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Mainstream machine-learning techniques such as deep learning and probabilistic programming rely
heavily on sampling from generally intractable probability distributions. There is increasing interest in the
potential advantages of using quantum computing technologies as sampling engines to speed up these tasks
or to make them more effective. However, some pressing challenges in state-of-the-art quantum annealers
have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from
the local interaction between quantum bits in physical hardware implementations, is considered the most
severe limitation to the quality of constructing powerful generative unsupervised machine-learning models.
Here, we use embedding techniques to add redundancy to data sets, allowing us to increase the modeling
capacity of quantum annealers. We illustrate our findings by training hardware-embedded graphical models
on a binarized data set of handwritten digits and two synthetic data sets in experiments with up to 940
quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective
parameters specifying the corresponding quantum Gibbs-like distribution; therefore, this approach avoids
the need to infer the effective temperature at each iteration, speeding up learning; it also mitigates the effect
of noise in the control parameters, making it robust to deviations from the reference Gibbs distribution. Our
approach demonstrates the feasibility of using quantum annealers for implementing generative models, and
it provides a suitable framework for benchmarking these quantum technologies on machine-learning-
related tasks.
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I. INTRODUCTION

Sampling from high-dimensional probability distributions
is at the core of a wide spectrum of machine-learning
techniques with important applications across science, engi-
neering, and society; deep learning [1] and probabilistic
programming [2] are some notable examples.While much of
the record-breaking performance of machine-learning
algorithms regularly reported in the literature pertains to
task-specific supervised learning algorithms [1,3], the devel-
opment of the more humanlike unsupervised learning algo-
rithms has been laggingbehind.An approach to unsupervised
learning is tomodel the joint probability distribution of all the
variables of interest. This is knownas the generative approach

because it allows us to generate synthetic data by sampling
from the joint distribution. Generative models find applica-
tion in anomaly detection, reinforcement learning, handling
of missing values, and visual arts, to name a few [4]. Even in
some supervised contexts, it may be useful to treat the targets
as standard input and attempt to model the joint distribution
[5]. Generative models rely on a sampling engine that is used
for both inference and learning. Because of the intractability
of traditional sampling techniques like the Markov chain
Monte Carlo (MCMC) method, finding good generative
models is among the hardest problems in machine learning
[1,3,6–8].
Recently, there has been increasing interest in the

potential that quantum computing technologies have for
speeding up machine learning [9–38] or implementing
more effective models [39]. This goes beyond the original
focus of the quantum annealing computational paradigm
[40–42], which was to solve discrete optimization problems
[43–51]. Empirical results suggest that, under certain
conditions, quantum annealing hardware samples from a
Gibbs or a Boltzmann distribution [21,25,52–54]. In
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principle, the user can adjust the control parameters so that
the device implements the desired distribution. Figure 1
shows an example of how, ideally, one could use a quantum
annealer for the unsupervised task of learning handwritten
digits. In practice, however, there exist device-dependent
limitations that complicate this process. The most pressing
ones are as follows [10,11,21,52,55]: (i) The effective
temperature is parameter dependent and unknown, (ii) the
interaction graph is sparse, (iii) the parameters are noisy, and
(iv) the dynamic range of the parameters is finite. Suitable
strategies to tackle all of these issues need to be developed
before we can assess whether or not quantum annealers can
indeed sample more efficiently than traditional techniques
on conventional computers, or whether they can implement
more effective models. A relatively simple technique for the
estimation of parameter-dependent effective temperature
was developed in Ref. [21] and shown to perform well
for training restricted Boltzmann machines. More recently,
generalizations and alternative techniques have been intro-
duced in Ref. [52]. In the context of machine learning, these
techniques need to estimate temperature at each iteration,
implying a computational overhead.
Here, we put forward an approach that completely

sidesteps limitation (i), i.e., the need to estimate temper-
ature at each iteration of the learning process. Furthermore,
we propose a graphical model embedded in hardware that
effectively implements all pairwise interactions between

logical variables representing the data set and that learns the
parameter setting from data, improving on limitation (ii).
Since the essential components for estimating the gradient
needed in the learning process take place on quantum
hardware, our approach is more robust to the noise in the
parameters, also improving on limitation (iii).
Our work here is based on a quantum maximum-entropy

model: a quantum Boltzmann machine with no hidden
variables, whose learning in the classical limit is also
known as the inverse Ising problem [56,57]. We show that
the resulting models embedded in quantum hardware can
model well both a coarse-grained binarized version of the
optical recognition of handwritten digits (OptDigits) [58]
and the synthetic bars-and-stripes (BAS) data set [59].
Moreover, using data sets of configurations extracted from
random instances of the Sherrington-Kirkpatrick model
[60–62], we show that our model’s generative performance
improves with training and converges to the ideal value.
These results provide strong evidence that quantum
annealers can indeed be effectively used as samplers and
that their domain of application extends well beyond what
was originally intended.
We emphasize that the objective of this work is not to

address the question of quantum speedup in sampling
applications but rather to provide the first clear experimental
evidence that quantum annealers can be trained robustly and
used in generative models for unsupervised machine-
learning tasks. We use available techniques to transform
the data set of interest into another data set with higher and
redundant resolution, which is subsequently used to train
models natively embedded in quantum hardware. We then
use a gray-boxmodel approach, which does not require us to
estimate the effective temperature nor the effective transverse
field; this approach has the potential to correct for errors due
to nonequilibrium deviations [53], noise in the program-
mable parameters [63], and sampling biases in available
state-of-the-art devices [64]. Hence, while the derivation of
our quantum-assisted algorithm relies on the assumption that
the quantum annealer is sampling from a Gibbs distribution,
we do not expect that this assumption must be strictly valid
for our algorithm to work well. Because we are optimizing a
hard-to-evaluate convex function, the generative perfor-
mance depends mostly on the quality and efficiency of the
sampling required to estimate such a function, an ideal
situation for the purpose of benchmarking. Recently, our
model and training methodology have been used to make
progress in benchmarking quantum annealers for sampling
[65], in contrast with the broadly explored topic of bench-
marking combinatorial optimization.
The outline of this article is as follows. In Sec. II,

we describe how graphical models with effectively arbi-
trary pairwise connectivity can be embedded and
realized in quantum hardware. Here, we emphasize the
parameter-setting problem, which is essential for any
implementation in hardware. In Sec. III, we derive an
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FIG. 1. Quantum-assisted unsupervised learning. (a) During
the training phase, samples generated by the quantum annealer
are compared with samples from the data set of, say, black-and-
white images. The control parameters are then modified accord-
ing to a learning rule (see Sec. III). This process is iterated a given
number of times, also known as epochs. (b) After being trained,
we can use the quantum annealer, for instance, to reconstruct
missing information in a data point, e.g., unknown values of some
pixels (red region). To do this, we program the quantum annealer
with the control parameters learned, except for the fields of those
qubits that represent known pixels. These fields are instead set to
large values hmax, so the qubits are clamped to the known values
of the corresponding pixels. We then generate samples to infer the
values of the unknown pixels.
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algorithm that tackles the parameter-setting problem while
learning the model from data. In Sec. IV, we discuss the
implementation details. In Sec. V, we describe the experi-
ments performed on two synthetic data sets and a coarse-
grained binarized version of the OptDigits data set; we
show that the model introduced here, trained by using the
D-Wave 2X (DW2X) hosted at NASA Ames Research
Center, displays good generative properties and can recon-
struct and classify data with good accuracy. In Sec. VI, we
report the conclusions of our work, discuss the implemen-
tation of our approach in other hardware architectures such
as the Lechner-Hauke-Zoller (LHZ) scheme [66], and
present potential research directions.

