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We present a general approach for the solution of the three-body problem for a general interaction and
apply it to the case of the Coulomb interaction. This approach is exact, simple, and fast. It makes use of
integral equations derived from the consideration of the scattering properties of the system. In particular,
this makes full use of the solution of the two-body problem, the interaction appearing only through the
corresponding known T matrix. In the case of the Coulomb potential, we make use of a very convenient
expression for the T matrix obtained by Schwinger. As a check, we apply this approach to the well-known
problem of the helium atom ground state and obtain a perfect numerical agreement with the known result
for the ground-state energy. The wave function is directly obtained from the corresponding solution. We
expect our method to be, in particular, quite useful for the trion problem in semiconductors.
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I. INTRODUCTION

Few-body systems and problems [1,2] are ubiquitous in
almost all fields of physics; they arise, for example, in par-
ticle physics, nuclear physics, atomic physics, condensed-
matter physics, and so on. Since two-body problems are
easily solved analytically or numerically, the first level of
nontrivial problems arises with three-body problems.
Among the first examples in quantum mechanics has been
the helium atom, more specifically its ground-state energy,
where one deals with the Coulomb interaction. This was
first addressed by Hylleraas [3] by variational methods and
pushed recently to extraordinary precision [4]. Another
quite similar case is theH− ion [5], which is remarkable for
its very weakly bound ground state and is of astrophysical
interest [6]. Yet another example is found in semiconductor
physics, where the trion, i.e., a bound state of an exciton
and an electron (or a hole) [7], is observed through its
absorption or emission spectrum [8,9]. This is again a case
where the interaction is essentially the Coulomb interac-
tion. Three-body systems arise also because they may have
their own intrinsic interest, such as the well-known Efimov
trimers [2,10], with their remarkable scaling properties,
which have been the subject of much recent activity in
nuclear physics and in cold-atom physics.
The recent surge of activity in ultracold gases [11,12],

following the achievement of Bose-Einstein condensation

in these systems, has led to a renewed interest in few-body
physics [1,2]. Indeed the situation is much simplified in
these cases because these systems are dilute and the relevant
atomic energies are very low. As a result, in most cases the
interaction can be considered essentially as a contact
interaction, and in the scattering amplitude the contributions
other than s wave can be safely ignored. All the possible
complexities of the interaction potential disappear and the
interaction is fully characterized by the scattering length.
There is no dependence of the scattering amplitude on wave
vectors; it depends only on energy. This makes the three-
body Schrödinger equation much simpler to solve since one
has to deal with free atoms except for a boundary condition
when two atoms are at the same position. This does notmean
that the three-body problem is so easy to solve, but this has
allowed the theoretical work to be pushed quite far, in
particular, in the case where the three bodies are in a
harmonic trap [13–16]. Similarly, with this contact inter-
action, the scattering properties are much easier to find and,
for example, the dimer-atom scattering length is obtained by
solving a one-dimensional integral equation, as initiated a
long time ago by Skorniakov and Ter-Martirosian [17] for
the neutron-deuteron problem. These problems are very
convenient to formulate in a diagrammatic formalism [18]
and to generalize to four-body problems [19], leading again
to fairly simple integral equations.
This diagrammatic approach has a further very attractive

interest. Indeed it makes full use of the solution of the
two-body problem. Actually, the interaction potential never
appears explicitly in the equations; it comes in only through
the two-body propagator corresponding to the solution of
the two-body problem. This looks to be a very reasonable
and attractive approach to the solution of the three-body

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 7, 041035 (2017)

2160-3308=17=7(4)=041035(20) 041035-1 Published by the American Physical Society

https://doi.org/10.1103/PhysRevX.7.041035
https://doi.org/10.1103/PhysRevX.7.041035
https://doi.org/10.1103/PhysRevX.7.041035
https://doi.org/10.1103/PhysRevX.7.041035
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


problem: it makes much more sense to use the already
known solution of the two-body problem rather than start
again from the beginning, as if the two-body problem had
not been solved. This feature is so attractive that it is
worthwhile to explore whether it can be extended with
the same advantages to the case of a general interaction
potential, getting rid of the simplified contact interaction
suited to cold gases. Actually, this spirit is very close
to another approach to the many-body problem, the
“composite boson” formalism [20], where the eigenstates
of the two-body problem are taken as a new basis in which
the whole many-body problem is rewritten. In this approach
one again makes full use of the solution of the two-body
problem. In particular, the trion problem has already been
addressed within this approach [21].
It is the purpose of the present paper to explore this

generalization. We find that this extension can indeed be
done with minimal increase in complexity. As a result we
find a newmethod to solve the three-body problemwhich is
at the same time exact, simple, and fast. In practice, when
we come to explicit use, we consider the specific case of the
3D Coulomb potential, which is appropriate to the case of
the helium ground state we consider explicitly, and also to
the case of the trion, which we have mainly in mind. This
Coulomb potential case turns out to be particularly con-
venient since there is a simple analytic expression found
by Schwinger [22] for the T matrix, which sums up the
solution of the two-body Coulomb problem. However,
there is no real problem to extend our method to any
interaction potential, and also to any dimension D. One has
merely to obtain, analytically or numerically, the corre-
sponding T matrix for the two-body problem. An inter-
polation method can then be used, for example, to store the
result for practical use in the numerical calculation. Beyond
providing an efficient way to solve any three-body prob-
lem, we hope that this approach can be extended to the
four-body problem along the same lines. But exploration of
this path is naturally left for future work. Such an extension
would naturally be extremely useful for many problems, in
particular, to appropriately treat exciton-exciton interaction
in semiconductors, which is of importance for the Bose-
Einstein condensation of excitons [23].
The paper is organized as follows. In Sec. II, as an

introduction, we consider the case of cold gases, where the
interaction is short-ranged, and review the calculation of
the atom-dimer scattering length, which contains the back-
bone of our procedure. Then in Sec. III, we generalize the
approach to a general interaction potential, leading to an
integral equation for a three-body scattering amplitude
whose poles give the bound-state energies and the eigen-
functions of the three-body problem. In Sec. IV, it is
shown explicitly how the wave function of a bound state is
obtained from the solution of the integral equation. We then
specialize to the Coulomb potential and review in Sec. V
the derivation of the corresponding T matrix by Schwinger.

Finally, we make use of our results in Sec. VI to obtain the
helium atom ground-state energy, which is found in perfect
agreement with known results. We also give our results for
the ground-state wave function. Section VII is a summary
and conclusion. In many cases the technical details are
given in appendixes in order to simplify and keep clear the
flow of the paper.
To summarize, the present paper is devoted to presenting

our approach and to checking it on a very well-known
case, the helium atom ground state. Its application to other
interesting cases, in particular, the energy of the trion, is left
for future work. For convenience and to be definite, we
prefer to adopt for our presentation the semiconductor
vocabulary specific to the case of the trion, since we have it
in mind, rather than keep a general, vague, and unspecific
wording. Hence, our three particles are one hole and
two electrons, which have in most of the paper opposite
spins ↑ and ↓. The translation to any other physical
situations of interest is obvious.

II. SHORT-RANGE INTERACTION

Let us first recall what happens when we replace by a
short-range interaction the Coulomb interaction between
the hole, with mass mh, and the electrons, with mass me,
which we have mostly in mind. In addition, we omit in this
section the interaction between the two electrons, and we
assume the simplest situation where these electrons are
identical (they have the same spin). This case is useful since
this is the simplest one in our class of problems. This is
basically the problem handled a long time ago by
Skorniakov and Ter-Martirosian [17] to obtain the
deuteron-neutron scattering length a3. This is also the
situation found in cold gases. Here, we treat it by making
use of the diagrammatic method [18,19].
This case of the short-range interaction is quite simple

because, at the low energy and wave vectors we are
interested in, the dimer (or exciton) propagator does not
depend on the entering or outgoing wave vectors but
only on the total energy Ω and momentum P of the
dimer. The situation is even simpler since only the energy
Ωr of the relative motion is actually entering. It is given by
Ωr ¼ Ω − P2=2M, whereM ¼ me þmh is the total mass of
the particles making up the dimer (or exciton). Its explicit
expression is, within a factor, the scattering amplitude for
the relative motion and it depends only on the scattering
length a, which in this way is the only parameter necessary
to fully characterize the interaction. Specifically, it is given
diagrammatically by Fig. 1 and its explicit expression is

T2ðPÞ ¼
2π

μ

1

a−1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μðP2=2M − Ω − i0þ

p
Þ ; ð1Þ

where P ¼ fΩ;Pg is the energy-momentum four-vector
and μ ¼ memh=ðme þmhÞ is the reduced mass. We set
ℏ ¼ 1 as we do everywhere in the paper. The above
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expression has a single pole for Ωr ¼ −1=ð2μa2Þ≡ −E0

corresponding to the single bound state of the two particles.
This happens only when a > 0, which we assume in the
following; otherwise there is no bound state and accordingly
no dimer.
We now want to write an integral equation for the

scattering amplitude of an electron on the exciton.
Qualitatively this quantity is analogous to the T2 consid-
ered just above, except that the hole is replaced by the
exciton. In the case of short-range interaction the situation
with respect to the variables coming in the exciton-electron
vertex T3 is quite simple. Let us call P the total energy-
momentum of the electron and the exciton, and p the
corresponding value for the entering electron. Hence, the
energy-momentum of the exciton is P − p, and we know
from Eq. (1) that this quantity is enough to fully character-
ize the entering exciton through its propagator. Similarly,
if the energy-momentum of the outgoing electron is p̄,
the outgoing exciton has a energy-momentum P − p̄.
Accordingly, T3 depends only on P, p, and p̄. Note that,
just as we have done above for T2ðPÞ (see Fig. 1), we do
not include in the expression for T3ðp; p̄;PÞ the entering
and outgoing propagators for the electron and the exciton,
since they would anyway be factored out in the equation we
are looking for.
In order to obtain our equation, we note that the simplest

process arising in the electron-exciton scattering is merely
the exchange of the incoming electron with the one making
up the exciton. More precisely, since all the interactions
between the electron and the hole forming the entering
exciton are already taken into account in the entering
exciton propagator, the only possible interaction that can
arise in T3 is between the hole of the exciton and the
incoming electron. However, this interaction may be
followed by another one between the same particles, and
another one, and so on. Summing up all these possible
interactions gives an exciton propagator. The simplest case
arises if this exciton propagator coincides with the outgoing
exciton propagator, as described by the first term in the
right-hand side of Fig. 2. We see that it corresponds indeed

to an electron exchange. However, any other process may
also occur with this exciton propagator and the electron
before the final state. But the sum of all these processes is
precisely T3 by definition. This is described by the second
term in the right-hand side of Fig. 2. This leads to the
integral equation represented diagrammatically in Fig. 2.
It reads algebraically as

T3ðp; p̄;PÞ ¼ −ghðP − p − p̄Þ −
X
q

ghðP − p − qÞgeðqÞ

× T2ðP − qÞT3ðq; p̄;PÞ; ð2Þ

where, according to Feynmann diagram rules,
P

q≡
i
R
dqdωq=ð2πÞ4.
Here, ghðpÞ≡ gðfωp;pgÞ ¼ 1=ðωp − p2=2mh þ i0þÞ

is the hole Green’s function, while geðqÞ ¼ 1=ðωq − q2=
2me þ i0þÞ is the electron Green’s function. Finally, the
minus signs in the right-hand side of Eq. (2) come from
the fact that we are exchanging the two electrons and
that this permutation of these two identical fermions
implies a sign change.
We can integrate on the frequency ωq in Eq. (2) by

closing the integration contour in the lower complex
half-plane for the variable ωq. Indeed from their defini-
tion, ghðP − p − qÞ and T2ðP − qÞ are analytical functions
of ωq in this domain. Moreover, as given by Eq. (2) itself,
T3ðp; p̄;PÞ is an analytical function of ωp for Imωp < 0,
so T3ðq; p̄;PÞ is also analytical in the lower complex half-
plane for the variable ωq. Accordingly, the only singularity
in this region is the simple pole coming from geðqÞ. Hence,
by residue integration, only the on-the-shell value (i.e.,
evaluated for ωq ¼ q2=2me) of the integrand comes in.
This leads us to consider the simpler problem of finding
T3ðfp2=2me;pg; p̄;PÞ by restricting p to also be taken on
the shell.
Moreover, for the problems of physical interest, such

as finding the scattering length or the ground-state energy,
we do not need to consider general values for p̄ and P.

