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Weyl semimetals are recently discovered materials supporting emergent relativistic fermions in the
vicinity of band-crossing points known as Weyl nodes. The positions of the nodes and the low-energy
spectrum depend sensitively on the time-reversal and inversion symmetry breaking in the system. We
introduce the concept of Weyl metamaterials where the particles experience a 3D curved geometry and
gauge fields emerging from smooth spatially varying time-reversal- and inversion-breaking fields. The
Weyl metamaterials can be fabricated from semimetal or insulator parent states where the geometry can be
tuned, for example, through inhomogeneous magnetization. We derive an explicit connection between the
effective geometry and the local symmetry-breaking configuration. This result opens the door for a
systematic study of 3D designer geometries and gauge fields for relativistic carriers. The Weyl
metamaterials provide a route to novel electronic devices as highlighted by a remarkable 3D electron
lens effect.
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I. INTRODUCTION

Simulating relativistic phenomena in tabletop systems
has become a major theme in condensed-matter physics [1].
Topological materials [2], exhibiting a myriad of connec-
tions to high-energy physics [1], have been a significant
inspiration for these developments. An important source of
fascination has also been provided by semimetals, which
display emergent relativistic dynamics at low energies
[3–18]. This has given rise to widespread interest in
engineering artificial gauge fields in graphene [5,19,20]
and 3D Dirac and Weyl semimetals [21–26]. The pheno-
menology of general relativity and curved-space dynamics
has also penetrated into condensed-matter research [1]. In
addition to fundamental interest, curved-space physics may
also have striking practical applications as electromagnetic
metamaterials and transformation optics demonstrate
[27–29].
In this work, we study a class of structures that we call

Weyl metamaterials. In these systems, the chiral Weyl
fermions familiar from Weyl semimetals, depicted in
Fig. 1(a), are moving in an artificial 3D curved-space
geometry. The great advantage of these systems is that, first
of all, the effective geometry experienced by the particles

can be widely tuned by external conditions. Since the
band crossings in Weyl semimetals result from accidental
degeneracy, the positions of the nodes and the low-energy
spectrum can be tuned by a large amount by varying time-
reversal (TR) and inversion (I) symmetry-breaking pertur-
bations, as depicted in Fig. 1(b). In addition, a 3D curved

FIG. 1. (a) Weyl semimetals exhibit one or more band-crossing
pairs which act as sources and sinks of the Berry curvature. The
low-energy spectrum near the nodes is described by the Weyl
Hamiltonian H ¼ �vk · σ resulting in a conical relativistic
dispersion. (b) Locations of the Weyl nodes and the conical
envelopes depend on the magnitude of the TR and I breaking in
the system and are not fixed by symmetry. For example, by
varying the magnetization Mi, one can widely tune the spectrum.
(c) A smoothly varying magnetization in real space (bottom)
gives rise to local Weyl cones that are deformed depending on the
texture. This translates to an effective curved-space geometry
experienced by relativistic carriers (top). (d) Semiclassical tra-
jectories of carriers in the sample can be engineered by designing
suitable TR- and I-breaking textures.
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geometry can be realized by atomically smooth TR or I
breakings, whose variation is significant only on the scale
of the sample size, as illustrated in Fig. 1(c). These two
factors combined with the obvious richness offered by 3D
space give Weyl metamaterials flexibility and enormous
advantage over 2D materials [5,19,20] as a platform for
relativistic curved-space physics. Weyl metamaterials can
be fabricated from 3D semimetal or insulator parent states
by generic inhomogeneous TR- and I-breaking (TRIB)
couplings. Hence, the concept reaches substantially beyond
strain engineering through elastic deformations [21–25].
More generally, Weyl metamaterials pave the way for novel
3D electronic devices through curvature engineering, as
sketched in Fig. 1(d). In this article, we provide an example
of such a device where the Weyl metamaterial acts as a 3D
lens for the itinerant charge carriers. A magnetization with a
radial gradient in the plane perpendicular to the initial
velocities gives rise to an effective curved space and
emergent gauge field, which cause the trajectories of
incoming charge carriers at different radii to converge at
a focal point.
In Sec. II, starting from a generic four-band model,

we derive a curved-space Weyl Hamiltonian H ¼
eμiðkμ − aμÞσi describing the low-energy dynamics of
Weyl metamaterials. The emergent gauge field aμ and
the frame fields eμi, which encode the metric tensor gμν, are
solved as functions of the TRIB fields. These expressions
provide the fundamental tool for systematic reverse engi-
neering of synthetic curved-space geometries and gauge
fields in Weyl metamaterials. Our results are applicable to a
wide class of different lattice and continuum models as
illustrated by examples. The general theory is illustrated in
Sec. III by proposing simple magnetic textures that give
rise to remarkable electron lensing effects. In Sec. IV, we
briefly discuss the experimental feasibility of inhomo-
geneous symmetry-breaking fields, and in the final section,
we summarize our work and results, as well as propose
directions for future research.

II. THEORY OF WEYL METAMATERIALS

A. Engineering Weyl metamaterials
from general parent states

The central idea of our work is to start from a generic
insulating or semimetal phase and introduce smooth
spatially varying TRIB fields that push the parent system
into an inhomogeneous Weyl semimetal phase. The TRIB
terms are not assumed to be small in any sense; however,
their spatial dependence is assumed to be smooth. Besides
an intrinsic Weyl semimetal, the parent state for a Weyl
metamaterial could be a Dirac semimetal or TR-invariant
topological insulator [2,30], as it is well known that these
systems generically undergo a transition to Weyl semimet-
als when the I [31,32] or TR symmetry is broken. A
possible mechanism to break TR in topological insulators is

magnetic doping, which has been demonstrated in thin
films [33–35].
As the minimal models of Weyl semimetals have four

energy bands, we write down the Clifford representation
of the most general TR and I invariant four-band models
and identify all TRIB terms, as was also done in Ref. [36].
Without any TRIB fields, the most general four-band
Hamiltonian is

H0 ¼ nðkÞIþ κðkÞ · γþmðkÞγ4; ð1Þ

where the parameters n and m are symmetric in the
momentum mðkÞ ¼ mð−kÞ, while the kinetic term is
antisymmetric, κðkÞ ¼ −κð−kÞ. We denote the unit matrix
by I. Furthermore, γμ denotes the five 4 × 4 γ matrices
satisfying the anticommutation relations fγμ; γνg ¼ 2δμν.
Since the Hamiltonian Eq. (1) respects TR and I symmetry,
it follows that γ1;2;3 are odd under both I and TR, while γ4
must be even. From this, it is then evident that γ5 ¼
γ1γ2γ3γ4 must also be odd under both operations. To write
down the most general Hermitian 4 × 4 Hamiltonian, we
need to include ten additional matrices constructed using
commutators of the γ matrices; i.e., γij ≡ −i½γi; γj�=2. The
symmetries of γij can be easily deduced from the sym-
metries of their constituent γ matrices. As it turns out, we
can group all ten matrices into four distinct sets: three sets
consisting of three mutually anticommuting matrices each
and a fourth set consisting only of the matrix γ45. The sets,
as well as the transformation properties of each set under
TR or I, are summarized in Table I—in fact, we can see that
each group breaks either TR or I symmetry.
The general 4 × 4 Hamiltonian is expressed as

H ¼ H0 þ u · bþ w · pþ u0 · b0 þ fε; ð2Þ

where the functions u, w, u0, and f characterize the
TRIB fields and fix the position of the Weyl nodes and
the low-energy spectrum. To extract the low-energy Weyl
Hamiltonian, we must block diagonalize Eq. (2). To make
analytical progress, we concentrate on the case u0 ¼ 0,
f ¼ 0. This restriction leaves room for substantial general-
ity, allowing for a full three-component TR-breaking field
u and I-breaking fieldw. To illustrate the wide applicability
of the general formulation, in Appendix B we give concrete
examples of Weyl metamaterials: one based on a

TABLE I. The four groups of γμν and their transformation
properties.

