
Acoustic Traps and Lattices for Electrons in Semiconductors

M. J. A. Schuetz,1,2 J. Knörzer,1 G. Giedke,3 L. M. K. Vandersypen,4 M. D. Lukin,2 and J. I. Cirac1
1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany

2Physics Department, Harvard University, Cambridge, Massachusetts 02318, USA
3Donostia International Physics Center, Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain

and Ikerbasque Foundation for Science, Maria Diaz de Haro 3, E-48013 Bilbao, Spain
4Kavli Institute of NanoScience, TU Delft, P.O. Box 5046, 2600 GA Delft, Netherlands

(Received 23 May 2017; revised manuscript received 21 August 2017; published 24 October 2017)

We propose and analyze a solid-state platform based on surface acoustic waves for trapping, cooling,
and controlling (charged) particles, as well as the simulation of quantum many-body systems. We develop
a general theoretical framework demonstrating the emergence of effective time-independent acoustic
trapping potentials for particles in two- or one-dimensional structures. As our main example, we discuss in
detail the generation and applications of a stationary, but movable, acoustic pseudolattice with lattice
parameters that are reconfigurable in situ. We identify the relevant figures of merit, discuss potential
experimental platforms for a faithful implementation of such an acoustic lattice, and provide estimates for
typical system parameters. With a projected lattice spacing on the scale of ∼100 nm, this approach allows
for relatively large energy scales in the realization of fermionic Hubbard models, with the ultimate prospect
of entering the low-temperature, strong interaction regime. Experimental imperfections as well as readout
schemes are discussed.
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I. INTRODUCTION

The ability to trap and control particles with the help
of well-controlled electromagnetic fields has led to
revolutionary advances in the fields of biology, con-
densed-matter physics, high-precision spectroscopy, and
quantum information, enabling unprecedented control both
in the study of isolated single particles as well as in few-
and many-body systems subject to controlled and tunable
interactions. Prominent examples range from using optical
tweezers for probing the mechanical properties of DNA
[1,2] to the realizations of Bose-Einstein condensates [3–5]
and numerous breakthrough investigations of strongly
correlated quantum many-body systems with both trapped
ions [6] and ultracold atoms in optical lattices [7,8]. At the
same time, the ever-improving control of materials and
fabrication of semiconductor nanostructures has led to a
proliferation of quasiparticles in such systems and a quest
to trap and isolate them in order to gain deeper insights into
their properties and interactions. While quantum dots have
been developed into excellent traps for charged and neutral
quasiparticles and have contributed to a wealth of exciting
insights [9], scaling them to the many-body regime remains

either a fabrication or operational challenge. This motivates
our search for trapping mechanisms that bring the general-
ity and flexibility of optical lattices to the solid-state setting.
While an optical approach may be feasible [10], surface

acoustic waves (SAWs) have recently been used in a
range of exciting experiments to trap electrons [11–15]
or excitons [16] in moving potentials. When following this
approach, however, particles are typically lost on a rela-
tively fast time scale of ∼10 ns, as a consequence of finite
sample sizes and propagation speeds set by the speed of
sound to ∼3 × 103 m=s. Inspired by these experiments,
here we propose and analyze engineered stationary and
quasistationary (movable) acoustic trapping potentials and
acoustic lattices (ALs) as a generic strategy for trapping,
cooling, and controlling quasiparticles as well as a potential
on-chip, solid-state platform for the simulation of quantum
many-body systems. While in this work we use the
generation of an effective standing-wave lattice for elec-
trons as the main example of our technique, our theoretical
approach generalizes immediately to other trap configura-
tions. In particular, focused SAWs [17] might allow for the
generation of quasi zero-dimensional traps for electrons
akin to optical tweezers, thereby entering a new parameter
regime in the context of acoustic tweezers; so far, the latter
have been used only in a high-temperature, classical regime
to trap and manipulate microparticles immersed in fluids
above the SAW-carrying solid [18].
Our basic scheme involves counterpropagating SAWs

that are launched in opposite directions from two (or more)
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standard interdigital transducers (IDTs) [19,20] patterned
either directly onto a piezoelectric substrate such as
GaAs or on some piezoelectric island, as demonstrated,
for example, in Ref. [21]; for a schematic illustration,
compare Fig. 1. Because of the intrinsic piezoelectric
property of the material, the SAWs are accompanied by
a (time-dependent) periodic electric potential and strain
field, generating a well-controlled potential landscape (of
the same spatial and temporal periodicity) for electrons
confined in conventional quantum wells or purely two-
dimensional crystals such as transition-metal dichalcoge-
nides (TMDCs), with a periodicity on the order of
∼100 nm for SAW frequencies of ∼20 GHz [22]. Based
on a perturbative Floquet approach, we show that the
electron’s potential landscape can effectively be described
by a time-independent pseudolattice with a lattice spacing
∼a ¼ λ=2, provided that certain conditions are fulfilled
(as specified below). Intuitively, the occurrence of such an
effective time-independent potential can be understood
from the fact that sufficiently heavy electrons cannot
adiabatically follow a rapidly oscillating force as created
by the SAW-induced electric potential; therefore, the
electron will effectively be trapped close to the potential
minimum if its wave function spreads slowly enough such
that it is still close to its original position after one
oscillation period of the SAW field. We identify the relevant
figures of merit for this novel setup [cf. Eq. (2)] and
show how the system parameters can be engineered and
dynamically tuned. As a guideline for an experimental
realization of the proposed setup, we derive a set of self-
consistency requirements that allows us to make clear
predictions about the material properties needed for a

faithful implementation. Consequently, we identify strate-
gies to meet these requirements with state-of-the-art exper-
imental techniques and suitable material choices.
Concerning the latter, we analyze the viability of different
heterostructures with high effective electron masses which
support high-velocity sound waves, e.g., AlN/diamond or,
alternatively, TMDCs such as MoS2 or WSe2. While we
discuss the relevant decoherence mechanisms as well as
other relevant experimental imperfections for specific sys-
tems, the very basic principles of our approach should be of
broad applicability to various physical solid-state platforms.
In particular, thanks to the generic nature of our analysis and
the variety of fields (strain, electric, magnetic) that poten-
tially accompany SAWs, our framework is readily applicable
to a broad class of (quasi)particles, including, for example,
electrons, holes, trions, and excitons. While our theoretical
treatment is (to some extent) reminiscent of trapped ions,
allowing us to capitalize on ideas and results from this well-
developed field of research, we show that the emergent
effective dynamics can be captured by the Fermi-Hubbard
model, very much like for fermionic ultracold atoms in
optical lattices, albeit in unprecedented parameter regimes,
because of ultrahigh charge-to-mass ratios and naturally
long-ranged Coulomb interactions. Our approach provides
an alternative to standard (gate-defined) quantum dots,
providing a highly regular periodicity simply set by the
SAW wavelength, with minimal fabrication requirements
(without any further gate patterning), and the potential to
deterministically move around the acoustically defined
quantum dots by simply changing the phase of the excitation
applied to the IDTs. Also, our trapped-ion-inspired pseudo-
potential approach makes our proposal significantly different
from previous theoretical [23] and experimental investiga-
tions [16,21], where particles trapped inside a dynamic,
moving AL (rather than a quasistationary, standing AL, as
considered here) are inevitably lost within a rather short time
scale, ∼10 ns.

II. THEORETICAL FRAMEWORK

In this section, we first develop a general theoretical
framework describing particles in low-dimensional semi-
conductor structures in the presence of (SAW-induced)
high-frequency standing waves. We employ both classical
and quantum-mechanical tools in order to identify the
relevant figures of merit and specify the conditions for the
validity of our theoretical framework. The experimental
feasibility of our scheme is discussed for specific setups in
Sec. III.
Surface acoustic waves.—SAWs are phonon excitations

that propagate elastically on the surface of a solid within a
depth of roughly one wavelength λ [19,20]. In the case of a
piezoelectric material, SAWs can be generated electrically
based on standard interdigital transducers deposited on the
surface, with a SAW amplitude proportional to the ampli-
tude (square root of the power) applied to the IDTs

FIG. 1. Exemplary schematic illustration of the setup. In a
piezoelectric solid (PE) counterpropagating SAWs (as induced by
standard IDTs deposited on the surface [19,20]) generate a time-
dependent, periodic electric potential for electrons confined in a
conventional two-dimensional electron gas (2DEG). If the SAW
frequency ω=2π ¼ vs=λ is sufficiently high (as specified in the
main text), the electron’s potential landscape can effectively be
described by a time-independent pseudolattice with a lattice
spacing a ¼ λ=2. The potential depth (lattice spacing) can be
controlled conveniently via the power (frequency) applied to the
IDTs, while an additional screening layer (not shown) allows
for tuning the strength of the Coulomb interaction between the
particles [23]. In more complex structures, the setup can consist
of multiple layers on top of some substrate.
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[13,19,20]. Typically, such an IDT consists of two thin-film
electrodes on a piezoelectric material, each formed by
interdigitated fingers. Whenever a radio frequency signal is
applied to such an IDT, a SAW is generated if the resonance
condition p ¼ vs;α=f is met; here, p, vs;α, and f ¼ ω=2π
refer to the IDT period, the sound velocity of a particular
SAW mode α, and the applied frequency, respectively
[19,20,24]. As evidenced by numerous experimental stud-
ies [25–28], SAWs can interact with a two-dimensional
electron gas (2DEG) via the electric (and/or strain) field
accompanying this elastic wave.
Classical analysis.—To illustrate our approach, let us first

consider the classical dynamics of a single, charged particle
of mass m (also referred to as electron in the following)
exposed to a SAW-induced monochromatic piezoelectric
standing wave of the form ϕðx; tÞ ¼ ϕ0 cos ðkxÞ cos ðωtÞ.
Here, ω ¼ vsk refers to the dispersion relation of a specific
SAW mode, and the time-dependent potential experienced
by the electron is Vðx; tÞ ¼ eϕðx; tÞ with an amplitude
VSAW ¼ eϕ0 (where e denotes the electron’s charge). In the
absence of a piezoelectric potential, a similar periodic
potential derives from the (strain-induced) deformation
potential associated with a SAW [16]; our theoretical
analysis applies to both scenarios, as it is independent of
the microscopic origin of the SAW-induced potential
Vðx; tÞ ¼ VSAW cos ðkxÞ cos ðωtÞ. While the motion in the
z direction is frozen out for experimentally relevant temper-
atures, a potential pattern of the same periodic form could
be produced in the y direction using appropriately aligned
pairs of IDTs launching counterpropagating SAWs [23].
In this scenario the electron’s motional degrees of freedom
are separable into two one-dimensional problems of the
same structure. Alternatively, using, for example, etching
techniques or gate-defined structures as described in
Refs. [13,14], effectively one-dimensional wires with strong
transverse confinement in the y direction may be considered.
Therefore, in any case only the motion in the x direction is
discussed in the following. Then, in dimensionless units,
where ~x ¼ kx and τ ¼ ωt=2, Newton’s equation of motion
for the electron’s position xðtÞ reads

d2 ~x
dτ2

þ 2q sinð~xÞ cosð2τÞ ¼ 0; ð1Þ

where we introduce the (dimensionless) stability parameter
q ¼ VSAW=ES, with the emerging energy scale