FIG. 1. Exciton or dimer propagator. The full line is an electron propagator and the dashed line a hole propagator. The wavy line
corresponds to an interaction.

FIG. 2. Diagrammatic representation of integral equation Eq. (2) for the exciton-electron scattering vertex T3. Full line, electron
propagator; dashed line, hole propagator; shaded line, exciton propagator.
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The scattering length corresponds to a situation where all
the momenta in T3ðp; p̄;PÞ go to zero while the total
energy is the exciton ground-state energy, since the energy
of the scattering electron goes to zero. Similarly, we find
the energy −E (with E > 0) of the bound states of the
exciton-electron system, and in particular the ground-state
energy, by looking for resonances of the exciton-electron
scattering amplitude when all the momenta are zero. Hence,
we can restrict ourselves to the specific case p̄ ¼ 0 and
P ¼ 0, so that P ¼ f−E; 0g. On the other hand, we cannot
set from the start p ¼ 0, since in this case we could not
write an integral equation. We have to consider p ≠ 0, and
after having found the solution possibly let p go to zero.
As a result, setting T3ðfp2=2me;pg; 0; f−E; 0gÞ ¼ tðpÞ

(we do not write explicitly the dependence on E) we obtain
from Eq. (2) the simpler integral equation:

tðpÞ ¼ 2μ

2μEþ p2

þ 2μ

ð2πÞ3
Z

dq
T2(f−ðEþ q2=2meÞ;qg)

2μEþ p2 þ q2 þ 2μp:q=mh
tðqÞ:

ð3Þ

Actually, since tðpÞ depends only on the single variable
jpj, as it is obvious by rotational invariance, the
angular integrations are easily performed explicitly in
the right-hand side, and we are left with a single variable
integration. The integral equation is very easily solved
numerically. For example, for the scattering length
considered by Skorniakov and Ter-Martirosian [17], all
the fermion masses are equal me ¼ mh ¼ m, and one
has to set E ¼ E0 ¼ 1=ma2. The scattering length a3 is
then related to the solution by a3 ¼ 8tð0Þ=ð3maÞ. One
finds a3 ¼ 1.18a.

III. GENERAL INTERACTION POTENTIAL

We consider now a general interaction potential VðrÞ,
with r ¼ re − rh, and only later on specialize to the
Coulomb interaction. Such a general case immediately
brings formal complications, which remain in the Coulomb
case. They appear as soon as we consider the exciton
propagator T2. Indeed, the entering and outgoing wave
vectors are relevant variables, whereas for the short-range
interaction they are always small enough compared to the
cutoff wave vector to be taken equal to zero. This is clear
when we notice that the two-body propagator is directly
related to the one-body propagator corresponding to the
relative motion of the electron and the hole. Let us call ke
and ωe the entering wave vector and energy of the electron,
with similarly kh and ωh for the entering hole, together
with k0

e and ω0
e, and similarly k0

h and ω0
h for the outgoing

electron and hole, respectively. From momentum and energy
conservation we have P¼keþkh¼k0

eþk0
h and Ω ¼

ωe þ ωh ¼ ω0
e þ ω0

h. For the relative motion the relevant

energy is again Ωr ¼ Ω − P2=2M, while the entering
momentum is k¼ðmhke−mekhÞ=M¼ke−ðme=MÞP
and the outgoing momentum is k0 ¼ ðmhk0

e −mek0
hÞ=M ¼

k0
e − ðme=MÞP. For our purpose the relative motion prob-

lem is solved as soon as we have the corresponding
Green’s function Gðω;k;k0Þ defined by

Gðω;k;k0Þ ¼ hkj 1

ω −H
jk0i; ð4Þ

whereH ¼ p2=2μþ VðrÞ is the Hamiltonian corresponding
to the relative motion. This Green’s function is basically
obtained by solving the Schrödinger equation for H.
Formally, this Green’s function satisfies the equation

G ¼ gþ gVG; ð5Þ

where gðω;pÞ ¼ 1=ðω − p2=2μþ i0þÞ is the free-particle
Green’s function for the relative motion. Since our T2 is
precisely the T matrix for this relative motion, which
satisfies

T2 ¼ V þ VgT2; ð6Þ

it is easily obtained from G, since it is readily checked that
if G satisfies Eq. (5), then T2 ¼ g−1Gg−1 − g−1 satisfies
Eq. (6). This gives explicitly

T2ðω;k;k0Þ ¼
�
ω −

k2

2μ

�
½Gðω;k;k0Þ − gðω;kÞδk;k0 �

×

�
ω −

k02

2μ

�
: ð7Þ

Hence we see that, while for short-range interaction
T2 depends only on the four-vector P ¼ fΩ;Pg, we now
have to also take into account the dependence on the
incoming k and outgoing k0 wave vectors for the relative
motion. Accordingly, we denote it T2ðP;k;k0Þ, the total
energy Ω entering only, as above, through the combina-
tion Ωr ¼ Ω − P2=2M.
We note that, for a general interaction potential VðrÞ,

which might even be known only numerically, Eq. (6) for
T2 reads explicitly

T2ðω;k;k0Þ ¼ Vðk − k0Þ

þ
Z

dk00

ð2πÞ3
Vðk − k00ÞT2ðω;k00;k0Þ

ω − k002=2μþ i0þ
; ð8Þ

where VðqÞ is the Fourier transform of VðrÞ. This integral
equation can be solved numerically once for all for the
relevant range of variables, and the result for T2ðω;k;k0Þ
can be stored for further use in the equations we
obtain below.
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The complication of now having for T2 a wave vector
dependence implies a corresponding complication for T3.
Previously, for short-range interaction we could specify
only the total four-vector of the exciton. Now we also have
to specify the wave vectors of the electron and the hole
making up the exciton after its breakup since they will enter
in the T2 describing all the further processes. In practice, it
is not more complicated to start by specifying the four-
vector corresponding to these two particles.
To be more specific, we now specialize to the case

relevant for our problem of finding the ground-state energy
of our three-body system. Since for the actual cases we
consider it will clearly be found for the two electrons
having opposite spins, we restrict ourselves to this case.
Accordingly, in contrast with the preceding section where
the two electrons were indistinguishable, they will now be
distinguishable particles and, in particular, we will have
no exchange processes. This leads us to introduce two
scattering vertices for the electron and the exciton, instead
of a single one as in the preceding section. We call T3↑ the
vertex corresponding to an electron ↑ scattering on an
exciton made of a hole and a ↓ spin electron. Similarly, we
introduce T3↓ corresponding to the situation where the
electron spins are exchanged. We recall that, in T3↑, since
all the hole-↓ electron interactions have been taken into
account in the incoming exciton propagator, the only
possible interaction of the hole after the exciton breakup
is with the ↑ electron. However, there is another possibility,
namely, that the two electrons scatter. This possible process
did not enter in the preceding section for cold gases
because, at very low energy, the scattering is dominantly
s wave, which is forbidden for two identical fermions.
In contrast, we naturally want to take into account here the
Coulomb repulsion between electrons.
Accordingly, we have to consider the T matrix corre-

sponding to the sum of the repeated scattering between the
two electrons, which is analogous to T2ðP;k;k0Þ except
that the interaction is now repulsive and there is naturally
no bound state. We denote this matrix by Te

2ðP;k;k0Þ.
Correspondingly, we have to consider a T3 vertex where the

entering electrons have just interacted repeatedly so that
they can no longer interact and the first interaction to be
considered is between the hole and one of these electrons.
We denote this vertex T3h. Ultimately, the three vertices
T3↑, T3↓, and T3h are a way to describe all the possible
scattering between the hole and the two electrons. On the
other hand, we have to consider for these three vertices only
the case where the outgoing particles are the ↑ electron and
the exciton (just as the entering particles in T3↑). As above,
we denote by P the total energy-momentum four-vector,
and by p̄ the energy-momentum of the outgoing ↑ electron.
Actually, just as above, we finally take p̄ ¼ 0 and
P ¼ f−E; 0g. So, for simplicity, we do not indicate these
variables in the T3 vertices. On the other hand, as we
mention above, we have to indicate the energy-momentum
of the three entering particles. However, since their sum is
P, we need only to write it for two particles and we choose
to write the variables for the two electrons. The first
variable is for the ↑ electron and the second one for the
↓ electron. Hence, we have the three vertices T3↑ðp; p0Þ,
T3↓ðp; p0Þ, and T3hðp; p0Þ. In order to have notations
similar to the ones used in Sec. II, we include, for example,
in the definition of T3↑ðp; p0Þ the free hole and free down
electron propagators corresponding to the broken exciton,
and similarly for T3↓ðp; p0Þ and T3hðp; p0Þ.
Proceeding as for Eq. (2) we can now write integral

equations relating these vertices. Let us start with
T3↑ðp; p0Þ. In contrast to the first term of Eq. (2) there
is no exchange term since the electrons have opposite spins.
Hence, one possibility is that the hole interacts with the ↑
electron, which is described by T2, and then any process
may happen, which is described by T3↓. This is shown
diagrammatically in Fig. 3(a). This is completely analogous
to the second term of Eq. (2). However, another possibility
is that the two electrons interact, as described by Te

2,
followed by all the processes described by T3h. This is
represented diagrammatically in Fig. 3(b). The correspond-
ing equation for T3↑ðp; p0Þ gathering these two possible
kinds of processes reads as

FIG. 3. The two contributions to the integral equation Eq. (9) for T3↑ðp; p0Þ. (a) The ↑ electron has its first interaction with the hole
coming from the exciton. (b) The ↑ electron has its first interaction with the ↓ electron coming from the exciton. Same notations as in
Fig. 2. The shaded circle indicates that the hole and the ↓ electron are coming from the exciton, and that the first interaction in the
diagram should not be between them. T3↓ and T3h are the corresponding vertices given respectively by Eqs. (10) and (11). Note that
there is no change of sign due to fermion line crossings, the ones appearing in the figures are for readability and can be removed by
deforming appropriately the propagator lines.