II. HARDWARE-EMBEDDED MODELS

A. Quantum annealing and quantum models

The dynamics of a quantum annealer are characterized
by the time-dependent Hamiltonian

HðτÞ ¼ −AðτÞ
X
i∈V

X̂i − BðτÞHP; ð1Þ

where τ ¼ t=ta is the ratio between time t and annealing
time ta, while AðτÞ and BðτÞ are monotonic functions
satisfying Að0Þ ≫ Bð0Þ ≈ 0 and Bð1Þ ≫ Að1Þ ≈ 0. The
first term in Eq. (1) above corresponds to the transverse
field in the x direction, characterized by the Pauli operators
X̂i for each qubit i. The second term in Eq. (1) corresponds
to the problem-encoding Hamiltonian

HP ¼ −
X
ði;jÞ∈E

JijẐiẐj −
X
i∈V

hiẐi; ð2Þ

where Ẑi refers to the ith qubit in the z direction, which is
defined on an interaction graph G ¼ ðV; EÞ. Here, V and E
refer to the corresponding set of vertices and edges,
respectively.
As discussed in Ref. [53], the dynamics of a quantum

annealer are expected to remain close to equilibrium until
they slow down and start deviating away from equilibrium
to finally freeze out. If the time between such dynamical
slow-down and freeze-out is small enough, the final state of
the quantum annealer is expected to be close to the
quantum Gibbs distribution

ρ ¼ e−βQAHðτ�Þ

Z
; ð3Þ

corresponding to the Hamiltonian in Eq. (1) at a given point
τ ¼ τ�, called freeze-out time. Here, βQA is the physical
temperature of the quantum annealer, and Z is the
normalization constant. The density matrix in Eq. (3) is
fully specified by the effective parameters Wij ¼ βJij,
bi ¼ βhi, and c ¼ βΓ, where β ¼ βQABðτ�Þ is the effective

inverse temperature [21,53] and Γ ¼ Aðτ�Þ=Bðτ�Þ is the
effective transverse field.
If Aðτ�Þ ≪ Bðτ�Þ, the final state of the quantum annealer

is close to a classical Boltzmann distribution over a vector
of binary variables z ∈ f−1;þ1gN ,

PðzÞ ¼ e−βEðzÞ

Z
; ð4Þ

where

EðzÞ ¼ −
X
ði;jÞ∈E

Jijzizj −
X
i∈V

hizi ð5Þ

is the energy function given by the eigenvalues of HP
[see Eq. (2)].
The case where Aðτ�Þ cannot be neglected is less

explored in the literature and allows the implementation
of quantum Boltzmann machines [25]. All conditions
described above, as well as the freeze-out time, depend
on the specific instance of control parameters Jij and hi that
are programmed. As shown in Sec. III, our algorithm can
also train hardware-embedded models despite these
unknown dependencies. The potential to train quantum
models [25,26,65] opens new exciting opportunities for
quantum annealing. These efforts resonate with founda-
tional research interested in quantifying or identifying the
particular computational resources that could be associated
with quantum models [39,67].

B. Enhancing modeling capacity

In this section, we define the general setting to train
a hardware-embedded probabilistic graphical model
capable of representing graphs with arbitrary connectivity.
Although we implement the general case of all-to-all
connectivity as the most complex topology with pairwise
interactions, working with models with simpler topologies
can be easily represented with less numbers of qubits
within this hardware-embedded setting.
In combinatorial optimization, one seeks a configuration

of binary variables z associated with the lowest energy in
Eq. (5). The typical strategy to embed dense graphs in
quantum hardware is to represent logical binary variables
by subgraphs of the interaction graph of physical qubits.
The value of all control parameters should be fine-tuned
such that the ground state of the original problem is
preserved and therefore still favored in the physical
implementation of the quantum annealing algorithm; this
is known as the parameter-setting problem (see Sec. II C
and Refs. [49,68,69]).
In machine learning, the scenario is different. When

learning a model such as the one in Eq. (3) or Eq. (4), one
seeks the configuration of control parameters Jij and hi that
maximizes a suitable function of the data set. Notice that in
combinatorial optimization problems, it is desirable to have
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the optimal configuration or ground state with probabi-
lity close to one. In machine learning, however, all
configurations are significant, as are their corresponding
probabilities. By mapping the original problem to quantum
hardware as routinely done in combinatorial optimization
applications, we may end up implementing a distribution
that differs from the intended one.
An additional complication is that finding optimal

parameters for a physical device is hampered by lack of
precision and noise and by having to infer an instance-
dependent effective temperature at each step of the learn-
ing. To avoid computing such an effective temperature at
each learning iteration and to mitigate the effects of
persistent biases [63], lack of precision, and noise in the
control parameters, we take a gray-box model approach. In
other words, although we assume that samples generated by
the quantum annealer are distributed according to Eq. (3),
we do not need complete knowledge of the actual param-
eters being implemented. This leads to the condition that
the first- and second-order moments of the model and data
distributions should be equal for the parameters to be
optimal. The resulting model is nevertheless tied to the
specific machine being used.
Using a generic logical graph as scaffolding, we associate

each of its logical variables with a subgraph of the hardware
interaction graph. This can be done by using existing minor
embedding techniques; however, the parameter-setting
problem remains. As an example, Figs. 2(a) and 2(b) show
a simple graph that cannot be directly implemented in
DW2X hardware and a possible minor embedding, respec-
tively. The additional couplings inside a subgraph are part of
the hardware-embedded graphical model and have to be
learned along with the model parameters that couple differ-
ent subgraphs. In other words, the fine-tuning of all
the couplings is done by the learning algorithm, which
has the potential to learn corrections to the noise affecting the
physical components, under the assumption that these
defects still respect the direction of the gradient driving
the learning algorithm.The embedding also allows us tomap
the original data set into an extended data set with higher
resolution, where some of the original variables are repre-
sented redundantly [see Figs. 2(c) and 2(d)]. Then, the
learning algorithm runs entirely on such extended space by
training from scratch the whole hardware-embedded model
on the extended data set. We now discuss, in more detail, the
parameter-setting problem and how it is tackled in the type
of machine-learning applications studied here.