ES ¼ mv2s=2; ð2Þ

that is, the classical kinetic energy of a particle with mass m
and velocity equal to the speed of sound vs of the driven
SAWmode; as we show below, the energy scale ES turns out
to be a key figure of merit in our setup. In the Lamb-Dicke
limit ~x ≪ 1, Eq. (1) reduces to the so-called Mathieu
equation [cf. Eq. (A1)], which is known to govern the

dynamics of ions in Paul traps [29,30]. We assess the
stability of the electron’s motion against thermal noise by
numerically solving Eq. (1), for initial conditions set as
~x0 ¼ 0, ~v0 ≔ ½d~x=dτ�τ¼0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=ES

p
; here, according to

mv20=2 ¼ kBT=2, the initial velocity v0 is identified with the
temperature T by simple equipartition. Solutions to this
problem are deemed stable if the maximal excursion xmax is
smaller than one-half of the lattice spacing (~xmax < π), even
for very long time scales, and unstable otherwise. The results
of this classification procedure are shown in Fig. 2: Stable
(bounded) solutions can be found only for sufficiently low
temperatures (with kBT ≪ ES) and certain values of the
stability parameter q. In particular, in the regime q2 ≪ 1,
kBT ≪ ES stable trajectories ~xðτÞ consist of slow harmonic
oscillations at the secular frequency ω0=ω ≈ q=

ffiffiffi
8

p
, super-

imposed with fast, small-amplitude oscillations at the driving
frequency ω (also referred to as micromotion [30]); compare
Fig. 2(b). When neglecting the micromotion within the so-
called pseudopotential approximation (as routinely done
in the field of trapped ions [30]), the electron’s (secular)
dynamics is effectively described by that of a time-indepen-
dent harmonic oscillator with (slow) frequency ω0 ≪ ω; for
further analytical and numerical details, see Appendix A.
Quantum-mechanical Floquet analysis.—The results

described above can be corroborated within a fully quan-
tum-mechanical model. Here, the electron’s dynamics are
governed by the time-dependent Hamiltonian

HSðtÞ ¼
p̂2

2m
þ VSAW cos ðωtÞ cos ðkx̂Þ; ð3Þ

where x̂ and p̂ refer to the particle’s position and momen-
tum operators, respectively. The Hamiltonian HSðtÞ

FIG. 2. Approximate stability diagrams of the classical equa-
tion of motion in the low-q (upper plot) and high-q (lower plot)
regimes, respectively. The dots denote trajectories corresponding
to some exemplarily chosen parameter sets ðq; kBT=ESÞ.
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satisfies HSðtþ TÞ ¼ HSðtÞ due to the time-periodic nature
of the external driving, with T ¼ 2π=ω. In a high-frequency
field, where the period of the force T is small compared to all
other relevant time scales, the particle’s dynamics can be
approximately described by a time-independent Hamiltonian
Heff . As detailed in Appendix B, Heff can be calculated in a
systematic expansion in the inverse of the driving frequency
ω [31,32]. Then, up to second order in ∼ω−1, we obtain

Heff ¼
p̂2

2m
þ V0 sin2ðkx̂Þ; ð4Þ

where V0 ¼ ε2ES, with the small parameter ε ¼ q=
ffiffiffi
8

p
. The

second term Veffðx̂Þ ¼ V0 sin2ðkx̂Þ demonstrates the for-
mation of an effectively time-independent, spatially periodic
acoustic lattice, with a lattice spacing a ¼ λ=2 ¼ π=k and
potential depth V0 ¼ ε2ES. Similar to the case for trapped
ions, lattice sites are found at the nodes of the time-
dependent force Fðx; tÞ ∼ sinðkxÞ cosðωtÞx associated with
the potential Vðx; tÞ. This force changes its sign on a time
scale∼ω−1; if this is fast compared to the particle’s dynamics
∼ω−1

0 , the particle will be dynamically trapped, because it
does not have sufficient time to react to the periodic force
before this force changes its sign again. Within the usual
harmonic approximation, where Veffðx̂Þ ≈ ðm=2Þω2

0x̂
2,

the effective trapping frequency ω0 can be estimated as
ω0=ω ≈ q=

ffiffiffi
8

p
, which coincides exactly with the (classical)

result for the slow secular frequency ω0 in the pseudopo-
tential regime (with q2 ≪ 1). Accordingly, the AL can be
rewritten as Veffðx̂Þ ¼ ðω0=ωÞ2ES sin2ðkx̂Þ, with the first
(perturbative) factor accounting for the inherent separation of
time scales between the fast driving frequency ω and the
slow secular frequency ω0. Written in this form, the effective
acoustic potential Veffðx̂Þ is reminiscent of standard dipole
traps for ultracold atoms. Here, the effective optical potential
for a two-level system driven by a Rabi frequency Ω with
detuning Δ in a electromagnetic standing wave takes on
the form Voptðx̂Þ ¼ ðΩ2=4Δ2ÞΔ sin2ðkx̂Þ, with the self-
consistent requirementΔ ≫ Ω. Therefore, with the prefactor
∼Ω2=4Δ2 being small for self-consistency, we can associate
the role ES plays in the acoustical case with the role the
detuning Δ plays in the optical setting. Along these lines, for
robust trapping it is favorable to increase the material-
specific quantity ES, thereby achieving a larger trap depth
V0 while keeping both the stability parameter q ¼ VSAW=ES
and thus also the perturbative parameter ε constant. This can
be well understood intuitively, since trapping due to a rapidly
oscillating (SAW) field becomes possible only if the particle
is too inert to adiabatically follow the periodically applied
force: an electron does not significantly move away from a
potential minimum if during one oscillation period of the
SAW field its wave function spreads slowly enough such that
it is still close to its original position when the minimum
reforms. This simplified (pseudopotential) picture is valid for

relatively heavy electrons with high mass m and sufficiently
high driving frequency (that is, high speed of sound vs), as
captured by an elevated sound energy ES ¼ ðm=2Þv2s.
Cooling in the presence of micromotion.—While our

previous discussion focuses exclusively on the time-
dependent system’s dynamics, in the following we extend
our studies and introduce a dissipative model, which
describes the electron’s motional coupling to the (thermal)
phonon reservoir. For details of the derivation, see
Appendix C. Within one unified Born-Markov and
Floquet framework, we derive an effective quantum
master equation for the electronic motion in the vicinity
of one lattice site, fully taking into account the explicit
time dependence of the system Hamiltonian Eq. (3). Since
the quantum-state evolution due to this quantum master
equation is Gaussian, one can readily derive a closed set of
equations for the first- and second-order moments of the
position and momentum observables; formally, it takes on
the form _v ¼ MðtÞv þCðtÞ, with v ¼ ðhx̂it; hp̂it; hx̂2it;
hp̂2it; hx̂ p̂þp̂ x̂itÞ⊤. This equation of motion can be
readily solved by numerical integration; a prototypical
result of this procedure is displayed in Fig. 3. In the
regime q2 ≪ 1, our numerical findings show that (i) the
electronic motion can be described very well by a simple
damped harmonic oscillator with secular frequency ω0,
(ii) the electronic motion is cooled by the phonon reservoir,
and (iii) the Lamb-Dicke approximation is well satisfied.
Let us elaborate on these statements in some more detail.
(i) As evidenced by the dashed red line in Fig. 3, we find
that the effective, time-independent master equation,

_ρ ¼ −iω0½a†a; ρ� þ γðn̄thðω0Þ þ 1ÞD½a�ρ
þ γn̄thðω0ÞD½a†�ρ; ð5Þ

captures very well the most pertinent features of the
electronic dynamics (for q2 ≪ 1). Here, γ is the effective,
incoherent damping rate due to coupling to the thermal
phonon reservoir, n̄thðω0Þ ¼ 1=ðexp½ℏω0=kBT� − 1Þ gives
the thermal occupation number of the phonon bath at
frequency ω0, D½a�ρ ¼ aρa† − ð1=2Þfa†a; ρg denotes the
standard dissipator of Lindblad form, and að†Þ refers to the
usual annihilation (creation) operators for the canonical
harmonic oscillator. As a consequence of the presence of
the dissipator, the first-order moments hx̂it, hp̂it decay
towards zero in the asymptotic limit t → ∞. However,
the second-order moments retain the periodicity of the
external driving for arbitrarily long times (with a perio-
dicity T̄ ¼ ωT=2 ¼ π), which is the signature of an
emerging quasistationary state (cf. Appendix C for details)
and the persisting micromotion which manifests itself in the
fast oscillating dynamics of the position and momentum
variances, as depicted in the inset of Fig. 3. (ii) As
suggested by our analytical results (cf. Appendix C for
details), the phonon reservoir provides an efficient cooling
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mechanism for the electron provided that the host temper-
ature is sufficiently low, that is, kBT ≪ ℏω0. The influence
of the electronic micromotion on this cooling mechanism
can be condensed in the following statement: in the
pseudopotential regime (for which q2 ≪ 1), the expectation
value for the averaged quantum kinetic energy (over one
micromotion period) features a surplus of energy, in
addition to the zero-point kinetic energy in the ground
state of ℏω0=4. This excess energy Δheat ≳ ℏω0=4 may be
viewed as micromotion-induced heating and amounts to
merely a factor of 2 increase only in the particle’s time-
averaged kinetic energy [33]. These results are explicated
in greater detail in Appendix C. (iii) We have numerically
verified that both the expectation value for the electron’s
motion as well as the corresponding fluctuations are
small compared to the SAW wavelength λ ¼ 2π=k, i.e.,
khx̂it ≪ 1 and kσx ≪ 1, with σ2x ¼ hx̂2it − hx̂i2t , thereby
justifying our Lamb-Dicke approximation [with cosðkx̂Þ ≈
1 − ðk2=2Þx̂2] self-consistently.
Self-consistency requirements.—Our theoretical frame-