THREE-BODY COULOMB PROBLEM PHYS. REV. X 7, 041035 (2017)

041035-5



T3↑ðp; p0Þ ¼ geðp0ÞghðP − p − p0Þ
X
k

�
T2(P − p0;p − rðP − p0Þ;k − rðP − p0Þ)T3↓ðk; p0Þ

þ Te
2

�
pþ p0;p −

pþ p0

2
;k −

pþ p0

2

�
T3hðk; pþ p0 − kÞ

�
; ð9Þ

where we set r ¼ me=M. For the case of electron-electron
scattering, this ratio becomes merely 1=2.
Similarly, for T3↓ðp; p0Þ we have the possibility that

the hole interacts with the ↓ electron, described by T2,
followed by all the processes corresponding to T3↑ðp; p0Þ,
as shown in Fig. 4(a). There is also the possibility
shown in Fig. 4(b) of having the two electrons inter-
acting as described by Te

2, followed by T3h processes.

However, there is finally a process, not possible for
T3↑ðp; p0Þ, which is merely that the incoming exciton
breaks to produce the outgoing ↑ electron while the
incoming ↓ electron forms with the hole the outgoing
dimer. Since some involved propagators are already
factored out, this gives just an additional term δp;0ghðP −
p − p0Þ if we take into account p̄ ¼ 0. This leads to the
equation

T3↓ðp; p0Þ ¼ δp;0ghðP − p − p0Þ þ geðpÞghðP − p − p0Þ
X
k

�
T2(P − p;p0 − rðP − pÞ;k − rðP − pÞ)T3↑ðp; kÞ

þ Te
2

�
pþ p0;p −

pþ p0

2
;k −

pþ p0

2

�
T3hðk; pþ p0 − kÞ

�
: ð10Þ

Finally. we have to write a similar equation for T3hðp; p0Þ. We have the possibilities that either one of the
electrons interacts with the hole, which is described by T2, followed by either T3↑ðp; p0Þ or T3↓ðp; p0Þ, as shown in
Figs. 5(a) and 5(b). But there is again the simple case where the ↓ electron forms the outgoing exciton with the hole, the
remaining ↑ electron giving the outgoing electron. This leads as above to

T3hðp; p0Þ ¼ δp;0geðp0Þ þ geðpÞgeðp0Þ
X
k

�
T2(P − p;p0 − rðP − pÞ;k − rðP − pÞ)T3↑ðp; kÞ

þ T2(P − p0;p − rðP − p0Þ;k − rðP − p0Þ)T3↓ðk; p0Þ
�
: ð11Þ

FIG. 4. The two contributions to the integral equation Eq. (10) for T3↓ðp; p0Þ. (a) The ↓ electron has its first interaction with the hole
coming from the exciton. (b) The ↓ electron has its first interaction with the ↑ electron coming from the exciton. Same notations as in
Fig. 2. The shaded circle indicates that the hole and the ↑ electron are coming from the exciton, and that the first interaction in the
diagram should not be between them. T3↑ and T3h are the corresponding vertices given respectively by Eqs. (9) and (11).

FIG. 5. The two contributions to the integral equation Eq. (11) for T3hðp; p0Þ. (a) The hole has its first interaction with the ↑ electron.
(b) The hole has its first interaction with the ↓ electron. Same notations as in Fig. 2. The shaded circle indicates that the two electrons had
repeated interaction, and that the first interaction in the diagram should not be between them. T3↑ and T3↓ are the corresponding vertices
given respectively by Eqs. (9) and (10).
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There is in our problem an additional symmetry which
we have not used, namely, the fact that the Hamiltonian
is invariant with respect to the exchange of the two
electrons. However, it is apparent in our equations. We
see that, if we write the equation for the combination
T3þðp; p0Þ≡ T3↑ðp; p0Þ þ T3↓ðp0; pÞ, it depends only on

T3þ in the right-hand side. Similarly, the equation for
T3−ðp;p0Þ≡T3↑ðp;p0Þ−T3↓ðp0;pÞ depends only on T3−.
With respect to the T3h contribution, we can put it under a
more convenient form by making first, in Eqs. (9) and (10),
the change of variable k → kþ ðpþ p0Þ=2, and then, in the
term coming fromEq. (10), the change k → −k. This leads to

T3�ðp; p0Þ ¼ �δp0;0ghðP − p − p0Þ þ geðp0ÞghðP − p − p0Þ
X
k

�
�T2ðP − p0;pþ rp0;kþ rp0ÞT3�ðp0; kÞ

þ Te
2

�
pþ p0;

p − p0

2
;k

�
T3h�

�
pþ p0

2
þ k;

pþ p0

2
− k

��
; ð12Þ

where we set T3h�ðp; p0Þ≡ T3hðp; p0Þ � T3hðp0; pÞ.
We also use Te

2fpþ p0;−½ðp − p0Þ=2�;−kg ¼ Te
2fpþ p0;

½ðp − p0Þ=2�;kg valid for a potential satisfying Vð−rÞ ¼
VðrÞ. Finally, we use the fact that we restrict ourselves to
the case P ¼ 0 to simplify the equation.
To close our set of equations we need an equation

for T3h�ðp; p0Þ which is readily obtained from Eq. (11).
We find

T3h�ðp; p0Þ ¼ δp;0geðp0Þ þ geðpÞgeðp0Þ
X
k

T2ðP − p;

p0 þ rp;kþ rpÞT3�ðp; kÞ � ðp ↔ p0Þ:
ð13Þ

Hence, we simplify our problem from three coupled
equations for the three vertices T3↑, T3↓, and T3h to two
coupled equations for the vertices T3� and T3h�. Naturally
we can even introduce the expression for T3h�ðp; p0Þ into

the equation for T3� to obtain a single equation, but this is
not particularly convenient. Clearly, we find the ground
state in the symmetric subset T3þ and T3hþ, and accord-
ingly we restrict ourselves for simplicity to this case in the
following, although the equations for the antisymmetric
subset can be similarly obtained with a few changes of sign.
A further simplification appears in the equations

when we notice that in the right-hand side of Eqs. (12)
and (13) appear only the vertices summed over the fre-
quency component ωk of the variable k, namely, onlyP

ωk
T3þðp0; kÞ and

P
ωk
T3hþ½ðpþ p0Þ=2þ k; ðpþ p0Þ=

2 − k�. This could be expected since T2 depends separa-
tely on the wave vectors of the incoming and outgoing
particles, but only on their total energy. Introducing the
new functions T3ðp;kÞ≡P

ωk
T3þðp; kÞ and S3ðp;kÞ≡P

ωk
T3hþðpþk;p−kÞ¼P

ωk
T3hþðp−k;pþkÞ, we obtain

the following equation for them by summing Eq. (12) over
the frequency ωp0 :

T3ðp;p0Þ ¼ δp0;0ghðP − pÞ þ
X
ωp0

geðp0ÞghðP − p − p0Þ
X
k

�
T2ðP − p0;pþ rp0;kþ rp0ÞT3ðp0;kÞ

þ Te
2

�
pþ p0;

p − p0

2
;k

�
S3

�
pþ p0

2
;k

��
: ð14Þ

Furthermore, setting in Eq. (13) p ¼ Q − q and p0 ¼ Qþ q and summing over the frequency ωq, we obtain for S3:

S3ðQ;qÞ ¼ δQ;qgeð2QÞ þ
X
ωq

geðQ − qÞgeðQþ qÞ
X
k

T2(P −Qþ q;Qþ qþ rðQ − qÞ;kþ rðQ − qÞ)T3ðQ − q;kÞ

þ ðq ↔ −qÞ: ð15Þ

We finally proceed to perform the frequencies inte-
gration. As in Sec. II, this relies on the analytical
properties of the various involved quantities. For exam-
ple, one can show that, in the second term in the rhs
of Eq. (14), the ωp0 integration reduces to an evaluation
of the integrand at the pole ωp0 ¼ p02=2me of geðp0Þ.
Hence, the result depends only on the on-the-shell
value of T3, namely, Tðp;p0Þ≡ T3ðfp2=2me;pg;p0Þ.

Similar results hold for the third term in the rhs
of Eq. (14), and for Eq. (15). This leads us to
introduce similarly the on-the-shell value SðQ;qÞ≡
S3ðf−E −Q2=2mh;Qg=2;qÞ. We give the details of this
frequencies integration in Appendix A, because they
are somewhat complicated by change of variables.
This leads us to equations relating only Tðp;p0Þ and
SðQ;qÞ. We obtain

THREE-BODY COULOMB PROBLEM PHYS. REV. X 7, 041035 (2017)

041035-7



Tðp;p0Þ ¼ −
δp0;0

Eþ p2

2μ

−
1

Eþ p2þp02
2me

þ ðpþp0Þ2
2mh

×
X
k

�
T2

��
−E −

p02

2me
;−p0

�
;pþ rp0;kþ rp0

�
Tðp0;kÞ

þ Te
2

��
−E −

ðpþ p0Þ2
2mh

;pþ p0
�
;
p − p0

2
;k

�
Sðpþ p0;kÞ

�
; ð16Þ

SðQ;qÞ ¼ −
δQ=2;q

Eþ Q2

2μ

−
1

Eþ Q2

2mh
þ Q2þ4q2

4me

×
X
k

T2

��
−E −

ðQ
2
þ qÞ2
2me

;−
�
Q
2
þ q

��
;

�
Q
2
− q

�
þ r

�
Q
2
þ q

�
;kþ r

�
Q
2
þ q

��
T

�
Q
2
þ q;k

�
þ ðq ↔ −qÞ; ð17Þ

where we now use the explicit form of the propagators ge
and gh.
Although it does not look so simple, this set of equations

is clearly the best we could hope for this problem. We have
two vertices T and S instead of one because we take into
account not only electron-hole interaction but also electron-
electron interaction. Moreover, these quantities depend
only on three variables, the modulus of each vector and
the angle between them, which is expected since T2 and Te

2

depend on the entering and outgoing wave vectors in the
general case we are dealing with.
It is interesting to see how these equations simplify to

something similar to what we had in Sec. II when T2

depends only on the total energy-momentum and its
dependence on wave vectors can be neglected, as it is
the case for the short-range interaction considered in
Sec. II. Indeed, in this case we see that, in the right-
hand sides of these equations, the summation over k
introduces merely

P
kTðp0;kÞ, P

kSðpþ p0;kÞ, andP
kTðQ=2þ q;kÞ. Introducing tðpÞ ¼ P

kTðp;kÞ and
sðQÞ ¼ P

kSðQ;kÞ, and summing Eqs. (16) and (17) over
p0 and q, respectively, we see that we obtain a set of
integral equations for tðpÞ and sðQÞ which is quite simple,
since tðpÞ and sðQÞ depend actually only on the single
variables jpj and jQj, respectively, and the angular inte-
grations can be performed easily. We do not write them
explicitly in the general case since we do not make use
of them.
Let us now focus on the specific problem of this paper,

namely, finding the ground-state energy of the three-body
problem. This is obtained in the general case by making
use of the fact that our three-body vertices diverge when
the energy is equal to a bound-state energy, just in the
same way as T2 has poles when the energy is equal to a
bound state energy. This implies that, when E is equal to
the ground-state energy, the homogeneous parts of
Eqs. (16) and (17) have a solution. Hence, we are led
to find the solutions of a set of homogeneous integral
equations.
Before addressing this problem specifically in the case of

the helium atom ground state, we close this section by

considering a very particular case which offers an interest-
ing and convenient check of our method. This is the case
where there is no electron-electron interaction, which
means we take Te

