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The relation between network structure and dynamics is determinant for the behavior of complex
systems in numerous domains. An important long-standing problem concerns the properties of the
networks that optimize the dynamics with respect to a given performance measure. Here, we show that such
optimization can lead to sensitive dependence of the dynamics on the structure of the network. Specifically,
using diffusively coupled systems as examples, we demonstrate that the stability of a dynamical state
can exhibit sensitivity to unweighted structural perturbations (i.e., link removals and node additions) for
undirected optimal networks and to weighted perturbations (i.e., small changes in link weights) for directed
optimal networks. As mechanisms underlying this sensitivity, we identify discontinuous transitions
occurring in the complement of undirected optimal networks and the prevalence of eigenvector degeneracy
in directed optimal networks. These findings establish a unified characterization of networks optimized for
dynamical stability, which we illustrate using Turing instability in activator-inhibitor systems, synchro-
nization in power-grid networks, network diffusion, and several other network processes. Our results
suggest that the network structure of a complex system operating near an optimum can potentially be fine-
tuned for a significantly enhanced stability compared to what one might expect from simple extrapolation.
On the other hand, they also suggest constraints on how close to the optimum the system can be in practice.
Finally, the results have potential implications for biophysical networks, which have evolved under the
competing pressures of optimizing fitness while remaining robust against perturbations.
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I. INTRODUCTION

Building on the classical fields of graph theory, statistical
physics, and nonlinear dynamics, as well as on the increas-
ing availability of large-scale network data, the field of
network dynamics has flourished over the past 15 years
[1,2]. Much of the current effort in this area is driven by
the premise that understanding the structure, the function,
and the relation between the two will help explain the
workings of natural systems and facilitate the design of
engineered systems with expanded capability, optimized
performance, and enhanced robustness. There have been
extensive studies on this structure-dynamics relation [3–5]
in a wide range of contexts, such as synchronization [6–16];
reaction, diffusion, and/or advection dynamics [17–20];
dynamical stability [21,22]; controllability [23,24]; and
information flow [25,26]. Many of these studies have
led to systematic methods for enhancing the dynamics

through network-structural modifications, with examples
including network control [27–30] and synchronization
enhancement [31–34], where the latter has been demon-
strated in applications [35–37].
A fundamental question at the core of the structure-

dynamics relation is that of optimization: which network
structures optimize the dynamics of the system for a given
function and what are the properties of such networks?
The significance of addressing this question is twofold.
First, knowledge of the properties of optimized structures
can inform system architecture design. For example, in
power-grid networks, whose operation requires frequency
synchronization among power generators, the structures that
maximize synchronization stability could potentially be used
to devise effective strategies for upgrading the system [38].
Second, the identification of the network structures that
guarantee the best fitness of natural complex systems can
provide insights into the mechanisms underlying their evo-
lution. Examples of such systems include neuronal networks,
whose (synaptic) connectivity structure is believed to have
been optimized through evolution or learning for categori-
zation tasks [39], synchronization efficiency [40], dynamical
complexity [41,42], information transfer efficiency [42,43],
and/or wiring cost [40]. The question of optimizing the
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network structure can be conceptualized as the problem of
maximizing or minimizing a measure of dynamical stability,
robustness, or performance over all possible configurations of
links connecting the dynamical units.
Here, we demonstrate that optimized dynamics are often

highly sensitive to perturbations applied to the structure
of the network. For concreteness, we focus on optimizing
the linear stability of desired dynamical states, over all
networks with a given number of nodes and links. We
consider network states in which the (possibly time-
dependent) states of the individual nodes are identical
across the network, such as in consensus dynamics,
synchronized periodic or chaotic oscillations, and states
of equilibrium in diffusion processes. We establish con-
ditions under which the stability is sensitive or nonsensitive
to structural perturbations, depending on the class of
networks and the nature of the perturbations considered,
as summarized in Fig. 1. In particular, we show that
optimized stability can exhibit sensitivity under different
types of perturbations for directed and undirected networks:
(1) Sensitivity to link removals and node additions

(unweighted perturbations) for undirected optimal
networks in the limit of large network size (upper red
box in Fig. 1).
We show that such sensitivity is observed for a

class of optimal networks, which we refer to as
Uniform Complete Multipartite (UCM) networks.
The UCM networks are composed of node groups of
equal sizes that are fully connected to each other but
have no internal links. We prove that these networks
are the only networks that achieve the maximum
stability possible for a given number of nodes and
links. The UCM networks are part of a larger class of
networks, characterized as having the Minimum
possible size of the largest Components in their
Complement (MCC) among all networks with a
given number of nodes and links. We provide a full
analytical characterization of the MCC networks of
arbitrary finite size and study their behavior as the
network size approaches infinity.

(2) Sensitivity to changes in link weights (weighted
perturbations) for finite-size directed optimal net-
works (lower red box in Fig. 1).
While specific examples can be found in the

literature [44–47], no systematic study exists on
general mechanisms and conditions for such sensi-
tivity. Here, we provide such conditions in terms of the
spectral degeneracy of the network by establishing the
scaling relation between the stability and the pertur-
bation size. These conditions imply that spectral
degeneracy underlies sensitivity to link-weight pertur-
bations. We expect this sensitivity to be observed in
many applications since spectral degeneracy appears
to be common in real networks [48]. Moreover, here
we show that optimization tends to increase the
incidence of spectral degeneracy, and we also show
that the network exhibits approximately the same
sensitivity even when the degeneracy (or the optimal-
ity) is only approximate.

In addition to these two cases of sensitivity, we have results
on the absence of sensitivity in the other two cases (blueboxes
in Fig. 1). We illustrate the implications of our results using a
general class of diffusively coupled systems for which the
network spectrum is shown to determine the stability and
other aspects of the dynamics to be optimized. The specific
cases we analyze include the rate of diffusion over networks,
the critical threshold for Turing instability in networks of
activator-inhibitor systems, and synchronization stability in
power grids and in networks of chaotic oscillators.
The remainder of the article is organized as follows.

We first define the class of network dynamics under
consideration (Sec. II). We then present our results on
the two types of sensitivity anticipated above (Secs. III and
IV), followed by examples of physical systems exhibiting
these types of sensitivity (Sec. V). We conclude with a
discussion on further implications of our results (Sec. VI).

II. NETWORK DYNAMICS CONSIDERED

We aim to address a wide range of network dynamics in a
unified way. For this purpose, we consider the dynamics of

FIG. 1. Directed and undirected networks optimized for the stability of the network dynamics can be sensitive to weighted and
unweighted structural perturbations, respectively. The graphs schematically illustrate typical behavior for systems with sensitivity (in red
boxes) and systems with no sensitivity (in blue boxes). Under weighted perturbations, we actually show that all undirected networks
(including nonoptimal ones) are nonsensitive (lower blue box).
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networks of coupled dynamical units governed by the
following general equation with pairwise interactions:

_xi ¼ F(xi;Hi1ðxi;x1Þ;…;Hinðxi;xnÞ); ð1Þ

for i ¼ 1;…; n, where n is the number of dynamical units
(nodes), xi ¼ xiðtÞ is the column vector of state variables
for the ith node at time t, and _xi denotes the time derivative
of xi. The function Fðx; y1;…; ynÞ is generally nonlinear
and describes how the dynamics of node i are influenced
by the other nodes through intermediate variables yj ¼
Hijðxi;xjÞ, where yj ¼ 0 indicates no interaction. This
means that the dynamics of an isolated node are described
by _x ¼ Fðx; 0;…; 0Þ. We assume that the dependence of F
on yj is the same for all j (or more precisely, that F is
invariant under any permutation of y1;…; yn). Thus, the
topology of the interaction network and the strength of
individual pairwise coupling are not encoded in F, but
rather in the ði; jÞ dependence of the coupling functionHij.
This extends the framework introduced in Ref. [49] and can
describe a wide range of dynamical processes on networks,
including consensus protocol [50,51], diffusion over net-
works [1], emergence of Turing patterns in networked
activator-inhibitor systems [52], relaxation in certain fluid
networks [53], and synchronization of power generators
[54], as well as other coupled identical and nonidentical
oscillators [49,55–57]. Details on these examples can be
found in Supplemental Material [58], Sec. S1.
For the class of systems described by Eq. (1), we

consider network-homogeneous states given by

x1ðtÞ ¼ � � � ¼ xnðtÞ ¼ x�ðtÞ; ð2Þ

where x� satisfies the equation for an isolated node,
_x� ¼ Fðx�; 0;…; 0Þ. Each of the example systems men-
tioned above exhibits such a state: uniform agreement in
consensus protocols, synchronous dynamics in oscillator
networks, uniform occupancy in network diffusion, uni-
form concentration in coupled activator-inhibitor systems,
and the equilibrium state in the fluid networks. Note that
certain nonhomogeneous states can also be represented
using such a solution by changing the frame of reference
(demonstrated for specific examples of nonuniform phase-
locked states in power grids and phase oscillator networks
in Supplemental Material [58], Sec. S1A).
To facilitate the stability analysis, we make two general

assumptions on the nature of node-to-node interactions
when the system is close to a network-homogeneous state.
Assumption (A-1): The interactions are “diffusive,” in the
sense that the coupling strength between two nodes,
Hijðu; vÞ, is to first order proportional to the difference
between their states, v − u. In particular, we assume that
the coupling strength vanishes as the node states become
equal. Assumption (A-2): There is a constant coupling
matrix A ¼ ðAijÞ encoding the structure of the network of

interactions, in the sense that the proportionality coefficient
(the “diffusion constant”) in assumption (A-1) can be
written as Aij ·GðtÞ, where the scalar Aij represents the
strength of coupling from node j to node i, and the matrix-
valued function GðtÞ is independent of i and j.
Under these assumptions, we define a stability function

ΛðαÞ for each complex-valued parameter α (derivation
presented in Appendix A), which captures the factors
determining the stability of the network-homogeneous
state but is independent of the network structure. This
function, referred to as a master stability function in the
literature, was originally derived for a general class of
systems that is different from the one we consider here
[49,56]. The influence of the network structure on the
stability is only through the (possibly complex) eigenvalues
of the Laplacian matrix L, defined by

Lij ≔ diδij − Aij; di ≔
Xn
j¼1

Aij: ð3Þ

Note that L always has a null eigenvalue λ1 ¼ 0 associated
with the eigenvector ð1;…; 1ÞT, which corresponds to the
mode of instability that does not affect the condition in
Eq. (2). The maximum Lyapunov exponent measuring the
stability of the network-homogeneous state is then given by

Λmax ≔ max
j≥2

ΛðλjÞ. ð4Þ

That is, the state is stable if Λmax < 0 and unstable if
Λmax > 0. In addition, jΛmaxj gives the asymptotic rate of
exponential convergence or divergence.
As an example of stability optimization, we consider the

following fundamental question:

For a given number of nodes representing dynamical
units, and a given number of links with identical weights,
what is the assignment of links that maximizes the rate of
convergence to a network-homogeneous state?