work is valid provided that the following conditions are
satisfied. (i) First, the Markov approximation holds given
that autocorrelations of the bath (which typically decay on a
time scale ∼ℏ=kBT) decay quasi-instantaneously on the
time scale of system correlations ∼γ−1 [34]. In principle,
the damping rate γ should be replaced by the thermally
enhanced rate γeff ¼ γ½n̄thðω0Þ þ 1�; however, we are
mostly interested in the low-temperature, pseudopotential

regime where γeff ≈ γ. Thus, the Markov approximation
yields the condition ℏγ ≪ kBT. (ii) Second, the (weak-
coupling) Born approximation holds provided that the
dissipative damping rate γ is small compared to the relevant
system’s transition frequencies, yielding the requirement
γ ≪ ω0. In the low-q limit, taking conditions (i) and (ii),
together with the prerequisite for efficient ground-state
cooling, kBT ≪ ℏω0, yields the chain of inequalities
ℏγ ≪ kBT ≪ ℏω0. In this regime, the weak-coupling
Born approximation ðγ ≪ ω0Þ is satisfied very well.
(iii) Third, the characteristic separation of time scales
between the (slow) secular motion and the (fast) micro-
motion, with ω0 ¼ εω and ε ¼ q=2

ffiffiffi
2

p
≪ 1, gives the

requirement ω0 ≪ ω. (iv) Fourth, the energy scale ℏω
has to be much smaller than ES in order to ensure the
existence of at least one bound state per lattice site; the
latter can be estimated as nb ¼ V0=ℏω0 ¼ εES=ℏω ¼
ðε=2Þmvs=ℏk, leading to ℏω ≪ ES in the regime ε ≪ 1,
nb ≳ 1. Note that the existence of at least one bound
state per lattice site (nb ≳ 1) may always be fulfilled by
choosing the lattice spacing a ¼ π=k sufficiently large, at
the expense of more severe temperature requirements for
ground-state cooling and smaller energy scales in the
emerging Hubbard model (see below). Finally, the param-
eter regime of interest can be condensed into one line of
inequalities as (ℏ ¼ 1)

γ ≪ kBT ≪ ω0 ≪ ω ≪ ES: ð6Þ

Let us discuss the implications of Eq. (6) in more detail.
(i) In the parameter regime described by Eq. (6) the acoustic
trap is stable against thermal fluctuations, because kBT ≪
V0 with V0 ¼ ε2ES; in other words, V0 ¼ nbω0 ≫ kBT, if
ω0≫kBT and nb ≳ 1, as desired. The condition kBT ≪ ω0,
however, may be relaxed if ground-state cooling is not
necessarily required, akin to the physics of optical tweez-
ers. In this case, the less stringent condition V0 ≫ kBT still
ensures a thermally stable trap. (ii) The self-consistency
requirement γ ≪ kBT derives from the Markov assumption
of having a short correlation time of the phonon bath
γτc ≪ 1, with τc ∼ 1=kBT. However, in the low-
temperature regime, the correlation time τc may as well
be set by the bandwidth of the bath ΔB (that is, the
frequency range over which the bath at hand couples to
the system), rather than just temperature. In that case, one
may drop the condition γ ≪ kBT, leading to a slightly
refined regime of interest with γ; kBT ≪ ω0 ≪ ω ≪ ES,
provided that the Markov assumption γτc ≪ 1 is still
satisfied with τc ∼ Δ−1

B . (iii) As a direct consequence of
the presence of Mathieu-type instabilities, the proposed
setup operates at relatively low SAW-induced amplitudes
set by the energy scale ES, with the potential amplitude due
to a single IDT given as VIDT ¼ VSAW=2 ¼ ðq=2ÞES < ES.
Again, Eq. (6) underlines a remarkably close connection

to the established field of trapped ions, where (as a direct

FIG. 3. Exact numerical simulation [based on Eqs. (C37) and
(5)] for the electron’s trajectory hx̂it (solid black line), showing a
slow secular motion with frequency ω0 that is superimposed by
fast, small-amplitude micromotion oscillations. When disregard-
ing micromotion, the dynamics can approximately be described
by a simple damped harmonic oscillator with secular frequency
ω0 (dashed red line). The initial state has been set as a coherent
state with h ~̂xi ¼ 0, h ~̂pi ¼ 0.01. Other numerical parameters are
q ¼ 0.47, γ=ω0 ¼ 10−3, kBT=ℏω0 ¼ 10−1, ω0=ω ≈ 0.17. Inset:
Position variance σ2~x ¼ h ~̂x2i − h ~̂xi2 at times when transient effects
have decayed.
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consequence ofMathieu’s equation, just as in our setting) the
inherent separation of time scales (ω0 ≪ ω) between (slow)
secular motion and (fast) micromotion is well known, albeit
at very different energy scales with typical driving frequen-
cies ω=2π ∼ 100 kHz–100 MHz [30]. Beyond this close
analogy, our work identifies the importance of the energy
scale ES ¼ ðm=2Þv2s in the proposed solid-state, SAW-based
setting, as displayed by Eq. (6). Moreover, the first two
inequalities in Eq. (6) derive directly from the intrinsic solid-
state cooling mechanism provided by the phonon bath,
whereas ions are typically cooled down to the motional
ground state using laser-cooling techniques that (as opposed
to our solid-state approach) explicitly involve the ion’s
internal level structure [30].
In the following, we address the experimental implica-

tions of the requirements listed in Eq. (6) for realistic setups
and show how some of the conditions may in fact be
relaxed.

III. IMPLEMENTATION: HOW TO MEET
THE REQUIREMENTS

Our previous conceptual analysis reveals a specific set of
requirements [as summarized in Eq. (6)] that should be
fulfilled in order to ensure a faithful implementation of the
proposed AL setup in an actual experiment. In the follow-
ing we discuss several practical strategies in order to meet
these conditions. Thereafter, we address several practical
considerations that might be relevant under realistic exper-
imental conditions.
Requirements.—First, rough (potentially optimistic, see

below) estimates for the spontaneous emission rate of
acoustic phonons∼γ may be inferred from low-temperature
experiments on charge qubits in (GaAs) double quantum
dots which indicate rates as low as γ=2π ≳ 20 MHz
(ℏγ ≳ 0.1 μeV) [35–38]. We consider this estimate for
the relaxation rate ∼γ to be an optimistic but still adequate
ballpark value for our SAW-induced acoustic traps, because
the typical (i) temperatures [T ∼ ð20–100Þ mK], (ii) length
scales (∼300 nm for the dot-to-dot distance), (iii) transition
frequencies (∼GHz in Ref. [37]), and (iv) host materials
(GaAs) studied in Refs. [35–38] are all compatible with
our setup. Furthermore, in Ref. [37] an Ohmic spectral
density has been assumed (just like in our theoretical
model discussed above) in order to fit the experimental
data with the (thermally enhanced) decoherence rate γeff ¼
γ½2n̄thðω0Þ þ 1�, yielding γ ¼ ζω0 with the fit parameter
ζ ¼ ðπ=4Þ × 0.03 ∼ 2.35 × 10−2. Second, we consider
typical dilution-fridge temperatures in the range of T ∼
ð10–100Þ mK [corresponding to kBT ∼ ð1 − 10Þ μeV]
[39]. For γ=2π ≈ 20 MHz, the first inequality in Eq. (6)
is then safely satisfied even for the lowest temperatures
under consideration (kB × 10 mK=2π ∼ 200 MHz). Still,
since γ varies significantly with both energy and length
scales, phonon relaxation rates of γ=2π ≈ 20 MHz for
GaAs-based systems may be overly optimistic. In this

case, operation at higher temperatures [in order to satisfy
Eq. (6)] may still be avoided by employing (for example)
phonon band gaps, as discussed in Ref. [35], or different
materials such as silicon [24,40], where the corresponding
phonon-induced relaxation rates are much smaller [41], as a
consequence of a much smaller electron-phonon coupling
strength. All other things being equal, the SAW-induced
potential depth VSAW will be reduced as well in a silicon-
based setup, which, however, can be compensated by
simply applying a larger rf power to the IDTs. Lastly,
recall that the spontaneous emission rate γ may be as large
as γ ≈ kBT and still be fully compatible with the desired
regime of interest, if the correlation time of the phonon bath
is set by (for example) the bandwidth ΔB rather than
temperature. Third, for high SAW frequencies, ω=2π ≈
25 GHz [22], the energy ℏω ≈ 100 μeV yields a trapping
frequency ℏω0 ≲ 20 μeV (q2 ≪ 1). Altogether, we thus
conclude that Eq. (6) can be satisfied with state-of-the-art
experimental setups, provided that the material-specific
energy scale ES is much larger than ℏω ≈ 100 μeV. For
electrons in standard GaAs and the lowest Rayleigh mode,
however, we find ES ≈ 2 μeV. In the following, we identify
three potential, complementary strategies to solve this
problem.
(1) Material engineering.—Our first approach involves

sophisticated material engineering, with the aim to crank up
the energy scale ES. Here, we can identify three general,
complementary strategies to increase the sound energy
[cf. Eq. (2)]. (i) First, the effective mass m crucially
depends on both (a) the type of particle and (b) the host
material. (a) Heavy holes or composite quasiparticles
such as trions (also known as charged excitons) typically
feature much higher effective masses than electrons in
GaAs. (b) Compared to standard GaAs, where the effective
electron mass is m ≈ 0.067m0 (m0 refers to the free-
electron mass), in Si/SiGe structures m ≈ 0.2m0, while
for electrons (heavy holes) in AlN m ≈ 0.33m0

