solitons [14,30,46]. We observe such inter-
mode interactions in two microresonator platforms, i.e., a
magnesium fluoride (MgF2) crystalline resonator and a
Si3N4 waveguide-based microresonator, and confirm it
with numerical simulations based on a set of coupled
LLEs [43,47]. Our observations not only contribute to the
physics of DKS with a new panel of soliton instability, but
are also critical for applications ranging from self-refer-
enced soliton combs for frequency metrology [15,24], to
the generation of low-noise microwaves [17].

II. THEORY AND SIMULATION

Intermode interactions between microresonator mode
families consist of both linear and nonlinear couplings.
The linear coupling can be described by coupled-mode
theory [48,49], while the nonlinear coupling mainly refers
to the cross-phase modulation in Kerr cavities. In a weak-
coupling limit, one can assume that DKS remain supported
in a primary mode family (P) that is linearly coupled to a
second crossing mode family (C). The integrated dispersion
of the primary soliton-supporting mode family is defined

as DðPÞ
int ðμÞ ¼ ωðPÞ

μ − ωðPÞ
0 − μDðPÞ

1 [where ωðPÞ
μ indicates

the resonance frequency over the relative mode index μ,

μ ¼ 0 is the central pumped mode, and DðPÞ
1 =2π is the free

spectral range (FSR)], whereas relative to this frequency
grid, the crossing mode family has the frequency given

by ΔðμÞ ¼ ωðCÞ
0 − ωðPÞ

0 þ μðDðCÞ
1 −DðPÞ

1 Þ [Fig. 1(a)].
Therefore, an AMX occurs around the mode where

DðPÞ
int ðμÞ ≈ ΔðμÞ. Moreover, a soliton-based frequency

comb is fully coherent with equally spaced frequency
components (i.e., dispersionless), such that it appears as

a straight line in the frame of DðPÞ
int ðμÞ, see Fig. 1(a), and is

supported in a continuous range of laser detuning 2πδ ¼
ωðPÞ
0 − ωp > 0 [i.e., the pump (ωp) is necessarily red

detuned from the central mode]. Therefore, at a given
detuning δ, the phase-matching condition between the
soliton to a wave in the crossing mode μc is given by

2πδþ ΔðμcÞ ≈ 0: ð1Þ

The dynamics of DKS in the presence of intermode
interactions can be fully explained by two sets of coupled-
mode equations (or equivalently two coupled LLEs)
including both the linear coupling and the cross-
phase modulation [43,47], as detailed in Appendix A.
Alternatively, effects of the linear coupling can be approxi-
mated by a suitable response incorporated into a single set
of coupled-mode equations (or a single LLE framework),
which accounts for soliton dynamics in the primary mode
family. In a “co-traveling” frame (i.e., a frame that is co-
traveling with the soliton waveform centered at the pump
frequency), such a single LLE-like model is written as

∂ ~AðPÞ
μ ðtÞ
∂t ¼

�
−
κðPÞ

2
þ ið2πδÞþ iDðPÞ

int ðμÞ
�
~AðPÞ
μ þ ~RcðμÞ ~AðPÞ

μ

− igF ½jAðPÞj2AðPÞ�μþ δ0μ0
ffiffiffiffiffiffi
κex

p
sin; ð2Þ

where ~AðPÞ
μ and AðPÞ are the spectral and temporal

envelopes of DKS, respectively [related via AðPÞðtÞ ¼P
μ
~AðPÞ
μ e−iμD

ðPÞ
1

t], κðPÞ is the loss rate of the soliton-
supporting primary mode family, g is the single-photon-
induced Kerr frequency shift (see Appendix A for the
full definition), κex is the external (waveguide induced)
coupling rate, jsinj2 denotes the pump power, δ0μ0 is the
Kronecker delta, and F ½ �μ represents the μth frequency
component of the Fourier series. We derive an intermode
response accounting for the linear coupling:

~RcðμÞ ¼
G2

DðμÞ ½e
ðDðμÞtÞ þ 1�; ð3Þ

where DðμÞ ¼ −ðκðCÞ=2Þ þ i½2πδþ ΔðμÞ� contains the
phase-matching condition. The response bandwidth is
defined by the loss rate of the crossing mode family
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(κðCÞ) and the response amplitude is scaled by the strength
of the linear coupling (G) between the primary and the
crossing mode families. Compared to the full model, such a
single LLE-like model can equivalently reproduce the
soliton dynamics in the presence of linear intermode
interactions. Nevertheless, if there exists more than one
crossing mode fulfilling the phase-matching condition
[Eq. (1)], the LLE-like model can be flexibly extended
by including several intermode responses [Eq. (3)].

We next perform simulations based on the coupled
LLEs. Figure 1 shows a simulation of a single-soliton-
based frequency comb in the presence of intermode
interactions. The soliton comb envelope in the primary
mode family remains overall a sech2 profile. In the crossing
mode family a spectrally narrow band waveform is gen-
erated, contributing a single, power-enhanced wave (in the
mode μc) to the overall soliton comb spectrum [Fig. 1(b)],
which is phase matched to the cavity soliton. This

(a) (d)

(b) (e)

(f) (g)(c)

FIG. 1. Numerical simulation of an intermode breather soliton in a Kerr microresonator. (a) Integrated dispersion of a (primary)
soliton-supporting mode family (green dots) in which the parabolic profile indicates the anomalous group velocity dispersion in this
mode family. In the same frame, the crossing mode family shows a sloped profile corresponding to ΔðμÞ (red dots). Once the soliton-
based frequency comb is formed with a detuning (δ), the soliton comb frequency represents nearly a constant (−2πδ) (blue line),

implying equal distance between comb teeth. The slight slope corresponds to a change in the FSR (compared to DðPÞ
1 =2π) as a result of

the soliton central frequency shift caused either by a dispersive-wave-induced soliton spectral recoil or by the Raman self-frequency
shift. Thus, the phase matching between the soliton and the wave in the crossing mode (μc) is ΔðμcÞ þ 2πδ ≈ 0. (b) Simulated single-
soliton-based frequency comb in the primary mode family (blue lines) and a narrow band waveform in the crossing mode family (orange
lines). (c) Intracavity field patterns in both mode families. (d) Intracavity power trace over the laser detuning, based on a standard LLE
model in the absence of intermode interactions (blue line). Three stages, modulation instability (MI) regime (red area), breather soliton
(yellow area), and stationary soliton (green area), are marked as typical transitions of frequency comb states in the generation process.
The intermode breather soliton exists in the region where stationary DKS would be expected (orange area). (e) DKS in the presence of
intermode interactions (based on the coupled LLEs model) show a different behavior, including a hysteretic power transition (gray area)
and an oscillatory behavior (orange area). (f) Spectral envelope evolution of a single intermode breather soliton. (g) Out-of-phase
oscillations in the energy of the soliton and the crossing mode waveform.
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power-enhanced comb tooth then behaves similarly to a
dispersive wave [43] causing a temporal oscillation in the
intracavity field pattern [Fig. 1(c)] and inducing a soliton
recoil such that the comb envelope is shifted in a
spectral direction opposite to that of the dispersive wave.
The temporal intracavity field in the crossing mode family
is almost continuously distributed corresponding to the
power-enhanced wave, but features a power step induced
by the soliton via the cross-phase modulation [Fig. 1(c)].
Usually, in the absence of intermode interactions, DKS