2 ¼ 0. This makes SðQ;qÞ irrelevant,
and we have only to consider Tðp;p0Þ. Moreover, we
consider the additional particular case where the hole mass
is infinite mh → ∞, so that μ ¼ me and r ¼ 0. In this case,
the ground-state energy is obvious. Indeed, since the hole
mass is infinite it can be considered as a fixed impurity, and
the electrons just feel the attractive potential of this
impurity. Moreover, since they do not interact, we have
just two independent one-body problems, one for each
electron. Hence, the ground-state energy is merely the sum
of the ground-state energy E0 of each electron. The case of
a short-range interaction is considered specifically in
Appendix B. It is interesting because the integral equation
resulting from Eq. (16) is a simple one-dimensional integral
equation. Nevertheless, the solution corresponding to our
physical situation is not at all trivial, but it does exist and
corresponds to the correct ground-state energy.
In the case of the general interaction, we are again left

with Eq. (16). Since M ¼ ∞, the relative motion energy
entering T2 is −ðEþ p02=2meÞ ¼ −ð2E0 þ p02=2meÞ, and
we have to make μ ¼ me, mh ¼ ∞, and r ¼ 0 in Eq. (16).
This leads us for the homogeneous integral equation to

Tðp;p0Þ ¼ −
1

Eþ p2þp02
2me

X
k

T2

�
−E −

p02

2me
;p;k

�
Tðp0;kÞ;

ð18Þ

with the notation T2ðfΩ;Pg;p;kÞ≡ T2ðΩr;p;kÞ. As we
detail in Appendix C, we find that

Tðp;p0Þ ¼
E0 þ p2

2me

2E0 þ p2þp02
2me

φ0ðpÞφ0ðp0Þ ð19Þ

is solution, where φ0ðpÞ is the single electron
ground-state wave function corresponding to the binding
energy E0.
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IV. WAVE FUNCTION

As we explain above, the ground-state energy of our three-body problem (or actually any eigenenergy) is obtained in the
general case by requiring that the homogeneous parts of Eqs. (16) and (17) have a solution. Let us rewrite these
homogeneous equations for clarity:

Tðp;p0Þ ¼ −
1

Eþ p2þp02
2me

þ ðpþp0Þ2
2mh

×
X
k

�
T2

��
−E −

p02

2me
;−p0

�
;pþ rp0;kþ rp0

�
Tðp0;kÞ

þ Te
2

��
−E −

ðpþ p0Þ2
2mh

;pþ p0
�
;
p − p0

2
;k

�
Sðpþ p0;kÞ

�
; ð20Þ

SðQ;qÞ ¼ −
1

Eþ Q2

2mh
þ Q2þ4q2

4me

×
X
k

T2

��
−E −

ðQ
2
þ qÞ2
2me

;−
�
Q
2
þ q

��
;

�
Q
2
− q

�
þ r

�
Q
2
þ q

�
;kþ r

�
Q
2
þ q

��

× T

�
Q
2
þ q;k

�
þ ðq ↔ −qÞ: ð21Þ

Once we find the ground-state energy of our three-body
problem, we may suspect that the corresponding wave
function is related to the corresponding residue of our T3

matrix. Actually, we have to handle carefully the frequency
variables in order to find the proper relation between the
wave function and the residue. Moreover, we have to take
into account properly the fact that the matrices we use
above do not correspond precisely to the full T3 matrix.
Let us define a Green’s function Ḡ3 for the propagation

of our three-body system. Precisely, we set

Ḡ3ðt;k↑;k↓;kh;k0
↑;k0

↓;k0
hÞ

¼ −ih0jck↑
ðtÞck↓

ðtÞckh
ðtÞc†k0

h
ð0Þc†k0

↓
ð0Þc†k0

↑
ð0Þj0i;

ð22Þ
where the operators ck↑;↓;hðtÞ annihilate at time t > 0 the
↑, ↓ electrons and the h hole created at time t ¼ 0 by the
operators c†k↑;↓;h

ð0Þ acting on vacuum j0i. If we introduce

the eigenstates jni and eigenenergies En of the three-body
Hamiltonian H, related by Hjni ¼ Enjni, we have for the
Fourier transform G3ðωÞ of Ḡ3ðtÞ:

G3ðω;k↑;k↓;kh;k0
↑;k0

↓;k0
hÞ

¼
X
n

Φnðk↑;k↓ÞΦ�
nðk0

↑;k0
↓Þ

ω − En þ i0þ
; ð23Þ

where in the wave function Φnðk↑;k↓Þ ¼ h0jck↑
ck↓

ckh
jni

we take into account that the total momentum of our three-
body system is zero, which implies kh ¼ −ðk↑ þ k↓Þ. We
see indeed that the residue corresponding to the pole En is
the product of the wave functionsΦnðk↑;k↓ÞΦ�

nðk0
↑;k0

↓Þ.
On the other hand, we define the T3 matrix with three

different times, instead of a single one, by setting

T̄ 3ðt1;t2;t3;k↑;k↓;kh;k0
↑;k0

↓;k0
hÞ

¼ð−iÞ3h0jck↑
ðt1Þck↓

ðt2Þckh
ðt3Þc†k0

h
ð0Þc†k0

↓
ð0Þc†k0

↑
ð0Þj0i:

ð24Þ

Its Fourier transform T 3ðω1;ω2;ω3;k↑;k↓;kh;k0
↑;k0

↓;
k0

hÞ with respect to t1, t2, t3 is basically the quantity we
have dealt with from the beginning of the paper. Note,
however, that for simplicity we do not try to properly
describe the final state of our three-body problem, since
when we consider the pole contribution at En, the entering
and the outgoing variables decouple completely. The
variables we consider correspond actually to the entering
variables of the scattering problem.
We recover Ḡ3ðtÞ by taking t1 ¼ t2 ¼ t3 ¼ t in

T 3ðt1; t2; t3Þ. In Fourier transform this implies the relation

G3ðωÞ

¼
�

i
2π

�
2
Z �Y

i

dωi

�
δ

�
ω −

X
i

ωi

�
T 3ðω1;ω2;ω3Þ

¼
�

i
2π

�
2
Z

dω1dω2T 3ðω1;ω2;ω − ω1 − ω2Þ; ð25Þ

where, for clarity, we do not write the momentum variables.
This last relation is easily checked in the particular case
where there is no interaction between the particles in our
three-body system. One finds as expected that the three-
body wave function is merely the product of the wave
functions of each particle.
Switching back to our original variables, and taking

again into account that the total momentum is zero, this
means that we obtain the three-body wave function
corresponding to the energy En as the residue at Ω ¼ En of
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�
i
2π

�
2
Z

dωpdωp0T 3ðp; p0; P − p − p0Þ; ð26Þ

with P ¼ fΩ;Pg and P ¼ 0.
We now have to write T 3 in terms of the vertices T3↑,

T3↓, and T3h, which we introduced in Sec. III. Naturally, in

doing this we disregard all the disconnected diagrams
which do not contribute to the ground state we are looking
for. In the definition of T3↑, T3↓, and T3h, we had not
included the free propagators of the incoming particles as
well as the T2 matrix corresponding to the first two
interacting particles. We now have to write them explicitly
to obtain T 3, as it is shown in Fig. 6.

This leads to

T 3ðp; p0; P − p − p0Þ ¼ geðpÞgeðp0ÞghðP − p − p0Þ
�X

p0
1

T2ðP − p;p0 þ rp;p1
0 þ rpÞT3↑ðp; p0

1Þ

þ
X
p1

T2ðP − p0;pþ rp0;p1 þ rp0ÞT3↓ðp1; p0Þ

þ
X
k

Te
2

�
pþ p0;p −

1

2
ðpþ p0Þ;k −

1

2
ðpþ p0Þ

�
T3hðk; pþ p0 − kÞ

�
; ð27Þ

where we take P ¼ 0 into account. We then introduced T3�ðp; p0Þ ¼ T3↑ðp; p0Þ � T3↓ðp0; pÞ and we looked for a pole
where T3þðp; p0Þ diverges while T3−ðp; p0Þ does not. This implies 2T3↑ðp; p0Þ ¼ 2T3↓ðp0; pÞ ¼ T3þðp; p0Þ in the vicinity
of the pole. Similarly, T3h�ðp; p0Þ ¼ T3hðp; p0Þ � T3hðp0; pÞ, where T3hþðp; p0Þ diverges while T3h−ðp; p0Þ does not,
which leads to 2T3hðp; p0Þ ¼ 2T3hðp0; pÞ ¼ T3hþðp; p0Þ. This leads to

2T 3ðp; p0; P − p − p0Þ ¼ geðpÞgeðp0ÞghðP − p − p0Þ
X
k

�
T2ðP − p;p0 þ rp;kþ rpÞT3þðp; kÞ

þ T2ðP − p0;pþ rp0;kþ rp0ÞT3þðp0; kÞ þ Te
2

�
pþ p0;

1

2
ðp − p0Þ;k

�

× T3h

�
1

2
ðpþ p0Þ þ k;

1

2
ðpþ p0Þ − k

��
; ð28Þ

where we made the change k → kþ ðpþ p0Þ=2 in the
last term. We now make use of Eqs. (12) and (13), where
the first term in the right-hand side is omitted since it is not
divergent. When we calculate from these equations
the combination geðpÞT3þðp; p0Þ þ geðp0ÞT3þðp0; pÞ þ
ghðP − p − p0ÞT3hþðp; p0Þ, making appropriately the
change of variable k → −k and using of T3hþðp; p0Þ ¼
T3hþðp0; pÞ, we obtain twice the right-hand side of
Eq. (28). This leads to

4T 3ðp; p0; P − p − p0Þ
¼ geðpÞT3þðp; p0Þ þ geðp0ÞT3þðp0; pÞ
þ ghðP − p − p0ÞT3hþðp; p0Þ: ð29Þ

To obtain the wave function, we still have from Eq. (26)
to sum this quantity over ωp and ω0

p. However, from
the definitions T3ðp;kÞ ¼

P
ωk
T3þðp; kÞ and S3ðp;kÞ ¼P

ωk
T3hþðpþ k; p − kÞ ¼ P

ωk
T3hþðp − k; pþ kÞ, given

above Eq. (14), we have

X
ωp;ω0

p

geðpÞT3þðp; p0Þ ¼
X
ωp

geðpÞT3ðp;p0Þ;
X
ωp;ω0

p

geðp0ÞT3þðp0; pÞ ¼
X
ω0
p

geðp0ÞT3ðp0;pÞ; ð30Þ

and

FIG. 6. The three contributions to the expression Eq. (27) for the connected part of the general vertex T 3.
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X
ωp;ω0

p

ghðP−p−p0ÞT3hþðp;p0Þ ¼
X
ωq

ghðP− qÞS3
�
q
2
;k

�
;

ð31Þ

where this last relation is obtained by going from the
variables p and p0 to the variables q ¼ pþ p0 and
k ¼ ðp − p0Þ=2, and using the definition of S3ðq=2;kÞ.
Hence, we are left with the calculation of