(mhh ¼ 3.89m0). (ii) Second, following common practice
in the quest for SAW devices operating at ultrahigh
frequencies [42–44], vs can be effectively increased by
employing a specialized heterostructure involving, for
example, diamond (which features the highest speed of
sound). (iii) Third, the speed of sound vs;α ¼ ωα=k can be
enhanced even further by exciting higher-order Rayleigh
modes ðα > 1Þ in the sample at the same wavelength [19].
In particular, layered half-space structures (such as AlN/
diamond, with h denoting the thickness of the piezoelectric
AlN layer) support so-called pseudosurface acoustic waves
(PSAWs) propagating with exponential attenuation due to
wave energy leakage into the bulk, in contrast to regular
(undamped) SAWs [19,45,46]. As shown both theoretically
and experimentally [45,46], this leakage loss can, however,
become vanishingly small for certain magic film-thickness-
to-wavelength ratios h=λ, such that for all practical pur-
poses this PSAW mode can be seen as a true SAW mode
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which propagates with negligible attenuation. While SAWs
by definition may not exceed the shear wave velocity cs
(cs ≈ 12.32 km=s for diamond) in the lower half-space,
PSAW velocities can be significantly larger than cs and
reach values of up to vs ≈ 18 km=s [45,46], that is about
40% higher than those of regular SAWs [46] and about a
factor of ∼3.2 higher as compared to the lowest Rayleigh
mode for a homogeneous AlN half-space where vs ≈
5.6 km=s [45]. Lastly, even higher velocities may be
achieved if leakage losses into the bulk are suppressed
when using freely suspended two-dimensional electron
gases [47] rather than a (quasi-)semi-infinite half-space.
We verify these considerations using numerical finite-

element calculations, performed with the software package
COMSOL [48] for GaAs/diamond (AlN/diamond) hetero-
structures; our simulations indeed show that the effective
speed of sound can be significantly scaled up in comparison
with the standard values in GaAs (AlN) [49]. In Fig. 4, the
behavior of vs as a function of the width h of the GaAs
(AlN) layer is displayed. The results show both the
second Rayleigh SAW modes in GaAs/diamond and AlN/
diamond, respectively, as well as one particular PSAW
mode (as identified previously in Ref. [45]). For large h, the
second Rayleigh SAW modes coincide with the corre-
sponding second modes in the raw materials GaAs and
AlN (without a diamond layer), as expected. On the other
hand, in the limit of comparatively small h ≈ ð50–200Þ nm,
the SAW velocities are significantly larger compared to
the first and second Rayleigh modes in pure GaAs (AlN),
while for the PSAW mode vs ≈ 18 km=s at h=λ ≈ 0.57.
Moreover, in the case of piezoelectric coupling, the electric
potential that accompanies the SAW has to be nonzero at
the 2DEG, which is located somewhere in the center of
the top GaAs (AlN) layer. As shown in Fig. 4, such
configurations do exist in GaAs/diamond (AlN/diamond)
heterostructures, while reaching the parameter regime
kBT ¼ 1 μeV≲ ð10−3–10−2ÞES. Hence, when suitably
combining strategies (i)–(iii), we predict the feasibility
of reaching ES ≳ 1 meV, which is sufficiently large to
safely satisfy condition Eq. (6), as desired. Consider, for
example, a two-dimensional hole gas at a AlN/GaN inter-
face on top of diamond; here, the effective heavy-hole
mass of GaN amounts to m ≈ 1.1m0. When driving the
PSAW mode identified in Fig. 4, we find ES ≈ 1.0 meV.
Alternatively, we may consider monolayer transition-metal
dichalcogenides such as MoS2 or WSe2, on top of some
high-speed material such as diamond. While all TMDCs
are piezoelectric due to the lack of inversion symmetry
[51], some of them show relatively large effective masses;
for example, the effective electron and hole mass in MoS2
amount to approximately m ≈ 0.67m0 and m ≈ 0.6m0,
respectively [52,53]. Then, for electrons (charged trions)
in MoS2 with effective mass m ≈ 0.67m0 (m ≈ 1.9m0)
[53], as experimentally investigated, for example, in
Refs. [54,55], and a diamond-boosted speed of sound

vs ≈ 18 km=s, we estimate ES to be as large as ES ≈
617μeV (ES ≈ 1.78 meV). Further estimates of this type
for different physical setups are summarized in Table I.
Here, we cover the most relevant material properties for
the implementation of the proposed AL setups only,
whereas the interplay of different material-design strategies
(i)–(iii) leads to an intricate problem involving various
parameters (such as piezoelectric properties and the

FIG. 4. Speed of sound vs (left axis) and kinetic sound energy
ES normalized to its value at h ¼ λ (right axis) in layered
heterostructures made of gallium arsenide (aluminum nitride)
and diamond. All results are given as a function of h, which
denotes the thickness of the GaAs (AlN) layer. Results for the
second SAW modes and heavy holes are shown. Squares and
pentagons (triangles) denote the numerical results for a GaAs/
diamond (AlN/diamond) heterostructure. ESðh ¼ λÞ ≈ 32 μeV
for GaAs/diamond (≈205 μeV for AlN/diamond). The data
points are connected by lines to guide the eye. The isolated
data points at h ≈ 0.57λ denote an ultrahigh velocity PSAWmode
in AlN/diamond (cf. Ref. [45]). Inset: Distribution of the piezo-
electric potential at f ¼ 12.2 GHz of a second SAW mode for a
layer thickness of h ¼ 0.2 μm in a GaAs/diamond heterostruc-
ture. The IDT finger spacing, hence the SAW wavelength, is set
to be λ ¼ 500 nm. The results are obtained with the software
package COMSOL.

TABLE I. Estimates for the energy scale ES for different
physical setups. Examples marked with � refer to the lowest
SAW mode in GaAs, whereas those marked with �� refer to
relatively fast (diamond-boosted) values of vs in diamond-based
heterostructures featuring high-frequency SAW and PSAW
modes as investigated in Refs. [45,46]. Further details are given
in the text.

Setup m=m0 vs ½km=s� ES ½μeV�
Electrons in GaAs* 0.067 ∼3 ∼1.7
Heavy holes in GaAs** 0.45 ∼ð12–18Þ ∼184–415
Electrons in Si** 0.2 ∼ð12–18Þ ∼82–184
Holes in GaN** 1.1 ∼ð12–18Þ ∼450–1010
Electrons in MoS2�� 0.67 ∼ð12–18Þ ∼274–617
Trions in MoS2�� 1.9 ∼ð12–18Þ ∼794–1787

ACOUSTIC TRAPS AND LATTICES FOR ELECTRONS IN … PHYS. REV. X 7, 041019 (2017)

041019-7



electron mobility), which we cannot cover in its full depth
within the scope of this work.
While this material-engineering-based approach is

fully compatible with our general theoretical framework,
as described in Sec. II, in the following we present two
additional schemes that allow for thermally stable trapping,
at potentially higher temperatures than what we have found
so far, but at the expense of a more involved theoretical
description [which, however, is not necessarily restricted to
the parameter regime given in Eq. (6)]; here, similarly to
Sec. II, we first present a classical analysis of the dynamics,
whereas a detailed, quantum-mechanical analysis thereof
goes beyond the scope of this work and will be subject to
future research.
(2) Exotic stability regions.—In the context of ion

traps where stability is governed by the Mathieu equation
[cf. Eq. (A1)], ion motion is stable in the primary stability
region ðadc ¼ 0; 0 < q < 0.908Þ and then becomes unsta-
ble as q is increased [30]. Stable motion, however, reoccurs
at higher q values, which we refer to as exotic stability
regions in the following; these exotic stability regions were
studied to some extent in the context of ion traps [56,57].
Here, we propose, as a second strategy to meet the self-
consistency requirements, to extend the previously estab-
lished classical stability analysis to the next higher-lying
ðadc ¼ 0; 7.5≲ q≲ 7.6Þ stability region of the Mathieu
equation. As evidenced in Fig. 2(d), in this high-q regime, a
separation between secular and fast (micro)motion is no
longer possible. However, while the theoretical description
of the dynamics becomes more involved, still the particles
are found to be dynamically trapped, already at temper-
atures much higher than what we find in the low-q regime.
While kBT ≲ 0.03ES for small q, in the high-q regime
(with 7.5 < q < 7.6) thermal stability sets in already at
kBT ≲ 0.15ES, thus alleviating temperature requirements
by about an order of magnitude; cf. Fig. 2(c).
(3) Optimized driving schemes.—As a third strategy, we

suggest to utilize polychromatic driving schemes, rather
than the simple monochromatic driving considered so far.
Recently, it has been experimentally demonstrated that
such polychromatic drivings can eventuate arbitrary SAW
wave fronts [58], thus allowing us to consider more general
equations of motion of the form ẍþ fðτÞx ¼ 0, with some
particular time dependence fðτÞ. For example, instead of
the Mathieu equation for which fðτÞ ¼ 2q cosð2τÞ (no dc
contribution), a simple two-tone driving scheme can be
used to expand the stability regions, as previously sug-
gested in Ref. [59]. Our numerical studies suggest that the
superposition of higher harmonics in the form of fðτÞ ¼
2q½c1 cosð2τÞ þ c2 cosð4τÞ þ � � �� may already enhance the
robustness of the stability region in Fig. 2(a) against
temperature by a factor of 2, as compared to the standard
Mathieu equation.
Technical considerations.—We now address several

technical considerations that might be relevant for a faithful

experimental realization of our proposal: (i) Since the
potential amplitude due to a single IDT is limited by
Mathieu-type stability arguments as VIDT ¼ VSAW=2 ¼
ðq=2ÞES ≲ 0.5 meV [60], the proposed setup operates at
SAW-induced amplitudes that are about 2 orders of
magnitude smaller than what is common for SAW-induced
electron transport experiments (where typically VIDT ≈
40 meV [13,61]). Note that this comparatively low driving
amplitude amounts to a fraction of typical quantum dot
charging energies. Today, quantum dots are routinely
pulsed with similarly high amplitudes, and yet excellent
charge and spin coherence is seen in experiments [62–64].
(ii) In a similar vein, as a direct consequence of the low-
amplitude external drive, potential microwave-induced
heating effects of the sample should be small.
Furthermore, undesired heating may be suppressed effi-
ciently by placing the IDTs very far away from the center of
the trap, without losing acoustic power, thereby avoiding
local heat dissipation near the center of the trap due to the
applied rf power; for further details, see Appendix D.
(iii) Minimization of cross-talk-related effects can be
accomplished based on various techniques [65]: these
can involve, for example, very careful choice of metal-
packaging structure and dimensions, the judicious place-
ment of ground connections to avoid ground loop effects,
and the placement of thin metal-film ground strips between
the IDTs. Moreover, because of the vast difference between
the speed of light (c ≈ 108 m=s) and the speed of sound
(vs ≈ 104 m=s), for a given frequency the wavelength
associated with the electromagnetic (EM) cross talk
is about 4 orders of magnitude larger than the SAW
wavelength (even when accounting for the refractive
index of the specific material), and therefore practically
flat on the relevant length scale of a few lattice sites;
for ω=2π ≈ 30 GHz, the wavelength is in the millimeter
range, i.e., much larger than the acoustic lattice spacing
a ¼ vs=ðω=πÞ ≈ 170 nm.