In the context of this problem, we may assume Aij to be
binary (Aij ¼ 0 or 1) without loss of generality, since any
link weight ε ≠ 1 can be factored out of Aij (making Aij

binary) and absorbed intoGðtÞ, which is then accounted for
by the stability function ΛðαÞ.

III. SENSITIVITY TO UNWEIGHTED
PERTURBATIONS

In this section, we demonstrate the sensitivity of the
convergence rate to link removal and node addition in
optimal undirected networks (Sec. III A). We then show
that such sensitivity is not possible for optimal directed
networks (Sec. III B).
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A. Undirected networks

1. Optimization problem

For the class of networks with a fixed number of
undirected links m ¼ P

i

P
j>i Aij, we have the additional

constraint that the matrix A is symmetric. This constraint
can arise from the symmetry of the physical processes
underlying the interaction represented by a link, such as
the diffusion of chemicals through a channel connecting
reactor cells in a chemical reaction network. In this case,
the maximization of the convergence rate can be succinctly
formulated as the minimization of Λmax:

minimize ΛmaxðAÞ
subject to Aij ∈ f0; 1g; Aii ¼ 0; Aij ¼ Aji;X

i

X
j>i

Aij ¼ m:

ð5Þ

If the stability function ΛðαÞ is strictly decreasing on the
real line fα ∈ C j ImðαÞ ¼ 0g for ReðαÞ≤ λ̄≔2m=ðn−1Þ
(which is satisfied in most cases, as detailed in Sup-
plemental Material [58], Sec. S1), maximizing the
convergence rate to the network-homogeneous state for
undirected networks is equivalent to maximizing λ2, the
smallest eigenvalue excluding the null eigenvalue that
exists for any networks. We note that the problem is
also equivalent to minimizing a bound on the deviations
from a network-homogeneous state in a class of networks
of nonidentical oscillators [59]. There have been a number
of previous studies [57,60–64] on the related (but different)
problem of maximizing the eigenratio λ2=λn, which mea-
sures the synchronizability of the network structure for
networks of coupled chaotic oscillators.
The maximization of λ2 is generally a challenging

task, except for the following particular cases. For
m ¼ nðn − 1Þ=2, the only network with n nodes and m
links is the complete graph, resulting in the (maximum)
value λ2 ¼ n. For m ¼ n − 1 (implying that the network is
a tree), the maximum possible value of λ2 ¼ 1 is achieved if
and only if the network has the star configuration [53]. For
other values of m (assuming m ≥ n − 1 to ensure that the
network is connected), it is challenging even numerically,
mainly because each Aij is constrained to be either 0 or 1,
which makes it a difficult nonconvex combinatorial opti-
mization. The problem of maximizing λ2 has been a subject
of substantial interest in graph theory, with several notable
results in the limit n → ∞, assuming that each node in the
network has the same degree and that this common degree
is constant [65–67] or assuming a fixed maximum degree
[68]. In contrast to these bounded-degree results, below we
address the maximization of λ2 in a different limit, n → ∞,
keeping the link density ϕ ≔ 2m=½nðn − 1Þ� constant.

2. Optimal networks: UCM and MCC

Here, we define UCM and MCC networks, and then
show that they provide analytical solutions of the optimi-
zation problem formulated in the previous section. To
define these networks, we first introduce two general
quantities that characterize connected component sizes.
For a given k, let function Mðn; kÞ denote the maximum
number of links allowed for any n-node network whose
connected components have size ≤ k. Given m, we define
kn;m to be the smallest (necessarily positive) integer k for
which m ≤ Mðn; kÞ; i.e., kn;m is the minimum size of the
largest connected components of any network with n nodes
and m links. We also use the notion of graph complements
[32,69,70]. For a given network with adjacency matrix A,
its complement is defined as the network with the adja-
cency matrix Ac given by

Ac
ij ¼ ð1 − AijÞð1 − δijÞ: ð6Þ

With these definitions and notations, we now define an
MCC network to be one whose largest connected compo-
nent of the complement is of size kn;mc

, where mc ≔
nðn − 1Þ=2 −m is the number of links in the complement.
To see how the definition of MCC networks relates to the

maximization of λ2, we note that the maximum Laplacian
eigenvalue of any network is upper bounded by its largest
component size (stated and proved as Proposition 4 in
Supplemental Material [58], Sec. S2B). We also note that
the nonzero Laplacian eigenvalues of a network and its
complement are related through

λcn−iþ2 ¼ n − λi; i ¼ 2;…; n; ð7Þ

where we denote the Laplacian eigenvalues of the network
as 0 ¼ λ1 ≤ λ2 ≤ � � � ≤ λn (noting that the symmetry of A
constrains them to be real), and those of the complement as
0 ¼ λc1 < λc2 ≤ � � � ≤ λcn. Thus, the smaller the largest com-
ponent size in the complement, the smaller we expect the
eigenvalue λcn to be, which would imply larger λ2 according
to Eq. (7).
For special combinations of n and m, namely, n ¼ kl

and m ¼ k2lðl − 1Þ=2 with arbitrary positive integers k
and l, the complement of an MCC network necessarily
consists of l components, each fully connected and of size
k (stated and proved as Proposition 2 in Supplemental
Material [58], Sec. S2A). We refer to this unique MCC
network as the UCM network for the given n and m.
Translating the structure of its complement to that of the
network itself, the UCM network can be characterized as
the one in which (i) the nodes are divided into l groups of
equal size k (uniform), (ii) all pairs of nodes from different
groups are connected (complete), and (iii) no pair of nodes
within the same group are connected (multipartite).
Figure 2 shows examples of UCM and MCC networks.
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To establish the optimality of UCM and MCC networks,
we first prove the following general upper bound:

λ2 ≤ ⌊2m=n⌋ ¼ ⌊ϕðn − 1Þ⌋; ð8Þ

for any n and m for which the link density ϕ ¼
2m=½nðn − 1Þ� < 1 (where ⌊x⌋ denotes the largest integer
not exceeding x). We prove this bound using Proposition
3.9.3 of Ref. [71], which states that

λn ≥ dmax þ 1 ð9Þ

holds true for any network (with at least one link),
where dmax denotes the maximum degree of the network.
Applying this proposition to the complement of the net-
work (rather than the network itself) gives

λcn ≥ dcmax þ 1 ≥ ⌈d̄c⌉þ 1 ¼ ⌈2mc=n⌉þ 1; ð10Þ

where dcmax and d̄c denote the maximum and mean degree of
the complement, respectively, and ⌈x⌉ denotes the smallest
integer larger than or equal to x. Thus, we have λ2 ¼
n− λcn ≤ n− ð⌈2mc=n⌉þ 1Þ ¼ n− ð⌈n− 1− 2m=n⌉þ 1Þ ¼
⌊2m=n⌋, establishing Eq. (8).
The optimality of UCM networks can now be established

for any combination of n andm for which the UCMnetwork
canbedefined [i.e.,n ¼ kl andm ¼ k2lðl − 1Þ=2]. Indeed,
since each connected component in the complement of such a
UCMnetwork is fully connected and of size k, it follows that
the maximum Laplacian eigenvalue of the complement is
λcn ¼ k. (This is because the Laplacian spectrumof a network
is the union of the Laplacian spectra of its connected
components, which is a known fact presented as
Proposition 3 in Supplemental Material [58], Sec. S2B.)
We thus conclude that λ2 ¼ n − k ¼ ⌊2m=n⌋, implying that
the UCM network attains the upper bound in Eq. (8) and has
the maximum possible λ2. Moreover, the UCM network is
actually the only optimizer among all networkswith the same
n and m (proved in Appendix B).
For other MCC networks, we establish the formula

λ2 ¼ n − kn;mc
ð11Þ

for any link density ϕ < 1 and use it to show that MCC
networks attain the upper bound in Eq. (8) and thus
are optimal in several cases of lowest and highest link
densities, as well as for a range of link density around
each value corresponding to a UCM network. We also
show that each MCC network is locally optimal in the space
of all networks with the same n andm in the sense that λ2 ≤
n − kn;mc

holds true for any network obtained by rewiring a
single link. Proofs of these results can be found in
Supplemental Material [58], Secs. S2B and S2C. The
optimality of these networks, which have fully connected
clusters in the complement, suggests potential significance of
other,moregeneral networkmotifs [72],whose statistics have
been studied in the context of network optimization [73,74].
These λ2-maximizing networks can be explicitly

constructed. In fact, given any n and m, an MCC network
with n nodes and m links can be constructed by forming as
many isolated, fully connected clusters of size kn;mc

as
possible in the complement of the network. Details on this
procedure are described in Appendix C, and a MATLAB
implementation is available for download [75]. This pro-
cedure yields the (unique) UCM network if n ¼ kl and
m ¼ k2lðl − 1Þ=2. Similar strategies that suppress the size
of largest connected components, when incorporated into a
network growth process, have been observed to cause
discontinuous, or continuous but “explosive” percolation
transitions [76–80]. The deterministic growth process
defined in Ref. [81] is particularly close to the definition
of MCC networks because the process explicitly minimizes

(a) (b)

(c) (d)

FIG. 2. UCM and MCC networks with n ¼ 18 nodes. (a) The
UCM network with l ¼ 3 groups (labeled a, b, and c) of k ¼ 6
nodes each. All pairs of nodes belonging to different groups
are connected, while all pairs within the same group are not
connected, leading to a total of m ¼ k2lðl − 1Þ=2 ¼ 108 links.
(b) An MCC network constructed with the same number of
nodes but with one fewer link (m ¼ 107) and groups of unequal
sizes (labeled a0, b0, and c0, and of sizes 7, 7, and 4,
respectively). Note that in this case some nodes within the
same group are connected (as indicated by solid blue lines).
(c) The complement of the UCM network in (a), which has
lkðk − 1Þ=2 ¼ 45 links. In the complement, a node pair is
connected if they are in the same group, and not connected if
they are from different groups. (d) The complement of the MCC
network in (b), which has 46 links. Since it has one more link
than what can be accommodated by three isolated groups of
size 6 [as in (c)], the minimum possible size of the largest
component in the complement equals 7 in this case. Note that
groups a0 and b0 have missing links (indicated by dashed blue
lines), which correspond to the links within groups a0 and b0 in
(b). The required increase in the size of the largest component
in the complement forces λ2 to decrease by one.
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the product of the sizes of the components connected by the
new link in each step.