TR I

b ¼ ð γ23 γ31 γ12 Þ −1 þ1
p ¼ ð γ14 γ24 γ34 Þ þ1 −1
b0 ¼ ð γ15 γ25 γ35 Þ −1 þ1
ε ¼ γ45 þ1 −1
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topological insulator-ferromagnet layer structure [37], a
popular theoretical model describing magnetically doped
topological insulators [38], and a 3D Dirac semimetal
[9,10] with broken inversion symmetry.
We note that the recently studied photonic Weyl systems

[8,39] employ a two-mode approximation and, as such,
fall outside the scope of the formalism we develop with
electronic band structures in mind, where the four-band
Clifford representation of the Hamiltonian Eq. (2) is the
fundamental starting point.

B. Weyl block reduction

Here, we derive the local Weyl Hamiltonian from the
original four-band model Eq. (2). The block reduction is
achieved by the unitary transformation theory developed in
Appendix A and is given by

H0 ¼
�
D0ðkÞσ0þDðkÞ ·σ 0

0 d0ðkÞσ0þdðkÞ ·σ;

�
; ð3Þ

where Weyl nodes are now found within either the upper
or lower block, while the other block is gapped. The low-
energy physics in the vicinity of the Weyl nodes is
contained in the local Weyl approximation H0

W ¼
d0ðkÞσ0 þ dðkÞ · σ. Here, we collect the Pauli matrices
σ1;2;3 into a vector σ and write the 2 × 2 identity matrix as
σ0. For concreteness, let us relegate the case where w ≠ 0,
u ¼ 0, as well as the general case u ≠ 0, w ≠ 0 to
Appendix A and for now consider the specific case
H ¼ κðkÞ · γþmγ4 þ u · b, which could describe a TR

and I invariant insulator or semimetal in the presence
of spatially varying magnetization M ¼ u. The local Weyl
approximation yields d0 ¼ 0 and

d1 ¼ −
(û × κðkÞ) · ẑffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − û23
p ;

d2 ¼ −
½û × ðκðkÞ × ûÞ� · ẑffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − û23
p ;

d3 ¼ u −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(û · κðkÞ)2 þm2

q
; ð4Þ

where u ¼ juj and û ¼ u=u. This system has Weyl nodes
kW satisfying κðkWÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 −m2

p
û whenever m < juj.

The gapped block and the results for the general case u ≠ 0
and w ≠ 0 are given in Appendix A. In the local Weyl
approximation H0

W , the d vector depends not only on k but
has an implicit position dependence through u which is
slowly varying in space. The Weyl reduction Eq. (3),
which is exact for position-independent TRIB fields, is
an approximation when u and w depend on position. The
unitary transformations that block diagonalize the four-
band model become spatially dependent through uðrÞ,
wðrÞ. Regarding k in H0 as a canonical conjugate operator
of r, the transformation also produces terms proportional to
gradients (as well as higher-order spatial derivatives) of
uðrÞ,wðrÞ. The gradient terms could, for example, give rise
to off-diagonal elements in Eq. (3). These terms would give
corrections toH0

W of the order ofO½ð∂iuÞ2; ð∂iwÞ2�, which,
along with other gradient corrections, are very small for
slowly varying fields. This is confirmed by direct numerical

FIG. 2. (a) LDOS of the local Weyl approximation (red) and the exact four-band Hamiltonian (blue) are in excellent agreement in the
energy window Eg around the Weyl node. Results are calculated for the lattice model specified in the text with a rotating TR-breaking
texture uðzÞ ¼ u0ðcos k0z; sin k0z; 0Þ. The parameters are u0 ¼ 0.4t, k0 ¼ 0.05, m ¼ 0.2t, and the energy δ functions are smoothed by
Lorentzians with width 0.01t. The inset shows the geometry of the system where the LDOS is calculated. With periodic boundary
conditions in the x and y directions, the LDOS depends only on z. The curves are plotted for z ¼ 30 in a system with Nz ¼ 60 lattice
cites. (b) Magnification of the low-energy region marked by the red dashed square in (a). The energy scale E ~B marks the crossover
between two trends where LDOS is approximately constant, and where it is parabolic. (c) Comparison of the LDOS for the linearized
Weyl approximation (black) including both chiralities and the exact four-band Hamiltonian for the same model as in (a). Inset:
Dispersion of one chiral Weyl fermion in constant magnetic field as a function of parallel wave vector. The constant LDOS region
corresponds to the bulk cone gap due to the local effective magnetic field ~B ¼ ∇ × kW . (d) LDOS for the linear Weyl approximation
(black) and the exact Hamiltonian (blue) for texture uðzÞ ¼ ½0; 0; uðzÞ�, where uðzÞ ¼ u1 þ ðu2 − u1Þz=Nz, with u1 ¼ 0.3t and
u2 ¼ 0.8t. The other parameters are the same as in (a). For this system, ~B ¼ 0. Inset: Otherwise the same, but uðzÞ ¼ ½uðzÞ; 0; 0�. Now ~B
does not vanish and the LDOS is modified around E ¼ 0 by the effective magnetic field.
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comparisons between the local density of states (LDOS) of
the exact four-band model and the local Weyl approxi-
mation H0

W , and typically suggests an excellent agreement
between the two. The LDOS, defined by νðr; EÞ ¼P

En
jΨnðrÞj2δðE − EnÞ, probes the local properties of

the system and therefore is an ideal tool to investigate
the local Weyl approximation. A short explanation on how
the computation of the LDOS is performed can be found in
Appendix F. We calculate the LDOS for representative
Weyl-metamaterial models with H ¼ κðkÞ · γþmγ4þ
u · b, where κiðkÞ ¼ t sin ki and m and t are constants
and different TR-breaking textures u. This is illustrated in
Fig. 2, which establishes an excellent agreement between
the exact result and the local Weyl approximation in the
energy window Eg determined by the energy gap of
the gapped block. Away from the Weyl node but within
Eg, the smoothed LDOS exhibits a quadratic envelope
typical for Weyl semimetals. At the Weyl node, the LDOS
typically becomes modified due to the emergent gauge field
effect, as clarified in the next section.

C. Designer curved-space geometry for Weyl particles

To gain better insight into the low-energy physics, we
expand H0

W around the local Weyl points. For each Weyl
point, we get a low-energy Hamiltonian of the form

H0
W ¼ d0ðkWÞσ0 þ ejνðrÞσνðkj − kWj Þ: ð5Þ

Here, we employ the Einstein summation convention—
Greek indices represent integers from 0 to 3, while Latin
indices take integer values from 1 to 3, unless otherwise
stated. We define the frame fields (or tetrads) as

eiνðrÞ ¼
∂dν
∂ki
����
k¼kW

; ð6Þ

where kWðu;wÞ is the momentum corresponding to the
local Weyl point around which we expand. Introducing a
two-component spinor Ψ, the low-energy Schrödinger
equation then takes the form H0

WΨ ¼ EΨ, which when
squared can be formally written in the form gμνpμpνΨ ¼ 0

with appropriately defined canonical momenta pμ. When
the term proportional to the unit matrix vanishes d0 ¼ 0 in
H0