IV. APPLICATIONS

The possibility to acoustically trap charged particles in a
semiconductor environment should open up many exper-
imental possibilities, well beyond the scope of this work.
Here, we briefly describe just two potential exemplary
applications; see also our discussion in the final section of
this paper.

A. Mobile acoustic quantum dots

By adiabatically tuning the phases applied to the IDTs,
one may displace the AL in both the x and y direction,
thereby creating mobile acoustic quantum dots, with the
possibility to transfer in this way quantum information
stored in the spin degree of freedom of the particle; for a
schematic illustration, see Fig. 5. Here, in contrast to
standard SAW-based mobile quantum dots [13,14], the
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speed veff at which the trapped particles can be moved
around between different locations in the 2DEG would
not simply be set by the SAW’s speed of sound vs, but
could rather be controlled in situ by the time derivative
of the phases applied to the IDTs, with an upper bound
roughly given by the adiabaticity condition (εad ≪ 1) as
veff ¼ εadaðω0=2πÞ ≲ 100 m=s. Apart from thermal fluc-
tuations, the trapping lifetime in such a mobile quantum dot
will be limited by tunnel coupling to neighboring mobile
quantum dots inside the AL (while the spin lifetime
remains unaffected for spin-coherent tunneling); as we
show in more detail below, this coupling can be suppressed
controllably by going to a larger SAW wavelength λ, at the
expense of more stringent ground-state cooling require-
ments as the level spacing ω0 decreases. For a mobile AL
with near unit filling, however, tunneling is largely sup-
pressed due to Coulomb blockade effects and the (spin)
dynamics is governed by the next lower energy scale (the
exchange coupling), as we discuss and quantify next.

B. Towards many-body physics

Many-body physics.—While our previous discussion has
exclusively focused on dynamically trapping and cooling
single particles in SAW-induced potentials, in our second
examplewe provide a simple characterization of our setup for
the potential investigation of quantum many-body systems.
We show that (at dilution-fridge temperatures) our system can
be naturally described by an extended Anderson-Hubbard
model, with the ultimate prospect of entering the low-temper-
ature, strong interaction regime where kBT ≪ t < U; here, t
and U refer to the standard hopping and interaction param-
eters of the Hubbardmodel, as we specify below.We provide
estimates for these quantities in terms of the relevant
parameters characterizing the AL, and show how they can

be engineered and (dynamically) tuned. For this analysis,
again we restrict ourselves to the pseudopotential regime
(ω0 ≪ ω), where the effects of the fast, small-amplitude
micromotion on the Hubbard parameters t, U can be
neglected. Thereafter, we discuss several approaches that
may be used in order to detect and accurately probe the
resulting quantum phases of matter.
Estimates for Hubbard parameters.—Consider an

ensemble of fermionic charged particles inside a periodic
one- or two-dimensional AL, with roughly one particle per
site (corresponding to electron densities ∼1010 cm−2 for a
two-dimensional AL with a ∼ 100 nm). If all energy scales
involved in the system dynamics are small compared to the
excitation energy to the second band ∼ℏω0 (for example,
kBT ≪ ℏω0, as required for ground-state cooling), the
electrons will be confined to the lowest Bloch band of
the AL, and the system can effectively be described by the
extended Anderson-Hubbard Hamiltonian [23,66–68]

HAFH ¼ −t
X
hi;ji;σ

ðc†i;σcj;σ þ H:c:Þ þ
X
i

μini

þ
X
σ;σ0

X
ijkl

Uijklc
†
i;σ0c

†
j;σck;σcl;σ0 ; ð7Þ

where the fermionic operator ci;σ (c
†
i;σ) annihilates (creates)

an electron with spin σ ¼ ↑, ↓ at site i; ni;σ ¼ c†i;σci;σ and
ni ¼ ni;↑ þ ni;↓ refer to the spin-resolved and total occu-
pation number operators, respectively. In Eq. (7), we retain
the nearest-neighbor hopping term only, as specified by a
tunneling amplitude t, but account for the full effect of the
repulsive (long-range) Coulomb interactions ∼Uijkl. The
remaining (second) term, with a variable on-site energy μi,
acts like a spatially varying chemical potential and
describes potential disorder effects (as we discuss in more
detail below). In the limit of homogeneous on-site energies
with μi ¼ const, Eq. (7) reduces to the minimal Hubbard
model, if all but the largest on-site interaction terms
are neglected (with Uiiii ¼ U in standard notation). In
the limit V0 ≫ ER (where ER ¼ ℏ2k2=2m is the recoil
energy), the tunneling rate t is given by t=ER ≈
ð4= ffiffiffi

π
p ÞðV0=ERÞ3=4 exp½−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=ER

p � [7], setting the upper
limit t < ER. In terms of the relevant AL parameters, this
relation can be rewritten as

t=ES ≈ ð2
ffiffiffiffiffiffiffiffiffiffi
2πnb

p
Þ−1q2 exp ½−4nb�; ð8Þ

showing that the tunneling rate t ∼ q2 can be tuned via
the stability parameter q, reaching at maximum t=ES ≲
3 × 10−3 within the lowest stability region for (fixed)
nb ≳ 1; here, the existence of at least one bound state
ðnb ≳ 1Þ ensures both V0=ER ¼ 4n2b ≳ 4 and t ≪ ℏω0, as
required. Therefore, with ER=ES ¼ ε2=ð4n2bÞ, we find
t < ER ≪ ES such that realistically ES ≫ 300 μeV is

FIG. 5. Schematic illustration (top view, not to scale) for a
quasistationary two-dimensional AL which can be controllably
displaced in both x and y direction by adiabatically tuning the
phases applied to the IDTs. The dashed (orange) box highlights a
small sublattice consisting of just four lattice sites, before and
after the adiabatic ramp.
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required in order to access the coherent many-body regime
where t ≫ kBT, at dilution-fridge temperatures. Making
use of the strategies outlined in the previous section, this
regime seems to lie within reach of state-of-the-art
experimental capabilities. The order of magnitude for the
Coulomb integral Uijkl can be roughly estimated as Uijkl ∼
e2=4πϵa (where ϵ denotes the effective dielectric constant
of the material). Since t ∼ ER ∼ a−2 and Uijkl ∼ 1=a, the
relative importance of the hopping term ∼t as compared to
the Coulomb interactions can be conveniently controlled
via the SAW frequency ω ¼ πvs=a [23]. Taking (for
example) a ∼ 300 nm, this rough estimate yields Uijkl ∼
380 μeV (for GaAs, where ϵ ≈ 12.5ϵ0), which exceeds any
realistic hopping amplitude t by far, but also violates the
assumptions underlying the model Hamiltonian Eq. (7).
To enter a parameter regime where the simplified toy
model Eq. (7) becomes applicable, special heterostructures
with a metallic screening layer close to the 2DEG may be
employed, while in a similar vein the thickness of the
spacer layer (separating the 2DEG from the δ-doping layer)
may also be reduced in favor of increased screening effects
[23,39]. In this scenario, a simple image-charge-based
estimate shows that the Coulomb interaction is reduced
by a factor fscr ≈ 1 − ½1þ 4ðd=aÞ2�−1=2 (where d refers to
the distance between the 2DEG and the metallic screening
plate), while retaining its ∼1=r scaling [23]. Accordingly,
the estimate quoted above reduces from ∼380 μeV for
d → ∞ down to ∼50 μeV for d ∼ 0.3a ∼ 90 nm. As we
discuss in more detail below, this approach does not only
allow for tuning the strength of the Coulomb interaction
(albeit not in situ), but at the same time reduces the
detrimental effects due to background impurities [39]. In
a regime where the latter is negligible, the next lower
energy scale is set by the exchange coupling J ¼ 4t2=U,
which describes effective spin-spin interactions via
virtual hopping processes in the regime U ≫ t. With the
Coulomb interaction reduced to U ≈ 10t, the regime
t ≫ kBT (and, therefore, J ≈ t=2 ≫ kBT) should then give
access to experimental studies of quantum magnetism [7].
For a comprehensive overview of the key quantities of
our analysis and self-consistent estimates thereof, see
Appendix D. In Appendix D we also discuss relevant
electron spin decoherence effects which may compete with
the observation of coherent spin physics.
Detection schemes.—In order to measure the resulting

collective many-body state in an actual experiment, several
approaches may be available. (i) First, the electron exci-
tation spectrum could be probed using inelastic light
scattering, as has been done experimentally in a closely
related setup (based on electrons confined in etched
pillars in a high-quality GaAs quantum well with mobility
μ ∼ 3 × 106 cm2=V s) in Ref. [69]. (ii) Second, transport
measurements, in which a small dc voltage Vdc is applied
across the AL, should carry signatures of the phase of the
Hubbard model in the resulting dc current; compare, for

example, Refs. [23,70,71]. The corresponding dc current
Idc will be blocked in the Mott-insulator regime, whereas
Ohm’s law Idc ∝ Vdc should hold in a metallic phase
[23,72]. (iii) Third, charge-imaging methods could also
be used to demonstrate regular carrier localization in the
acoustic lattice, somewhat similar to the detection of single
electrons trapped by impurity centers [73,74]. (iv) Fourth,
capacitance spectroscopy techniques (as demonstrated, for
example, in Ref. [75]) could be used in order to measure the
density of states by detecting the ability to tunnel in from a
backplane. (v) Fifth, optical readout of the charge and spin
state could be achieved with methods developed for self-
assembled quantum dots [76], in particular in TMDC-based
setups [51,54,55,77]. Similar to self-assembled quantum
dots, our SAW-defined quantum dots and lattices trap both
electrons and holes at the same location and could thus
support quantum dot excitons and trions. The charge- and
spin-dependent interaction with quasiresonant light fields
can be used for readout via resonance fluorescence [78]
or the Kerr effect [79,80]. Moreover, it is conceivable that
related optical techniques for state preparation and spin
rotation can be adapted as well. Note that, due to the
expected homogeneity of our SAW-generated lattice sites,
we also expect largely identical optical spectra across the
lattice which may facilitate global readout and collective
optical effects. (vi) Lastly, apart from these well-established
measurement techniques, we propose to perform local site-
resolved detection by adiabatically changing the phases at
the IDTs ϕðtÞ and then loading one lattice site after the
other (very much like in a CCD camera) into nearby gate-
defined quantum dots, where both the charge as well as the
spin degree of freedom could be measured via well-
established spin-to-charge conversion techniques [81].