3. Sensitivity of optimal networks

To demonstrate the sensitivity of UCM networks to link
removals and node additions, we first study the dependence
of λ2 for MCC networks on the link density ϕ < 1. By
deriving an explicit formula for kn;mc

, we rewrite Eq. (11) as

λ2 ¼ ⌊Cl;nðϕÞ · n⌋; ð12Þ

where

Cl;nðϕÞ ¼
l2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ϕlðlþ 1Þð1 − 1

nÞ
q

lðlþ 1Þ ; ð13Þ

and l depends on ϕ and is defined as the unique integer
satisfying

1 −
1

l
≤
�
1 −

1

n

�
ϕ < 1 −

1

lþ 1
ð14Þ

(derivation presented in Supplemental Material [58],
Sec. S2D). Equation (12) indicates that λ2 experiences a
series of sudden jumps as the link density increases from
ϕ ¼ 2=n (the minimum possible value for a connected
network, corresponding to the star configuration) to
ϕ ¼ 1 (corresponding to the fully connected network).
This behavior is better understood by considering the
complement of the network as the number of links mc
in the complement increases (corresponding to decreasing
link density ϕ), as illustrated for n ¼ 20 in Fig. 3. When
the complement has exactly Mðn; kn;mc

Þ links, any addi-
tional link would force the maximum component size kn;mc

to increase by one, causing a jump in λ2 ¼ n − kn;mc
.

In Fig. 3, for example, when the network that has mc ¼
Mð20; 4Þ ¼ 30, k20;30 ¼ 4, and λ2 ¼ 16 gains one more
link in its complement (mc ¼ 31), the component size
jumps to k20;31 ¼ 5 and λ2 jumps down to 15. The 18-node
UCM and MCC networks in Fig. 2 also illustrate such a
jump. In the context of percolation problems, similar
cascades of jumps in the maximum component size, called
microtransition cascades, have been identified as precursors
to global phase transitions [82].
Figure 4 demonstrates that for a wide range of ϕ, the

MCC networks improve λ2 significantly over the Erdős-
Rényi (ER) random networks, as well as those identified
by direct numerical optimization of λ2 using simulated
annealing (SA). The difference is particularly large for ϕ
near certain special values such as 1=2. Note that the optimal
value of λ2 given by the upper bound (black curves) is
achieved not only by the UCM network (for example, the
one indicated by the green dot for k ¼ 25, l ¼ 2) at
ϕ ¼ 25=49 ≈ 0.51, but also by MCC networks (orange

curves) for a finite range ofϕ around this value. The optimal
λ2 value, however, is sensitive to changes in the link density
ϕ, and it departs quickly from its value at ϕ ¼ 25=49 as ϕ
moves away from 25=49, particularly for ϕ < 25=49.
In fact, λ2 has many points exhibiting such sensitivity,

which becomes more prominent for larger networks and
turns into a singularity as n → ∞ with fixed ϕ. To see this,
we take the limit in Eq. (12) to obtain

lim
n→∞

λ2
n
¼ l2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ϕlðlþ 1Þ

p
lðlþ 1Þ ; ð15Þ

where l is the unique integer determined by ϕl ≤
ϕ < ϕlþ1, where we define ϕl ≔ 1 − 1=l ¼ ðl − 1Þ=l
for any positive integer l. This function of ϕ, shown in
Fig. 4 (red curve), has a cusplike dependence on ϕ around
ϕ ¼ ϕl, at which it achieves the asymptotic upper bound
limn→∞λ2=n ≤ ϕ [which follows directly from Eq. (8)] and
has a square-root singularity on the left; i.e., the derivative
on the left diverges (while the derivative on the right equals
1=2). This singularity is inherently different from the
discrete jumps observed above for finite n. Indeed, as
the network size increases, the size of the jumps and the
distance between consecutive jumps both tend to zero (as in
the microtransition cascades [82] in percolation problems).
The function thus becomes increasingly closer to a

FIG. 3. UCM and MCC networks of size n ¼ 20 for the
maximization of smallest nonzero Laplacian eigenvalue λ2. For
a given link density ϕ, the orange dot indicates λ2 for MCC
networks. A UCM network, when possible for that value of ϕ, is
indicated by a green dot. As ϕ increases, the eigenvalue λ2
experiences discrete jumps, corresponding to sudden changes
in the structure of the network. The changes in the link
configuration of the network’s complement, as well as the
associated jumps in the size of their largest clusters, are
illustrated in the circles. At ϕ values just above and below the
jumps, the complement has mc ¼ Mðn; kn;mc

Þ links and mc ¼
Mðn; kn;mc

Þ þ 1 links, respectively.
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(piecewise) smooth function, while the square-root singu-
larity becomes progressively more visible (verified numeri-
cally in Fig. S2(a) of Supplemental Material [58]).
For each singularity point ϕ ¼ ϕl, there is a sequence
of UCM networks with increasing k (and thus increasing
network size n ¼ kl), for which the link density ϕ ¼
ðl − 1Þ=ðl − 1=kÞ approaches ϕl as k → ∞.
The UCM networks associated with these singularities

also exhibit sensitivity to the removal of an arbitrary link.
As shown in the previous section, the UCM networks
are the only networks that attain the upper bound in
Eq. (8) and satisfy λ2 ¼ ⌊2m=n⌋ ¼ ⌊kðl − 1Þ⌋ ¼ kðl − 1Þ
[where the last equality holds because kðl − 1Þ is an
integer]. The removal of any single link reduces the bound
to ⌊2ðm−1Þ=n⌋¼⌊kðl−1Þ−2=n⌋¼kðl−1Þ−1 and thus
the normalized eigenvalue λ2=n − ϕ by at least 1=n. Since
the link removal reduces ϕ by 2=½nðn − 1Þ�, the derivative
of the normalized eigenvalue with respect to ϕ (in the limit
of large n) is greater than or equal to

lim
n→∞

1=n
2=½nðn − 1Þ� ¼ lim

n→∞

n − 1

2
¼ ∞: ð16Þ

In terms of the complement, this can be understood as
coming from the unavoidable increase of the component
size, since the link removal in the network corresponds to a
link addition in the complement. We note that the argument
above is valid only for UCM networks, since the UCM
network is the only one that attains the bound for any ϕ
value at which the upper bound is discontinuous, i.e., when
2m=n is an integer (proof given in Appendix B). In
summary, we have the following result:

The UCM networks, which maximize λ2 and correspond
to singularities in the λ2 vs ϕ curve for MCC networks,
are sensitive to link removals.

The UCM networks show similar sensitivity to node
additions as well. When m is fixed, the expression for λ2
given in Eq. (12), considered now as a function of n,
has a square-root dependence on the right of the points
n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m=ϕl

p
; l ¼ 2; 3; :: (corresponding to the UCM

networks), as illustrated in Fig. S3 of Supplemental
Material [58]. Similarly to the case of link removals, it
can be shown that the bound in Eq. (8) suddenly drops from
kðl − 1Þ to kðl − 1Þ − 1 when a new node is connected to
the network as long as the number of new links is less than
m=n, and that this drop leads to an infinite derivative for
λ2=n − ϕ with respect to ϕ in the limit of large n.

B. Directed networks

1. Optimization problem

For the class of networks with a fixed number of directed
linksmd ¼

P
i

P
j≠i Aij, the matrix A can be asymmetric in

general. In this case, the problem of maximizing the rate of
convergence to the network-homogeneous state can be
expressed as

minimize ΛmaxðAÞ
subject to Aij ∈ f0; 1g; Aii ¼ 0;X

i

X
j≠i

Aij ¼ md:

ð17Þ

The solution of this problem generally depends on the
specific shape of the stability function. However, the
problem is equivalent to maximizing Reðλ2Þ, the smallest
real part among the eigenvalues of L excluding the iden-
tically null eigenvalue λ1, if the stability function ΛðαÞ is
strictly decreasing in ReðαÞ and independent of ImðαÞ for
ReðαÞ ≤ λ̄ ≔ md=ðn − 1Þ. This condition is satisfied, e.g.,
for consensus and diffusion processes (details presented in
Supplemental Material [58], Secs. S1D and S1E, respec-
tively). This equivalence is a consequence of the upper
bound,

Reðλ2Þ ≤ λ̄; ð18Þ

FIG. 4. Sensitive dependence of the Laplacian eigenvalue λ2
on link density ϕ for undirected networks of size n ¼ 50. Each
curve indicates λ2 normalized by the network size n, relative to
the link density ϕ. (Plots of λ2=n itself can be found in
Supplemental Material, Fig. S1 [58].) The blue curve shows
the result of a single run of SA to maximize λ2 with a fixed
number of links. Each point on the magenta curve is the average
over 1000 realizations of the ER random networks with
connection probability ϕ. The orange and red curves indicate
the MCC networks for n ¼ 50 [Eq. (12)] and in the limit of
n → ∞ [Eq. (15)], respectively. Notice the square-root singu-
larity on the left of points ϕ ¼ ϕl ¼ ðl − 1Þ=l, l ¼ 2; 3;…, on
the red curve. The green dot near one of these singularity points
indicates the UCM network with l ¼ 2 and k ¼ 25, which
achieves the upper bound λ2 ≤ ⌊ϕðn − 1Þ⌋ shown by the
black curve.
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which follows from the fact that the sum of the eigenvalues
equals the trace of L, which in turn equalsmd. [We note that
the tighter bound in Eq. (8) is not applicable to directed
networks in general.]