C. Parameter-setting problem

Let us define the parameter-setting problem as follows:
Find values of control parameters to embed problems in
hardware such that the performance of the device is
“optimal.” The meaning of optimal depends on the task
of interest. In optimization problems, parameters are optimal
if they provide the largest probability of finding a ground

(a) (b)

(c) (d)

FIG. 2. Hardware-embedded models. (a) We first define a graph
with arbitrary connectivity between the logical variables that directly
encode the data set to be modeled; here, we show a fully connected
graph on four variables as an example. Such a graph serves as a
scaffolding to build hardware-embedded models with enhanced
modeling capacity. (b) We then embed the scaffolding graph in
quantum hardware by using minor embedding techniques; this
requires the introduction of auxiliary qubits, couplings, and fields. In
the example shownhere, the logical variable 1 (red) is encodedusing
two qubits, 1A and 1B, which are connected by an auxiliary coupler
JAB11 ; the same is true for variable 2 (blue). Theblack links correspond
to couplings between qubits representing different logical variables.
In optimization problems, we are given values for the couplings and
fields on the graph of logical variables, as in diagram (a). To solve
such optimization problems on a quantum annealer, we first have to
pickvalues for all control parameters such that theground state of the
physical system coincides with the optimal solution of the problem
being solved. The selection of control parameters can be done via
handcrafted rules when information is available about the model
[69] or via heuristic approaches in the more general scenario [49].
The optimal choice of control parameters, i.e., the one that max-
imizes the probability of finding the ground state, is known as the
parameter-setting problem, and it is an open research question. In
machine-learning applications, instead, the control parameters are
not given but have to be found; they are thevariables of the problem.
In this case, embedding techniques are used both to transform the
original data set [as shown in diagram (c)] into a data set with higher
resolution due to redundant variables [as shown in diagram (d)] and
to find a representation of such an extended data set in hardware.
This allows us to define encoding and decoding maps f and g,
respectively, to transform between the two data representations.
Then, we forget about the scaffolding graph and train the hardware-
embedded model on the extended data set. Thus, although the final
hardware-embeddedmodelmight be interpreted as an embedding of
a logical model, this is certainly not the case during learning, which
automatically tackles the parameter-setting problem; in a sense,
machine learning is parameter setting. While here we use standard
embedding techniques to define the maps f and g, such functions
could, in principle, be learned from data, effectively automating the
embedding problem, too.
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state [69]. In the type of machine-learning applications
considered here, parameters are optimal if samples gener-
ated by the device capture, as much as possible, the statistics
of the data set. In a sense, machine learning is parameter
setting. We discuss how this is quantified in Sec. III.
Previous research [69] suggests a possible mechanism

underlying the parameter-setting problem. The authors
investigated the Sherrington-Kirkpatrick model and found
that the optimal choice of the additional parameters could be
obtained by forcing both the spin glass and the ferromag-
netic structures to cross the quantum critical point together
during the annealing. Roughly speaking, the quantum phase
transition happens when the energies associated with the
problem-encoding system and the transverse field Γ are of
the same order of magnitude. This implies that the optimal
embedding parameters are OðJSG

ffiffiffiffi
N

p Þ, where N is the
number of spins and JSG is the typical value of the couplings,
that is, the standard deviation (see, e.g., Fig. 2 in Ref. [69]).
The intuition provided by this study does not necessarily
apply to more realistic problems. In machine learning, even
when starting from a fully connected model, the learning
could still lead to a sparse final model.
As we discuss in Sec. III, our approach lets the data

guide the process by treating the whole quantum annealer
as a neural network. In this case, both the inter- and intra-
subgraph parameters are modified according to the stat-
istical errors made by the quantum annealer in producing
samples that resemble the data. This process implicitly
corrects for noise and defects on the parameters, problems
that are expected to affect any near-term quantum tech-
nology. The price to pay is a relatively small overhead, as
discussed in Sec. III.
In the following, we focus on hardware-embedded

graphical models with effective all-to-all connectivity, as
that is the most general case. Therefore, our derivations and
the model proposed here include any topology with
pairwise connectivity.

D. Fully connected inspired models

The sparse interaction topology of state-of-the-art
quantum annealers strongly limits their capacity to model
complex data. For this reason, we use embedding strategies
based on utilizing several qubits to represent a given
variable in the data set. This amounts to transforming
the data set of interest into a higher-resolution data set, with
redundant variables, and modeling it with a hardware-
embedded model.
More specifically, consider a binary data set

D ¼ fs1;…; sDg, where each data point can be represented
as an array of Ising variables, i.e., sd ¼ ðsd1;…; sdNÞ, with
sdi ∈ f−1;þ1g, for i ¼ 1;…; N. We refer to the s variables
as logical variables. We need to define a map f from the
data space to the qubit space that produces an extended
binary data set ~D ¼ fz1;…; zDg, where z ¼ fðsÞ. In this

work, we choose the map f to replicate the state of each
logical variable si inside the corresponding subgraph i, i.e.,

zðkÞi ¼ si; for k ¼ 1;…; Qi; ð6Þ
where Qi is the number of qubits in subgraph i.
The task then turns into learning the parameters of a

model on the extended data set ~D. To do this, we define a
problem Hamiltonian over M ¼ P

N
i¼1Qi qubits,

~HP ¼ −
1

2

XN
i;j¼1

XQi;Qj

k;l¼1

JðklÞij ẐðkÞ
i ẐðlÞ

j −
XN
i¼1

XQi

k¼1

hðkÞi ẐðkÞ
i : ð7Þ

Here,N is the number of logical variables, which equals the

number of subgraphs realized in hardware; ẐðkÞ
i is the Pauli

matrix in the z direction for qubit k of subgraph i; hðkÞi is the

local field for qubit k of subgraph i; and JðklÞij is the coupling
between qubit k of subgraph i and qubit l of subgraph j.
When i ¼ j, it specifies the interactions within the sub-
graph, while when i ≠ j, it specifies the interactions among

subgraphs; JðklÞij ¼ 0 if there is no available interaction
between the corresponding qubits in the quantum hard-

ware. The binary variables zðkÞi encoding the extended data
set can be interpreted as the eigenvalues of the Pauli

matrix ẐðkÞ
i .

After learning the parameters of ~HP in Eq. (7), we need a
map g from qubit space to data space that transforms
samples generated by the quantum annealer into samples
that resemble the original data set. Here, we choose g to
assign the state of the majority of physical variables in
subgraph i to the corresponding logical variable si, i.e.,

si ¼ sign

�XQi

k¼1

zðkÞi

�
: ð8Þ

The rationale behind this choice is that, ideally, samples

from the trained model are expected to have all qubits zðkÞi in

a subgraph i having exactly the same state, i.e., zðkÞi ¼ zðlÞi for
k; l ¼ 1;…; Qi. In this case, we could pick whichever qubit

zðkÞi as representative of the logical variable si, and this
choice would be equivalent to the choice in Eq. (8).
However, we expect the choice in Eq. (8) to be more robust
to the different sources of noise in quantum annealers by
exploiting such a redundancy in the spirit of error-correction
codes [61,62].While we have a priori fixed mappings f and
g using embedding techniques, such functions could also be
learned from data, as we will discuss elsewhere.