W , this equation describes a massless relativistic particle
with dispersion E2 ¼ gijpipj moving in a curved space.
Here, pi ¼ ki − kWi , and the contravariant metric
gμν ¼ ηabeμaeνb is defined by the standard relation [40]
using tetrad fields eμν that coincide with those defined in
Eq. (6) with the addition e00 ¼ 1. The covariant metric gμν
is defined as the inverse of gμν and comes into play in the
semiclassical dynamics through Christoffel symbols.
The frame fields eiν for the model Eq. (4) can be

straightforwardly evaluated and are given in Appendix A.
We can also easily find the inverse (coframe) elements ~e

that satisfy eαν ~eαμ ¼ δμν and eμα ~eνα ¼ δμν . The contravariant
metric tensor is given by

g ¼
�−1 0

0 g

�
; ð7Þ

where the elements of the 3 × 3 matrix ½g�ij ¼ gij are

gij ¼ ð∂kiκÞ · ð∂kjκÞ −
m2

u2
ð∂kiκ · ûÞð∂kjκ · ûÞ; ð8Þ

evaluated at the local Weyl node k ¼ kW . In the form
Eq. (8), we assume that m is constant in the vicinity of kW ;
the more general case where m depends on k is also given
in Appendix A. Equations (4), (6), and (8), along with their
generalizations given in Appendix A, provide the funda-
mental relation between the effective geometry and the
physical symmetry-breaking configuration and serve as a
starting point in designing synthetic curved-space geom-
etries for the Weyl quasiparticles. The formula Eq. (8) has a
similar role in Weyl metamaterials as the relation between
the metric and electromagnetic permeability and permit-
tivity tensors in transformation optics [27–29]. It shows
concretely how a Weyl metamaterial acts as a transforma-
tion media where the geometry is tuned by u.
We postulate an effective long-wavelength quantum

Hamiltonian by making the replacement k → −i∇ in
Eq. (5). A direct substitution would leave H0

W non-
Hermitian. This can be remedied by the standard pres-
cription of symmetrizing the noncommuting product of
the gradient and the frame fields. Assuming for simplicity
that d0 ¼ 0, we obtain an effective curved-space Weyl
Hamiltonian:

HW ¼ 1

2
fejνσν;−i∂j − qajg

¼ ejνσν
�
−i∂j − qaj −

i
2
~ejμ∂nenμ

�
: ð9Þ

Here, we define an effective gauge field a ¼ kWðrÞ=q (q
being the charge of the quasiparticle), which gets a small
correction due to the symmetrization. Though the correc-
tion is parametrically small since it depends on the
derivatives of the TRIB fields, we include it to preserve
Hermiticity exactly. Symmetrization is a standard way
to quantize a product of two noncommuting observables
and the minimal procedure to ensure Hermiticity. The
situation here is formally analogous to quantizing the
Hamiltonian with a spatially varying Rashba spin-orbit
coupling. Numerical comparisons show that the effective
Hamiltonian Eq. (9) produces the low-energy LDOS of the
exact four-band model accurately, as seen in Figs. 2(c) and
2(d). The linear approximation also illuminates the behav-
ior of the exact model. The flat part of the LDOS in the
vicinity of the Weyl node appears due to a chiral mode
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appearing in the gap of the bulk Weyl cones because of the
Landau quantization induced by the local effective mag-
netic field ~B ¼ ∇ × kW=q. The inset of Fig. 2(c) shows
how a constant field of magnitude j ~Bj gives rise to a chiral
mode representing the zeroth Landau level dispersing in the
direction of the field. The chiral mode has a 1D dispersion
and a constant density of states. This interpretation is
confirmed by the fact that the calculated LDOS is approx-

imately constant in the energy window 2E ~B ¼ 2v ~B

ffiffiffiffiffiffiffiffiffiffiffiffi
2qj ~Bj

q
,

which correspond to the gap between −1 and 1 Landau
levels where v ~B is the Fermi velocity along the magnetic
field. In addition, as shown in Fig. 2(d), for textures in
which the effective magnetic field vanishes, the LDOS
displays a quadratic trend down to the Weyl node.

III. PARTICLE MOTION IN WEYL
METAMATERIALS

A. Semiclassical dynamics

To study the quasiparticle dynamics, we employ the
semiclassical theory [41]. We assume that the system is
doped above the Weyl node and that the Landau quantiza-
tion due to the real and effective gauge fields can be
neglected. Then we can ignore interband dynamics and
concentrate on a single positive energy band. The semi-
classical wave packet motion for inhomogeneous systems
[41] is described by the equations of motion,

_ri ¼ ∂kiE −Ωkirl _r
l − Ωkikl

_kl;

_ki ¼ −∂riE þ Ωrikl
_kl þΩrirl _r

l − qðEi þ εijk _rjBkÞ; ð10Þ

where E ¼ ðgijkikjÞ1=2 is the relativistic curved-space
dispersion and E and B are electric and magnetic fields
including the emergent field ~B. Quantum particles have
orbital degrees of freedom encoded in the frame fields,
leading to quantum-geometric effects given by the Berry

forceson topof the classical effects.Thenoveltycompared to
thepreviously extensively studied flat case is that, in addition
to the curved-space dispersion, we must consider a 6 × 6
phase-space Berry-curvature tensor Ω instead of its 3 × 3
momentum block. In the studiedmodel, the Berry tensor has
componentsΩq1q2 ¼ −½ðεijkÞ=2jdj3�di∂q1dj∂q2dk, where di
are the coefficients of the Pauli matrices in Eq. (3). In the
linear approximation, the Berry curvatures can be expressed
in terms of the frame fields and their derivatives by sub-
stituting dj ¼ eijki. In the lowest nontrivial order, we can
drop theΩrirl term since it is the only term that involves two
spatialderivativesand isparametrically small.Awayfromthe
Weyl nodes, the Berry curvatures vanish asΩkikl ∼ ð1=jkj2Þ,
Ωrikl ∼ ð1=jkjÞ, so by increasing the doping, one recovers the
classical geometric effects together with the emergent
magnetic field. However, in general, both classical and
quantum-geometric effects need to be considered together.
On theotherhand,weshowinAppendixC that in theabsence
of external electromagnetic fieldsE ¼ 0,B ¼ 0, the ballistic
motion is governed by the geodesic equation for a charged
particle ̈rl þ Γl

ij _ri _rj ¼ qgliεijk _rj ~B
k= E in the lowest non-

trivial order in spatial derivatives.Here,Γl
ij is theChristoffel

symbol calculated from the metric gij. The geodesic motion
is a directmanifestationof the curvedgeometry and indicates
how the carrier motion can be tailored through geometry.
The carrier dynamics in disordered solids also include
scattering processes, which could be implemented by incor-
porating the semiclassical dynamics into a Boltzmann
equation.However, this goes beyond the scope of the present
work where we illustrate the designer geometries by solv-
ing Eq. (10).

B. 3D Weyl electron lens

The negative index of refraction in optical metamaterials
enables fabrication of exotic devices [29] such as the
Veselago lens [42], which can also be realized for electrons
in graphene [43]. Inspired by these ideas, we propose a 3D

FIG. 3. (a) Weyl metamaterial with rotating magnetic texture (red arrows) realizes a system where trajectories of particles with
constant energy converge at focal points. (b) Semiclassical trajectories of carriers for the model specified in the main text with
parameters vx ¼ vy ¼ vz ¼ v, m=u ¼ 0.5, and ω ¼ 0.05π=ξ. The numerical values of the coordinates are given in the units of ξ, which
parametrizes the magnetic rotation. The initial conditions for the trajectories are y ¼ z ¼ 0, kx ¼ ky ¼ 0, kz ¼ 1.25u=v. Different
curves correspond to different initial x coordinates. (c) Trajectories of the same system but for initial conditions x ¼ y ¼ z ¼ 0,
kz ¼ 1.25u=v. Different curves correspond to kx ¼ �0.02, �0.04, �0.08, �0.16u=v. (d) The same as (c) but for the particles of
opposite chirality.
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Weyl electron lens as an application of Weyl metamaterials.
This phenomenon can be realized, for example, in a two-node
model H ¼ vikiγi þmγ4 þ u · b, which could represent a
topological insulator-ferromagnet sandwich structure or a
magnetically doped topological insulator with a slowly
rotating magnetization u ¼ u½cosφ sin θðrÞ; sinφ sin θðrÞ;
cos θðrÞ� expressed in spherical coordinates. The texture is
parametrized by the function θðrÞ ¼ ωr and depicted in
Fig. 3(a), which illustrates the carrier trajectories in the setup.
The carriers of one chirality entering the sample in the
vicinity of r ¼ 0 will converge periodically in the vicinity of
focal points. This motion results from a combined effect of
the curved geometry and the effective magnetic field that can
be straightforwardly calculated in our general framework.
In Fig. 3(b), we have solved the trajectories from the
semiclassical equations corresponding to initial conditions
where parallel beams enter the sample at z ¼ 0. Thus, the
image of the object at infinity is reproduced at focal points.
The situation in Fig. 3(c) corresponds to the case where a
pointlike object is located at z ¼ 0 and imagined at the
focal points. The carriers with the opposite chirality expe-
rience an opposite magnetic field and diverge away from the
x ¼ y ¼ 0 axis, as shown in Fig. 3(d). Thus, the considered
geometry will realize a chirality-selective 3D electron lens.
This effect is similar to the chirality-dependent Hall effect
discovered recently in inhomogeneousWeyl semimetals [44].
It can be shown analytically (see Appendix D) that for