2. Optimal networks

The optimization problem just formulated can be solved
if md is “quantized,” i.e., equals an integer multiple of
n − 1, in which case there are networks that satisfy
λ2 ¼ � � � ¼ λn ¼ λ̄ [32]. Such networks attain the upper
bound in Eq. (18) and thus are optimal. The class of
directed networks satisfying λ2 ¼ � � � ¼ λn ¼ λ̄ has previ-
ously been studied within the context of network synchro-
nization using objective functions that are not defined by
Reðλ2Þ and different from the convergence rate considered
here [32,36]. If md is not an integer multiple of n − 1, the
maximization of Reðλ2Þ, like the maximization of λ2 for
undirected networks, is a hard combinatorial optimization
problem. Here, we compute the Laplacian eigenvalues
symbolically (and thus exactly) for all directed networks
of size n ¼ 3, 4, and 5. For the quantized values of md,
we verify that the upper bound λ̄ is indeed attained
[Figs. 5(a)–5(c)], in which case λ2 ¼ � � � ¼ λn ¼ λ̄ is not

only real but also an integer. For intermediate values of md,
the maximum Reðλ2Þ does not appear to follow a simple
rule; it can be strictly less than λ̄, have nonzero imaginary
part, and/or be noninteger.

3. Nonsensitivity of optimal networks

In the limit of large networks, however, there is a simple
rule: we show below that the maximum value of Reðλ2Þ,
normalized by n, converges to the link density ϕ ≔
md=½nðn − 1Þ� as n → ∞ with ϕ fixed. This in particular
implies that the normalized maximum Reðλ2Þ has no
sensitive dependence onϕ, in sharp contrast to the sensitivity
observed in the same limit for undirected networks [83].
To establish this nonsensitivity result, we first note that

ϕ ¼ λ̄=n is an upper bound for the maximum value of
Reðλ2Þ=n, which follows immediately from Eq. (18). We
show that the maximum value approaches the upper bound
by showing that there is a lower bound that approaches the
upper bound. The lower bound is established by constructing
a specific network with n nodes and md directed links. To
construct this network, we start with a variant of directed star
networks, in which a core of s fully connected nodes are all
connected to all the other nodes, where we define s ≔ ⌊λ̄⌋.
Since such a network involves exactly sðn − 1Þ links, the
remaining r links, where r ≔ md − sðn − 1Þ, are added to
the network. The network can thus be constructed as follows.
(1) For each i ¼ 1;…; s, addn − 1 links fromnode i to all the
other nodes. (2)Add r links fromnode sþ 1 to nodes 1;…; r
if r ≤ s and nodes 1;…; s; sþ 2;…; rþ 1 if r > s. This
network satisfies λ2 ¼ s ¼ ⌊λ̄⌋ (proof given inAppendixD),
which provides a lower bound for the maximum value of
Reðλ2Þ. This lower bound, as well as the upper bound λ̄, is
indicated by black curves in Figs. 5(a)–5(c) for 3 ≤ n ≤ 5.
Thus, the maximum value of Reðλ2Þ=n is at least s=n, and
this lower bound approaches the upper bound for large
networks: s=n ¼ ⌊λ̄⌋=n ¼ ⌊ϕn⌋=n → ϕ as n → ∞. This
proves our claim that Reðλ2Þ=n for optimal networks is a
smooth function of ϕ in the limit of large networks, thus
establishing the absence of sensitivity.

IV. SENSITIVITY TO WEIGHTED
PERTURBATIONS

To demonstrate the second type of sensitivity, we now
study how the convergence rate behaves when a small
weighted perturbation is applied to the network structure,
particularly when the initial network is optimal or close to
being optimal. Since the convergence rate is determined by
the Laplacian eigenvalues through the stability function
ΛðαÞ and Eq. (4), it suffices to analyze how the Laplacian
eigenvalues respond to such perturbations, which we for-
mulate as perturbations of the adjacency matrix in the form
Aþ δΔA, where the small parameter δ is positive (unless
noted otherwise) and ΔA is a fixed matrix. This type of
structural perturbations can represent imperfections in the
strengths of couplings in real networks, such as power grids

(a) (b) (c)

(d) (e) (f)

FIG. 5. Optimization induces spectral degeneracy. The maxi-
mum Reðλ2Þ is computed exactly through symbolic calculation
of eigenvalues for all directed networks of size n ¼ 3, 4, and 5.
(a)–(c) Maximum values of Reðλ2Þ as a function of the number of
directed links, md (red dots). All the other possible values of
Reðλ2Þ are indicated by blue dots. The black curves indicate the
upper bound λ̄ and lower bound ⌊λ̄⌋ for the maximum Reðλ2Þ.
The upper bound comes from Eq. (18), while the lower bound is
derived in Sec. III B 3. (d)–(f) Probability distribution of geo-
metric degeneracy β for λ2 of all networks of a given size (blue
bars) and of the Reðλ2Þ-maximizing networks (red bars). For each
network size, the difference between the two distributions shows
that the maximization tends to increase β.
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and networks of chemical [84], electrochemical [85], or
optoelectronic [36] oscillators.

A. Eigenvalue scaling for arbitrary networks

Here, we show that for a given Laplacian eigenvalue λ
of a directed network and a generic choice ofΔA, the change
Δλ of the eigenvalue due to the perturbation generally follows
a scaling relation, jΔλj ∼ δ γ . We also provide a rigorous
bound for the scaling exponent γ. This scaling exponent
determines the nature of the dependence of the perturbed
eigenvalue on δ: if 0 < γ < 1, the dependence is sensitive and
characterizedby an infinite derivative at δ ¼ 0, and if γ ≥ 1, it
is nonsensitive and characterized by a finite derivative.

1. Bound on scaling exponent

We provide an informative bound on γ by proving the
following general result on matrix perturbations. Suppose λ
is an eigenvalue of an arbitrary matrix M with geometric
degeneracy β [36], defined as the largest number of
repetitions of λ associated with the same eigenvector
(i.e., the size of the largest diagonal block associated
with λ in the Jordan canonical form ofM). For perturbations
of the form M þ δΔM with an arbitrary matrix ΔM, there
exists a constant C such that the corresponding change
Δλ ¼ ΔλðδÞ in the eigenvalue, as a function of δ, satisfies

limsup
δ→0

jΔλðδÞj
δ1=β

≤ C ð19Þ

(proof given in Appendix E). Applying this result to an
eigenvalue λ of the Laplacian matrixL, we see that γ ≥ 1=β,
implying that the set of perturbed eigenvalues that converge
to λ as δ → 0 do so at a rate no slower than δ1=β.

2. Typical scaling behavior

The bound established above suggests that the scaling
jΔλj ∼ δ1=β would be observed for all perturbed eigenvalues
that converge to λ as δ → 0. In fact, our numerics supports
a more refined statement for networks under generic
weighted structural perturbations: for each eigenvector
(say, the jth one) associated with λ, there is a set of βj
perturbed eigenvalues that converge to λ as δ → 0 and
follows the scaling,

jΔλj ∼ δ1=βj ; ð20Þ

where βj is the number of repetitions of λ associatedwith the
jth eigenvector (i.e., the size of the jth Jordan block
associated with λ). We numerically verify this individual
scaling for Laplacian eigenvalues using random perturba-
tions applied to all off-diagonal elements of A. We consi-
der two examples of directed networks of size n ¼ 6,
shown at the top of Fig. 6, which are both optimal because

λ2 ¼ � � � ¼ λ6. For each of these networks, the plots on
the left-hand side of the corresponding panel of Fig. 6
show the distributions of the scaling exponent γ in the
relation jΔ λj ∼ δ γ for random choices of ΔA, where γ
is estimated from fitting the computed values of perturbed
λi over different ranges of δ. We see that the distributions
are sharply peaked around βj (indicated by the gray inver-
ted triangles) with smaller spread for narrower ranges
of δ, supporting the asymptotic scaling in Eq. (20) in the
limit δ → 0.
We note that, for nongeneric weighted perturbations (e.g.,

if the perturbation is constrained to a subset of the off-
diagonal elements ofA), the exponent may be different from
1=βj in Eq. (20). For example, when perturbing only the
existing links of a directed tree (which is optimal with
λ2 ¼ � � � ¼ λn ¼ 1), the exponent is one, and thus the
network is not sensitive to this type of perturbations even
if the degeneracy β > 1, as illustrated in Fig. 6(a) (plots on
the right-hand side). This follows from the fact that the
Laplacian matrix of a directed tree is triangular under
appropriate indexing of its nodes, which remains true after
perturbing the existing links. This nonsensitivity result can
be extended to certain other cases, e.g., when P−1ΔLP is a
triangular matrix, where P is the nonsingular matrix in the
Jordan decomposition ofL andΔL is the perturbation of the
Laplacian matrix (proof presented in Appendix F). In other
cases, the scaling with exponent 1=βj, as in Eq. (20), can be
observed even when perturbing only the existing links, as
illustrated in Fig. 6(b) (plots on the right-hand side).

B. Classification of networks by their sensitivity

The general scaling results in the previous section
indicate that the overall sensitivity of a Laplacian eigen-
value is determined by its geometric degeneracy β. This is
because larger βj means more sensitive dependence on δ
in Eq. (20) and because β is by definition the largest among
all the associated βj’s. Thus, we summarize as follows:

A Laplacian eigenvalue is sensitive to generic weighted
perturbations if and only if the geometric degeneracy
β > 1, i.e., the associated eigenvector is degenerate.