III. LEARNING ALGORITHM

Let ρD be the diagonal density matrix whose diagonal
elements encode the empiric data distribution. A quantum
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Boltzmann machine [25], characterized by the density
matrix ρ defined in Eq. (3), can be trained by minimizing
the quantum relative entropy [26],

SðρD∥ρÞ ¼ TrρD ln ρD − TrρD ln ρ: ð9Þ
The learning rule is given by the equations

JðklÞij ðtþ 1Þ ¼ JðklÞij ðtÞ þ η
∂S

∂JðklÞij

; ð10Þ

hðkÞi ðtþ 1Þ ¼ hðkÞi ðtÞ þ η
∂S
∂hðkÞi

; ð11Þ

where t indicates the iteration and η > 0 is the learning rate.
Assuming we can neglect the dependence of the time
lapsed between the dynamical slow-down and freeze-out

in the instance of control parameters JðklÞij and hðkÞi pro-
grammed, we obtain

1

β

∂S
∂JðklÞij

¼ hẐðkÞ
i ẐðlÞ

j i
ρD

− hẐðkÞ
i ẐðlÞ

j i
ρ
; ð12Þ

1

β

∂S
∂hðkÞi

¼ hẐðkÞ
i iρD − hẐðkÞ

i iρ: ð13Þ

Here, h·iρD denotes the ensemble average with respect to the
density matrix ρD that involves only the data and is
commonly referred to as the positive phase. Similarly,
h·iρ denotes the ensemble average with respect to the
density matrix ρ that exclusively involves the model and
is called the negative phase.
If Aðτ�Þ ≪ Bðτ�Þ during our experiments, we are indeed

dealing with classical models. Then, the learning rule above
coincides with that for maximizing the average log-
likelihood of the data [70].
However, the more general quantum case we just

described provides a more accurate representation of the
experiments we have performed, which are described below.
To provide a strong argument as to which is the case,
though, we need to carry out numerical simulations of the
open quantum systems dynamics undergone by quantum
annealers. We leave this for future work. However, our
approach would also be valid for quantum annealers capable
of sampling from any desired fixed value of the transverse
field, a capability that may be available in the near future.
The Hamiltonian in Eq. (7) is designed to overcome

connectivity limitations of hardware-embedded graphical
models. In what follows, we show that the adaptation of
standard learning procedures to the quantum maximum-
entropy model proposed here works very well even in the

presence of unknown hardware noise on couplings JðklÞij and

local fields hðkÞi . Moreover, we can learn suitable intra-
subgraph couplings at a rate dictated by the contrast of the

strength of pairwise correlations in the model and in the
data, without the need for hard-coded values.
Classically, the exact computation of the model’s sta-

tistics is a computational bottleneck due to the intractability
of computing the partition function and the exponential
number of terms in the configuration space. An efficient
approximation of the statistics is therefore required, and it
is usually carried out by standard sampling techniques such
as MCMC [70,71]. In this work, we instead implement an
algorithm that relies on the working assumption that
quantum annealers can generate samples from a Gibbs-
like distribution. However, even if this assumption is not
strictly valid, our approach can still work as long as the
estimated gradients have a positive projection in the
direction of the true gradient. Quantum annealers have
the potential to improve machine-learning algorithms in
two ways: (i) by enabling the exploration of a wider class of
models, i.e., quantum models, which some theoretical
results [39] suggest may be able to capture higher complex-
ity, and (ii) by speeding up the generation of samples. If the
transverse field at the freezing point is negligible, the
samples generated by the quantum annealer are expected to
approximately follow a classical Boltzmann distribution.
The learning procedure implemented by Eqs. (12) and

(13) can be interpreted as quantum entropy maximization
under constraints on the first- and second-order moments
[72–74]. In Ref. [24], a maximum entropy approach was
implemented on a D-Wave device in the context of
information decoding, which is a hard optimization prob-
lem. Instead, we use quantum maximum-entropy inference
for a hard machine-learning task, i.e., in unsupervised
learning of generative models.
Equation (10) implies that the intra-subgraph couplings

JðklÞii increase at a varying rate proportional to 1 − hẐðkÞ
i ẐðlÞ

i i,
which, in principle, leads to infinite values in the long term.
In practice, the rate of growth decreases as the learning
progresses since the statistics of the samples generated by
the quantum annealer resemble the data more and more. In
general, the gradient-descent learning rule tends to produce
too-large values for all the parameters because it pushes the
model as much as possible towards a distributionwith all the
mass concentrated on the data. This problem is known as
overfitting, and it is usually approached by regularization
techniques. One regularization method may consist in
penalizing large parameters by adding a term to Eq. (9)
accordingly. Another approachmay be to employ a stopping
criterion based on some measure of generalization or
predictive capabilities of the model evaluated at each
iteration on data not used during training. Under a proper
choice of regularization, the intra-subgraph couplings uti-
lized in our approach should not grow indefinitely anymore.
However, regularization in the general setting of quantum
machine learning is still an open research question.
Regarding the complexity of the algorithm, a fully

connected model with N logical variables has OðN2Þ
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parameters. When embedding such a fully connected
model into a sparse graph like the Chimera graph of the
DW2X, we end up with OðN2Þ qubits, but the number of
parameters is still OðN2Þ. This result occurs because we go
from a dense graph of N variables to a sparse graph of
OðN2Þ variables. Each qubit in the DW2X interacts with, at
most, six neighbors, so the number of additional parameters
is a small constant factor. In our experiments, this factor is
about 3 (see Table I). Because of this factor, there is a small
computational overhead for learning those intra-subgraph
parameters. This overhead could be neglected because the
main bottleneck is still in the generation of samples which
is at least as hard as any non-deterministic polynomial time
problem (NP-hard). An exact analog occurs in combina-
torial optimization where a quadratic overhead is expected
for embedding fully connected problems in hardware. In
combinatorial optimization, such overheads are usually
neglected because the main bottleneck is the NP-hard
problem of reaching low-energy configurations.
A few additional remarks are in order: (i) The assumption

that the model is based on a Gibbs distribution is reflected in
that the second moment between two variables influences
only the update of the corresponding coupling between them.
If such a second moment increases (decreases), so does the
corresponding coupling. This leaves open the possibility for
the model to effectively self-correct for relatively small
deviations from equilibrium, persistent biases, noise, and
lack of precision, as long as the estimated gradient has a
positive projection in the right direction, in the spirit of
simultaneous perturbation stochastic approximation [11,76].
(ii) The actual shape of a Gibbs distribution is instead

characterized by the variables βJðklÞij and βhðkÞi . Writing
Eqs. (10) and (11) in terms of these new variables, we
observe that the actual learning takes place at an effective
learning rate that can vary since the effective temperature is
instance dependent [21]. (iii) The positive phases in Eqs. (12)
and (13) are constants to be estimated exclusively from the
data points, as there are no hidden units in our approach. In
the case of generic models with hidden variables, this term
becomes difficult to compute, in general, andwe have to rely

on approximations, e.g., via sampling or mean-field tech-
niques. (iv) The related problem of estimating the parameters
of a classical Ising model is called the inverse Ising problem
[56,57,77], and some of the main alternative techniques are
mean-field and pseudo-likelihood methods.