small-amplitude oscillations, assuming
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
=kz ≪ 1,

vx ¼ vy ¼ v, the distance between focal points Δz is

Δz ¼ 2π
vz
vω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m2

u2

m2

u2 þ u
vzkz

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − m2

u2

q
vuuut ; ð11Þ

if we neglect the effects of the Berry curvature—the exact
numerical solution shows that the motion is not completely
planar due to quantum-geometric effects. In the absence of
the effective magnetic field, the deviation δl from the plane
when the particle traverses distance Δz along the z axis
can be shown from the Berry curvatures together with
Eq. (10) to scale as δl=Δz ∼ ωk∥=k2z , where k∥ stands for
the momentumwithin the plane, perpendicular to the z axis.
In the presence of the effective magnetic field, this scaling
relation is less exact in its momentum dependence, but
nevertheless provides the correct order of magnitude for the
deviation. Thus, in the regime of interest it holds that
δl ≪ Δz, so the lens motion is nearly planar. The expres-
sion for Δz shows how the length scale for the lensing
effect is controlled by the rotation of the texture through
1=ω. An arbitrarily slowly varying texture would yield a
similar lens effect with a longer separation of the focal
points. The lens effect depends on the energy of the
incoming particles only weakly through k in the denom-
inator of the square root.

Interestingly, a similar 3D lens effect can also be realized
in unidirectional magnetic textures, as we discuss in
Appendix E. We also discover a 2D lens effect for a
simpler magnetic texture that only rotates in plane. As
smoking-gun observable evidence of the lens phenomenon,
one could consider the quantum mirage effect pointed out
in Ref. [43]: a pointlike impurity will, in general, give rise
to localized Friedel oscillations whose image due to the
lens geometry can be observed away from the impurity,
giving rise to a mirage perturbation. For example, a density
variation due to an impurity located at the origin in Fig. 3(c)
would have its image appear at the convergence of the
trajectories near (0,0,11). The 3D Weyl lens illustrates that
Weyl metamaterials posses richness beyond the 2D materi-
als considered for curvature and gauge field engineering.
Interesting future challenges include, for example, finding
realizations for 3D electronic invisibility devices.
In both the numerical and analytical analyses of the 3D

lens geometry, we do not consider surface effects that
might occur when injecting wave packets through sharply
defined boundaries. To study sharp interface effects, one
should complement the present theory of smooth TRIB
fields with additional boundary conditions. This will be
addressed in future work. Nevertheless, the TRIB field
configuration will result in oscillatory behavior for one
chirality of the incident particles once they are inside the
metamaterial.

IV. DISCUSSION

Experimental realizations of the proposed Weyl-meta-
material structures require controlled fabrication of systems
with inhomogeneous TR or I breaking. Weyl-metamaterial
structures can be fabricated from topological insulators
and topological semimetals—both of which have an
ever-growing number of experimental realizations. In
Appendix B, we outline how four much-studied models
where uniform TR and I breaking has been promoted to
inhomogeneous can serve as platforms for Weyl metama-
terials. Local breaking of inversion through strain is already
considered feasible [23,24] and, considering the relentless
experimental advances in the field, local magnetic manipu-
lation will become accessible in the near future. For
example, artificially constructed layered Weyl semimetals
[37] are now becoming experimentally realizable [45];
artificially grown layer structures allow a degree of
manipulation of the magnetization in the magnetic layers.
Another interesting option for realizing varying magneti-
zation arises from the natural magnetization dynamics in
magnetically doped topological semimetals. These systems
are predicted to display textured ground states or excita-
tions [46] that could be employed in metamaterial
structures.
Now we turn to the question of experimental require-

ments important in realizing functional Weyl-metamaterial
structures. Considering the relatively mild requirements for
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physical parameters and the rapid advance of experimental
methods, we are optimistic that the first Weyl-metamaterial
structures can be fabricated in the near future. It is
promising that the required rate of variation of the sym-
metry-breaking fields does not need to exceed a specific
critical value. The characteristic scale of variation simply
fixes the overall size of functional units. For example,
reducing the rate of rotation of the magnetization in the 3D
lens geometry increases the focal length proportionally. To
be more precise and to give simple estimates to guide the
experimental realizations, it is illuminating to consider a
two-node example such as the Weyl lens Hamiltonian. In
order to observe the effects of the curvature and the
emergent gauge field, their length scales must be compa-
rable or smaller than the length scale of the sample; i.e., for
a sample with linear dimensions L, we have j∂iujL=u≳ 1,
where u and j∂iuj are the characteristic magnitudes of the
symmetry-breaking field u and its gradient in the sample
volume. On the other hand, the Weyl description breaks
down if the spatial variation of the magnetic texture is too
large, enabling scattering between different Weyl nodes.
For Weyl nodes separated by a distance ΔkW , the spatial
variation must hence satisfy j∂iuj=ðΔkWuÞ ≪ 1. The two
requirements can in general be satisfied in systems where
ΔkW ≫ L−1, which is not a serious restriction for Weyl-
metamaterial structures. In the particular case of the Weyl
lens, we can estimate that j∂iuj=u ¼ ω, leading to the
constraints ωL≳ 1 and ω ≪ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 −m2

p
. We see that the

requirements can be satisfied in a sufficiently large sample
as long as the system is in the Weyl semimetal phase
(u > m). Of course, in realistic systems there could be other
scales affecting the performance, such as the momentum
relaxation length, that need to be taken into account.
Nevertheless, there are no fundamental restrictions for
the size of the gradients of the magnetic textures and
inversion breaking other than being slow enough as to not
allow for scattering between Weyl nodes. Therefore, it
seems plausible that simple metamaterial structures could
be realized in the near future.
Furthermore, the discussion in the previous paragraph

points to an important feature of Weyl semimetals not only
restricted to the lens geometry. Namely, the curved-space
effects in Weyl metamaterials follow almost exclusively
from the gradients of the TRIB fields, while the role of the
absolute strengths of the fields is only minor in this regard.
Certainly, in order for the Weyl-metamaterial picture to be
valid, the local field strengths must be such that a
corresponding homogeneous sample would be in a
Weyl semimetal phase. So any restrictions put on the
field strengths in a Weyl metamaterial are the same
restrictions as for any corresponding Weyl semimetal in
the same sample. Put slightly differently: any physical
realization of a Weyl semimetal in an electronic system
should in principle also be tunable into a Weyl
metamaterial.