are known to exist within a continuous range of the laser
detuning, called the soliton existence range, in which the
soliton is stationary and the soliton power smoothly
evolves over the change of detuning [green shaded area
in Fig. 1(d)]. This is because the soliton peak intensity, as
well as the pulse duration, is scaled by the detuning (δ)
[14,50]. At the lower boundary of the soliton existence
range is the intrinsic breathing state that has an oscillatory
power trace (yellow shaded area). Here, however, we
observe strikingly different soliton dynamics within its
stationary existence range [highlighted as the orange
shaded area in Fig. 1(d)]. First, when tuning δ, the intra-
cavity power shows an abrupt transition mainly contributed
by the formation of the power-enhanced wave localized in
the mode μc of the crossing mode family [Fig. 1(e)].
Comparing traces in both forward (increased detuning) and
backward (decreased detuning) scans of the detuning, a
hysteretic behavior on the soliton power is revealed, which
is in agreement with a recently proposed theory [43]: it is a
result of the single-mode dispersive-wave-induced soliton
spectral recoil that leads to a modification of the phase-
matching criterion and entails a power bistability with
respect to the detuning.
Second, and most interestingly, we discover breathing

dynamics from intermode interactions, as indicated by
oscillations and increased amplitude jitter in the power
trace in close vicinity of the bistability region of the comb
teeth power [Fig. 1(e)], which we term an intermode
breather soliton. A periodic spectrum evolution of
such a breather soliton is also observed in the simulation
[Fig. 1(f)], which reveals an oscillation of the soliton pulse
duration—an essential feature of breather solitons.
Moreover, a closer analysis reveals an energy exchange
regime between the soliton and the waveform in the
crossing mode family, where out-of-phase power oscilla-
tions are observed [Fig. 1(g)].
Such phenomena exactly reflect a general property of

dissipative solitons that hysteresis usually exists around a
transition of the system state [51,52], here from the stable
soliton state to breathing under intermode interactions.

III. EXPERIMENTAL RESULTS

The novel intermode breather solitons are experimentally
obtained in two microresonator platforms: MgF2 crystalline
microresonators and chip-scale Si3N4 microresonators. In

both platforms, a single cavity soliton can be determinis-
tically generated in the cavity by using the laser tuning
method [14,36]. In general, as a solution of the LLE model,
DKS are known to have a characteristic squared hyper-
bolic-secant temporal intensity profile, whose optical
spectrum also corresponds to a squared hyperbolic-secant
envelope. Previous studies [14,16] demonstrated this relation
and other works presented alternative means of identifying a
soliton state allowing the bypass of direct time-domain
analysis (e.g., frequency-resolved optical gating measure-
ment; cf. Ref. [14]). Here, we base our study on frequency
domain quantities that hold the advantage of fast acquisition
and high dynamic range: the soliton repetition rate is
measured from the radio frequency (rf) beat note of the
frequency comb teeth spacing, and the pulse duration is
estimated via the comb bandwidth. In particular, the soliton
state can also be identified and characterized by measuring
the system’s response to a pump modulation [36], which
reveals the effective laser-to-resonance detuning δ—a key
parameter for cavity DKS. Stabilizing the effective detuning
enables us to directly compare experimentally generated
DKS to the theoretically predicted stability chart [35] and,
especially in this work, identify deviations induced by
intermode interactions. The system response also constitutes
a fingerprint of the soliton state, by showing a characteristic
double resonance feature known as the C resonance, which
indicates the effective detuning, and the soliton-related S
resonance [36].
Here, we focus on the soliton dynamics when the

effective detuning is well within the stationary soliton
existence range such that the C and S resonances are far
separated. This is to avoid the intrinsic breathing dynamics
which appears at a much lower detuning value [13]. In a
MgF2 microresonator, we generate a single-soliton-based
frequency comb (FSR ∼ 14 GHz) that has an overall sech2-
shape spectral envelope, but features several power-
enhanced comb teeth due to the phase matching to the
cavity soliton [Fig. 2(a)]. While sweeping the laser fre-
quency, such that the effective detuning is continuously
changed but remains within the soliton existence range, we
observe the appearance of a breathing feature [Figs. 2(b)
and 2(c)] in the form of sidebands on the rf beat note
of the comb with a fundamental breathing frequency of
∼3 MHz. Concomitantly, in the system’s response, a
strong-amplitude tone appears at the same frequency and
close to the S resonance. Such characteristics emerge in a
narrow detuning range (δ ∼ 12.8 MHz) and are missing
when the soliton is outside of this range. We note that the
breathing frequency slightly shifts with the detuning, which
in the current case increases with an increase of the
detuning [Fig. 2(c)].
Similarly, in a Si3N4 microresonator, a single-soliton-

based frequency comb (with FSR ∼ 1 THz) is also gen-
erated [Fig. 3(a)] where intermode interactions result in a
dispersive wavelike spectral wave packet rather than a