1. Sensitivity in directed networks

We now show that optimal directed networks are often
sensitive to generic weighted perturbations. Figure 7 shows
examples from the class of optimal networks satisfying
λ2 ¼ � � � ¼ λn. The geometric degeneracy β can be different
for different optimal networks in this class and provides a
measure of how sensitive an eigenvalue is when β > 1.
Some of these networks are nonsensitive, including simple
cases such as the fully connected networks and directed star
networks, as well as other networks with more complicated
structure, such as the network G1 in Fig. 7. Other optimal
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networks in this class are sensitive, and there is a hierarchy
of networks having different levels of sensitivity, from
β ¼ 2 (e.g., network G2 in Fig. 7) all the way up to the
maximum possible value β ¼ n − 1 (e.g., network G19 in
Fig. 7), including all intermediate cases (e.g., networkG7 in
Fig. 7). Such scaling behavior and the resulting sensitivity

for β > 1 are robust in the sense that they would be
observed even if the associated eigenvector is only approx-
imately degenerate (proved in Appendix G).
How often does an optimal network (including those

not satisfying λ2 ¼ � � � ¼ λn) have β > 1 and thus exhibit
sensitivity? To study this systematically, we compute βj

(a) (b)

FIG. 6. Distribution of scaling exponents for the Laplacian eigenvalues of 6-node optimal directed networks under random structural
perturbations. (a) Example network (a directed tree) with λ2 ¼ � � � ¼ λ6 ¼ 1. (b) Example network with λ2 ¼ � � � ¼ λ6 ¼ 5. Each plot
shows histograms of 1=γ, where γ is the scaling exponent numerically estimated from λi (the ith smallest perturbed eigenvalue)
computed at 1000 equally spaced values of δ in the intervals ½0; 10−3� (blue), ½0; 10−4� (yellow), and ½0; 10−5� (pink). We determine γ by
applying MATLAB’s built-in linear least-squares algorithm in log scale [86]. Each histogram is generated by estimating γ for 10000
realizations of ΔA, where each element of ΔA (corresponding to the perturbation of the weight of an existing link or the addition of a
new link with small weight) is chosen randomly from the uniform distribution on ½−1; 1�. When perturbing all the off-diagonal elements
of the adjacency matrix A (plots on the left-hand side of each panel), the results support 1=γ ¼ βj for both networks. When perturbing
only the existing links (plots on the right-hand side of each panel), the scaling exponent depends on the initial network: the plots support
1=γ ¼ 1 for the directed tree in (a) and 1=γ ¼ βj for the network in (b).
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symbolically and thus exactly for each Laplacian eigen-
value of all possible directed networks with n ≤ 5. We
find that a large fraction of the Reðλ2Þ-maximizing net-
works are indeed sensitive due to geometric degeneracy:
44.4%, 64.3%, and 71.5% of them have β > 1 for n ¼ 3,
4, and 5, respectively [red bars in Figs. 5(d)–5(f)]. These
fractions are significantly higher than the corresponding
fractions among all directed networks (including non-
optimal ones): 21.1%, 19.7%, and 13.7%, respectively
[blue bars in Figs. 5(d)–5(f)]. Since β is bounded by the
algebraic degeneracy (multiplicity) of λ2, an interesting
question is to ask how often β attains this bound, giving
the network the maximum possible level of sensitivity.
Among those networks that are both optimal and sensitive,
74.5% and 60.0% achieve the maximal sensitivity for
n ¼ 4 and 5, respectively. (The fraction is trivially 100%
for n ¼ 3.) These results thus suggest that optimal directed
networks are much more likely to exhibit higher sensi-
tivity than nonoptimal ones.

2. Nonsensitivity in undirected networks

The situation is drastically different when the network
is undirected. For an arbitrary undirected network, for
which we have the constraint that the matrix A is symmetric,
all of its Laplacian eigenvalues are nonsensitive to any
(generic or nongeneric) perturbation of the form Aþ δΔA,
since symmetric matrices are diagonalizable [87] and thus
γ ≥ 1=β ¼ 1. This in particular implies that there is no
sensitivity even for optimal undirected networks, including
the UCM and MCC networks. However, this is not in con-
tradiction with the results in Sec. III A, as they concern finite-
size perturbations (i.e., addition or removal of whole links) in
the limit of large networks, while here we consider infini-
tesimal perturbations on linkweights for finite-size networks.

C. Generality of the scaling

The scaling bound in Eq. (19) is applicable to both
directed and undirected networks, regardless of whether the

FIG. 7. Optimal directed networks with various levels of sensitivity to generic weighted perturbations. Example networks G1, G2, G7,
andG19 (each with 20 nodes and 57 links) all satisfy λ2 ¼ � � � ¼ λ20 ¼ 3 (and thus are optimal) but have different geometric degeneracy.
Perturbing the adjacency matrix of each network as Aþ δΔA, we plot in double logarithmic scale the resulting change jΔλðδÞj ¼
jλðδÞ − 3j for all 19 Laplacian eigenvalues (blue dots, many of which are overlapping). The same randomly chosen ΔA is used for all
four networks, where each ΔAij is drawn uniformly from the interval ½−1; 1� if the link exists from node j to node i, and from [0, 1]
otherwise. The perturbations thus allow small increase and decrease of the weight of existing links, as well as the addition of new links
with small weight. In each network, nodes of the same color indicates the same in-degree, and a bidirectional arrow represents two
directed links in opposite directions. The three nodes in the center of G1 form a fully connected triangle and each of the other nodes
has three in-links from these center nodes. In each plot, we observe the expected scaling behavior in Eq. (20), indicated by black lines,
each labeled with the corresponding scaling exponent, 1=βj (G1: β ¼ 1with 19 eigenvectors and β1 ¼ � � � ¼ β19 ¼ 1;G2: β ¼ 2with 15
eigenvectors and β1 ¼ � � � ¼ β11 ¼ 1, β12 ¼ � � � ¼ β15 ¼ 2; G7: β ¼ 7 with 7 eigenvectors and β1 ¼ β2 ¼ β3 ¼ 1, β4 ¼ 2, β5 ¼ 3,
β6 ¼ 4, β7 ¼ 7; G19: β ¼ 19 with 1 eigenvector and β1 ¼ 19).
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links are weighted or unweighted. We also expect the
scaling in Eq. (20) to generically hold true across these
classes of networks. Moreover, while the results for
unweighted perturbations in Sec. III are specific to the
Laplacian eigenvalue λ2, Eq. (19) applies to any eigenvalue
of an arbitrary matrix, including the adjacency matrix and
any other matrix that may characterize a particular system.
For example, the largest eigenvalue (in absolute value) of
the adjacency matrix for a strongly connected (directed)
network is nondegenerate (by, e.g., the Perron-Frobenious
theorem [88]) and therefore nonsensitive. In general, the
degree to which the scaling holds is likely to be related to
the normality of the matrix, which can range from com-
pletely normal matrices with orthogonal eigenvectors (as in
undirected networks) to highly non-normal matrices with
parallel, degenerate eigenvectors (as in many optimal
networks) [89,90]. The result in Appendix G implies that
the network does not need to be perfectly degenerate,
which opens the door for observing the sensitivity we
identified in real-world applications where exact degen-
eracy is unlikely [36]. Combining all these with the
tendency of optimization to cause geometric degeneracy
and with the wide range of systems that can be described
by Eq. (1), we expect to observe sensitivity to weighted
perturbations in many applications.

V. SENSITIVITY IN EXAMPLE
PHYSICAL SYSTEMS

As summarized in Fig. 1, we established two cases in
which sensitive dependence on network structure arises:
undirected networks under unweighted perturbations
(Sec. III A 3) and directed networks under weighted per-
turbations (Sec. IV B 1). Here, we discuss implications of

these cases for concrete examples of physical networked
systems.

A. Undirected networks under
unweighted perturbations

For undirected networks, the sensitivity of λ2 observed for
UCM networks is relevant for a wide range of networked
systems, since the stability function formalism establishes
that, in many systems, λ2 determines the stability properties
of relevant network-homogeneous states. Typically the
asymptotic rate of convergence jΛmaxj is a smooth, mono-
tonically increasing function of λ2 (concrete examples given
in Supplemental Material [58], Secs. S1C–S1F), and thus the
maximized convergence rate exhibits sensitivity. Below we
list specific cases in which sensitivity is observed in jΛmaxj or
a related quantity:
(1) Convergence rate. For networks of phase oscillators,

including models of power-grid networks, the con-
vergence rate to a frequency-synchronized, phase-
locked state is a function of the Laplacian eigenvalue
~λ2 associated with an effective interaction matrix ~A
for the system (details presented in Supplemental
Material [58], Sec. S1A). While λ2 is generally
different from ~λ2, it is strongly correlated with ~λ2,
and hence with Λmax. We thus expect to observe
sensitive dependence of Λmax, which is indeed
confirmed in Fig. 8(a) for power-grid networks with
a prescribed network topology and realistic param-
eters for the generators and other electrical compo-
nents in the system.

(2) Transient dynamics. In addition to the asymptotic
convergence rate Λmax, sensitive dependence can be
observed for the convergence rate in the transient

(a) (b) (c)

FIG. 8. Sensitive dependence on link density ϕ in physical examples of undirected networks. (a) Exponential rate of convergence Λmax
to a synchronous state of power-grid networks. (b) Mean finite-time convergence rate μ toward synchronization in networks of
optoelectronic oscillators. (c) Critical diffusivity threshold εc for Turing instability in networks of activator-inhibitor systems.
Description of these three systems can be found in Supplemental Material [58], Secs. S1A–S1C. The orange curves indicate the values
of these quantities for the MCC networks with n ¼ 100 constructed by the procedure described in Appendix C, while the red curve in
(c) is the finite-n approximation obtained from the asymptotic formula in Eq. (15). The blue curves indicate the corresponding values for
networks found by SA. The magenta curve in (b) is the mean value for the ER random networks estimated from 1000 realizations, while
in (a) and (c) the values are relative to the corresponding mean value for the ER random networks (and thus zero corresponds to the ER
mean value).
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dynamics of the network, which depends not only
on λ2 but on all Laplacian eigenvalues. This is
illustrated in Fig. 8(b) using the example of coupled
optoelectronic oscillator networks (system details
described in Supplemental Material [58], Sec. S1B).