V. CONCLUSION

In this work, we propose Weyl metamaterials as a highly
tunable platform for relativistic fermions in curved space.
Analogous to optical metamaterials, we show that Weyl
metamaterials offer a 3D electronic platform where local
manipulations of TRIB fields allow efficient control over
the particle propagation. We lay the ground work for the
theoretical description of these systems and establish the
explicit connection between the local TR and I breaking,
and the effective geometry and gauge fields experienced by
the carriers.
From the point of view of applications, Weyl metamate-

rials offer a novel route to 3D electronic devices. The
functionality of the devices arises from the curved-space
geometry and emergent gauge fields, and they can be
systematically designed with the help of our theory frame-
work. In the present work, we provide a concrete example,
namely the 3DWeyl electron lens. This structure, realized by
relatively simplemagnetic textures, focuses carriers depend-
ing on their chirality. This is just the first example of the new
possibilities offered by Weyl metamaterials. An interesting
venue for future work is to study what other exotic phenom-
ena can be engineered in these systems. For example, a
possibility to realize electronic cloaking devices from Weyl
metamaterials is particularly intriguing.
From the fundamental point of view, our results can be

employed in systematic reverse engineering of 3D curved
geometries and studying quantum effects [47] in designer
geometries. One direction is then to study the curved-space
modifications to the exotic response properties, such as the
chiral anomaly and its manifestations in Weyl semimetals
[48–53]. Also, fabrication of condensed-matter analogues
of cosmological horizons could bring new fundamental
phenomena within the reach of experimental studies.
Considering the rapid developments in materials and
realizations of topological semimetals, the different aspects
of curved-space quantum physics will likely become
experimentally accessible soon.
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APPENDIX A: WEYL BLOCK REDUCTION

1. TR breaking without I breaking

Here, we derive the unitary transformations that reduce
the 4 × 4 Hamiltonians for different models into blocks of
(2 × 2) Weyl Hamiltonians.
It turns out that it is beneficial to first consider the

Hamiltonian in Eq. (2) with w ¼ 0; i.e.,

H ¼ κðkÞ · γþmðkÞγ4 þ u · b: ðA1Þ
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As can be easily shown by inspection, the matrices in b
have identical properties to those of the regular 2 × 2 Pauli
matrices; i.e.,

fbi; bjg ¼ 2δij; ½bi; bj� ¼ 2iεijkbk: ðA2Þ

These matrices, like the Pauli matrices, thus exponentiate
to the special unitary group SU(2), which is two-to-one
homomorphic to the orthogonal group O(3). In practice,
this means that the transformation

u · b → eiðφ=2Þn̂·bðu · bÞe−iðφ=2Þn̂·b ðA3Þ

corresponds to rotating the vector u by an angle φ around
the axis defined by the unit vector n̂. Furthermore, by
observing that the components of the other vectors in
Table I along with γ can be written as p ¼ −γ5b, b0 ¼ γ4b,
and γ ¼ −γ45b, respectively, we can conclude that the
exponential map has the same effect (it commutes with γ4
and γ5) on terms containing these vectors as well.
The first step is to rotate u in Eq. (A1) to point along the

x axis. This can, for example, be achieved by first rotating u
into the xz plane and then rotating it around the y axis,
aligning it with the x axis. These two transformations are
effected by

UðuÞ ¼ eib2½ðθ−π=2Þ=2�eib3ðφ=2Þ; ðA4Þ

which is expressed in terms of the polar (θ) and azimuthal
(φ) angles of u. Applying this transformation to the whole
Hamiltonian yields

UðuÞH U†ðuÞ ¼ (κðkÞ · û)γ1 þ
(û × κðkÞ) · ẑffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − û23
p γ2

þ ½û × (κðkÞ × û)� · ẑffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − û23

p γ3 þmðkÞγ4 þ uγ23:

ðA5Þ

To block diagonalize this, we need to eliminate either γ1
or γ4. This is achieved using R ¼ e−iðρ=2Þγ14 with tan ρ ¼
(κðkÞ · û)=m. The final result is then

R UðuÞH U†ðuÞ R† ¼ uγ23þ
(û×κðkÞ) · ẑffiffiffiffiffiffiffiffiffiffiffiffi

1− û23
p γ2

þ½û× (κðkÞ× û)� · ẑffiffiffiffiffiffiffiffiffiffiffiffi
1− û23

p γ3

þmðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ (κðkÞ · ûÞ2

m2ðkÞ

s
γ4; ðA6Þ

which splits into blocks in the basis given by, for example,

γ1 ¼ τx; γ2 ¼ τzσx;

γ3 ¼ τzσy; γ4 ¼ τzσz: ðA7Þ

With this choice, the d vectors for the upper and lower
block become

d�1 ¼ � (û × κðkÞ) · ẑffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − û23

p ;

d�2 ¼ � ½û × (κðkÞ × û)� · ẑffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − û23

p ;

d�3 ¼ u�mðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ (κðkÞ · û)2

m2ðkÞ

s
: ðA8Þ

Depending on the sign ofmðkÞ, the nodes will be located
in either the upper or the lower block. The d vector
corresponding to the Weyl block will, regardless, have
the form

dW1 ¼ (û × κðkÞ) · ẑffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − û23

p ;

dW2 ¼ ½û × (κðkÞ × û)� · ẑffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − û23

p ;

dW3 ¼ u −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðkÞ2 þ (κðkÞ · û)2

q
; ðA9Þ

where the potential minus sign on the first and second
component have been taken care of using a unitary trans-
formation σz. The above vector vanishes whenever all three
components are zero; i.e.,

κðkWÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 −m2ðkWÞ2

q
û: ðA10Þ

Furthermore, note that if dWðkWÞ ¼ 0, it follows immedi-
ately that dWð−kWÞ ¼ 0, which is just a manifestation of
the fact that Weyl nodes come in pairs.
To arrive at an effective curved-space Weyl Hamiltonian,

we linearize dW around the Weyl nodes. The Weyl
Hamiltonian can then be written in terms of frame fields as

HW ¼ ejiðkj − kWj Þσi; ðA11Þ

where the frame fields eji can be found to be

ej1 ¼
(û × ∂qjκðqÞ) · ẑffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − û23
p ����

q¼kW

; ðA12Þ

ej2 ¼
½û × (∂qjκðqÞ × û)� · ẑffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − û23
p ����

q¼kW

; ðA13Þ

ej3 ¼ −
mðkWÞ

u
∂qjmðqÞj

q¼kW
ðA14Þ
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∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2ðkWÞ
u2

s
∂qj(κðqÞ · û)j

q¼kW

; ðA15Þ

where the sign in the last component corresponds to
either kW (upper sign) or −kW (lower sign). The coframe
fields ~e are easy to evaluate whenever ej0 ¼ e0j ¼ 0, and
are given by

~eli ¼
1

2

εijkεlmnemjenk
εstues1et2eu3

; ~e ¼ 1: ðA16Þ

Finally, the metric tensor can be straightforwardly
calculated to be

gij ¼ ð∂kiκÞ · ð∂kjκÞ −
m2

u2
ð∂kiκ · ûÞð∂kjκ · ûÞ

�m
u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2

u2

s
½ð∂kimÞð∂kjκ · ûÞ þ ð∂kjmÞð∂kiκ · ûÞ�

þm2

u2
ð∂kimÞð∂kjmÞ; ðA17Þ

where we omit writing out the arguments. The whole
expression must then be evaluated at the relevant
Weyl node.

2. I breaking with preserved TR

In this section, we show how to obtain similar results
for a system with only inversion-symmetry breaking. The
starting Hamiltonian is

H ¼ κðkÞ · γþmðkÞγ4 þ w · p: ðA18Þ

The last term can be rotated using UðwÞ to give

UðwÞH U†ðwÞ ¼ K · γþmðkÞγ4 þ wγ14; ðA19Þ

where K can be directly extracted from Eq. (A5). On this
we can then simply apply a rotation expðiνγ23=2Þ with
tan ν ¼ K3=K2 to get

eiðν=2Þγ23 UðwÞH U†ðwÞe−iðν=2Þγ23

¼ K1γ1 þ K2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

3

K2
2

s
γ2 þmðkÞγ4 þ wγ14: ðA20Þ

Employing, for example, the representation

γ1¼ τzσx; γ2¼ τzσz; γ3¼ τx; γ4 ¼ τzσy; ðA21Þ

we see that this Hamiltonian is block diagonal with blocks
given by

H� ¼�K1σxþ
 
w�K2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þK2

3

K2
2

s !
σz�mðkÞσy: ðA22Þ

It follows that the Weyl block is

HW ¼ (ŵ · κðkÞ)σx þ
�
w −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2 þ K2
3

q �
σz þmðkÞσy;