HAIRUN GUO et al. PHYS. REV. X 7, 041055 (2017)

041055-4



single, power-enhanced wave, implying that the bandwidth
of the intermode response ~Rc is large (compared to the
comb teeth spacing). Sweeping the effective detuning in the
stationary soliton existence range, frequency tones appear
in both the rf spectrum and the system’s response, in which
a fundamental breathing frequency of ∼1 GHz is identified
[Fig. 3(b)]. Shift of the breathing frequency over the
detuning is also observed.
In experiments, we also monitor the power of each

power-enhanced wave, i.e., the modes μc ¼ −7 and
μc ¼ −25. We observe not only an abrupt power transition
of these waves over the detuning, but also the hysteresis in
the transition [Fig. 3(c)]. Such a phenomenon, as previ-
ously only theoretically predicted (referred to as the
hysteresis in the power of a single-mode dispersive wave)
[43], is experimentally observed here in both modes, when

the laser tuning direction is reversed. Abrupt power
transition is also observed in the MgF2 resonator, but
the hysteretic behavior is weak, probably due to the weaker
nonlinear effect than Si3N4 (cf. Appendix C).
Interestingly, we notice that the breathing frequency of

∼3 MHz in the MgF2 resonator and ∼1 GHz in the Si3N4

microresonator are both similar to that of an intrinsic
breathing soliton [13]. In between these two types of
microresonators, the 3-orders-of-magnitude difference in
the breathing frequency can be related to the difference in
the resonator’s Q factors, respectively, a Oð0.1Þ MHz
resonance linewidth in the MgF2 resonator and a
Oð100Þ MHz linewidth in the Si3N4 microresonator.
Furthermore, we experimentally demonstrate an energy

exchange regime in the intermode breather soliton (see

(a)

(b)

(c)

FIG. 2. Observation of an intermode breather soliton in a MgF2
crystalline microresonator (∼14 GHz FSR). (a) Experimentally
generated single-soliton-based frequency comb exhibiting spikes
(i.e., enhanced power in comb teeth) from intermode interactions.
Inset: Zoomed-in spectrum around the mode μc ¼ 47. (b) The beat
note measurements (left) and system response measurements
(right) for both the stationary soliton state and the intermode
breathing state. (c) Measured evolution of the system’s response
when increasing the laser detuning. The soliton features breathing
in the detuning range 12.3–13.2 MHz where a strong frequency
tone (and harmonics) is observed in the system’s response close to
theS resonance. The color bar marks the region of breathingwhich
is within the stationary soliton existence range. The curved arrow
marks the shift of the breathing frequency with an increase of the
detuning.

(a)

(b)

(c)

FIG. 3. Observation of an intermode breather soliton in a chip-
scale Si3N4 microresonator and hysteresis in the comb profile.
(a) Experimentally generated single-soliton-based frequency
comb in a silicon nitride resonator (with a∼1 THz FSR) featuring
spikes (i.e., power-enhanced comb teeth) from intermode inter-
actions. (b) Measured evolution of the system response when
increasing the laser detuning. The intermode breathing is in the
detuning range 2.4–3.9 GHz. The color bar marks the region of
breathing. (c) Measured power of single comb mode μc ¼ −7 and
μc ¼ −25 for both forward and backward laser detuning. The
measurements reveal a clear hysteresis of the enhanced comb
teeth power (gray area).
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Fig. 4), by measuring both the power in the phase-matched
mode and the power of the soliton. Using a wave shaper
[operational wavelength 1527–1600 nm, see sketch in
Fig. 4(a)], power-enhanced waves in modes μc ¼ 47 and
μc ¼ −89 of the MgF2 resonator comb are selectively
filtered [Fig. 4(b)]. Their oscillatory power traces (reflect-
ing the breathing) are compared to that of a portion of the
single-soliton-based frequency comb obtained through a
bandpass filter. In this way, we observe that the power in
the mode μc ¼ 47 shows an out-of-phase oscillation with
respect to the soliton power, while the power in the mode
μc ¼ −89 oscillates in phase [see Fig. 4(c)]. These obser-
vations are in excellent agreement with our simulations
[Fig. 1(g)], implying that the wave mainly localized in the
mode μc ¼ 47 of the crossing mode family is actively
interacting with the soliton in the primary mode family,
and is causing the breathing through energy exchange. In
contrast, power-enhanced waves that are oscillating in phase
do not lead to breathing dynamics.