IV. IMPLEMENTATION DETAILS

A. Device and embeddings

We run experiments on the DW2X quantum annealer
located at NASA Ames Research Center. The device is
equipped with 1152 qubits interacting according to a graph
known as Chimera connectivity. For the DW2X device
hosted at NASA Ames, only 1097 qubits are functional
and available to be used. Assuming all 1152 qubits were
available, an efficient embedding schema [78] would allow
us to implement a fully connected graphwith up to 48 logical
variables. Since only 1097 qubits are available, such a
schema cannot be used, and the size of the largest fully
connectedmodel that can be implemented is reduced. For the
embeddings of the instances studied here, we run the
find_embedding heuristic [75] offered by D-Wave’s
programming interface and use the best embedding found
within the 500 requested trials. We judge the quality of an
embedding not only by the total number of physical qubits
needed to represent the logical graph, but also by considering
and preferring a smaller maximum subgraph size for the
logical units. For example, in the case of the 46-variable fully
connected graph, we found an embedding with 917 qubits
and amaximum subgraph size of 34.We selected, instead, an
embedding with a larger number of qubits, 940, but with a
considerably smaller maximum subgraph size of 28.
(Figure 8 in the Appendix shows the selected embedding,
where each subgraph is represented by a number and a color.)
Table I shows details for each of the embeddings used in our
experiments. Finally, the parameter range allowed byDW2X

is JðklÞij ∈ ½−1;þ1� andhðkÞi ∈ ½−2;þ2�.We initialized all the
parameters to small values in ½−10−6;þ10−6� in order to
break the symmetry.

B. Data sets and preprocessing

We tested our ideas on the real OptDigits data set [58],
the synthetic BAS data set [59], and a collection of
synthetic data sets generated from random Ising instances.
The OptDigits data set requires the preprocessing steps

shown in Fig. 3. First, each picture is 8 × 8 and has a
categorical variable indicating the class it belongs to. Using
standard one-hot encoding for the class (i.e., cdi ¼ −1 for
i ≠ j, cdj ¼ þ1, where j indexes the class for picture d), we
would need to embed a fully connected graph of 74
variables, 64 for the pixels and 10 for the class, exceeding
what we can embed in the DW2X.We removed the leftmost
and rightmost columns as well as the bottom row from each
picture, reducing the size to 7 × 6 and retaining the

TABLE I. Main characteristics of the different embeddings
used here, for each of the fully connected graphs. All embeddings
were generated by the find_embedding [75] heuristic pro-
vided by D-Wave’s API. The table includes information about the
minimum (Min) and maximum (Max) subgraph size, the per-
centage of qubits used relative to those available (Chip usage),
and the total number of parameters for the logical and physical
graphs.

Logical
variables

Physical
variables Min Max

Chip
usage

Logical
parameters

Physical
parameters

15 76 5 6 7% 120 252
42 739 11 25 67% 903 2644
46 940 12 28 86% 1081 3389
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readability. Second, we selected only four classes of
pictures, those corresponding to digits “one” to “four,”
reducing the one-hot encoding to four variables. The four
classes account for 1545 pictures in the training set and 723
pictures in the test set, and they are in almost equal
proportion in both. Finally, the original four-bit gray scale
of each pixel is thresholded at the midpoint and binarized to
f−1;þ1g in order for the data to be represented by qubits
in the DW2X. Figure 4(a) shows some pictures from the
test set.

TheBASdata set consists ofN ×M pictures generated by
setting the pixels of each row (or column) to either black
(−1) or white (þ1), at random. A reason to use this synthetic
data set is that it can be adapted to the number of available
variables in the DW2X. Having found an embedding for the
42-variable fully connected graph, we generated a 7 × 6
BAS data set consisting of 192 pictures of 42 binary
variables each. Then, we randomly shuffled the pictures
and split the data set into training and test sets of size 96 each.
Figure 5(a) shows some pictures from the test set.
Finally, for the collection of synthetic data sets, we

preferred to work with small-sized Ising instances that
allowedus to carry out exhaustive computations. Inparticular,
we chose 10 random instances of a Sherrington-Kirkpatrick
model with N ¼ 15 logical variables. Parameters Jij
[cf. Eqs. (4) and (5)] were sampled from a Gaussian with
mean μ ¼ 0 and standard deviation σ ¼ ζ=

ffiffiffiffi
N

p
, parameters

hi were set to 0, and the inverse temperaturewas set to β ¼ 1.
In this setting, a spin-glass transition is expectedwhen ζc ¼ 1
in the thermodynamic limit, although finite-size corrections
are expected to be relevant for this small size. In order to
obtain interesting structures within the probability distribu-
tions, we chose ζ ¼ 2 and verified that the overlap distribu-
tion [60,61] of each instancewas indeednontrivial.Moreover,

FIG. 3. OptDigits preprocessing steps. The original 8 × 8 pictu-
res are cropped to 7 × 6 arrays by removing columns from the left
and the right, as well as by deleting a row from the bottom. Fina-
lly, the four-bit gray scale is thresholded at the midpoint and bina-
rized to f−1;þ1g. Figure 4(a) shows some pictures from the test
set.

FIG. 4. OptDigits experiment. (a) We show 36 samples from the test set, with each pixel being either dark blue (þ1) or white (−1). See
Fig. 3 and the main text for a description of the preprocessing steps. (b) A uniform salt-and-pepper noise shown in red corrupts each
picture. The model cannot use information from the red area. (c)–(f) Reconstructions obtained after 1, 10, 1000, and 6000 learning
iterations. A light blue pixel indicates a tie of the majority vote over the corresponding subgraph. We can visually verify that the model
has learned to generate digits. The learning stops at iteration 6000 because further iterations would bring some parameters out of the
dynamic range of the DW2X device.

FIG. 5. BAS experiment. (a) We show 36 samples from the test set, with each pixel being either dark blue (þ1) or white (−1). (b) A
5 × 4 block of noise shown in red corrupts each picture. The model cannot use information from the red area, and yet the remaining
pixels contain enough information to reconstruct the original picture. (c)–(f) Reconstructions obtained after 1, 10, 1000, and 3850
learning iterations. The average number of mistaken pixels is 50% in (c), 18.6% in (d), 2.95% in (e), and finally 0.65% in (f). This is an
almost perfect reconstruction. The learning stops at iteration 3850 because further iterations would bring some parameters out of the
dynamical range of the DW2X device.
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we checked the performance of the closed-form solutions
obtained by mean-field techniques in Ref. [57]. The mean-
fieldmethod failed to produce (real-valued) solutions in seven
out of the ten random instances, while it performedwell in the
remaining three instances, adding further evidence that these
instances had nontrivial features in their energy landscape.
Finally, we generated a training set of D ¼ 150 samples for
each instance by exact sampling from its corresponding
Boltzmann distribution. Table II summarizes the character-
istics of each dataset used in our experiments.