V. EFFECTS OF DISORDER

Disorder in the AL will affect the (Anderson) Hubbard
model, as described by the second term in Eq. (7), where
(in the presence of disorder) μi is essentially a randomly
fluctuating variable. In a semiconductor the dominant
source of disorder is due to charged impurities, which
includes both (i) desired contributions (such as the dopants
used for forming the 2DEG) as well as (ii) undesired ones
due to bulk or surface impurities [39]. While the dominant
source of disorder (i) due to remote donor scattering can be
largely removed in structures with a relatively large spacer
thickness ∼85 nm [39,82], the second one (ii) has been
identified as the main mechanism limiting the mobility
μ in ultraclean 2DEGs [83,85]. Still, as experimentally
demonstrated in Ref. [85], mobilities exceeding
∼107 cm2=V s can be realized for dilution-fridge temper-
atures T ∼ 100 mK, resulting in a mean free path lmfp ¼
μvFm=e of up to lmfp ∼ 120 μm (here, vF refers to the
Fermi velocity [23]). In the low-density regime of interest
with nel ∼ 1010 cm−2 (corresponding to half-filling for a
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lattice spacing of a ∼ 100 nm) the mean free path is
expected to drop to lmfp ∼ 15 μm [85], which is still much
larger than the lattice spacing a ∼ 100 nm. To further
compensate for residual disorder originating from back-
ground impurities (ii), one may resort to special hetero-
structures with a conducting backplane, as suggested in
Ref. [39]. Also, in periodic arrays of quantum dots,
signatures of Hofstadter’s butterfly [86] have been
observed at high magnetic fields [70,71], as a result of
the interplay between the periodic potential and quantized
Hall orbitals, suggesting that disorder from the substrate
can in fact be sufficiently small to investigate coherent
lattice physics. This discussion certainly provides the basis
for some optimism, but a dedicated research program
(rather than just a literature survey) may be required to
fully understand and characterize the role of disorder in this
system; compare Ref. [72] for recent efforts in this direction
based on gate-defined lattices in GaAs. While the effect of
disorder on the single-particle level is well understood [87],
the intricate interplay between interactions and disorder
in the Hubbard model (as studied in Refs. [88–91]) yields a
nontrivial regime in its own right that may be explored
systematically in the proposed setup by deliberately con-
trolling the amount of disorder.

VI. SUMMARY AND OUTLOOK

In summary, we propose and analyze the formation of an
all-solid-state acoustic lattice with a highly regular perio-
dicity set by the SAW wavelength (without any further
gate patterning). We develop a theoretical framework
reminiscent of trapped-ion physics thus connecting two
previously unrelated fields of research. With this frame-
work at our disposal, we identify the relevant figures of
merit for this system and discuss potential experimental
platforms for a faithful implementation of such acoustic
lattices, with the ultimate potential to study yet unexplored
parameter regimes, thanks to specific system properties
such as ultralight particle masses, intrinsic electron-phonon
cooling, and strong interparticle interactions. Here, let us
emphasize again the flexibility (and generic nature) of the
proposed scheme: SAWs exist in many materials (semi-
conductor heterostructures, TMDCs) and can be endowed
with a variety of accompanying fields (depending on the
material used: strain, electric, magnetic) and superposed to
different standing-wave patterns. Therefore, the proposed
scheme should be applicable to a variety of different (quasi)
particles and allow one to study different lattice geometries.
Finally, we highlight possible directions of research

going beyond our present work. (i) While we focus on a
simple square-lattice geometry, more sophisticated lattice
geometries might be explored, given the design flexibilities
associated with SAW devices [19]. (ii) For simplicity,
in this work we disregard the potential presence of
magnetic fields and/or spin-orbit effects, which stem from
the underlying material properties. Therefore, without any

further sophisticated engineering, these additional ingre-
dients could be readily implemented, giving rise to rich
phase diagrams and, for example, the formation of topo-
logical quantum spin Hall states [92]. Finally, we may
envisage several setups that are complementary to the
system we study in this work. (iii) Acoustic lattices for
dipoles. Our ideas can be generalized towards an acoustic
lattice for solid-state dipoles (rather than charged particles),
e.g., for indirect excitons, which consist of electrons and
holes from two different parallel quantum well layers,
thereby complementing previous experimental studies on
SAW-induced lattices for exciton polaritons both in moving
[21] and standing-wave [93] configurations in the regime of
many particles per lattice site. As evidenced by several
experiments (where the repulsive character of the inter-
action shows up as a positive and monotonic line shift with
increasing density [94]), indirect excitons behave as effec-
tive dipoles perpendicular to the plane [95,96]. Because
of the spatial separation between the electron and hole
layers in this coupled quantum well structure, the intrinsic
radiative lifetimes of optically active indirect excitons
exceeds that of their direct counterparts by orders of
magnitude and can be in the range of several microseconds
[96]. In TMDC-based setups our approach may be used to
dynamically trap and to spatially and spectrally isolate
single excitons, thereby complementing experiments based
on static strain engineering [97]. (iv) Acoustic lattices for
ions. The electric potential (created and controlled at the
surface) due to standard IDTs extends into the material, but
also into the vacuum above the surface [98]. In principle,
this should allow for the integration of our SAW-based
setup with ions above the surface that are exposed to this
acoustically induced electric potential, leading to new
hybrid setups and complementing other approaches
towards regular, disorder-free surface traps for ions in
which the lattice spacing is simply set by the SAW
wavelength. With comparatively large parameter values
forES (≈420 meV for Be ions on top of GaAs), preliminary
estimates show that a pseudopotential trap depth of several
meV should be possible within the lowest stability region
(where q2 ≪ 1), provided that the ion can be stabilized in
the direction normal to the surface within the SAW wave-
length. (v) Magnetic lattices. While the acoustic lattice
described above is based on coupling to the particle’s
external motional degree of freedom (as is the case with
Paul traps for ions), in closer analogy to optical lattices for
ultracold atoms, SAWs in piezomagnetic materials such as
Terfenol-D [99–101] may be used in order to couple to the
particle’s internal spin degree of freedom, thereby inducing
a spatially inhomogeneous Stark shift on the electron’s spin
resonance which will act as an external potential for the
electron’s motion [102]. In this setup, for a fixed detuning
of the ESR driving frequency from the Zeeman splitting, the
effective trap depth can (in principle) be made arbitrarily
large, provided that sufficient SAW power is available.
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In conclusion, this discussion indicates that by combin-
ing the control and flexibility of SAWs with the rich variety
of material properties of heterostructures, the emerging
field of quantum acoustics opens a large number of further
research directions with the ultimate goal of understanding
the behavior of correlated electrons in technologically
relevant materials and molecules and building a universal
quantum simulator.
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APPENDIX A: CLASSICAL
STABILITY ANALYSIS

1. Mathieu equation

Performing a Taylor expansion for the electric field close
to the origin, sinð~xÞ ≈ ~x, Eq. (1) can be mapped onto the
well-known Mathieu differential equation by identifying
the parameters appearing in the standard Mathieu differ-
ential equation,

d2 ~x
dτ2

þ ½adc þ 2q cos ð2τÞ�~x ¼ 0; ðA1Þ

as adc ¼ 0 (no dc voltage) and q ¼ VSAW=ES.
In the case of vanishing dc contribution, according to

Ref. [29], there is a stability zone for 0 < q < qmax, with
qmax ≈ 0.92, resulting in the maximum potential depth of
VSAW ¼ qmaxES. The lowest-order approximation to the
ion trajectory xðtÞ in the case q2 ≪ 1 is found to be

xðtÞ ≈ 2AC0cos

�
β
ω

2
t

�
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

secular

�
1 −

q
2
cos ðωtÞ

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

micromotion

; ðA2Þ

where β ≈ q=
ffiffiffi
2

p
. If the fast low-amplitude oscillations

contained in the second factor are neglected, the secular

motion can be approximated by that of a harmonic
oscillator with frequency ω0 ¼ βω=2 ≪ ω. The condition
for the lowest-order approximation q2 ≪ 1 is equivalent to
a separation of time scales between secular and micro-
motion, that is, ω0 ≪ ω. In this regime, the dynamics can
be described by an effective pseudopotential.

2. Classical pseudopotential

The classical dynamics in a high-frequency field can be
described by an effective time-independent Hamiltonian.
Following Refs. [31,32], it can be calculated in a system-
atic expansion in the inverse of the frequency ω. If the
period of the force is small compared to the other time
scales of the problem, it is possible to separate the motion
of the particle into slow and fast parts. This simplification
is due to the fact that the particle does not have sufficient
time to react to the periodic force before this force changes
its sign. Based on this separation of time scales, the motion
for the slow part is computed explicitly up to the order ω−4.
Note that the effective time-independent Hamiltonian
depends on a coordinate XðtÞ which describes the slow
part of the motion; this coordinate is not the location of the
particle, even though they are almost identical at high
frequencies ω. As outlined in Refs. [31,32], the decom-
position of xðtÞ into slow and fast components can be
written as

xðtÞ ¼ XðtÞ þ ξðX; _X;ωtÞ; ðA3Þ

where the fast part of the motion ξ fulfills

ξ̄ ¼ 1

2π

Z
2π

0

dτξðX; _X; τÞ ¼ 0: ðA4Þ

By expanding ξ in powers of 1=ω,

ξ ¼
X∞
i¼1

1

ωi
ξi; ðA5Þ

such that Eq. (A1) leads to an equation for X that is time
independent, and following Refs. [31,32], we find the
following (classical) effective Hamiltonian describing the
slow dynamics XðtÞ:

Heff ¼
P2

2m

�
1þ 3

8
q2cos2ðkXÞ

�
þ q

8
VSAWsin2ðkXÞ þOðω−5Þ: ðA6Þ

Here, P is the momentum conjugate to X. Given a solution
XðtÞ, the solution of the original problem can be obtained
to appropriate order of 1=ω since ξ is known explicitly in
terms of X [31,32]. The pseudopotential for the average
motion of the electron, Veff ¼ V0 sin2 ðkXÞ, with an
amplitude given by
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V0 ¼
q
8
VSAW ¼ q2

8
ES ðA7Þ

is also referred to as ponderomotive potential [30]. Note
that the correction to the kinetic term in Eq. (A6) is a
fourth-order term, while the pseudopotential Veff is a
second-order contribution in 1=ω. Close to the origin
x ¼ 0, the effective potential Veff can be approximated
by a harmonic potential VeffðxÞ ¼ ðm=2Þω2

0x
2 with an

oscillation frequency ω0 ¼ ðq= ffiffiffi
8

p Þω, which is equivalent
to the result obtained above from the Mathieu equation.
Using this definition of the trapping frequency, the ponder-
omotive potential becomes

Veff ¼
�
ω0

ω

�
2

ES sin2 ðkXÞ: ðA8Þ

We can then estimate the number of bound states nb as

nb ≈
V0

ℏω0

¼ 1

2

ffiffiffiffiffiffi
V0

ER

s
; ðA9Þ

with the recoil energy ER ¼ ℏk2=2m.