IV. CONCLUSION

In conclusion, we investigate novel breathing dynamics
of cavity dissipative Kerr solitons in the presence of
intermode interactions originating from AMXs in multi-
mode microresonators. AMXs lead to the formation of
power-enhanced comb teeth in the soliton-based frequency
comb spectrum through a phase-matching condition. The
power-enhanced wave, mainly localized in the crossing
mode family, not only exhibits a hysteresis in the power
evolution over the laser detuning, but can also feature an
energy exchange with the soliton in the primary mode
family, which is understood as the origin of the soliton
breathing dynamic. Such an intermode breather soliton is
distinct from the intrinsic breather soliton as it is observed
to exist in a detuning range where the regular LLE predicts
stationary DKS. We observe the intermode breather soliton
in both a MgF2 crystalline resonator and a chip-based
Si3N4 microresonator and perform simulations that quali-
tatively confirm our experimental observations. Our results
provide a new insight into the dynamics of cavity dis-
sipative solitons by revealing an energy exchange regime
that can generally exist in multimode cavities. Equally
important, they are highly relevant to application as
intermode breather solitons indicate a new panel of soliton
instability which is detrimental to low-noise microwave
generation, for example. Moreover, we can further confirm
experimentally that intermode interactions can induce
soliton decay as well as soliton switching. The abrupt
power transition as well as the breathing within the
stationary soliton existence range can perturb states with
multiple DKS, leading to a decrease in the number of
solitons inside the resonator (i.e., soliton switching).

The code and data used to produce the plots within this
paper are available at [53]. All other data used in this study
are available from the corresponding authors upon reason-
able request.
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APPENDIX A: COUPLED LUGIATO-LEFEVER
EQUATIONS AND SINGLE EQUATION MODEL

In a Kerr cavity system with two mode families, i.e., the
soliton-supporting primary (P) mode family and a crossing

(C) mode family, intermode interactions can be described
by two sets of coupled-mode equations including both the
linear coupling and cross-phase modulation (i.e., the non-
linear coupling) [43,47], which are equivalent to two
Lugiato-Lefever equations, each describing the waveform
dynamics in the corresponding mode family. In a frame that
is co-traveling with the waveform in the primary mode

family (free spectral range DðPÞ
1 =2π) centered at the pump

frequency (ωp), the two sets of coupled-mode equations are
written as

∂ ~AðPÞ
μ ðtÞ
∂t ¼ δ0μ0

ffiffiffiffiffiffi
κex

p
sin þ

�
−
κðPÞ

2
þ ið2πδÞ þ iDðPÞ

int ðμÞ
�
~AðPÞ
μ − iG ~AðCÞ

μ

− igðPÞF ½jAðPÞj2AðPÞ�μ − igðC−PÞF ½2jAðPÞj2AðPÞ�μ; ðA1aÞ

∂ ~AðCÞ
μ ðtÞ
∂t ¼

�
−
κðCÞ

2
þ ið2πδÞ þ i½DðCÞ

int ðμÞ þ ΔðμÞ�
�
~AðCÞ
μ − iG ~AðPÞ

μ

− igðCÞF ½jAðCÞj2AðCÞ�μ − igðC−PÞF ½2jAðPÞj2AðCÞ�μ; ðA1bÞ

where ~AðPÞ
μ and ~AðCÞ

μ represent the spectral field envelope in
the primary and the crossing mode families, respectively,
AðPÞ and AðCÞ are the temporal amplitudes of the intracavity
field, κðPÞ and κðCÞ indicate the cavity decay rates, and