C. Choice of hyperparameters

We distinguish two kinds of hyperparameters: those
associated with the device and those referring to the
gradient. Device hyperparameters affect the time needed
to obtain samples. We set them to their corresponding
minimum values in order to obtain samples as fast as
possible. Gradient hyperparameters come from advanced
techniques known to improve generalization and speed up
learning. We adopt standard L2 regularization for the
pairwise interactions and momentum for all the parameters,
hence introducing two hyperparameters in Eqs. (10) and
(11) (see Ref. [71] for discussion about implementation
details and best practices). For these hyperparameters, we
tried a small grid of values and chose the value that would
allow the quantum-assisted algorithm to produce visually
appealing samples. All the experiments were performed
using the hyperparameters shown in Table III.

V. RESULTS

A. Reconstruction of pictures

The first task we address is verifying that the model is
indeed able to learn the joint probability distribution of

variables given a data set. One way to do this is to check
whether the learned model can reconstruct corrupted pictures.
To generate a reconstruction, we first need to enforce the value
of each correct pixel to all qubits of the corresponding
subgraphs, as illustrated in Fig. 1(b). The qubits can be
clamped to the desired value by using a strong local field
in the corresponding direction. Notice that clamping variables
in quantum annealers is somewhat different from its classical
counterpart. Applying a strong local field to a qubit can
substantially bias it towards a given value, but it still remains a
dynamical variable. In classical computation, clamping a
variable completely freezes it. We then generated samples
from the learned model and assigned values to each corrupted
pixel si using the majority-vote map [Eq. (8)] for all qubits in
the corresponding subgraph i. To further mitigate the noise
associated with this, we generated multiple reconstructions,
100 for each corrupted picture, and took a second majority
vote over them. This approach is very robust as we did not
observe any mismatch between the desired clamped variables
and the corresponding readouts. We chose to interrupt the
training of themodels as soon as any of the parameters left the
dynamic range of the device. Since the intra-subgraph
couplings always increase, we expect these to be the first to
get out of range, andweobserved this result in the experiments
described below. We use two data sets, OptDigits and BAS.

1. Optical recognition of handwritten digits

We trained a model on the real data set OptDigits, a
sample of which is shown in Fig. 4(a). Since the training set
contains a relatively large number of data points, we opted
for a minibatch learning approach [71], where 200 data
points were used at each iteration to compute the positive
phase of the gradient. The negative phase is computed on
200 samples from DW2X. We trained for 6000 iterations,
after which an intra-subgraph coupling went outside the
dynamic range of the device.
To evaluate the model, we added a 50% uniformly

distributed “salt-and-pepper” noise [Fig. 4(b), red pixels]
to each picture of the test set andused themodel to reconstruct
it. Notice that, given a corrupted picture, it is not always pos-
sible to obtain perfect reconstruction as multiple solutions
could be correct. Therefore, we do not compute any error
measure but rather visually inspect the reconstructions.
Figures 4(c)–4(f) show some reconstructions obtained by
models learned after 1, 100, 1000, and 6000 iterations,
respectively. We can observe that qualitatively good recon-
structions are already available from early stages of training.
However, the large degree of corruption in the original image
gives rise to things such as thicker reconstructions [Fig. 4(f),
third row, fourth column], thinner reconstructions [Fig. 4(e),
fourth row, second column], change of digit “three” to “one”
[Fig. 4(e), third row, fifth column], among others.

2. Bars and stripes

We performed a similar test on the 7 × 6 BAS, a sample
of which is shown in Fig. 5(a). We computed the positive

TABLE II. Main characteristics of the data sets used here, i.e.,
number of variables, number of training points, and number of
test points, when applicable. The * symbol indicates a synthetic
data set.

Data set Variables Training points Test points

OptDigits 42þ 4 1545 723
BAS 7 × 6* 42 96 96
Ising* 15 150 Not applicable

TABLE III. Settings used in all the experiments except those in
Sec. V C, where gradient hyperparameters were tuned.

Domain Hyperparameter Value

Device Annealing time 5 μs
Programming thermalization 1 μs
Readout thermalization 1 μs
Auto scale False

Gradient Learning rate 0.0025
L2 regularization 10−5

Momentum 0.5
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phase once using all 96 training data points. Then, we ran
the learning procedure, and for each iteration, we computed
the negative phase out of 96 samples obtained from the
DW2X. The learning process stopped at iteration 3850,
after which an intra-subgraph coupling exceeded the
maximum value allowed.
To evaluate the model, we blacked-out a 5 × 4 block

[Fig. 5(b), red pixels corresponding to 47.6% of the image]
from each of the 96 test pictures and used the model to
reconstruct it. We can observe from Fig. 5(e) that recon-
structed pictures are qualitatively similar to the original ones.
To have a quantitative estimate of the quality of the
reconstruction, we computed the expected number of incor-
rect pixel values (or mistakes) per reconstruction. After one
iteration [Fig. 5(c)], we obtained a rate of 10.45 mistakes out
of 20 corrupted pixels, corresponding to about 50% perfor-
mance as expected. The number of mistakes decreased to
3.73 (18.6%) after 100 iterations [Fig. 5(d)], 0.59 (2.95%)
after 1000 [Fig. 5(f)], and finally 0.13 (0.65%) at the end of
training [Fig. 5(e)]. The latter result corresponds to almost
perfect reconstruction. Notice that, by definition, pictures
from the test set are never used during training. Hence, these
results provide evidence that the joint probability distribution
of the pixels has been correctly modeled, and we can most
likely rule out a simple memorization of the patterns.

B. Generation and classification of pictures

To investigate the generative and classification capabil-
ities of the model, we introduced a one-hot encoding of the
four classes of the OptDigits data set, therefore introducing
four additional logical variables, for a total of 46. We
trained this larger model on the OptDigits data set, also
including the classes.

We performed a simple classification task that does not
require turning the generative model into a discriminative
one by additional post-training.We classify each test picture
as c� ¼ argmaxcPðcjsÞ, where s is the vector encoding the
pixels and c is the vector encoding the classes. To approxi-
mate the probability,we clamped the subgraphs, by applying
strong local fields, to the pixel values corresponding to the
picture to be classified and sampled the four class variables
fromDW2X.Wegenerated 100 samples for each picture and
assigned the picture to the most frequent class. After 6000
learning iterations, this simple procedure led to an accuracy
of 90% on the test pictures. This is a significant result, given
that a randomguess achieves 25%accuracy.However, it is to
be expected that a fine-tuned discriminative model can
achieve better accuracy.
Finally, Fig. 6 shows samples obtained from theDW2Xby

first setting the class variables, by applying strong local
fields, to classes one to four (one class per column), along
with human-generated pictures from the test set. Rows
correspond to either human-generated pictures from the test
set ormachine-generated pictures.We defer the details of this
visual Turing test to Ref. [79]. Machine-generated pictures
are remarkably similar, though not identical, to those drawn
by humans. Notice that human-generated digits may be
ambiguous because of a variety of calligraphy styles encoded
in low-resolution pictures. This ambiguity has been captured
by the model, as shown by the machine-generated pictures.