ðA23Þ

where, if sgn(K2ðkWÞ) < 0, we apply a transformation σz
to get rid of the minuses in front of K1 ¼ ŵ · κðkÞ and m.
The conditions for the existence of the Weyl nodes kW

become

mðkWÞ ¼ 0;

κðkWÞ · w ¼ 0;

jκðkWÞj ¼ jwj: ðA24Þ

In this case, the minimum number of nodes is four. We can
now linearize this around the Weyl points, yielding

HW ≈ ½ŵ · ∂qjκðqÞjq¼kWσx þ ∂qjmðqÞjq¼kWσy

− w−1κðkWÞ · ∂qjκðqÞjq¼kWσz�ðkj − kWj Þ: ðA25Þ

We can now immediately read off the frame fields to be

ej1 ¼ ŵ · ∂qjκðqÞjq¼kW ; ðA26Þ

ej2 ¼ ∂qjmðqÞjq¼kW ; ðA27Þ

ej3 ¼
κðkWÞ · ∂qjκðqÞ

w

����
q¼kW

; ðA28Þ

and the metric tensor

gij ¼ (ŵ · ∂qiκðqÞ)(ŵ · ∂qjκðqÞ)þ ∂qimðqÞ∂qjmðqÞ

þ κðkWÞ · ∂qiκðqÞ
w

κðkWÞ · ∂qjκðqÞ
w

; ðA29Þ

where all terms should be evaluated at q ¼ kW .

3. Block reduction with TR and I breaking

The problem becomes significantly more cumbersome
whenbothuandwarenonvanishing. Inthiscase, it isuseful to
writew ¼ w⊥ þ w∥, wherew⊥ · u ¼ 0 andw∥∥u. The goal
is to finda transformation that removesallmatricesbelonging
to p from the Hamiltonian, such that we are left with the
special case discussed in the first part of this appendix.
Before tackling the full problem, first consider the case

where w⊥ ¼ 0. Then it follows that UðuÞ also aligns w
with the x axis. The Hamiltonian is then
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UðuÞH U†ðuÞ ¼ K · γþmγ4 þ uγ23 þ wγ14; ðA30Þ
where K can be directly extracted from Eq. (A5). We
can now remove γ14 by a simple unitary transformation
F ¼ eiδγ1=2, provided that tan δ ¼ w=m:

F UðuÞH U†ðuÞ F† ¼ K1γ1 þ cos δðK2γ2 þ K3γ3Þ

þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

m2

r
γ4 þ ub1

þ sin δðb2K3 − b3K2Þ: ðA31Þ
Evidently, F also introduces new b terms, but at this
point we can simply refer back to the first half of this
appendix, as the problem is mathematically identical to the
case w ¼ 0.
Solving the full problem can thus be done if we can find

a transformation that aligns the vector associated with b
and the vector associated with p. For the sake of clarity, we
do not concern ourselves with that of H0 until at the very
end (as it turns out, all transformations merely rotate κ), so
our primary focus now lies on

H1 ¼ u · bþ w∥ · pþ w⊥ · p: ðA32Þ

As usual, we begin by applying UðuÞ, which gives us

UH1 U†¼ ub1þ sgnðw ·uÞw∥p1þ
ðû×w⊥Þ · ẑffiffiffiffiffiffiffiffiffiffiffiffi

1− û23
p p2

þ w⊥ · ẑffiffiffiffiffiffiffiffiffiffiffiffi
1− û23

p p3≡ub1þw∥p1þ ~w⊥;2p2þ ~w⊥;3p3:

ðA33Þ

We can then make a rotation around b1 with the unitary
transformation V ¼ eiμb1=2, which for tan μ ¼ ~w⊥;3= ~w⊥;2

eliminates the p3 term:

V UH1 U† V† ¼ ub1 þ sgnðw · uÞw∥p1 þ w⊥p2: ðA34Þ

At this point, we make two transformations in succession;
we first apply Vb ¼ eiαb3=2 and then Vp ¼ eiβp3=2, which
gives a seemingly unwieldy

Vp Vb V UH1 U† V† V†
b V

†
p ¼ ½ucosβ cosαþ sinβðw⊥ cosα−w0

∥ sinαÞ�b1þ½cosβðw0
∥ cosαþw⊥ sinαÞ−u sinα sinβ�p1

− ½ucosβ sinαþ sinβðw0
∥ cosαþw⊥ sinαÞ�b2− ½u sinβ cosα− cosβðw⊥ cosα−w0

∥ sinαÞ�p2;

where w0
∥ ¼ sgnðw · uÞw∥. We can now determine the

angles α and β by requiring that the terms proportional
to b2 and p2 vanish. One possible solution is then

tan α ¼ u2 þ w2⊥ − w2
∥

2w⊥w∥
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 þ w2⊥ − w2

∥Þ2
4w2⊥w2

∥
þ 1

s
;

tan β ¼ w⊥ − w0
∥ tan α

u
: ðA35Þ

From this then follows that

Vp Vb V UH1 U† V† V†
b V

†
p ¼ u

cos α
cos β

b1 − u
sin α
sin β

p1;

ðA36Þ

to which we can apply our earlier methods.
The effects of these transformations on H0 are then

straightforwardly calculated. As usual, UðuÞ gives us

UH0 U† ¼ K · γþmγ4; ðA37Þ

which upon application of V turns into

V UH0 U† V†¼K1γ1þðK2 cosμþK3 sinμÞγ2
þðK3 cosμ−K2 sinμÞγ3þmγ4: ðA38Þ

With the identifications

q1 ¼ K1 cos αþ ðK2 cos μþ K3 sin μÞ sin α; ðA39Þ

q2 ¼ ðK2 cos μþ K3 sin μÞ cos α − K1 sin α; ðA40Þ

q3 ¼ ðK3 cos μ − K2 sin μÞ cos β þm sin β; ðA41Þ

~m ¼ m cos β − ðK3 cos μ − K2 sin μÞ sin β; ðA42Þ

~u ¼ u
cos α
cos β

; ðA43Þ

~w ¼ −u
sin α
sin β

; ðA44Þ

the Hamiltonian can be written as

Vp Vb V UH U† V† V†
b V

†
p ¼ q · γþ ~mγ4 þ ~ub1 þ ~wp1;

ðA45Þ
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from where we can refer back to the case with w∥u, which
combined with our earlier discussion on parallel w and u
gives us

F Vp Vb V UH U† V† V†
b V

†
p F †

¼ q1γ1 þ cos δðq2γ2 þ q3γ3Þ

þ ~m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~w2

~m2

r
γ4 þ ~ub1 þ sin δðb2q3 − b3q2Þ; ðA46Þ

on which we can apply the machinery developed for the
case of w ¼ 0 [Eq. (A1)].
As a final comment on the general case, we note that the

equations for the Weyl nodes now take the form

κðk�
WÞ ¼ �rûþ sðŵ × ûÞ þ t(û × ðŵ × ûÞ); ðA47Þ

where

r ¼ cos2 α
cos β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
�
1 −

tan2 α
tan2 β

�
−

m2

cos2 α

s
; ðA48Þ

s ¼ m1(û × ðŵ × ûÞ)þm2ðŵ × ûÞ
w2⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − û23

p · ẑ; ðA49Þ

t ¼ −m1ðŵ × ûÞ þm2(û × ðŵ × ûÞ)
w2⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − û23

p · ẑ; ðA50Þ

and

m1 ¼ mðsin α cos μþ tan β sin μÞ; ðA51Þ

m2 ¼ mðsin α sin μ − tan β cos μÞ: ðA52Þ

As two straightforward examples, we see that if w∥u,
Eq. (A47) gives us

κðk�
WÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − w2 −m2

p
û; ðA53Þ

while for w⊥u, it yields

κðk�
WÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

u2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 −m2

p
û

þ sgn½ðû × ŵÞ · ẑ�mw
u

ðŵ × ûÞ: ðA54Þ

Both of these cases reduce to the correct equation in the
w ¼ 0 limit.