2πδ ¼ ωðPÞ
0 − ωp is the laser detuning (ωðPÞ

0 is the central
pumped resonance frequency in the primary mode family).
The integrated dispersion of the primary mode family is

defined as DðPÞ
int ðμÞ ¼ ωðPÞ

μ − ωðPÞ
0 − μDðPÞ

1 , where ωðPÞ
μ

indicates the resonance frequency. Similarly, the integrated

dispersion of the crossing mode family is DðCÞ
int ðμÞ ¼

ωðCÞ
μ − ωðCÞ

0 − μDðCÞ
1 , where ωðCÞ

μ is the resonance frequency

and DðCÞ
1 =2π indicates the free spectral range of the wave-

form in the crossing mode family. Therefore, the resonance
frequency mismatch between the primary and the crossing

mode families is ΔðμÞ ¼ ωðCÞ
0 − ωðPÞ

0 þ μðDðCÞ
1 −DðPÞ

1 Þ. In
addition, G is the linear coupling strength. The single-
photon Kerr frequency shift through self-phase modula-

tion is defined as gðPÞ ¼ ½ℏðωðPÞ
0 Þ2cn2�=½ðnðPÞ0 Þ2VðPÞ

eff � and
gðCÞ ∝ ð1=VðCÞ

eff Þ, where VðPÞ
eff and VðCÞ

eff are effective non-
linear mode volumes. The single-photon Kerr frequency
shift through cross-phase modulation is given by

gðC−PÞ ∝ ð1=VðC−PÞ
eff Þ, where VðC−PÞ

eff is the effective non-
linear mode overlapped volume. The operator F ½ �μ indi-
cates the μth frequency component of the Fourier series,
and δ0μ0 is the Kronecker delta. The external pump power

coupled to the central mode (μ ¼ 0) is denoted as jsinj2, and
the coupling rate is κex.
The avoided mode crossing occurs around a mode that

satisfies DðPÞ
int ðμÞ ≈DðCÞ

int ðμÞ þ ΔðμÞ, or simply DðPÞ
int ≈ Δ if

having Δ ≫ DðCÞ
int [i.e., in the frame of DðPÞ

int ðμÞ, the
dispersion of the crossing mode family is almost a slope
defined by ΔðμÞ]. Nevertheless, the cavity soliton is
supported in a range of the laser detuning (2πδ) and is
dispersionless. Therefore, the phase matching between
the soliton and the wave in a crossing mode (μc) is
2πδþ ΔðμcÞ ¼ 0.
Switching off the linear coupling (G ¼ 0) and the cross-

phase modulation (gðC−PÞ ¼ 0) makes Eq. (A1a) a standard
single set of coupled-mode equations (i.e., a standard LLE),
where DKS are supported and will follow an analytical
solution if 2πδ ≫ κðPÞ. In the weak-coupling condition
2πδ ≫ G, one can assume that DKS remain supported and
undepleted. In this way, Eq. (A1b) can be directly solved,
neglecting nonlinear terms, to be

~AðCÞ
μ ¼ iG

DðμÞ
h
eðDðμÞtÞ þ 1

i
~AðPÞ
μ ; ðA2Þ

where DðμÞ ≈ −ðκðCÞ=2Þ þ i½2πδþ ΔðμÞ� represents a
complex phase mismatch between the soliton and the
waveform in the crossing mode family. This solution in
return gives rise to a response effect to the dynamics of
DKS in the primary mode family where a modified single
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set of coupled wave equations (or a single LLE-like
equation) can be derived as (the cross-phase modulation
is neglected)