C. Learning of an Ising model

In the previous section, we showed that quantum
annealing can be used to successfully train the hardware-
embeddedmodels introduced here on both real and synthetic
data sets of pictures. Here, we compare physical and logical

FIG. 6. Visual Turing test(a)–(h). The reader is invited to distinguish between human-generated pictures from the test set and machine-
generated pictures sampled from the model. Columns identify classes one to four; rows identify the source—human or machine. The
solution is given in Ref. [79].
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models trained by quantum annealing (QA), simulated
thermal annealing (SA) [80], and exact gradient. To simplify
this task, we now deal with synthetic data sets composed of
D ¼ 150 samples generated exhaustively from small-sized
Boltzmann distributions as described in Sec. IV B. This is
similar in spirit to the approach usually taken in the literature
on the inverse Ising problem [56,57]. However, we do not
quantify the quality of the trained model by the quadratic
error between the parameters of the original model and those
obtained by the learning algorithms, as it is usually done, for
three reasons: (i) The physical model implemented in
quantum hardware has a larger number of parameters than
the logical model from which the data are generated, and a
direct comparison is not straightforward. (ii) In our gray-box
model approach, we do not have direct access to the effective
parameters implemented in thequantumannealer, sowehave
to estimate the effective temperature that can introduce
errors. (iii) To our knowledge, there is no direct connection
between generic distances in parameter space, as measured
by the quadratic error, and distances in probability space,
which are those that have actual operational meaning, except
perhaps when the parameters are close enough. Indeed, to
measure distances in parameter space that correspond to
distances in probability space, it is necessary to use the Fisher
information metric. For instance, it is known that, close to a
critical point, a slight variation in the parameters can lead to
drastically different probability distributions [81].
Instead, our evaluation strategy exploits the fact that we

have full knowledge of the probability distribution QðsÞ

that generated the data. At each learning iteration, or epoch,
we sample a set S ¼ fsð1Þ;…; sðLÞg of L points from the
model PðsÞ and evaluate the average log-likelihood that
such samples were generated by QðsÞ,

ΛavðSÞ ¼
1

L

XL
l¼1

logQðsðlÞÞ

¼ −β
1

L

XL
l¼1

EðsðlÞÞ − logZðβÞ; ð14Þ

for simplicity, we chose L ¼ D ¼ 150.
Notice that Eq. (14) requires full knowledge of the

distribution that generated the data. This is unfeasible for
real data sets since the whole point of learning a model is
precisely that we do not know the true underlying dis-
tribution. However, this proxy is related to the generaliza-
tion properties of the trained model since it corresponds to
the likelihood that new arbitrary samples generated by the
model were actually generated by the true underlying
distribution. We expect this to be a faithful proxy since
achieving good generalization performance is the main
objective of machine-learning techniques. However, we
should take into account that ΛavðSÞ is not expected to be
maximized by the generated samples but rather to match the
value ΛavðDÞ of the original data set.
In this set of experiments, we performed 500 learning

iterations and did not use gradient enhancements such as
momentum and regularization in order to simplify the

FIG. 7. Comparison of different learning settings. The plots show mean and 1 standard deviation of the proxy Λav for 10 random
instances and for different learning procedures. We use exact gradient for the 15-variable logical graph and quantum annealing (QA) or
simulated thermal annealing (SA) for the corresponding 76-qubit physical graph. A learning procedure is considered successful if it can
generalize, that is, if it matches the proxy of the training set (green band). (a) The logical model (blue band) matches faster than the
physical model (red squares) when the same learning rate is used. This suggests that the larger number of parameters does not help the
physical model. (b) Quantum annealing on the physical graph (red circles) enables faster matching than exact gradient on the logical
graph (blue band) when the same learning rate η ¼ 0.0025 is used. However, the exact-gradient procedure equipped with a larger
learning rate η ¼ 0.01 (orange band) outperforms the quantum-assisted algorithm. In turn, the quantum-assisted algorithm outperforms
all other learning procedures when equipped with the larger learning rate η ¼ 0.01 (purple triangles). Notice that neither the computation
of Λav nor the exact-gradient learning is tractable, in general.
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quantitative analysis. First, we verified whether the larger
number of parameters in the physical graph provides a
practical advantage against the logical models. While exact
gradient calculations are feasible in the 15-variable logical
graph, they are infeasible for the 76-qubit physical graph
considered here (see details in Table I). We opted for a
sampling procedure based on SAwhere each sample follows
its own independent linear schedule, therefore avoiding the
problem of autocorrelation among samples.We used a linear
schedule βðtÞ ¼ t=tmax for the inverse temperature and
performed a preliminary study in order to set the optimal
number of Monte Carlo spin flips per sample, tmax. We
incrementally increased this number and observed the
change in learning performance via the proxy Λav. We
choose tmax ¼ 15200 Monte Carlo spin flips, as multiples
of this number did not result in improved learning speed nor
in better values of Λav. We expect this procedure to be
essentially equivalent to exact gradient within the 500
learning iteration considered here. Figure 7 shows mean
and 1 standard deviation of the performance indicator for the
10 synthetic instances considered here. Figure 7(a) indicates
that SA-based learning on the physical graph (red squares) is
slower than exact gradient learning on the logical graph (blue
band) when the same learning rate is used. Even though both
methods approach the optimal Λav of the data set (green
band), the larger number of parameters does not speed up
learning. Despite this, Fig. 7(b) shows that quantum-assisted
learning with η ¼ 0.0025 (red circles) outperforms exact
gradient. This indicates that a varying effective learning
rate could be induced by the instance-dependent effective
temperature [21] at which a quantum annealer samples.
Indeed, by increasing the learning rate of the exact
gradient method to η ¼ 0.01 (orange band), we were able
to outperform quantum-assisted learning. In turn, how-
ever, quantum-assisted learning can outperform exact
gradient if the same larger learning rate is used (purple
triangles). The fast initial learning could also be caused by a
nonvanishing transverse field at the freeze-out point (see
Sec. III above for a discussion). Because of the interplay
between effective temperature and learning rate, the experi-
ments presented here cannot confirm nor rule out the
presence of these quantum effects. Open-quantum-systems
simulations on small systems might give us greater control
and allow us to have further insights into the interplay of the
mechanisms proposed here. We leave this task for future
work.