APPENDIX B: REALIZATIONS OF WEYL
METAMATERIALS

To illustrate the utility of our theoretical framework
and the physics of Weyl metamaterials, we consider three
much-studied models as platforms for Weyl metamaterials.

These include the topological insulator-ferromagnet layer
structure [31], the popular toy model introduced by Vazifeh
and Franz [38], and a Dirac semimetal model of Cd3As2 [9]
with broken inversion symmetry. As detailed in Ref. [31],
the topological insulator-ferromagnet heterostructure can
be modeled by the Hamiltonian

H ¼ vFτzðẑ × σÞ · kþ Δ̂ðkzÞ þmσz; ðB1Þ
where vF is the Fermi velocity, k the momentum,
Δ̂ðkzÞ ¼ ΔSτ

x þ ΔDðcos kzτx − sin kzτyÞ, and m is a
time-reversal-breaking magnetization. The parameters ΔS
and ΔD characterize the tunneling between different sur-
faces within and between neighboring layers of the
heterostructure, respectively. While not unique, a suitable
choice for the representation of the Dirac γ matrices allows
us to write Eq. (B1) as

H ¼ vFkxγ1 þ vFkyγ2 þ ΔD sin kzdγ3

þ ðΔS þ ΔD cos kzdÞγ4 þm · b; ðB2Þ
where we promote the model from having magnetization
only in the z direction mb3 → m · b. Here, we see that m
corresponds to the TR-breaking field u in Table I, and
letting it vary as a function of position, we obtain an
example of a TR-breaking metamaterial. By applying our
general framework, it is straightforward to study the
curved-space low-energy physics of the model.
We next consider the toy model introduced in Ref. [38].

The model represents a 3D (topological) insulator with a
finite magnetization and has a Hamiltonian

H ¼ 2λτzðσx sin ky − σy sin kxÞ þ 2λzτy sin kz þ τxMk

þ −u0σysz þ u · ð−τxσx;−τxσy; σzÞ; ðB3Þ
where we deviate slightly from the notation in Ref. [38]
for the TRIB terms. Here, the mass term is Mk ¼
μ − 2t

P
3
α¼1 cos kα, where μ and t are the chemical

potential and hopping amplitude, respectively. The
parameters λ; λz characterize the strength of the spin-orbit
hopping and u can be identified with magnetization.
Expressing this Hamiltonian via Dirac γ matrices gives us

H ¼ 2λðγ2 sin ky þ γ1 sin kxÞ þ 2λzγ3 sin kz

þ γ4Mk þ u0εþ u · b: ðB4Þ
Within the scope of our present formalism, we cannot
account for the I-breaking ε term and must hence restrict
ourselves to u0 ¼ 0, but otherwise this is now in a form
that we can apply our formalism to, starting from Eq. (A1).
For example, we immediately get that the equations for the
Weyl nodes are given by

2λj sin kWj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 −M2

kW

q
ûj; ðB5Þ
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where λ1;2 ¼ λ and λ3 ¼ λz. The frame fields and the metric
can now be extracted from our general formulas.
Our third example is a 3D Dirac semimetal [9] with

broken I symmetry. The Hamiltonian describes the spec-
trum of Cd3As2 (or Na3Bi) near the Γ point and is given by

H0 ¼ ε0ðkÞ þMðkÞτzσz þ Akxτzσx þ Akyτzσy; ðB6Þ
where ε0ðkÞ ¼ C0 þ C1k2z þ C2ðk2x þ k2yÞ and MðkÞ ¼
M0 þM1k2z þM2ðk2x þ k2yÞ [9]. The above Hamiltonian
can be directly translated into our γ-matrix representation
via the substitution τzσj ¼ γj for j ¼ 1, 2 and τzσz ¼ γ4.
We can add an inversion-breaking field to this model by
introducing a coupling w · p, such that we get

H ¼ ε0ðkÞ þ Akxγ1 þ Akyγ2 þMðkÞγ4 þ w · p: ðB7Þ

While the above form with the I-breaking vector parameter
w is a bit abstract, it is possible to implement it by,
for example, elastic deformations due to strain [22–25].
Starting from Eq. (A18), we can then derive the desired
quantities, viz., the frame fields and the induced metric.

APPENDIX C: SEMICLASSICAL MOTION
AND THE GEODESIC EQUATION

The geodesic equation can be derived from the semi-
classical equations of motion in Eq. (10). In the absence of
electromagnetic fields and Berry curvatures, the equations
reduce to

_r ¼ ∂k E ¼ ∂kðgijkikjÞ
2 E

;

_k ¼ −∂r E ¼ −
∂rðgijkikjÞ

2 E
; ðC1Þ

which—given that E is a constant of motion—can by a
rescaling of the time t → εt0 be brought into the form

_r ¼ ∂k
1

2
gijkikj;

_k ¼ −∂r E ¼ −∂r
1

2
gijkikj: ðC2Þ

We recognize these as the Hamilton equations of motion,
which follow from extremizing the action

S ¼
Z

tf

ti

Lðr; _rÞdt; ðC3Þ

with the Lagrangian given by

L ¼ _rnkn −
1

2
gijkikj ¼

1

2
gij _ri _rj: ðC4Þ

This problem is equivalent to extremizing the length
of a path in a curved space given by the metric gij,

and it immediately follows that r obeys the geodesic
equation

̈rl þ Γl
ij _ri _rj ¼ 0; ðC5Þ

with the connection Γ given by

Γi
jk ¼

1

2
gilð∂rjglk þ ∂rkglj − ∂rlgjkÞ: ðC6Þ

Reintroducing the Berry curvatures and the emergent
magnetic field changes this picture: although the energy
remains a constant of motion up to first order in spatial
derivatives, the geodesic equation now becomes that of a
charged particle in an external magnetic field. We have that

_r ¼ ∂k E −Ωkr _r − Ωkk
_k;

_k ¼ −∂r EþΩrk
_kþ Ωrr _r − q_r × ~B: ðC7Þ

If we neglect terms that are second order or higher in spatial
derivatives, we can remove Ωrr and write, for example,
ðI −ΩrkÞ−1 ≈ Iþ Ωrk. The equations reduce to

_rl¼ðδls−Ωklrs þqΩklknεnsm
~BmÞ∂ks EþΩklks∂rs E; ðC8Þ

_kl ¼ −∂rl E − qεlmnð∂km EÞ ~Bn: ðC9Þ

Differentiating the first equation once more with respect to
time, we have

̈rl ¼ d
dt

½ðδls −Ωklrs þ qΩklknεnsm
~BmÞ∂ks Eþ Ωklks∂rs E�

≈
1

E
½ð∂rngilÞki _rn þ gil _ki�; ðC10Þ

which follows from using the fact that E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
gijkikj

p
and

dropping terms with more than one spatial derivative. To
show that this is equivalent to a geodesic equation to linear
order, note that the left term on the right-hand side is
already linear in spatial derivatives, and we can thus simply
substitute k ¼ Eg−1 _rþ Oð∂rÞ, which follows directly
from Eq. (C8), and once again drop all higher-order spatial
derivatives. Hence, Eq. (C10) now becomes

̈rl ¼
�
ð∂rtgljÞgjs þ

1

2
glnð∂rngtsÞ

�
_rs _rt −

q
E
gliεijkrj ~B

k

→ ̈rl þ Γl
st _rs _rt ¼ −

q
E
gliεijkrj ~B

k; ðC11Þ

where

Γl
st ¼

glj

2
ð∂rsgjt þ ∂rtgjs − ∂rjgstÞ ðC12Þ

is the Christoffel symbol.
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As a final remark, we point out that the above derivation
uses the fact that

d
dt

E ¼ ð∂kj EÞ_kj þ ð∂rj EÞ_rj

≈ ð∂kj EÞ½−∂rj E − qεjmnð∂km EÞ ~Bn� þ ð∂rj EÞð∂kj EÞ
¼ −qð∂kj EÞð∂km EÞεjmn

~Bn ¼ 0; ðC13Þ

where the last equality follows from the antisymmetry
of εjmn.