(3) Critical coupling threshold. Another physical quan-
tity that can exhibit sensitive dependence is the
critical coupling threshold for the stability of the
network-homogeneous state in systems with a
global coupling strength ε. In such systems, the
functions Hij are proportional to ε. For identical
oscillators capable of chaotic synchronization, the
minimum coupling strength for stable synchroniza-
tion is inversely proportional to λ2. For the activator-
inhibitor systems [52], the parameter ε is interpreted
as the common diffusivity constant associated
with the process of diffusion over individual links.
As ε is decreased from a value sufficiently large for
the uniform concentration state to be stable, there
is a critical diffusivity, ε ¼ εc, corresponding to the
onset of Turing instability. This εc is inversely
proportional to λ2 (derivation given in Supplemental
Material [58], Sec. S1C). Such a critical threshold
thus depends sensitively on the link density of the
network [as illustrated in Fig. 8(c)] as well as on the
number of nodes.

B. Directed networks under
weighted perturbations

For directed networks, the sensitivity of Laplacian
eigenvalues under generic perturbations is typically inherited
by the convergence rate Λmax for many systems and
processes governed by Eq. (1), including most of the
examples described in Supplemental Material [58],
Sec. S1. In fact, Λmax would have the same sensitivity as
the Laplacian eigenvalue λj whenever Λmax has a smooth

(nonconstant) dependence on λj near the unperturbed values
of λj. Figure 9 illustrates the sharp contrast between sensi-
tive and nonsensitive cases using the example of synchro-
nization in networks of chaotic optoelectronic oscillators
[36] (system details described in Supplemental Material
[58], Sec. S1B).

VI. DISCUSSION

The sensitive dependence of collective dynamics on the
network structure, characterized here by a derivative that
diverges at an optimal point, has several implications. On
the one hand, it implies that the dynamics can be manip-
ulated substantially by small structural adjustments, which
we suggest has the potential to lead to new control
approaches based on modifying the effective structure of
the network in real time; indeed, the closer the system is to
being optimal, the larger the range of manipulation possible
with the same amount of structural adjustment. On the other
hand, the observed cusplike behavior imposes constraints
on how close one can get to the ultimate optimum in
practice, given unavoidable parameter mismatches, reso-
lution limits, and numerical uncertainty.
It is insightful to interpret our results in the context of

living systems. The apparent conundrum that follows from
this study is that biological networks (such as genetic,
neuronal, and ecological ones) are believed to have evolved
under the pressure to both optimize fitness and be robust to
structural perturbations [91]. The latter means that the
networks would not undergo significant loss of function
(hence, of optimality) when perturbed. For example, a
mutation in a bacterium (i.e., a structural change to a
genetic network) causes the resulting strain to be nonviable
in only a minority of cases [92]. A plausible explanation is
that much of the robustness of living systems comes from
the plasticity they acquire from optimizing their fitness
under varying conditions [93,94]. In the case of bacterial

(a) (b)

FIG. 9. Sensitivity to weighted perturbations in directed networks of optoelectronic oscillators. (a) Mean convergence rate μ as a
function of δ, illustrating the qualitative difference between sensitive networks (G2, G7, and G19 from Fig. 7) and nonsensitive
networks (G1 from Fig. 7). The red cross symbol indicates the value of μ at δ ¼ 0 corresponding to the case of no perturbation, which
is the same for all four networks. The inset shows a zoom-in plot of the marked rectangular region surrounding the red cross. The
perturbation matrix ΔA was chosen randomly following the same procedure used in Fig. 7. To facilitate visualization, in this figure
we allow negative δ, which corresponds to considering a perturbation term of the form jδjð−ΔAÞ. (b) Log-log plot of the change in
convergence rate jΔμj versus δ, which confirms the scaling jΔμj ∼ δ1=β for small δ.
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organisms, for example, it is believed that the reason most
of their genes are not essential for a given environmental
condition is because they are required under different
conditions. Bacteria kept under stable conditions, such
as those that live inside other living cells (i.e., intracellular
bacteria), have evolved to virtually have only those genes
essential under that condition [95] and are thus sensitive to
gene removals; they are a close analog of the optimization
of a fixed objective function considered here [96]. While
there is therefore no conflict between our results and the
optimization-robustness trade-off expected for biological
networks, investigating the equivalent of the sensitive
dependence on network structure in the case of varying
conditions or varying objective function would likely
provide further insights.
In general, the optimization-robustness relation may

depend on the type of robustness considered. In this
study we focused on how stable a state is, and hence on
how resistant the network is to small changes in its
dynamical state, which can be regarded as a form of
robustness (terminology used, for example, in Ref. [98]).
It is quite remarkable that, in seeking to optimize the
network for this “dynamical” robustness, the network
would lose “structural” robustness, where the latter is a
measure of how resistant the stability of the network
state is to changes in the network structure. But is the
observed sensitive dependence on network structure
really a sign of nonrobustness? The answer is both
yes and no. It is “yes” in the sense that, because of the
nondifferentiability of this dependence, small parameter
changes cause stability to change significantly. It is “no”
in the sense that, because the cusps appear at valleys
rather than at peaks, the stability in the vicinity of the
local best parameter choices are still generally better than
at locations farther away (that is, specific parameters lead
to significant improvement but not to significant deterio-
ration). By considering both the dynamical and the
structural robustness in the sense above, we can interpret
our results as a manifestation of the “robust-yet-fragile”
property that has been suggested as a general feature of
complex systems [99].
Finally, it is instructive to compare sensitive dependence

on network structure with the phenomenon of chaos, which
can exhibit multiple forms of sensitive dependence [100].
Sensitive dependence on initial conditions, where small
changes in the initial state lead to large changes in the
subsequent evolution of the state, is a phenomenon that
concerns trajectories in the phase space of a fixed system.
Sensitive dependence on parameters may concern a similar
change in trajectories across different systems even when
the initial conditions are the same, as in the case of the map
θnþ1 ¼ 2θn þ c (mod 2π) when c rather than θ0 is changed.
But sensitive dependence on parameters may also concern a
change in the nature of the dynamics, which has a
qualitative rather than merely quantitative impact on the

trajectories; this is the case for the logistic map xnþ1 ¼
rxnð1 − xnÞ, whose behavior can change from chaotic to
periodic by arbitrarily small changes in r and, moreover,
whose Lyapunov exponent exhibits a cusplike dependence
on r within each periodic window. The latter concerns
sensitive dependence of the stability (or the level of
stability) of the states under consideration, and therefore
is a low-dimensional analog of the sensitive dependence of
network dynamics on network structural parameters inves-
tigated here. In the case of networks, however, they emerge
not from bifurcations but instead from optimization. Much
in the same way the discovery of sensitive dependence on
initial conditions in the context of (what is now known as)
chaos sets constraints on long-term predictability and on
the reliability of simple models for weather forecast [101],
the sensitive dependence on network structure calls for a
careful evaluation of the constraints it sets on predictability
and model reliability [102] in the presence of noise and
uncertainties in real network systems. We thus believe that
the interplay between network structure, optimization,
sensitivity, and robustness is a promising topic of future
research that can offer fundamental insights into the
properties of complex systems.
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APPENDIX A: DERIVATION OF THE
STABILITY FUNCTION ΛðαÞ

The two assumptions we make in Sec. II regarding the
coupling functions Hij can be mathematically formulated
as follows:
(1) Formulation of assumption (A-1). DuHijðx�;x�Þ ¼

−DvHijðx�;x�Þ, where DuHij and DvHij denote
the derivatives with respect to the first and second
argument, respectively, of the function Hijðu; vÞ.
We also assume Hijðu;uÞ ¼ 0 for all u, which
ensures that the network-homogeneous state is a
valid solution of Eq. (1). Together, these assump-
tions are equivalent to assuming that Hij can
be approximated as Hijðu; vÞ ≈DvHijðx�;x�Þ ·
ðv − uÞ to the first order in v − u.

(2) Formulation of assumption (A-2). DvHijðx�;x�Þ ¼
Aij ·GðtÞ, where the scalar Aij is independent of t,
and the function GðtÞ is independent of i and j.

Under these assumptions, the variational equation of
the system described by Eq. (1) around a given network-
homogeneous state x1 ¼ � � � ¼ xn ¼ x�ðtÞ becomes
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_ξi ¼ DxF · ξi −DyF ·
Xn
j¼1

LijGðtÞ · ξj; ðA1Þ

where ξi is the perturbation to the state of node i, DxF and
DyF are the derivatives of the function F with respect to the
first and any of the other arguments, respectively, evaluated
at ðx; y1;…; ynÞ ¼ ðx�; 0;…; 0Þ, and L ¼ ðLijÞ is the
Laplacian matrix of the network given by Eq. (3). An
argument based on the Jordan canonical form of L similar
to the one used in Ref. [61] then leads to a stability function
ΛðαÞ, defined for given (complex-valued) auxiliary param-
eter α as the maximum Lyapunov exponent of the solution
η ¼ 0 of

_η ¼ ½DxF − αDyF ·GðtÞ�η: ðA2Þ

The exponential rate of convergence or divergence is then
given by ΛðλjÞ for the perturbation mode corresponding
to the jth (possibly complex) eigenvalue λj of the
Laplacian matrix L. Thus, the perturbation mode with
the slowest convergence (or fastest divergence) deter-
mines the stability of the network-homogeneous state
through Λmax defined in Eq. (4). A key aspect of this
approach is that the functional form of ΛðαÞ does not
depend on the network structure, implying that the
network structure influences the stability only through
the Laplacian eigenvalues [49].
For a system with a global coupling strength parameter

ε, such as the networks of identical oscillators and net-
works of activator-inhibitor systems described in
Secs. S1B and S1C of Supplemental Material [58],
respectively, the derivative DvHijðx�;x�Þ in the condition
(A-2) above is proportional to ε, andGðtÞ can be chosen to
include the factor ε [thus making the stability function
ΛðαÞ ¼ ΛεðαÞ dependent on ε]. We note that the class of
systems treated in Ref. [49] is an important special case of
our formulation in which Fðx; y1;…; ynÞ depends linearly
on the y variables and the coupling function Hij is
proportional to the difference in (some function of) the
state of the nodes (details presented in Sec. S1B of
Supplemental Material [58]). We also note that the same
stability condition Λmax ≤ 0 is derived in Ref. [56] for a
general class of systems that is different from the class of
systems treated here. An advantage of our formulation is
that the assumptions on the nature of pairwise interactions
encoded in the coupling functions Hij are intuitive and
have clear relation to the network structure encoded in the
adjacency matrix A.