4
X
ωp;ω0

p

T 3ðp; p0; P − p − p0Þ

¼
X
ωp

geðpÞT3ðp;p0Þ þ
X
ω0
p

geðp0ÞT3ðp0;pÞ

þ
X
ωq

ghðP − qÞS3
�
q
2
;
p − p0

2

�
: ð32Þ

We have seen [see Eq. (A3)] that T3ðp;p0Þ is analytical for
Imωp < 0. Going from summation to integration byP

ωp
→ i

R
dωp=ð2πÞ, and closing the integration contour

on ωp in the lower complex plane, only the pole from geðpÞ
contributes, and the result is just the on-the-shell value
of T3ðp;p0Þ, namely, T3ðfp2=2me;pg;p0Þ ¼ Tðp;p0Þ.
Similarly, the second term in Eq. (32) gives Tðp0;pÞ.
Finally [see Eq. (A4)], S3(q=2; ðp − p0Þ=2) is analytical
for Imωq > 0. Closing the integration contour in the ωq

upper complex plane, we obtain from the definition
SðQ;qÞ ¼ S3ðf−E −Q2=2mh;Qg=2;qÞ that the third
term in Eq. (32) is S(pþ p0; ðp − p0Þ=2).
Finally, we end up with the conclusion that the three-

body bound-state wave function is given, from the solution
Tðp;p0Þ and SðQ;qÞ of Eqs. (20) and (21), by

Tðp;p0Þ þ Tðp0;pÞ þ S

�
pþ p0;

p − p0

2

�
ð33Þ

within a multiplicative constant, since the solutions T and S
of the homogeneous equations are not normalized. This
expression is, as expected, invariant under the exchange of
p and p0.
Note that, when we make the substitution Q ¼ pþ p0

and q ¼ ðp − p0Þ=2 in Eq. (21) for SðQ;qÞ, we obtain
an expression which is identical to the T2 term (that is
the first term in the right-hand side) in Eq. (20) for
Tðp;p0Þ þ Tðp0;pÞ. Hence, there is no need, in calculating
the wave function Eq. (33), to evaluate Eq. (21) since this is
already done when Eq. (20) is evaluated. In particular, if we
come back to the case where the two electrons are non-
interacting, in which case Te

2 ¼ 0, the wave function from
Eq. (33) is 2½Tðp;p0Þ þ Tðp0;pÞ�. We obtain the same
result (without the irrelevant factor of 2) if we argue that in
this case S is irrelevant from Eq. (20) and that only the T
terms should contribute in Eq. (33). From the explicit

solution Eq. (C2) which we have found in this case, we see
that the ground-state wave function is just the product
φ0ðpÞφ0ðp0Þ of the two single electron ground-state wave
functions, as expected.

V. COULOMB T MATRIX

We now come to our specific problem of handling
the Coulomb potential. Since T2 is directly linked to the
Green’s function, itself obtained by solving the Schrödinger
equation, one expects to be able to write the Coulomb T2 in
terms of solutions of the Coulomb Schrödinger equation,
namely hypergeometric functions. This can indeed be done,
but this leads to expressions which are not so easy to handle
numerically. On the other hand, it is obviously quite
important to have a convenient expression for this T2 in
order to obtain a numerically efficient solution for our
problem, which is one of our basic purpose. Fortunately,
such an expression has been obtained by Schwinger [22].
We merely give here the results and our notations, which
are necessary to carry out our helium calculation. However,
since this Schwinger result is not so well known, we review
briefly its derivation in Appendix D for completeness and
give some additional details.
The Hamiltonian is

H ¼ −
1

2μ
Δr − ϵs

Ze2

4πϵr
; ð34Þ

where e is the electronic charge and ϵ is the permittivity of
the medium, be it vacuum or semiconductor. In case of the
interelectronic repulsion, we have ϵs ¼ −1 and Z ¼ 1,
while for electron-hole attraction ϵs ¼ 1 and Z depends on
the “hole” charge, since we want to also consider the case
of He where we have Z ¼ 2 for the nucleus.
It is convenient to take half the Bohr radius a0 ¼

4πϵ=ð2μZe2Þ as the unit of length. In the same way we
take 1=ð2μa20Þ as the energy unit and we set ω ¼
−κ2=ð2μa20Þ, where κ will be real since we actually have
to consider only negative values for ω. Similarly, we
express the wave vectors in terms of the unit 1=a0, which
leads us to introduce reduced wave vectors by k ¼ q=a0,
and so on for other wave vectors. The equation

X
k00

hkjðω −HÞjk00iGðω;k00;k0Þ ¼ δk;k0 ð35Þ

for the Green’s function becomes

− ðκ2 þ q2Þgðκ;q;q0Þ þ ϵs
1

2π2

Z
dq00 gðκ;q00;q0Þ

ðq − q00Þ2
¼ ð2πÞ3δðq − q0Þ; ð36Þ

where we introduce a reduced Green’s function g by
Gðω;q=a0;q0=a0Þ ¼ ð2μa50Þgðκ;q;q0Þ, and we go from
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discrete to continuous variables by
P

q →
R
dq=ð2πÞ3 and

δq;q0 → ð2πÞ3δðq − q0Þ. Similarly, we introduce a reduced
T matrix by T2ðω;q=a0;q0=a0Þ ¼ ða0=2μÞt2ðκ;q;q0Þ.
With these notations the expression for t2, obtained from
Schwinger’s expression for the Green’s function, reads

t2ðκ;q;q0Þ ¼ −
4πϵs

ðq − q0Þ2 −
2π

κ

1

ðq − q0Þ2 Iðκ; zÞ; ð37Þ

where we set

Iðκ; zÞ ¼
Z

1

0

du
u−ϵs=2κ

uþ zð1 − uÞ2 ;

z ¼ ðκ2 þ q2Þðκ2 þ q02Þ
4κ2ðq − q0Þ2 : ð38Þ

The first term in Eq. (37) is merely the well-known Born
approximation for t2, the only term to survive in the limit
κ → ∞. Integrating by parts in Iðκ; zÞ, Eq. (37) can also be
conveniently rewritten as

t2ðκ;q;q0Þ ¼ −
4πϵsz

ðq − q0Þ2
Z

1

0

du
u−ϵs=2κð1 − u2Þ
½uþ zð1 − uÞ2�2 : ð39Þ

In our domain of interest we have z ≥ 1=4, the minimum
being reached when q and q0 are antiparallel with
jqj · jqj0 ¼ κ2. This implies that the poles u1 and u2 in

the integrand of Iðκ; zÞ are always complex conjugate.
They are on the unit circle and they go from u1 ¼ u2 ¼ −1
for z ¼ 1=4 to u1 ¼ u2 ¼ 1 for z → ∞. Hence, they do not
cause any problem in the numerical evaluation of Iðκ; zÞ.

VI. CASE OF THE HELIUM GROUND STATE

We now come to the explicit treatment of the helium
atom ground state (with naturally only Coulomb interaction
between particles retained in the Hamiltonian). Our basic
purpose is to see how our method works in practice
numerically and, in particular, to check numerically that
it is exact. However, since the nucleus mass is very large
compared to the electronic mass, we simplify a bit our
practical task by taking it infinite, i.e., mh ¼ ∞. Since we
only want to display an effective application of our method,
this is an unimportant simplification. Naturally, when in a
following paper we will consider the case of the trion in
semiconductors, this simplification will be unacceptable
since the hole mass is usually even lighter than the
conduction band electronic mass. But it is easy to see that
this does not bring in practice any sizable complication.
The ground-state energy is known [4] in this case from
variational calculations with an extremely high precision.
Keeping the precision suitable for our purpose it is given
by E0 ¼ 2.903 724 a:u: ¼ 5.807 448 Ry.
Since mh ¼ ∞ implies r ¼ 0 and μ ¼ me, Eqs. (20)

and (21) simplify to

Tðp;p0Þ ¼ −
2me

2meEþ p2 þ p02
X
k

�
T2

�
−E −

p02

2me
;p;k

�
Tðp0;kÞ þ Te

2

�
−E −

ðpþ p0Þ2
4me

;
p − p0

2
;k

�
Sðpþ p0;kÞ

�
;

ð40Þ

SðQ;qÞ ¼ −
4me

4meEþQ2 þ 4q2

X
k

T2

�
−E −

ðQ
2
þ qÞ2
2me

;

�
Q
2
− q

�
;k

�
T

�
Q
2
þ q;k

�
þ ðq ↔ −qÞ: ð41Þ

Here,we have already used explicitly the fact thatT2ðfΩ;Pg;
k;k0Þ ¼ T2ðΩ − P2=2M;k;k0Þ as indicated at the begin-
ning of Sec. III. This yields T2ðf−E − p02=2me;−p0g;
p;kÞ ¼ T2ð−E − p02=2me;p;kÞ since M ¼ me þmh is
infinite in this case. Similarly, Te

2ðf−E;pþp0g;
ðp− p0Þ=2;kÞ ¼ T2(−E− ðpþp0Þ2=4me; ðp− p0Þ=2;k),
since here M ¼ me þme ¼ 2me.
We now make use of the expression found in Sec. V for

the Coulomb T2ðω;k;k0Þ. It is naturally quite convenient
to use the same reduced units as in Sec. V, namely, take
a0 ¼ 4πϵ=ð2μZe2Þ as unit of length, 1=ð2μa20Þ as energy
unit, setting ω ¼ −κ2=ð2μa20Þ, and express the wave
vectors in terms of the unit 1=a0. These reduced units
are for the electron-nucleus Coulomb problem, which
means in our case that the reduced mass is merely the

electronic mass μ ¼ me, and Z ¼ 2. However, we have
also to use the solution of the electron-electron Coulomb
problem to obtain Te

2. For this case we have naturally to
translate back the result of Sec. V in physical units, and
then use the above reduced units to write the proper
reduced expression. Finally, as in Sec. V, we set T2 ¼
ða0=2meÞt2 and similarly Te

2 ¼ ða0=2meÞte2. In the fol-
lowing we use the same notations as above for the wave
vectors, but they now have to be understood as being in
reduced units. However, in order to avoid any con-
fusion, we use small letters tðp;p0Þ and sðQ;qÞ, instead
of Tðp;p0Þ and SðQ;qÞ to indicate that we work now
with reduced units.
In this way, with K2 ¼ 2mea20E, Eqs. (40) and (41)

become
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tðp;p0Þ ¼ −
1

K2 þ p2 þ p02

Z
dk

ð2πÞ3
�
t2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ p02

q
;p;k

�
tðp0;kÞ þ te2

�
2Zκe;

p−

2
;k

�
sðpþ;kÞ

�
; ð42Þ

sðQ;qÞ ¼ −
2

2K2 þQ2 þ 4q2

Z
dk

ð2πÞ3 t2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 þQþ2

q
;Q−;k

�
tðQþ;kÞ þ ðq ↔ −qÞ; ð43Þ

where we use the abbreviations p� ¼ p� p0, Q� ¼ Q=2� q, and κe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2=2þ p2þ=4

p
, and we have from Sec. V:

t2ðκ;q;q0Þ ¼ −
4πz

ðq − q0Þ2
Z

1

0

du
u−1=2κð1 − u2Þ
½uþ zð1 − uÞ2�2 ; te2ðκ;q;q0Þ ¼ 1

Z
4πze

ðq − q0Þ2
Z

1

0

du
u1=2κð1 − u2Þ

½uþ zeð1 − uÞ2�2 ; ð44Þ

with, in t2ðκ;q;q0Þ, z¼ðκ2þq2Þðκ2þq02Þ=½4κ2ðq−q0Þ2�,
and, in te2ðκ;q;q0Þ, ze¼ðκ2eþq2Þðκ2eþq02Þ=½4κ2eðq−q0Þ2�,
with κe ¼ κ=ð2ZÞ. One can show easily from Eqs. (42) and
(43) themselves that tðp;p0Þ and sðQ;qÞ go very rapidly to
zero when the modulus of any of the argument wave vectors
go to infinity. We notice also that the calculation to be
performed to obtain sðQ;qÞ in Eq. (43) is just the same as
the one appearing for the first term in the rhs of Eq. (42)
provided the substitution p → Q− and p0 → Qþ is made.
The second term of Eq. (42) is also quite analogous to the
first one.
From rotational invariance tðp;p0Þ depends only on

the moduli p and p0 of the two wave vectors, together
with the angle α between them, so we may write
tðp;p0Þ≡ tðp; p0; cos αÞ. Turning now to the practical
evaluation of the first integral in the rhs of Eq. (42), we
see that for fixed polar angle θ of k with respect to p0 only
the factor t2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ p02p