APPENDIX D: ANALYTICAL SOLUTION
FOR 3D LENS GEOMETRY

Here, we present an analytical solution for the oscillatory
behavior of the trajectories in the limit of small deviations
from x2 þ y2 ¼ 0 and kx=kz; ky=kz ≪ 1. The spatial part of
the metric for the 3D lens is given by

g ¼

0
BBBBBB@

v2x
h
1 − m2

u2 sin
2θðrÞcos2φ

i
− 1

2
m2

u2 vxvysin
2θðrÞ sin 2φ − 1

2
m2

u2 vxvz sin 2θðrÞ cosφ

v2y
h
1 − m2

u2 sin
2θðrÞsin2φ

i
− 1

2
m2

u2 vyvz sin 2θðrÞ sinφ

v2z
h
1 − m2

u2 cos
2θðrÞ

i

1
CCCCCCA
; ðD1Þ

where the omitted elements that can be deduced from g are
symmetric. For small θ, the metric reduces to

g ¼

0
BBB@

v2x 0 − m2

u2 vxvzωx

0 v2y − m2

u2 vyvzωy

− m2

u2 vxvzωx − m2

u2 vyvzωy v2zð1 − m2

u2 Þ

1
CCCA: ðD2Þ

From Eq. (D1), it is straightforward to calculate its spatial
derivatives, which in our approximation reduce to

∂xg ¼ −
m2

u2

0
BB@

2v2xω2x vxvyω2y vxvzω

vxvyω2y 0 0

vxvzω 0 −2v2zω2x

1
CCA; ðD3Þ

∂yg ¼ −
m2

u2

0
BB@

0 vxvyω2x 0

vxvyω2x 2v2yω2y vyvzω

0 vyvzω −2v2zω2y

1
CCA; ðD4Þ

and ∂zg ¼ 0.
It follows from the equations of motion in Eq. (10)

together with our approximations that the system of first-
order differential equations separate in x and y, such that
we have

�
_xi

_kxi

�
¼ 1

E

0
BB@

− m2

u2 vxivzωkz v2xi

−vzkzω2

�
vzkz m

2

u2 þ cu
�
1 − m2

u2

	
3=2
�

m2

u2 vxivzωkz

1
CCA
�

xi

kxi

�
ðD5Þ

for both of them. Here, we ignore the contributions from
the Berry curvatures (which would couple the motion in
the x and y directions), as their effects are small on short
enough time scales. We have additionally taken into
account the effective magnetic field arising from a
position-dependent Weyl node, ~B ¼ ∇ × kW=q. Since this
magnetic field acts with different signs on the opposite
nodes, we introduce the parameter c ¼ �1 to distinguish
the Weyl nodes (c ¼ 0 would correspond to pure geodesic

motion). In the derivation of this linear differential
equation, we keep only terms up to linear order in kx
and ky and use the fact that _kz ¼ 0. The solution to this
differential equation can be formally written as
ΨðtÞ ¼ expðAtÞΨðt ¼ 0Þ, where A is the matrix on the
right-hand side. From this, it is evident that if A has
imaginary eigenvalues, we will obtain oscillatory solu-
tions. To simplify, we now assume that vx ¼ vy ≡ v. The
eigenvalues are then
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λ� ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2

u2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

u2
v2zk2z þ cu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2

u2

svuut ωv
E
; ðD6Þ

from which it follows that we have sinusoidal solutions
typically only for one chirality c ¼ 1. Furthermore, since
_z ≈ v2zð1 −m2=u2Þkz= E, we have that the length of one
oscillation with period T ¼ 2π=jλj is

Δz ¼ _zT ¼ 2π
vz
vω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m2

u2

m2

u2 þ u
vzkz

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − m2

u2

q
vuuut : ðD7Þ

The distance between two focal points is Δz=2, which
depends on the energy of particles weakly through kz in
the square root. The analytical predictions are confirmed
by exact numerics. The Berry-curvature effects that are
neglected here affect the long-time dynamics, most clearly
by resulting in anonplanarmotion that is not evident for short
times. The analytical results are applicable also for different
textures when ω is replaced by a characteristic measure of
the variation of the uz component near the lens axis.

APPENDIX E: ALTERNATIVE LENS
REALIZATIONS

In the main text, we consider an electron lens in a two-
node model H ¼ vikiγi þmγ4 þ u · b with a Skyrmion-
like magnetic texture. This is not necessary for the lens
effect to occur, as we can see in Fig. 4, which illustrates
how a similar effect can be realized by a unidirectional
texture u ¼ ½0; 0; uðrÞ�. If uðrÞ decreases radially away
from the lens axis as in Fig. 4(a), the carrier trajectories near
the axis are qualitatively similar to the rotating texture.
However, even simpler textures result in nontrivial lensing;
the case where uðrÞ varies only in the x direction, as shown
in Fig. 4(b), still leads to a 2D lens effect. It is encouraging

from a practical point of view that no elaborate 3D textures
are needed in realizing remarkable effects. In Figs. 4(c) and
4(d), we have plotted the particle trajectories corresponding
to a texture like in Fig. 4(b) . We use a Gaussian envelope
although the precise form is not crucial for the qualitative
features. The motion in the x-z plane looks qualitatively
similar to the 3D lens motion but only in that plane—not for
any arbitrary plane parallel to the z axis, as in a 3D lens.

APPENDIX F: NUMERICAL CALCULATION OF
THE LOCAL DENSITY OF STATES

We employ the LDOS as a tool for comparing the exact
four-band model and the linearized two-band Weyl block
for inhomogeneous TR-breaking textures uðrÞ. This is
done by considering a system that is inhomogeneous in the
z direction but homogeneous with periodic boundary
conditions in the x − y plane. The considered model has
a HamiltonianH ¼ κðkÞ · γþmγ4 þ u · b, where κiðkÞ ¼
t sin ki and m and t are constants. In the numerics, we
employ the representation γi ¼ τzσi, for i ¼ 1, 2, 3 and
γ4 ¼ τx. The LDOS is studied for rotating and linear
textures uðzÞ. In the studied geometry, kx and ky are good
quantum numbers, so the LDOS can be expressed as
νðz; EÞ ¼PEkx;ky;n

jΨkx;ky;nðzÞj2δðE − Ekx;ky;nÞ, where n

denotes the discrete quantum number in the z direction.
We consider a system on lattice with N lattice sites in the z
direction, replace t sin kz with a standard hopping matrix,
and impose hard-wall boundary conditions. In the con-
tinuum model, the momentum operator ∂z is replaced by a
hopping matrix representing a discretized derivative. In
order to evaluate the LDOS, we numerically calculate
Ekx;ky;n andΨkx;ky;nðzÞ for the 1D tight-binding models with
a sufficiently dense ðkx; kyÞ lattice for the four-band model
and the two-band models. To obtain continuous functions
in energy, we replace the energy δ functions by Lorentzians
δðE − EnÞ → f1=½ðE − EnÞ2 þ η2�g with broadening η.

FIG. 4. (a) 3D lens effect can be realized also by a unidirectional u texture where modulus increases away from the lens axis.
(b) Unidirectional texture which varies only in x direction realizes 2D lens effect in x-z plane. (c) Semiclassical trajectories of carriers
with texture like in (b) with u ¼ ½0; 0; uðrÞ�, uðrÞ ¼ u0 þ u1ð1 − e−x

2=ξ2Þ, vx ¼ vy ¼ vz ¼ v, m=u0 ¼ 0.5, u0=u1 ¼ 3, and ξ ¼ 100.
The numerical values of the coordinates are given in the units of ξ. The initial conditions for the trajectories are y ¼ z ¼ 0, kx ¼ ky ¼ 0,
kz ¼ 0.6u=v. Different curves correspond to different initial x coordinates. (d) Trajectories of the same system but for initial conditions
x ¼ y ¼ z ¼ 0, kz ¼ 0.6u0=v. Different curves correspond to kx ¼ �0.016, �0.03, �0.07, �0.13u0=v.
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