∂ ~AðPÞ
μ ðtÞ
∂t ¼

�
−
κðPÞ

2
þ ið2πδÞ þ iDðPÞ

int ðμÞ
�
~AðPÞ
μ

þ ~RcðμÞ ~AðPÞ
μ − igF ½jAðPÞj2AðPÞ�μ

þ δ0μ0
ffiffiffiffiffiffi
κex

p
sin; ðA3Þ

where ~RcðμÞ ¼ ðG2=DðμÞÞ½eðDðμÞtÞ þ 1� is named the inter-
mode response whose bandwidth is determined by the loss

rate κðCÞ. If κðCÞ ≪ DðPÞ
1 , only one comb mode is to interact

with the intermode response, resulting in a spike in the
comb envelope. Physically, the complex amplitude of
~RcðμÞ indicates that intermode interactions will induce
not only a deviation on the dispersion profile (i.e., the
imaginary part) in the soliton-filling mode family, as
previously studied [40], but equally important, an addi-
tional loss channel (i.e., the real part). The extra power loss
on DKS will directly degrade the soliton existence range, in
particular, the upper boundary that defines the critical
power balance between the loss and the pump-induced
gain. Equation (A3) can equivalently address the dynamics
of DKS in the presence of intermode interactions, including
the intermode breathing. Nevertheless, if there is more than
one mode satisfying the phase-matching condition, the
LLE-like equation can be flexibly extended by simply
including several intermode responses.

APPENDIX B: MICRORESONATOR PLATFORMS

The MgF2 crystalline resonator has a FSR DðPÞ
1 ¼

2π × 14.094 GHz. The Q factor is ∼109 (intrinsic cavity

decay rate κðPÞ0 ¼2π×80kHz, intrinsic finesse ∼1.7×105).

The second-order dispersion component (DðPÞ
2 ) at the pump

wavelength (1553 nm) is DðPÞ
2 ≈ 2π × 1.96 kHz, while the

third-order component isDðPÞ
3 ¼ Oð2π × 1 HzÞ. The pump

laser (fiber laser, wavelength 1553 nm; short-term line-
width 10 kHz) is amplified between 20 and 450 mW and
evanescently coupled to the resonator with a tapered optical
fiber, which enables the coupling to be adjusted. The

loaded linewidth κðPÞ ¼ κex þ κðPÞ0 is retrieved by measur-
ing the C-resonance linewidth in the system’s response
(when no solitons are present in the cavity); the associated
coupling coefficient (κex=κðPÞ) is measured in the range
0.45–0.62.
The Si3N4 integrated microring resonator has a FSR of

∼1 THz and the intrinsic Q factor is ∼106. The resonance
intrinsic linewidth is κðPÞ0 =ð2πÞ ¼ 100–150 MHz. Such
resonators are fabricated using the photonic Damascene
process [38]. The ring waveguide cross section has a height
of ∼850 nm and a width of ∼1450 nm. The dispersion

components at the pump wavelength (1550 nm) are DðPÞ
2 ≈

2π × 25 MHz and DðPÞ
3 ¼ Oð2π × 1 MHzÞ.

The simulation in Fig. 1 is based on realistic parameters
of the MgF2 resonator, whereas the decay rate κðCÞ ¼ κðPÞ,
the linear coupling strength G ¼ 8 × κðPÞ, the FSR mis-

match is DðCÞ
1 −DðPÞ

1 ¼ 2π × 12 MHz, the difference

of the central resonance frequency is ωðCÞ
0 − ωðPÞ

0 ¼
2π × −600 MHz, and the effective nonlinear mode volume

is VðPÞ
eff ¼ VðCÞ

eff ¼ 2.5 × 10−12 m3. The cross-phase modu-
lation is neglected in the simulation. In addition, the
simulation accounts for 1024 modes for both the primary
and the crossing mode families.

APPENDIX C: POWER TRANSITION
IN MgF2 RESONATOR

The power-enhanced modes in the MgF2 resonator are
also monitored (see Fig. 5). While several power transitions
are observed in modes μc ¼ 47 and μc ¼ −89, the hyste-
resis is not obvious.
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