VI. CONCLUSIONS

Whether quantum annealing can improve algorithms that
rely on sampling from complex high-dimensional probability
distributions or whether they can provide more effective
models are important open research questions. However,
quantum annealers face several challenges that need to be
overcome before we can address such a question from an
experimental perspective. Besides the problem of proper

temperature estimation, which has been addressed recently
[21,52], some of the most pressing challenges are sparse
connectivitywhich limits the capacityof themodels that canbe
implemented, low precision, and limited range of the control
parameters, as well as different sources of noise that affect the
performance of state-of-the-art quantum annealers [55].
By combining standard embedding techniques with the

data-driven automatic setting of embedding parameters, we
substantially improve the robustness and the complexity of
machine-learning models that can be modeled with quan-
tum annealers. By working on a gray-box model frame-
work, which requires only partial information about the
actual distribution from which the quantum annealer is
sampling, this approach also avoids the need for estimating
temperature during the learning of the models and has the
potential to help mitigate the different sources of noise on
the device. The resulting model can be interpreted as a
visible-only quantum Boltzmann machine with all pairwise
interactions among logical variables. We validated our
ideas qualitatively by training the fully connected hard-
ware-embedded model for reconstruction and generation
of pictures, and quantitatively by computing a proxy on
data sets extracted from randomly generated Boltzmann
distributions.
Another advantage of our approach is that the learning

rules are embedding-agnostic.More precisely, the underlying
hardware embedding for the scaffolding logical model can be
found by either heuristic algorithms [75] or by known
efficient schemes [78,82], and the learning strategy is the
same. While we have a priori fixed mappings f and g using
embedding techniques, such functions could also be learned
from data, as we will discuss elsewhere.
Furthermore, the strategy for training can be straightfor-

wardly extended to other proposed hardware architectures,
such as the LHZ scheme [66]. More specifically, the data
from the machine-learning task can be easily mapped to the
physical qubits of that scheme by following the equivalent of
our Eq. (6). One difference is that the gradient updates [see
Eqs. (12) and (13)] for the programmable parameters in this
case will involve the updates of bias terms and the penalties
for the quartic terms, under that choice of hardware imple-
mentation. This does not pose any challenges with our
approach either, and the final results of the same iterative
learning procedure detailed herewould be a trained quantum
or classical model. By using this gray-box model, one can
also get samples from aLHZ-type device and use it for useful
tasks such as the digit reconstruction or generation as
illustrated in this work. The question of whether there is
any advantage of either implementation for the machine-
learning tasks proposed here is a question that would need to
be addressed in future work.
Natural extensions of themodel will be inclusion of latent

variables, also known as hidden units, support for continu-
ous variables, and the development of techniques for the
quantum annealer to also learn the embedding from data.

MARCELLO BENEDETTI et al. PHYS. REV. X 7, 041052 (2017)

041052-12



Hidden units are needed, for example, if visible patterns
require constraints that cannot be enforced by pairwise
interactions alone [70]. Continuous variables are needed for
a correct modeling of real data sets. This has been the focus
of recent work [37,38], where we used the same gray-box
model developed here but on a fully connected graph of 60
hidden variables (instead of visible units). We performed
experiments on a hardware-embedded model with 1644
qubits, further supporting the robustness-to-noise claims in
this work and the value of this approach as a template for
other quantum-assisted frameworks.
Another possible direction for future work is the extension

of our learning algorithm to more general, possibly non-
equilibrium, distributions. As we discussed, our learning
algorithm might still work when there are relatively small
deviations from the thermal distribution we assumed, as long
as the estimated gradient has a positive projection on the
direction of the truegradient. Indeed, ifwehadno information
on the state reached by the quantum annealer, wewould have
to rely on model-free (e.g., black-box) techniques based, for
instance, on randomly choosing a direction to update the
control parameters, which may be highly inefficient [11,76].
On the other hand, if we had complete knowledge of the final
state reached by the quantum annealer, we could benefit from
model-based techniques, as we have done here. A possible
hybrid algorithm may be based on a model, e.g., a Gibbs
distribution, that captures the most relevant features of the
quantum annealer state and some unknown corrections. In
this way, the algorithm may choose a direction in parameter
space informed by the model, instead of just randomly, and
use the black-box techniques to correct for mistakes.
From a more fundamental perspective, several key ques-

tions remain open: When and why could the quantum
annealer do better than classical MCMC approaches, or
when and why could it provide more effective models? Our
results show that the quantum-assisted learning algorithm
has a faster learning during the initial stage, in the scenario
where both classical (exact gradient estimation and SA) and
our hybrid quantum-classical approach are set under the
same conditions in terms of hyperparameters. Given that an
instance-dependent effective temperature can imply a vary-
ing learning rate, this faster learning is probably due to the
quantum-assisted algorithm automatically adjusting its
learning rate. In this respect, it is important to investigate
if such a learning schedule is optimal and, if so,whether it can
be effectively simulated by classical means. Still, we cannot
discard that some nontrivial quantum effects play a role here.
Indeed, as pointed out in Ref. [26], and as we further
discussed above, the learning rules for classical and quantum
Boltzmann machines coincide when there are no hidden
variables. The potential to train quantum models [25,26,65]
opens new exciting opportunities for quantum annealing.
These efforts resonate with foundational research interested
inquantifyingor identifying the computational resources that
could be associated with quantum models [39,67].

Arguably, this question of whether or not there is
quantum speedup in sampling applications is one of the
most important questions propelling our research. Years of
experience accumulated with the use of quantum annealers
for combinatorial optimization suggest that the answer may
not be straightforward [83,84], with the first comprehensive
benchmarking study on an industrial application performed
only recently [51]. Benchmarking quantum annealing for
machine learning can be approached by following well-
established guidelines used in optimization (see Ref. [85]).
However, the iterative nature of most machine-learning
applications makes the task far more time-consuming.
Almost all the hyperparameters (e.g., learning rate,
annealing time, number of samples per iteration, etc.)
can be adjusted throughout the learning, hence requiring
us to find an optimal schedule for both classical and
quantum algorithms. To obtain acceptable statistics, the
study should be carried out on several data sets and
different system sizes, where the time required to optimize
the hyperparameters above grows quickly with the system
size. In nonconvex problems (in parameter space), even if
the samples used at each iteration are of high quality, the
learning algorithm can find suboptimal solutions. In convex
problems like the one we considered here, the performance
of the learning algorithm mostly relies on the quality of the
samples. This makes our approach appealing for the
purpose of benchmarking. Still, it is required to assess
the quality of the whole distribution of states and not just
the ground state as in combinatorial optimization applica-
tions. In this work, we focus on providing a proof-of-
principle demonstration and experimental evidence that
quantum annealers can be used for complex machine-
learning tasks, such as in the case of unsupervised gen-
erative modeling on fully visible, probabilistic, graphical
models with arbitrary pairwise connectivity. We hope this
work continues opening new opportunities for quantum
annealing and, more broadly, for quantum machine-
learning research.
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APPENDIX: EXAMPLE

Figure 8 shows the embedding of a fully connected graph with 46 logical units into 940 physical qubits.

FIG. 8. Embedding. We show 46 logical variables embedded into DW2X’s chimera graph using 940 physical variables. Qubits
belonging to a logical variable are identified by the same number and linked by edges of the same color. This embedding uses 86% of
DW2X’s qubits.
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