;p;kÞ depends on the azimuthal
angle φ of k with respect to p0. It turns out that this
integration can be performed analytically from Eq. (44),
so we are left with performing the k and the θ integration
numerically, with in addition the u integration to be
performed to obtain t2 and te2. The same point can be
made for the second term in the rhs of Eq. (42) provided we
replace p and p0 by p− and pþ. Finally, we have noticed
that the evaluation in Eq. (43) is related to the one in
Eq. (42). Hence, in practice the integral equations Eqs. (42)
and (43) are actually two-dimensional integral equations,
which are fairly simple to handle numerically. The inte-
gration with respect to θ is quite conveniently performed
with Gaussian integration, while an appropriate Simpson
method is well suited for the k integration. Some small
problems linked to a refined treatment in the u integration
are considered in Appendix E.
Let us callA the linear operator corresponding to the action

of the rhs of Eqs. (42) and (43) on the two-dimensional
column vector ðt; sÞ. Solving Eqs. (42) and (43) is equivalent
to finding an eigenvector ofAwith the eigenvalue λ ¼ 1. This
problem has a solution only ifE corresponds to the energy of
bound states of our three-body Hamiltonian. In particular, for
very largeE (that is very large binding energy), which implies

large κ and κe, t2 reduces to theBorn approximation and, from
theprefactors inEqs. (42) and (43), theoperatorAgoes to zero
and all its eigenvalues are quite small. Hence, none of them
can be equal to 1, and there is no state with very large binding
energy, as expected. If we decrease E, the largest positive
eigenvalueλmax ofAwill grow.When it reaches 1wewill have
obtained the largest possible value for E corresponding to an
eigenstate. In other words, we will have the ground-state
energy.
It is easy to obtain the largest eigenvalue of A by

applying iteratively A to some convenient starting vector
ðt0; s0Þ. Indeed, iterating n times is equivalent to applying
the operator An to ðt0; s0Þ. But for large values of n, An is
dominated by its largest eigenvalue λnmax and is essentially
equivalent to a projection on the corresponding eigenvector
and multiplication by λnmax. This allows us to conveniently
identify λmax and the corresponding eigenvector. Actually,
this procedure works only if the spectrum of A does not
have nasty features, such as closely spaced largest and
second largest eingenvalues, or large negative eigenvalues.
Fortunately, we find that, in our case, this procedure works
quite nicely. We find that in practice 20 iterations already
give a satisfactory convergence for the precision we
consider. For example, going up to 40 iterations does
not bring any sizable change. It is also convenient, in order
to find the ground-state energy, to start from the situation
where the electron-electron interaction is zero (for which
the answer is known) and crank it progressively to its
actual value. In this way, at each stage, the range where the
ground-state energy lies is fairly well known.
In practice we find that Gaussian integration is extremely

efficient. Typically the precision for the ground-state energy
increases exponentially with the number of Legendre poly-
nomials used. For practical purposes, going up to l ¼ 5 is
already quite enough, although we use l ¼ 10 in the results
below. The limitation for precision comes mainly from the
mesh we use for the k integration. With our notation we
have for the ground-state energy exactly 2K2 ¼ 1 when the
electrons are not interacting, while when they interact the
known result [4] is 2K2 ¼ 0.72593. Taking successively 10
points, 20 points, and 40 points for our k mesh, we find
numerically for the noninteracting electrons 2K2¼1.00742,
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2K2 ¼ 1.000 66, and 2K2 ¼ 1.000 07, while for the inter-

acting electrons we obtain 2K2 ¼ 0.734 88, 2K2 ¼
0.72641, and 2K2 ¼ 0.726 04. Hence, we see that we obtain
in both cases the exact result with a precision which is
typically 10−2, 10−3, and 10−4 successively. This is a quite
clear numerical check that our method converges rapidly
toward the exact result when the precision of the numerical
procedure is increased. On the other hand, the calculation
time increases markedly with improved precision. On our
MacBook Pro computer, the 1% precision (which is in
practice quite enough for the determination of the trion
binding energy) takes typically 1 mn. We need 30 mn to
obtain the 10−3 precision and 280 mn for 10−4. These times
are for calculations starting without a priori information on
the result and no refinement. Naturally they are markedly
shortened as soon as some information from preceding
calculations is used and/or the mesh is made more precise
only near the end of the calculation when one looks for
improved precision on the result.
Let us now turn to the wave function. We plot in Fig. 7,

in the ðp; p0Þ plane, the contour lines of the normalized

wave function for values 0.9, 0.5, 0.1, and 0.01, the wave
function being normalized to 1 for p ¼ p0 ¼ 0. Naturally
the wave function also depends on the angle between p
and p0, but this dependence turns out to be rather weak.
Hence, we plot only the results when p and p0 are parallel
and antiparallel. The correlation between the two electrons
is seen to be stronger in this latter case. When the angle
goes from 0 to π, the contour lines interpolate smoothly
between these two limits. Naturally there is no angular
dependence when p ¼ 0 or p0 ¼ 0, so the angular depend-
ence is strongest along the diagonal p ¼ p0. For the sake of
comparison we also plot the same contour lines in the case
where the two electrons are noninteracting and uncorre-
lated. In this case the wave function is naturally known
analytically, being the product of the two single electron
wave functions. As expected, the electron-electron repul-
sion leads to an expansion of the wave function in direct
space, and correspondingly to a contraction in k space. This
is indeed what we find. Finally, let us indicate that, in the
case of noninteracting electrons, our numerical solution for
the wave function is in excellent agreement with the known
analytical expression.

VII. CONCLUSION

In this paper, we present an exact general approach for the
solution of the three-body problem for a general interaction,
which happens to be simple and fast, and apply it to the case
of the Coulomb interaction. Rather than starting with the
Schrödinger equation for this problem, it rather makes use of
a corresponding integral equation derived from the consid-
eration of the scattering properties of the system, namely,
when one body is scattered by the two-body system formed
by the two other ones. In this way one makes full use of the
solution of the two-body problem which appears through the
corresponding T2 matrix, and the interaction does not appear
explicitly but only through this known T2 matrix. We show
that the frequencies can be eliminated and only on-the-shell
evaluations of the involved vertices appear. When two bodies
have the same mass and the same interaction with the third
body, finding the ground state (or any bound state) of the
three-body system amounts to finding for which energy two
coupled three-dimensional linear integral equations have a
solution. The wave function is directly obtained from the
corresponding solution.
We apply this approach to the well-known helium atom

ground-state problem, making use of the T2 matrix for the
Coulomb potential obtained by Schwinger. In this case, the
linear integral equations turn out to be two dimensional.
We obtain a perfect numerical agreement with the known
result for the ground-state energy. We expect to apply this
approach in the near future to other three-body problems
of interest, and in particular to the trion problem in
semiconductors.
Our method leads to integral equations instead of

the standard partial differential equations found in the

FIG. 7. Contour lines for the two-electron wave function. The
wave function is normalized to 1 forp ¼ p0 ¼ 0. The contour lines
correspond to the respective values 0.9, 0.5, 0.1, and 0.01 for the
wave function as indicated. Thewave function depends also on the
angle between p and p0, but the dependence is rather weak, and
only the contour lines for the angles 0 (blue) and π (red) are drawn,
as indicated for 0.1 and 0.01.When the angle increases from 0 to π
the contour lines interpolate smoothly between these two limits.
Note that the axes are for arctanp and arctanp0, not p and p0. The
dashed lines correspond, for the same values 0.9, 0.5, 0.1, and 0.01
for the wave function, to the case where the two electrons are
noninteracting, the result being obtained both analytically and
numerically.
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Schrödinger equation. Hence, the mathematical formu-
lation is qualitatively different and offers the possibility of
new analyses of the problem, including analytical
approaches. In a quantitative point of view, our method
leads to a strong reduction in the numerical work,
basically because we make use of the solution of the
two-body problem by making use of T2. Hence, a part of
the work is already done from the start. We stress that this
advantage applies for any shape of the interaction poten-
tial because if no convenient form for T2 is available, it
can be obtained by solving numerically the general
equation Eq. (8), storing the results, and using them by
appropriate interpolations. The method could even apply
to the three-body problem between composite particles
(provided naturally that there is appropriate knowledge of
the interaction between these particles). Roughly speak-
ing, our method leads typically to a division by a factor 2
of the number of degrees of freedom, which obviously is a
huge simplification for the numerical work. In this way for
a 2D problem one goes from 4 to 2 degrees of freedom.
Similarly, one goes from 6 to 3 degrees of freedom for a

3D problem. However, the precise result naturally
depends on the symmetries of the specific problem to
be solved, and in our case of helium ground state the
rotational invariance allows us to go down to 2 degrees of
freedom. Although in our specific numerical application
we assume an infinite mass for the helium nucleus, it is
easy to see that taking general masses does not lead to
appreciable complication. Finally, our method applies as
well to excited states as to ground state. However, the
numerical solution of the integral equations [Eqs. (20) and
(21)] for the ground state may be somewhat easier, as we
have seen in the helium case. In general, the standard
numerical solution will be through discretization of these
equations and use of the powerful numerical methods of
linear algebra for their solution.