APPENDIX B: UNIQUENESS OF NETWORKS
ATTAINING THE BOUND

Here, we show that, if the mean degree d̄ ≔ 2m=n of the
network is a (non-negative) integer, the UCM network is

the only one that attains the bound in Eq. (8) among all
networks with the same n and m. For n ¼ kl and
m ¼ k2lðl − 1Þ=2, this claim implies that the UCM net-
work is the only λ2 optimizer. For other combinations of n
and m, no UCM network exists, and the claim implies that
there is no network that can achieve the upper bound.
To prove the claim, we assume that the network attains

the bound, i.e., λ2 ¼ ⌊2m=n⌋ ¼ d̄, and aim to show that it
must be a UCM network. We first observe that λcn ¼
n − λ2 ¼ n − d̄. Also, since d̄ is an integer, so is the mean
degree of the complement, d̄c ¼ ðn − 1Þ − d̄, and thus
Eq. (10) becomes

n − d̄ ¼ λcn ≥ dcmax þ 1 ≥ d̄c þ 1 ¼ n − d̄: ðB1Þ

Since this implies that the maximum and the mean degree
of the complement match, i.e., dcmax ¼ d̄c ≕ dc, all nodes
must have the same degree dc in the complement.
Equation (B1) also implies λcn ¼ dc þ 1. Next we consider
an arbitrary connected component of the complement and
show that its maximum Laplacian eigenvalue equals
dc þ 1. On the one hand, since the Laplacian spectrum
of any network is the union of the Laplacian spectra of its
connected components (stated and proved as Proposition
3 in Supplemental Material [58], Sec. S2B), we see
that the maximum Laplacian eigenvalue of this compo-
nent is at most λcn (¼ dc þ 1). On the other hand, by
applying Eq. (9) to the component and noting that its
maximum degree is dc, we see that its maximum
Laplacian eigenvalue is at least dc þ 1. Combining these,
we conclude that the maximum Laplacian eigenvalue of
this component equals dc þ 1. We now use the part of
Proposition 3.9.3 in Ref. [71] stating that the equality in
Eq. (9) holds true only if dmax þ 1 ¼ n. Applying this to
the component and combining with the result above, we
see that the component size must be k ≔ dc þ 1. Since
each node has degree dc, the component must be fully
connected. Since the choice of the component was
arbitrary, the same holds true for all components in the
complement, implying that they form l isolated, fully
connected clusters of size k (for some positive integer l).
Therefore, the network must be a UCM network.

APPENDIX C: EXPLICIT CONSTRUCTION
OF MCC NETWORKS

To construct an MCC network for given n andm, we first
compute the function Mðn; kÞ, which we recall is the
maximum number of links possible for a network of size
n when the largest size of connected components is ≤ k.
For a given k, the maximum number of fully connected
clusters of size k that one can form with n nodes is l ≔
⌊n=k⌋. Forming l such clusters requires l · kðk − 1Þ=2
links, and completely connecting the remaining nr ≔
n − kl nodes requires nrðnr − 1Þ=2 links. Since any
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additional link would necessarily make the size of some
component greater than k, this network has the maximum
possible number of links, and we thus have

Mðn; kÞ ¼ l ·
kðk − 1Þ

2
þ nrðnr − 1Þ

2
ðC1Þ

(proof given in Supplemental Material [58], Sec. S2A).
This formula allow us to compute Mðn; kÞ for each
k ¼ 1;…; n. The computed Mðn; kÞ can then be used to
determine kn;mc

for the givenm directly from the definition:
kn;mc

is the smallest integer k for which mc ≤ Mðn; kÞ,
where mc ¼ ½nðn − 1Þ�=2 −m.
The complement of an MCC network is then constructed

so as to have as many fully connected clusters of size kn;mc

as possible using all the mc available links. If one or more
links remain, we recursively apply the procedure to these
links and the set of remaining isolated nodes. If no cluster
of size kn;mc

can be formed (which occurs only when
kn;mc

≥ 3), we first construct a fully connected cluster of
size kn;mc

− 1, which is always possible since mc >
Mðn; kn;mc

− 1Þ ≥ ðkn;mc
− 1Þðkn;mc

− 2Þ=2 by the defini-
tion of kn;mc

. We then connect the remaining links arbi-
trarily while ensuring that the size of the largest connected
component is kn;mc

. The resulting Laplacian eigenvalues are
independent of the configuration of these links, since all
possible configurations are equivalent up to permutation of
node indices. The procedure thus generates an MCC
network with the given number of nodes and links, n
andm, respectively. Note that, in the special case of n ¼ kl
and m ¼ k2lðl − 1Þ=2 with given positive integers l and
k, the procedure we described here results in the UCM
network with l groups of size k, as it is the only MCC
network in that case. A MATLAB implementation for the
procedure [including the relevant functions such asMðn; kÞ
and kn;m] is available for download [75].

APPENDIX D: LOWER BOUND
FOR MAXIMUM Reðλ2Þ

Here, we show that the network constructed in Sec. III B 3
to establish the lower bound satisfies

λ1 ¼ 0; λ2 ¼ � � � ¼ λn−r ¼ s;

λn−rþ1 ¼ � � � ¼ λn ¼ sþ 1;
ðD1Þ

which, in particular, implies that λ2 ¼ s. We first note
that λ̄ − 1 < s ≤ λ̄, since we have s ¼ ⌊λ̄⌋ by definition.
From the definition of r, we can write r ¼ md − sðn − 1Þ ¼
ϕnðn − 1Þ − sðn − 1Þ ¼ ðλ̄ − sÞðn − 1Þ. Combining these,
we see that 0 ≤ r ≤ n − 2. We thus divide the proof into two
cases: 0 ≤ r ≤ s − 1 and s ≤ r ≤ n − 2. In the following,
we use the notation On1×n2 for the zero matrix of size
n1 × n2 and In1×n1 for the identity matrix of size n1.

Case 1. If 0 ≤ r ≤ s − 1, the matrix L has the lower
block triangular form

L ¼
�
L0
n1×n1 On1×n2

Bn2×n1 sIn2×n2

�
; ðD2Þ

where we use the notations n1 ¼ sþ 1 and n2 ¼ n − s − 1.
Here, L0

n1×n1 and Bn2×n1 are matrices of size n1 × n1 and
n2 × n1, respectively. The set of eigenvalues of L is thus the
union of the set of eigenvalues of L0 and the set fs;…; sg
(repeated n2 times, owing to the diagonal block sIn2×n2).
To obtain the eigenvalues of L0

n1×n1 , we apply a sequence
of row operations to the matrix L0

n1×n1 − λIn1×n1 . Denoting
the ith row of this matrix by Ri, we first replace Ri with
Ri − Rsþ1 for each i ¼ 1;…; s, and then replace Rsþ1 with
Rsþ1 þ

P
r
i¼1 Ri=ðsþ 1 − λÞ þP

s
i¼rþ1 Ri=ðs − λÞ [or with

Rsþ1 þ
P

s
i¼1 Ri=ðs − λÞ, if r ¼ 0]. Because of the specific

form of L0
n1×n1 − λIn1×n1 , this results in an upper triangular

matrix whose diagonal elements are sþ 1 − λ (first r),
s − λ (next s − r), and −λ. Since none of these row
operations involve switching two rows or multiplying a
row by a nonzero constant, the determinant is invariant, and
hence the eigenvalues ofL0

n1×n1 are sþ 1 (repeated r times),
s (repeated s − r times), and 0 (simple). Combining with
the n2 repetitions of s from the block sIn2×n2 in Eq. (D2), the
eigenvalues of L are 0 (simple), s (repeated s − rþ n2 ¼
n − r − 1 times), and sþ 1 (repeated r times), satisfy-
ing Eq. (D1).
Case 2. If s ≤ r ≤ n − 2, the matrix L has the lower

block triangular form

L ¼

0
B@

Kn1×n1 On1×n2 On1×n3

B0
n2×n1 ðsþ 1ÞIn2×n2 On2×n3

B00
n3×n1 On3×n2 sIn3×n3

1
CA; ðD3Þ

where we use the notations n1 ¼ sþ 1 and n2 ¼ r − s,
and n3 ¼ n − r − 1. Here, Kn1×n1 is the n1 × n1 Laplacian
matrix of a complete graph of n1 nodes, with eigenvalues 0
(simple) and n1 ¼ sþ 1 (repeated n1 − 1 times). There-
fore, the eigenvalues of matrix L are 0 (simple),
s (repeated n3 ¼ n − r − 1 times), and sþ 1 (repeated
n1 − 1þ n2 ¼ r times), satisfying Eq. (D1).

APPENDIX E: SCALING FOR EIGENVALUES
WITH GEOMETRIC DEGENERACY

We can establish Eq. (19) for an arbitrary eigenvalue of
an arbitrary matrix. Given an n × n matrix M, its Jordan
decomposition can be written as

M ¼ PJP−1; ðE1Þ

where P is an invertible matrix and
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J ¼

0
B@

Jð1Þ � � � 0

..

. . .
. ..

.

0 � � � JðpÞ

1
CA ðE2Þ

is the block-diagonal Jordan matrix with p Jordan blocks
[103]. The jth Jordan block is of size βj × βj and has
the form

JðjÞ ¼

0
BBBBBBBB@

λj 1 0 � � � 0

0 λj 1 � � � 0

..

. ..
. . .

. . .
. ..

.