APPENDIX A: FREQUENCY INTEGRATION

To make the equations more transparent, let us rewrite
for a moment Eqs. (14) and (15) by displaying only the
frequency variables. We have

T3ðωpÞ ¼ ghð−E−ωpÞ þ
X
ωp0

geðωp0 Þghð−E−ωp −ωp0 Þ
�
T2ð−E−ωp0 ÞT3ðωp0 Þ þ Te

2ðωp þωp0 ÞS3
�
ωp þωp0

2

��
; ðA1Þ

S3ðωQÞ ¼ geð2ωQÞ þ
X
ωq

geðωQ − ωqÞgeðωQ þ ωqÞT2ð−E − ωQ þ ωqÞT3ðωQ − ωqÞ þ ðq ↔ −qÞ: ðA2Þ

Making in the third term of the right-hand side of Eq. (A1) the change of variable ωp0 ¼ ωx − ωp, and in Eq. (A2) the
change ωq ¼ ωQ − ωy, we find

T3ðωpÞ ¼ ghð−E − ωpÞ þ
X
ωp0

geðωp0 Þghð−E − ωp − ωp0 ÞT2ð−E − ωp0 ÞT3ðωp0 Þ

þ
X
ωx

geðωx − ωpÞghð−E − ωxÞTe
2ðωxÞS3

�
ωx

2

�
; ðA3Þ

S3ðωQÞ ¼ geð2ωQÞ þ
X
ωy

geðωyÞgeð2ωQ − ωyÞT2ð−E − ωyÞT3ðωyÞ þ ðq ↔ −qÞ; ðA4Þ

where naturally one should again understand
P

ωx
→

i
R
dωx=ð2πÞ, and similarly for the frequency variables.
The second equation shows that S3ðωQÞ is analytical

in the upper ωQ complex plane. On the other hand,
T3ðωpÞ is analytical in the lower ωp complex plane, since
the three terms in the right-hand side of Eq. (A3) have this
property.We can nowmake use of these properties to perform
the frequency integration. In Eq. (A3), just as in Eq. (2), we
see that in the second term in the right-hand side all the factors
except geðωp0 Þ are analytical in the lowerωp0 complex plane.
Closing theωp0 integration contour by a semicircle at infinity
in this half-plane, theonly contribution in a residue integration

comes from the pole of geðωp0 Þ atωp0 ¼ p02=2me. Hence, we
need in particular to evaluate T3ðωp0 Þ only on the shell.
Proceeding in the same way in Eq. (A4), we see once again
that only the on-the-shell value of T3ðyÞ appears. Finally,
for the integration of the third term of Eq. (A3), we can close
the contour in the upper half ωx complex plane where the
only contribution comes from the pole of ghð−E−ωxÞ at
ωx¼−E−x2=2mh, where x ¼ pþ p0, the other factors
being analytical functions. So only the value of S3ðωx=2Þ
for this specific frequency is required.
Coming back to the full equations [Eqs. (14) and (15)],

we perform the same change of variables as described
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above and perform the frequency integration in the way
we have indicated. Since only on-the-shell quantities come
in, this leads us to write the equations for these quantities.
We define Tðp;p0Þ ¼ T3ðfp2=2me;pg;p0Þ and SðQ;qÞ ¼
S3ðf−E −Q2=2mh;Qg=2;qÞ. This leads to the equations
given in the text.

APPENDIX B: ZERO ELECTRON-ELECTRON
INTERACTION: SHORT-RANGE INTERACTION

As indicated in the main text, when the interaction is
short-ranged, we are led to consider tðpÞ≡P

kTðp;kÞ.
We obtain easily from Eq. (16) an equation for tðpÞ. We
find, now with the simpler notation jpj≡ p,

tðpÞ ¼ −
1

Eþ p2

2me

−
1

2π2

Z
∞

0

dp0p02 t2ð−E − p02
2me

Þ
Eþ p2þp02

2me

tðp0Þ:

ðB1Þ

Here, we make explicit the fact that T2ðfΩ;PgÞ depends
on the total energy-momentum Ω and P only through
the relative motion energy Ωr ¼ Ω − P2=2M by setting
T2ðfΩ;PgÞ≡ t2ðΩrÞ. In our case, M ¼ ∞, which leads to
T2ðf−E − p02=2me;−p0gÞ ¼ t2ð−E − p02=2meÞ. For the
short-range interaction, we have from Eq. (1) t2ðΩÞ ¼
ð2πa=meÞ½a−1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2meΩ

p �−1.
We expect the ground-state energy to be the sum of the

ground-state energy of each electron. In particular, for
the short-range interaction, the ground-state energy is twice
the energy E0 ¼ 1=2mea2 of the bound state. So the
homogeneous part of Eq. (B1) should have a solution
for E ¼ 2E0 ¼ 1=mea2. We can make in this equation
changes of function and variables appropriate to get rid of
me and a. But this is equivalent to taking me and a as units
of mass and length. This leads us to conclude that the
homogeneous integral equation,

tðpÞ ¼ 2

π

Z
∞

0

dp0 p02

p2 þ p02 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þ 2

p
þ 1

p02 þ 1
tðp0Þ; ðB2Þ

should have a solution. Although the physical problem
and the corresponding ground-state energy are trivial, this
is not the case for the corresponding integral equation
Eq. (B2). Nevertheless, it is easily checked that this
equation has the solution tðpÞ ¼ 1=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 2

p
þ 1Þ,

which we derive more systematically in the case of
general interaction. Hence, we have checked that our
method gives the correct ground-state energy for this very
particular case. Let us just mention that this check can be
extended to the case where the two electrons have
different masses, where a similar but somewhat more
involved solution can be found.

APPENDIX C: ZERO ELECTRON-ELECTRON
INTERACTION: GENERAL INTERACTION

In Eq. (18) the general expression of T2 is obtained from
Eq. (7) with ω ¼ −ðEþ p02=2meÞ:

T2ðω;k;k0Þ ¼
�
ω −

k2

2me

�X
n

φnðkÞφnðk0Þ
ω − En

�
ω −

k02

2me

�

−
�
ω −

k2

2me

�
δk;k0 ; ðC1Þ

where we have expressed the Green’s function in terms
of the eigenfunctions and eigenenergies of the relative
motion Hamiltonian HφnðkÞ ¼ EnφnðkÞ. By time-reversal
invariance we can take the eigenfunctions as real. Since in
our specific case E ¼ 2E0 only the ground state is
involved, we may suspect that only the ground-state
wave function φ0ðkÞ appears in Tðp;p0Þ. Indeed,
making use of the orthonormality of the eigenfunctionsP

kφmðkÞφnðkÞ ¼ δm;n, we find that

Tðp;p0Þ ¼
E0 þ p2

2me

2E0 þ p2þp02
2me

φ0ðpÞφ0ðp0Þ ðC2Þ

is solution, as it is easily checked by carrying this
expression into Eq. (18) with E ¼ 2E0.
Actually, for this case of a general interaction, we can

extend the above argument to the case where the electrons
are, respectively, in excited states φ1ðpÞ and φ2ðpÞ,
with energy −E1 and −E2. Since they do not interact we
should find an excited bound state of our three-body system
with energy −ðE1 þ E2Þ. This should also give rise to a
divergence of our three-body vertex, so we should have a
corresponding solution for Eq. (18) for E ¼ E1 þ E2.
Indeed, we find that this equation has the solution

Tðp;p0Þ¼
ðE1þ p2

2me
Þφ1ðpÞφ2ðp0ÞþðE2þ p2

2me
Þφ1ðp0Þφ2ðpÞ

E1þE2þp2þp02
2me

;

ðC3Þ

which generalizes Eq. (C2).
Finally coming back to the short-range interaction

case, we can immediately have the expression for the
eigenfunction of the single bound state by comparing
the general expression Eq. (7) of T2 in the vicinity of
the pole ω ¼ −1=ð2mea2Þ ¼ −E0 with its specific expres-
sion given below Eq. (B1). This gives φ0ðpÞ ¼
ð8π=aÞ1=2½p2 þ a−2�−1. We can then make use of the
general expression for the solution Eq. (C2) and of the
definition tðpÞ ¼ P

kTðp;kÞ to find the solution of
Eq. (B2). In this way one recovers (for a ¼ 1, me ¼ 1)
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the solution tðpÞ ¼ 1=ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 2

p
Þ already given

below Eq. (B2).

APPENDIX D: SCHWINGER GREEN’S
FUNCTION FOR THE COULOMB POTENTIAL

The simplicity of the result is linked to the hidden
symmetry of the Coulomb potential, which gives rise in
classical mechanics to the existence of a special conserved
quantity, the Lenz vector, and which has been used by Pauli
in its operatorial solution of the Coulomb Schrödinger
equation.
We rewrite the equation for the Green’s function in

reduced units:

− ðκ2 þ q2Þgðκ;q;q0Þ þ ϵs
1

2π2

Z
dq00 gðκ;q00;q0Þ

ðq − q00Þ2
¼ ð2πÞ3δðq − q0Þ: ðD1Þ

We proceed now to a change of variables. Let O be the
origin of the three-dimensional q space and Q the point
with OQ ¼ q. We consider Q as the stereographic projec-
tion of a point X which is on a 4D-sphere with diameter κ,
the 3D q space being tangent to this sphere at the origin O,
and the pole S of the stereographic projection being
such that OS is a diameter of the sphere; see Fig. 8.
From elementary geometry we have SX · SQ ¼ κ2. If C is
the center of the sphere, we set CX ¼ ðκ=2Þξ, where ξ runs
on a 4D sphere with unit radius ξ2 ¼ 1 and therefore carries
the information on the orientation of CX. Our change of
variables is from q to ξ.
The components of the 4D vector ξ respectively parallel

and perpendicular to the q plane are given by

ξ∥ ¼
2κ

κ2 þ q2
q; ξ⊥ ¼ κ2 − q2

κ2 þ q2
: ðD2Þ

If Q and Q0 are two points in the q plane, with correspond-
ing points X and X0 on the sphere, we have in the triangle

with sides SXQ and SX0Q0, and common angle γ between
these two sides, QQ02 ¼ SQ2 þ SQ02 − 2SQ · SQ0 cos γ
and XX02 ¼ SX2 þ SX02 − 2SX · SX0 cos γ. Together with
SX · SQ ¼ SX0 · SQ0 ¼ κ2, this leads to XX02 ¼ κ4QQ02=
ðSQ2 · SQ02Þ, that is,

ðξ − ξ0Þ2 ¼ 4κ2

ðκ2 þ q2Þðκ2 þ q02Þ ðq − q0Þ2: ðD3Þ

Letting q0 → q and ξ0 → ξ, this implies

dξ ¼ 2κ

κ2 þ q2
dq ðD4Þ

for the corresponding infinitesimal lengths dq and dξ.
Taking three such corresponding infinitesimal orthogonal
variations for q and ξ, this leads to the relation between
elementary volumes,

dξ ¼
�

2κ

κ2 þ q2

�
3

dq; ðD5Þ

where dξ is the elementary solid angle on the 4D unit
sphere. This relation implies that the Jacobian of our
transformation is ½2κ=ðκ2 þ q2Þ�3. This has to be used in
making the change of variables in the right-hand side of
Eq. (D1):

δðq − q0Þ ¼
�

2κ

κ2 þ q2

�
3

δðξ − ξ0Þ: ðD6Þ

Finally we make in Eq. (D1) the change

gðκ;q;q0Þ ¼ −
ð2πÞ3ð2κÞ3

ðκ2 þ q2Þ2ðκ2 þ q02Þ2 Γðκ; ξ; ξ
0Þ; ðD7Þ

which leads to

Γðκ; ξ; ξ0Þ − ϵs
4π2κ

Z
dξ00

Γðκ; ξ00; ξ0Þ
ðξ − ξ00Þ2 ¼ δðξ − ξ0Þ: ðD8Þ

The integral is just a convolution product, and this
equation is simply solved by an expansion in spherical
harmonics. These are the 4D generalization [24] Yn;jðξÞ of
the standard 3D spherical harmonics Ylm. Actually, since
all the quantities in Eq. (D8) depend only on the angle
between the two involved directions, an expansion in the
corresponding [24] 4D Legendre polynomials Pnðξ · ξ0Þ is
enough. They are related to the spherical harmonics byFIG. 8. Schematic view of the change of variables from q to ξ.
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Pnðξ · ξ0Þ ¼
SD−1