0 0 � � � λj 1

0 0 � � � 0 λj

1
CCCCCCCCA
: ðE3Þ

Since Eq. (E1) is a similarity transformation, the eigen-
values of M are the same as those of J, which are the
diagonal elements λ1; λ2;…; λp of J with corresponding
multiplicities β1; β2;…; βp, respectively. Note that βj can
be smaller than the algebraic multiplicity of λj, since we
may have λj ¼ λj0 for some j ≠ j0.
As in the main text, we consider the matrix perturba-

tion of the form M̂ðδÞ ¼ M þ δΔM, where δ > 0 and ΔM
is an n × n matrix. For a given eigenvalue λ of M, let α
and β denote its algebraic and geometric degeneracy,
respectively. The geometric degeneracy is defined as the
size of the largest Jordan block associated with λ, or
equivalently, as the largest number of repetitions of λ
associated with the same eigenvector. Since the roots of a
polynomial depend continuously on the coefficients, each
eigenvalue of a matrix changes continuously as the
elements of that matrix change [104]. Therefore, there
are exactly α eigenvalues of the matrix M̂ðδÞ that
approach λ as δ → 0. Below, we prove that there exists
a constant C ≥ 0 such that Eq. (19) holds true for each
eigenvalue λ̂ðδÞ of M̂ðδÞ that converges to λ, where we
denote ΔλðδÞ ≔ λ̂ðδÞ − λ.
We first use the same P that transforms M into J in

Eq. (E1) to transform M̂ðδÞ for each δ as

P−1M̂ðδÞP ¼ J þ δQ; ðE4Þ

where Q is the matrix given by Q ≔ P−1ΔMP. Thus, the
eigenvalues of M̂ðδÞ are the same as those of J þ δQ. To
further transform the matrix, consider the block-diagonal
matrix

T ¼

0
BB@

Tð1Þ � � � 0

..

. . .
. ..

.

0 � � � TðpÞ

1
CCA; ðE5Þ

where the jth block TðjÞ is a βj × βj diagonal matrix

with elements TðjÞ
ii ¼ δ−1þi=βj , 1 ≤ i ≤ βj. The matrix T is

invertible for all δ ≠ 0. Therefore, the eigenvalues of M̂ðδÞ
are the same as those of the matrix

T−1P−1M̂ðδÞPT ¼ T−1JT þ δT−1QT: ðE6Þ
From the definition of T, it follows that the matrix T−1JT
has the same block-diagonal structure as J and T, and
the jth diagonal block is the matrix

0
BBBBBBBB@

λj δ1=βj 0 � � � 0

0 λj δ1=βj � � � 0

..

. ..
. . .

. . .
. ..

.

0 0 � � � λj δ1=βj

0 0 � � � 0 λj

1
CCCCCCCCA
: ðE7Þ

It also follows that the ði; kÞ element of the matrix
δT−1QT is upper bounded by jQikjδ1=βj, where j is the
index for the Jordan block that intersects with the
kth column of the matrix J. Applying the Gershgorin
theorem [104] to the right-hand side of Eq. (E6), we
see that each eigenvalue of M̂ðδÞ must be contained in
the disk centered at λj with radius Cδ1=βj for some
j ¼ 1;…; p, where C ≔ 1þmaxk

P
i jQikj. [The first

term in the expression for C comes from the off-
diagonal elements in Eq. (E7).]
Now the algebraic and geometric multiplicity of the

given eigenvalue λ ofM can be expressed as α ¼ P
jβj and

β ¼ maxjβj, respectively, where the sum and the maximum
are both taken over all j for which λj ¼ λ. Choose λ̂ðδÞ to
be any of the α eigenvalues of M̂ðδÞ that converge to λ as
δ → 0. Also choose a fixed δ value sufficiently small to
ensure that any two disks with different centers among
those mentioned above in connection with the Gershgorin
theorem are disjoint (which can be achieved if maxjCδ1=βj

is less than half the minimum distance between distinct
eigenvalues of M). With this choice, the disk centered at λ
with radius Cδ1=β is disjoint from all the others and must
contain λ̂ðδÞ; otherwise, λ̂ðδÞ would have to jump discon-
tinuously from another disk as δ → 0 since it must remain
in at least one of these disks, and this would violate the
continuity of λ̂ðδÞ with respect to δ. Having λ̂ðδÞ in the disk
centered at λ with radius Cδ1=β immediately gives the
inequality in Eq. (19).

APPENDIX F: NONSENSITIVITY UNDER
WEIGHTED CONSTRAINED PERTURBATIONS

We can show that all eigenvalues are nonsensitive under a
certain class of weighted perturbations even when β > 1. If
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the matrix P for the Jordan decomposition ofM in Eq. (E1)
transforms the perturbation matrix ΔM into an upper
triangular matrix, then the matrix T−1QT in Eq. (E6) is
also upper triangular. In this case, we have the stronger
result that the perturbed eigenvalues are given precisely by
λ̂ðδÞ ¼ λþ δQii, where i is the index for any column of J
that intersects with a Jordan block associated with the
eigenvalue λ. The change of each eigenvalue is thus
proportional to δ, i.e., the scaling exponent is one,
independently of β [which is consistent with the general
result in Eq. (19) since β ≥ 1]. The result for nongeneric
perturbations in Sec. IVA 2 follows from this if M is
replaced by the Laplacian matrix L and ΔM by ΔL. In
particular, the result applies to the case of a directed tree
with each link having equal weight and ΔL representing a
perturbation of the weights of the existing links.

APPENDIX G: SCALING FOR
APPROXIMATELY DEGENERATE

NETWORKS

Here, we show that the scaling in Eqs. (19) and (20) is
observed even when the eigenvector is only approximately
degenerate. More precisely, we show that, when the matrix
is close to one with exact degeneracy, the scaling remains
valid over a range of δ much larger than the distance
between the two matrices.
Suppose that a matrix M0 has an eigenvalue λðM0Þ with

exact geometric degeneracy β. We consider a perturbation
of M0 in the form M1 ¼ M0 þ εΔM1, where ΔM1 is a
fixed matrix satisfying ∥ΔM1∥ ¼ 1. Thus, the distance
between M0 and M1 is ε, and for small ε (and a generic
choice ofΔM1) the matrixM1 is approximately degenerate.
We now apply a perturbation of size δ to M1 in the form
M2 ¼ M1 þ δΔM2, where ΔM2 is another fixed matrix
satisfying ∥ΔM2∥¼1. Denoting η ≔ ε=δ, we can writeM2

as a perturbation of M0 rather than M1; namely,
M2 ¼ M0 þ δðηΔM1 þ ΔM2Þ.
When taking the limit δ → 0 with η fixed, matrices ΔM1

and ηΔM1 þ ΔM2 are both fixed, so we can apply the
result in Eq. (19). We thus have

limsup
δ→0

jλðM1Þ − λðM0Þj
ðηδÞ1=β ≤ C1;

limsup
δ→0

jλðM2Þ − λðM0Þj
δ1=β

≤ C2;

ðG1Þ

for some constants C1, C2 ≥ 0, where λðM1Þ and λðM2Þ
denote eigenvalues of M1 and M2, respectively, that
approach λðM0Þ as δ → 0. This means that for an arbitrary
ξ > 0, we can find δ1 > 0 and δ2 > 0 (which can depend
on η) such that

jλðM1Þ − λðM0Þj
ðηδÞ1=β < C1 þ

ξ

2η1=β
; if δ < δ1;

jλðM2Þ − λðM0Þj
δ1=β

< C2 þ
ξ

2
; if δ < δ2:

ðG2Þ

Then,

jλðM2Þ−λðM1Þj
δ1=β

¼j½λðM2Þ−λðM0Þ�− ½λðM1Þ−λðM0Þ�j
δ1=β

≤
jλðM2Þ−λðM0Þj

δ1=β
þjλðM1Þ−λðM0Þj

ðηδÞ1=β ·η1=β

<

�
C2þ

ξ

2

�
þ
�
C1þ

ξ

2η1=β

�
·η1=β

¼C2þC1η
1=βþξ; ðG3Þ

if δ < minðδ1; δ2Þ. Since ξ can be made arbitrarily small by
making δ sufficiently small, we have

limsup
δ→0

jλðM2Þ − λðM1Þj
δ1=β

≤ C2 þ C1η
1=β: ðG4Þ

Thus, Eq. (19) and the corresponding bound on the scaling
exponent, γ ≥ 1=β, remain valid for any fixed η (i.e.,
with ε → 0 as δ → 0 while holding η ¼ ε=δ constant).
For finite ε and δ, this result suggests that we should
observe the scaling jλðM2Þ − λðM1Þj ∼ δγ with γ ≥ 1=β
when ε ≪ δ ≪ 1.
Now consider the stronger scaling property in Eq. (20),

which can be formalized for M1 and M2 as

lim
δ→0

jλðM1Þ− λðM0Þj
ðηδÞ1=β ¼ C1; lim

δ→0

jλðM2Þ− λðM0Þj
δ1=β

¼ C2:

ðG5Þ

Replacing Eq. (G1) with Eq. (G5) and using the resulting
lower bounds analogous to those in Eq. (G2), we obtain a
lower bound analogous to that in Eq. (G3). Combining this
with Eq. (G3), we obtain

���� jλðM2Þ − λðM1Þj
δ1=β

− C2

���� < C1η
1=β þ ξ: ðG6Þ

Since ξ can be made arbitrarily small by making δ
sufficiently small, we see that

limsup
δ→0

���� jλðM2Þ − λðM1Þj
δ1=β

− C2

���� ≤ C1η
1=β:

This implies the scaling in Eq. (20), or more precisely,
jλðM2Þ − λðM1Þj ¼ Cδ1=β with a prefactor C that can vary
with δ but is bounded between C2 � C1η

1=β as δ → 0.
The ratio η of perturbation sizes thus determines
the range of variation of this scaling prefactor. In the
limit of both η → 0 and δ → 0, Eq. (G6) implies
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limη;δ→0jλðM2Þ − λðM1Þj=δ1=β ¼ C2. Therefore, we have
the scaling jλðM2Þ − λðM1Þj ≈ C2δ

1=β when ε ≪ δ ≪ 1.
Altogether, we have shown that the scaling properties in

Eqs. (19) and (20) are observed for the eigenvalues of M2

when the size δ of the perturbation applied to M1 is much
larger compared to the distance ε between M1 and the
exactly degenerate matrix M0.
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