NðD; nÞ
XNðD;nÞ

j¼1

Yn;jðξÞY�
n;jðξ0Þ: ðD9Þ

Here, SD−1 is the surface of the unit sphere in dimension
D (S2 ¼ 4π and S3 ¼ 2π2), j is collectively for the
azimuthal numbers necessary for the enumeration of the
spherical harmonics with a given n, and NðD; nÞ ¼ ½ð2nþ
D − 2Þ=n�ðnþD−3

n−1 Þ is the degeneracy of the n level, that is,
the number of different spherical harmonics with a given n.
For example, Nð3; nÞ ¼ 2nþ 1 and Nð4; nÞ ¼ ðnþ 1Þ2.
The spherical harmonics are orthonormal:

Z
dξY�

n;jðξÞYn0;j0 ðξÞ ¼ δnn0δjj0 ; ðD10Þ

which implies

Z
dξ00Pnðξ · ξ00ÞPn0 ðξ00 · ξ0Þ ¼

SD−1

NðD; nÞPnðξ · ξ0Þδnn0 :

ðD11Þ

Moreover, they satisfy the closure relation:

X
n;j

Yn;jðξÞY�
n;jðξ0Þ ¼

X
n

NðD; nÞ
SD−1

Pnðξ · ξ0Þ ¼ δðξ − ξ0Þ:

ðD12Þ

Finally, the Legendre polynomials are linked to their
generating function by

1

ð1 − 2rtþ r2ÞD=2−1 ¼
X∞
n¼0

D − 2

2nþD − 2
NðD; nÞrnPnðtÞ;

ðD13Þ

which implies [24]

1 − r2

ð1 − 2rtþ r2ÞD=2 ¼
X∞
n¼0

NðD; nÞrnPnðtÞ ðD14Þ

obtained by multiplying Eq. (D13) by rD=2−1 and taking the
derivative with respect to r.
Taking D ¼ 4 and r ¼ 1 in Eq. (D13), together with

ðξ − ξ0Þ2 ¼ 2ð1 − ξ · ξ0Þ, we have

1

ðξ − ξ0Þ2 ¼
X∞
n¼0

ðnþ 1ÞPnðξ · ξ0Þ: ðD15Þ

Inserting a Legendre polynomial expansion of Γðκ; ξ; ξ0Þ in
Eq. (D8),

Γðκ; ξ; ξ0Þ ¼
X
n;j

ΓnðκÞYn;jðξÞY�
n;jðξ0Þ

¼
X
n

Nð4; nÞ
S3

ΓnðκÞPnðξ · ξ0Þ; ðD16Þ

together with Eqs. (D15), (D11), and (D12), we obtain the
solution of Eq. (D8) as

ΓnðκÞ ¼
1

1 − ϵs
2κðnþ1Þ

: ðD17Þ

In particular, in the attractive case ϵs ¼ 1, the poles
of ΓnðκÞ are found for 2κ ¼ 1=ðnþ 1Þ with n ¼ 0; 1;…,
which give the expected energies ω ¼ −κ2=ð2μa20Þ ¼
−μðZe2Þ2=½2ðnþ 1Þ2ð4πϵÞ2� for the bound states, with
the expected degeneracy Nð4; nÞ ¼ ðnþ 1Þ2.
It is possible to sum up the series Eq. (D16) for Γðκ; ξ; ξ0Þ

leading to a very nice closed form. We write

ΓnðκÞ ¼
1

1 − ϵs
2κðnþ1Þ

¼ 1þ ϵs
2κðnþ 1Þ þ

1

ð2κÞ2ðnþ 1Þ
1

nþ 1 − ϵs
2κ

;

ðD18Þ

and make use in the last term of the integral representation:

1

nþ 1 − ϵs
2κ

¼
Z

1

0

du u−ϵs=2κun: ðD19Þ

Moreover, writing 1−2ξ ·ξ0uþu2¼ð1−uÞ2þuðξ−ξ0Þ2,
we use Eq. (D13) to sum up the corresponding series:

X∞
n¼0

un

nþ 1
Nð4; nÞPnðξ · ξ0Þ ¼

1

ð1 − uÞ2 þ uðξ − ξ0Þ2 :

ðD20Þ

The first two terms in Eq. (D18) are summed through
Eqs. (D12) and (D15). This leads us finally to

Γðκ; ξ; ξ0Þ ¼ δðξ − ξ0Þ þ ϵs
4π2κ

1

ðξ − ξ0Þ2

þ 1

8π2κ2

Z
1

0

du
u−ϵs=2κ

ð1 − uÞ2 þ uðξ − ξ0Þ2 :

ðD21Þ

As pointed out by Schwinger, it is possible to change
the integration contour to obtain, for any value of the
reduced energy κ, a well-defined expression. However, in
deforming the contour, care must be taken of the possible
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contributions of the poles coming from the denominator.
But we do not need to perform such a transformation.
Let us now come to the T matrix itself. It is convenient

to also introduce reduced units in Eq. (7). Introducing,
just as for the Green’s function, a reduced T matrix by
T2ðω;q=a0;q0=a0Þ ¼ ða0=2μÞt2ðκ;q;q0Þ, Eq. (7) becomes

t2ðκ;q;q0Þ ¼ ðκ2 þ q2Þðκ2 þ q02Þ½gðκ;q;q0Þ− g0ðκ;q;q0Þ�;
ðD22Þ

where g0ðκ;q;q0Þ ¼ −ð2πÞ3δðq − q0Þ=ðκ2 þ q2Þ. On the
other hand, we rewrite Eq. (D21) in terms of the variable q
by making use of Eqs. (D3), (D6), and (D7). As could be
expected, the δðξ − ξ0Þ term in Eq. (D21) cancels exactly
with the g0 term in Eq. (D22), and we get finally

t2ðκ;q;q0Þ ¼ −
4πϵs

ðq − q0Þ2 −
2π

κ

1

ðq − q0Þ2 Iðκ; zÞ; ðD23Þ

where we have set

Iðκ;zÞ¼
Z

1

0

du
u−ϵs=2κ

uþzð1−uÞ2 ; z¼ðκ2þq2Þðκ2þq02Þ
4κ2ðq−q0Þ2 :

ðD24Þ

The first term in Eq. (D23) is merely the well-known Born
approximation for t2, the only term to survive in the limit
κ → ∞. Integrating by parts in Iðκ; zÞ, Eq. (D23) can also
be conveniently rewritten as

t2ðκ;q;q0Þ ¼ −
4πϵsz

ðq − q0Þ2
Z

1

0

du
u−ϵs=2κð1 − u2Þ
½uþ zð1 − uÞ2�2 : ðD25Þ

In our domain of interest we have z ≥ 1=4, the minimum
being reached when q and q0 are antiparallel with
jqj · jqj0 ¼ κ2. This implies that the poles u1 and u2 in
the integrand of Iðκ; zÞ are always complex conjugate.
They are on the unit circle and they go from u1 ¼ u2 ¼ −1
for z ¼ 1=4 to u1 ¼ u2 ¼ 1 for z → ∞. Hence, they do not
cause any problem in the numerical evaluation of Iðκ; zÞ.
It is possible to express in general Iðκ; zÞ in terms of
hypergeometric functions, but this is not particularly useful

for its numerical evaluation. A particular case is for
z ¼ 1=4, where one finds Iðκ; 1=4Þ ¼ −2 − ðϵs=κÞ
½ψð1=2 − ϵs=4κÞ − ψð−ϵs=4κÞ�, with ψðxÞ being the
digamma function.
In the case ϵs ¼ 1, the discrete spectrum for 1=2κ ¼ n

gives rise to poles in t2, which appear from Iðκ; zÞ
through the divergent behavior of the integrand for
u → 0. In particular, for κ → 1=2, one finds easily Iðκ; zÞ≃
1=½ð2κ − 1Þz�, leading to t2ðκ;q;q0Þ≃ −4π=½ð2κ − 1Þ
ðq2 þ 1=4Þðq02 þ 1=4Þ�. This has to be compared to the
expression of the Green’s function, which in reduced
units gives gðκ;q;q0Þ≃ t2ðκ;q;q0Þ=½ðκ2þq2Þðκ2þq02Þ�≃
2π=½ð−κ2þ1=4Þðq2þ1=4Þ2ðq02þ1=4Þ2�. This agrees
with the general expression φ0ðkÞφ0ðk0Þ=ðω − E0Þ of the
Green’s function in the vicinity of this pole, which reads in
reduced units Φ0ðqÞΦ0ðq0Þ=ð−κ2 þ 1=4Þ, and with the
expression of the normalized ground-state wave func-
tion Φ0ðqÞ ¼ ð2πÞ1=2=ðq2 þ 1=4Þ2.
Let us finally note that it is possible to check analytically,

with this expression of the ground-state wave function and
the expression of t2 given by Eq. (D23), that Eq. (C2) is
indeed solution of Eq. (18), although the corresponding
calculation is not that simple.

APPENDIX E: DETAILS ON u INTEGRATION

There are two small problems arising in the u integra-
tion, one for u → 0 and the other for u → 1. So it is better
to split the integral into two integrals, in order to handle
separately the u → 0 and u → 1 problems. The u → 0
problem, which results from the somewhat singular
behavior u∓1=ð2κÞ, is easily settled by an appropriate
change of variables. In the first term in the rhs of
Eq. (42), the u → 1 problem arises because, when
k → p, z in Eq. (44) diverges and the u integrand behaves
as 1=ð1 − uÞ2, resulting in a divergent u integral for
u → 1. The dominant behavior can be extracted and
handled analytically. Ultimately this leads to an inte-
grable logarithmic singularity at k ¼ p in the k integra-
tion, which is nevertheless annoying numerically. We
prefer to avoid this difficulty altogether by having an
integrand which is exactly zero for k ¼ p. This is done
by subtracting and adding a same quantity in the
integrand. Explicitly, the first term in the rhs of
Eq. (42) becomes

1

8π2κ2

Z
dΩk

Z
∞

0

dk½k2ðk2 þ κ2Þtðp0; k; cos θÞ − p2ðp2 þ κ2Þtðp0; p; cos αÞ�
Z

1

0

du
u−1=2κð1 − u2Þ

½uðp − kÞ2 þ z0ð1 − uÞ2�2

þ 1

8π2κ2
p2ðp2 þ κ2Þtðp0; p; cos αÞ

Z
dΩk

Z
∞

0

dk
Z

1

0

du
u−1=2κð1 − u2Þ

½uðp − kÞ2 þ z0ð1 − uÞ2�2 ; ðE1Þ

where, for simplicity and clarity, we do not write explicitly the analytical result of the φ integration in the dΩk ¼
sin θdθdφ integration. We set z0 ¼ ðκ2 þ p2Þðκ2 þ k2Þ=ð4κ2Þ. In the second term, both the k and the Ωk integration can
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be performed analytically, and one is left with only the u
integration to be performed numerically. The second
term in Eq. (42) and the rhs in Eq. (43) are handled
in essentially the same way.
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