3. Stability diagrams

Here, we provide further details on our classical stability
analysis. First, we note that the stability diagrams shown in
Sec. II are of approximate character as they were obtained
by interpolating our numerical results. This is due to the
deliberate choice of defining a stable trajectory in terms of
the maximal excursion during a sufficiently long propaga-
tion time: two trajectories with almost equal parameters q
and kBT=ES can be judged as stable and unstable by this
definition, respectively, because only one of their ampli-
tudes exceeds the cutoff value set to one-half of the lattice
constant (a=2). Second, the notion of (thermal) stability
may be defined via the mean free path as well, by taking
lmfp as our cutoff value, in contrast to the trapping condition
~xmax < π. In that case, the regions of thermal stability
increase as compared to the ones shown in the main text,
provided that lmfp > a=2. The last inequality is likely to
be fulfilled in high-mobility 2DEGs where lmfp ∼ 10 μm.
Third, the stability analysis underlying Fig. 2 neglects
damping in the classical equation of motion; incorporating
an additional friction term may alter the notion of stability,
since particles that escape one lattice site can then be
dynamically trapped at a different lattice site. Lastly, the
state initialization via equipartition of thermal and kinetic
energies describes an average condition; in practice, only a
fraction of the electrons will fulfill this condition, where
the details depend on the statistical distribution of the
initial conditions. In order to estimate the statistical fraction
of electrons whose (initial) velocity v is smaller than
v0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
, given by equipartition of thermal and

kinetic energies of the particle, we assume a Maxwell-
Boltzmann distribution of velocities,

pðvÞdv ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2πkBT

r
exp

�
−

mv2

2kBT

�
dv; ðA10Þ

which yields
R v0
0 pðvÞdv ≈ 0.68; i.e., given a thermal

ensemble of particles, we find that a significant fraction
of the electrons is found to be trapped.

APPENDIX B: QUANTUM-MECHANICAL
FLOQUET ANALYSIS

Preliminaries.—We consider a quantum system with a
Hamiltonian that is periodic in time, Hðtþ TÞ ¼ HðtÞ.
Floquet theory provides a natural framework to treat such a
system [31,32]. The Bloch-Floquet theorem states that the
eigenstates of the Schrödinger equation,

i
∂
∂t jΨi ¼ HjΨi; ðB1Þ

obey the form

jΨλi ¼ e−iλtjuλðωtÞi; ðB2Þ

where uλ are periodic with respect to ωt with period 2π;
that is, uλ½x;ωðtþ TÞ� ¼ uλðx;ωtÞ, with ω ¼ 2π=T. The
states uλ are called Floquet states and λ is the so-called
quasienergy. They have a natural separation into a slow part
e−iλt (with the natural choice 0 ≤ λ < ω) and a fast part
uλðx;ωtÞ. Now, the goal is to find an effective description
for the slow part of the dynamics as was done above for the
classical dynamics. Formally, this is done by introducing a
gauge transformation,

jϕi ¼ eiFðtÞjΨi; ðB3Þ

where FðtÞ is a Hermitian operator that is a periodic
function of time t, with the same period as HðtÞ, such
that the effective Hamiltonian Heff in the Schrödinger
equation,

i
∂
∂t jϕi ¼ Heff jϕi; ðB4Þ

Heff ¼ eiFHe−iF þ i

� ∂
∂t e

iF

�
e−iF; ðB5Þ

is time independent. In particular, Heff can then be used to
predict trapping due to oscillating potentials [31].
Typically, F and Heff cannot be computed exactly.

Following Refs. [31,32], we expand Heff and F in powers
of 1=ω and choose F such that Heff is time independent to
any given order. In the following, we compute the effective
Hamiltonian,
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Heff ¼
X
n

1

ωn H
ðnÞ
eff ; ðB6Þ

explicitly up to fourth order in 1=ω.

1. Second order

Given the temporal periodicity of the driving only, it has

been shown [31,32] that the odd terms Hð1Þ
eff , H

ð3Þ
eff from the

perturbative expansion Eq. (B6) vanish. Hence, the leading-
order term (besides the purely kinetic contribution p2=2m)
of the effective Hamiltonian is of second order in 1=ω.
For the single-particle Hamiltonian under consideration,

HðtÞ ¼ p̂2

2m
þ VSAW cos ðωtÞ cos ðkx̂Þ; ðB7Þ

up to second order in 1=ω we find

Heff ¼
p̂2

2m
þ q

8
VSAWsin2ðkx̂Þ; ðB8Þ

which is the second-order result given in Eq. (4). Hence,
similar to the classical treatment, also within the quantum-
mechanical Floquet framework, the effective potential,
which is of second order in the dimensionless coefficient
ω0=ω, can be written as

Veffðx̂Þ ¼
�
ω0

ω

�
2

ES sin2 ðkx̂Þ: ðB9Þ

Leading-order corrections to this result are of the
order Oðω−4Þ.

2. Fourth order

Computing Eq. (B6) explicitly up to Oðω−4Þ yields

Heff ¼
p̂2

2m
þ q

8
VSAWsin2ðkx̂Þ

þ 1

2m
½p̂2gðx̂Þ þ 2p̂gðx̂Þp̂þ gðx̂Þp̂2�

þ q2

32
ERsin2ðkx̂Þ þOðω−5Þ; ðB10Þ

where

gðx̂Þ ¼ 3

32
q2 cos2 ðkx̂Þ: ðB11Þ

In the classical limit (where x̂ and p̂ commute), Eq. (B11)
correctly reproduces the kinetic correction term given in
Eq. (A6). Compared to the classical result in Eq. (A6),
Eq. (B10) also contains a fourth-order quantum-correction
term, which provides a contribution to the pseudopotential
and which scales as ∼q2ER. The eigenvalues of Heff yield

the Floquet quasienergies. If the eigenstates of Heff are
known, then the Floquet states can be computed up to
order ω−4 using the explicit expressions for F derived in
Refs. [31,32]. Similarly to the classical analysis above, we
find an effective potential up to fourth order in 1=ω, which
reads

Veffðx̂Þ ¼
�
q
8
VSAW þ q2

32
ER

�
sin2ðkx̂Þ ðB12Þ

¼ ε2ES sin2 ðkx̂Þ; ðB13Þ

where we introduce the factor

ε2 ¼ q2

8
½1þ ~q�; ~q ¼ ER

4ES
¼

�
ℏk
2ps

�
2

; ðB14Þ

where the momentum ps is given by ps ¼ mvs. Within
the usual harmonic oscillator (HO) approximation, we
obtain the corresponding trapping frequency as

ω0

ω
¼ ε ¼ q

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~q2

q
: ðB15Þ

APPENDIX C: PHONON-INDUCED COOLING
IN THE PRESENCE OF MICROMOTION

In this appendix, we discuss in detail the phonon-
induced cooling-heating dynamics and the resulting effec-
tive temperature of acoustically trapped charge carriers,
with full consideration of the time dependence of the SAW-
induced trapping potential. Here, we focus on the relevant
decoherence processes due to coupling of the particle’s
motion to the (thermal) phonon reservoir. Our analysis is
built upon the master equation formalism, a tool widely
used in quantum optics for studying the irreversible
dynamics of a quantum system coupled to a macroscopic
environment. We detail the assumptions of our approach
and discuss in detail the relevant approximations.

1. Time-dependent system dynamics

The system dynamics describing the motion of an
electron (of mass m) exposed to a SAW-induced standing
wave is described by the Hamiltonian given in Eq. (3). In
the following, we restrict ourselves to the so-called Lamb-
Dicke regime in which the electron’s motion is confined to
a region much smaller than the SAWwavelength λ ¼ 2π=k.
The corresponding approximation cos ðkx̂Þ ≈ 1 − ðk2=2Þx̂2
is justified self-consistently below. Dropping the first term
∼1 (which results in an irrelevant, global phase only), the
Hamiltonian HSðtÞ may be written as

HSðtÞ ≈
p̂2

2m
þm

2
WðtÞx̂2; ðC1Þ
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where WðtÞ ¼ −ðω2=2Þq cos ðωtÞ can be identified as a
time-varying spring constant, with the stability parameter
q ¼ VSAW=ES. In this form, the HamiltonianHSðtÞ and the
corresponding dynamics have been studied extensively in
the literature (primarily in the context of trapped ions), from
both a classical and a quantum-mechanical point of view;
see, for example, Refs. [30,33,103]. Still, in order to set up
the relevant notation for the subsequent analysis, here we
provide a self-contained discussion, closely following
Refs. [30,33,103].
Starting out from Eq. (C1), the Heisenberg equations

of motion for the electron’s position x̂ and momentum
operators p̂ read

_̂xðtÞ ¼ 1

iℏ
½x̂ðtÞ; HSðtÞ� ¼ p̂ðtÞ=m; ðC2Þ

_̂pðtÞ ¼ 1

iℏ
½p̂ðtÞ; HSðtÞ� ¼ −mWðtÞx̂ðtÞ; ðC3Þ

which, when taken together, yield the well-known quantum
Mathieu equation:

̈x̂ðtÞ þWðtÞx̂ðtÞ ¼ 0: ðC4Þ

This equation is equivalent to its classical counterpart if
one replaces the operator x̂ðtÞ with a function uðtÞ, which
satisfies the classical Mathieu equation [30,33,103]. As is
well known in the context of trapped ions, stable solutions
exist only for certain values of the parameter q, which are
usually defined in terms of a stability chart; as compared
to the standard analysis, here we consider the simplified
scenario without any dc voltage [33]. According to
Floquet’s theorem, such a stable solution uðtÞ takes on
the form

uðtÞ ¼
X∞
n¼−∞

c2neiðω0þnωÞt ¼ eiω0tΦðtÞ; ðC5Þ

where ΦðtÞ is a periodic function with period T ¼ 2π=ω,
i.e., Φðtþ TÞ ¼ ΦðtÞ. Following Ref. [30], we consider
solutions of the Mathieu equation subject to the boundary
conditions

uð0Þ ¼ 1; _uð0Þ ¼ iω0: ðC6Þ

As we show later, this choice of boundary conditions
is convenient for the appropriate definition of commuta-
tion relations. The (secular) frequency ω0=ω is a function
of q and the coefficients can be expressed in terms of a
continued fraction; see, e.g., Refs. [30,33]. In the limit
q2 ≪ 1 it can be shown that c0 ≫ jc�2j, such that the
solution uðtÞ is dominated by the so-called secular
frequency ω0=ω ≈ q=ð2 ffiffiffi

2
p Þ, which is much smaller

than the driving frequency ω. In the corresponding

pseudopotential regime, a small-amplitude modulation
with micromotion frequency ω is superimposed on the
slow (secular) macromotion. To lowest order in ∼q, the
solution uðtÞ simplifies to uðtÞ ¼ exp ½iω0t�, without
accounting for the micromotion.
Since the solution uðtÞ and its complex conjugate u�ðtÞ

form linearly independent solutions (which are related
to each other by the time-inversion symmetry inherent to
the Mathieu equation) [30,34], they obey the Wronskian
identity

WðtÞ ¼ u�ðtÞ _uðtÞ − uðtÞ _u�ðtÞ ðC7Þ

¼ u�ð0Þ _uð0Þ − uð0Þ _u�ð0Þ ðC8Þ

¼ 2iω0: ðC9Þ

The second equality simply follows from the fact thatWðtÞ
is a constant of motion. With this normalization, we obtain
the sum rule

X
n

c2n

�
ω0 þ nω

ω0

�
¼ 1: ðC10Þ

Since x̂ðtÞ and uðtÞ by definition satisfy the same differ-
ential equation, one can construct an operator ĈðtÞ that
consists of an explicitly time-dependent linear combination
of the position and momentum operators as

ĈðtÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffi
m

2ℏω0

r
½uðtÞ _̂xðtÞ − _uðtÞx̂ðtÞ�; ðC11Þ

but which (being proportional to the Wronskian W)
turns out to be a constant of motion [30,33,103]. Then,
since

ĈðtÞ ¼ Ĉð0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mℏω0

p ½mω0x̂ð0Þ þ ip̂ð0Þ�; ðC12Þ

one can readily identify ĈðtÞ with the well-known
annihilation operator associated with a static harmonic
oscillator of mass m and frequency ω0 as

ĈðtÞ ¼ Ĉð0Þ ¼ A; ðC13Þ

with the usual standard commutation relation

½A; A†� ¼ 1: ðC14Þ

This static potential harmonic oscillator is usually referred
to as a reference oscillator [30]. Since the operator A is
time independent, the same is true for

N ¼ A†A; ðC15Þ
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whose eigenstates are simply the familiar Fock states of
the (static potential) reference oscillator, with the standard
ladder algebra

Ajniω0
¼ ffiffiffi

n
p jn − 1iω0

; ðC16Þ

A†jniω0
¼ ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p jnþ 1iω0

; ðC17Þ

yielding directly Njni ¼ njniω0
.

The Heisenberg operators x̂ðtÞ and p̂ðtÞ can then be
expressed in terms of the classical Mathieu solutions uðtÞ as
well as the (time-independent) creation and annihilation
operators of the reference oscillator as

x̂ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2mω0

s
½u�ðtÞAþ uðtÞA†�; ðC18Þ

p̂ðtÞ ¼
ffiffiffiffiffiffiffiffi
ℏm
2ω0

s
½ _u�ðtÞAþ _uðtÞA†�: ðC19Þ

Accordingly, the time dependence of the Heisenberg
operators x̂ðtÞ and p̂ðtÞ is captured entirely by the classical
Mathieu equation uðtÞ and its complex conjugate. Note
that ½x̂ðtÞ; p̂ðtÞ� ¼ ℏ

2ω0
WðtÞ ¼ iℏ, as desired. For later

reference, here we also define the Heisenberg operator
for the kinetic energy as

p̂2ðtÞ
2m

¼ ℏ
4ω0

½j _uðtÞj2ðA†Aþ AA†Þ

þ ( _u�ðtÞÞ2A2 þ ( _uðtÞÞ2ðA†Þ2�: ðC20Þ

Since the annihilation (creation) operators A ðA†Þ asso-
ciated with the reference oscillator satisfy the usual algebra,
in complete analogy to the standard oscillator one may
define a set of basis states (in the Schrödinger picture)
labeled as jn; ti, with n ¼ 0; 1; 2;…, which form the
dynamic counterpart of the harmonic oscillator Fock states.
The states jn; ti are not stationary states, but do depend
explicitly on time, as indicated by the argument t in the ket
vector [103]. The ground state of the reference oscillator
jn ¼ 0iω0

obeys the condition

Ajn ¼ 0iω0
¼ ĈðtÞjn ¼ 0iω0

¼ 0: ðC21Þ

We can relate the Heisenberg operator ĈðtÞ to its counter-
part in the Schrödinger picture ĈSðtÞ as ĈSðtÞ ¼
UðtÞĈðtÞU†ðtÞ, with the unitary operator UðtÞ, which
fulfills

_UðtÞ ¼ −iHSðtÞUðtÞ: ðC22Þ

Explicitly, we find

ĈSðtÞ ¼
1

2i

"
_uðtÞ

ffiffiffiffiffiffiffiffi
2m
ℏω0

s
x̂ − uðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
2

mℏω0

s
p̂

#
: ðC23Þ

Then, Eq. (C21) can be rewritten as

ĈSðtÞUðtÞjn ¼ 0iω0
¼ ĈSðtÞjn ¼ 0; ti ¼ 0; ðC24Þ

where we introduce the state jn ¼ 0; ti in the Schrödinger
picture which evolves unitarily starting from the ground
state of the reference oscillator as jn¼0;ti¼UðtÞjn¼0iω0

.
The ladder-operator relations stated in Eqs. (C16) and
(C17) for the reference oscillator can easily be transferred
to the Schrödinger picture, yielding

ĈSðtÞjn; ti ¼
ffiffiffi
n

p jn − 1; ti;
Ĉ†
SðtÞjn; ti ¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jnþ 1; ti; ðC25Þ

implying NSðtÞjn; ti ¼ njn; ti, with NSðtÞ ¼ Ĉ†
SðtÞĈSðtÞ.

Since the Schrödinger operators ĈSðtÞ, Ĉ†
SðtÞ act as shift

operators for the Floquet states jn; ti, they will be referred
to as Floquet shift operators [34]. Therefore, all other states
forming the complete orthonormal basis fjn; tig can be
constructed by repeated operation on the ground state with
the Schrödinger creation operator ĈSðtÞ (with the proper
normalization) as

jn; ti ¼ ½ĈSðtÞ�nffiffiffiffiffi
n!

p jn ¼ 0; ti: ðC26Þ

When expressing this equation in coordinate space, the
micromotion appears in the wave functions as a pulsation
with the period T ¼ 2π=ω [30]. Although the states jn; ti
are not energy eigenstates (since they periodically
exchange energy with the driving field), they are typically
referred to as quasistationary states, because for strobo-
scopic times (that are integer multiples of the driving period
T) the full evolution UðtÞ boils down to multiplying the
wave function by a simple phase factor (as is the case
for standard stationary states for all times). Because of the
periodicity of the micromotion, the quantum number n
(labeling the quasienergy states) can thus be tied to the
electron’s energy averaged over a period T ¼ 2π=ω of the
drive frequency. This connection is explored in greater
detail below.

2. System-bath model

While our previous discussion has exclusively focused
on the time-dependent system’s dynamics [as described by
the Hamiltonian HSðtÞ given in Eq. (C1)], in the following
we develop a microscopic dissipative model, which
describes the electron’s motional coupling to the (thermal)
phonon reservoir.

M. J. A. SCHUETZ et al. PHYS. REV. X 7, 041019 (2017)

041019-16



The global Hamiltonian, describing both the electronic
motion as well as the phonon reservoir, can be formally
decomposed as

HðtÞ ¼ HSðtÞ þHB þHI: ðC27Þ

Here, the time-dependent system Hamiltonian HSðtÞ is
given in Eq. (C1). The Hamiltonian for the phonon bathHB
is of the usual form:

HB ¼
X
q;s

ωq;sa
†
q;saq;s; ðC28Þ

where a†q;s ðaq;sÞ creates (annihilates) an acoustic phonon
with wave vector q ¼ ðqjj; qzÞ, with polarization s and
dispersion ωq;s. Optical phonons can be disregarded at
sufficiently low energies as considered here [104].
Following Ref. [40], generically the electron-phonon inter-
action takes on the form

HI ¼
X
q;s

Wq;saq;seiq·r̂ þ H:c:; ðC29Þ

with r̂ ¼ ðx̂; ŷ; ẑÞ denoting the electron’s three-dimensional
position operator. The coupling constant Wq;s comprises
both the deformation potential as well as the piezoelectric
coupling mechanism [40,104]; it strongly depends on
specific material properties, but can be left unspecified
for the sake of our discussion. For low-dimensional quasi-
2D systems as we consider here, the Hamiltonian HI may
be simplified by projecting the electronic motional
degrees of freedom onto the lowest electronic orbital
ψ0ðzÞ, leading to

HI ≈
X
q;s

F ðqzÞWq;saq;seiq∥·r̂∥ þ H:c:; ðC30Þ

with the in-plane position operator r̂∥ ¼ ðx̂; ŷÞ. The form
factor F ðqzÞ ¼

R
dzeiqzzjψ0ðzÞj2 introduces a momentum

cutoff, with F ðqzÞ approaching unity in the limit jqzj ≪
d−1 and vanishing for jqzj ≫ d−1; here, d ∼ 10 nm denotes
the size of the quantum well along the z axis [104]. For the
sake of clarity, here we consider a quasi-one-dimensional
structure (a quantum wire) where the electron’s motion
is restricted to the x direction; compare our previous
discussion in Sec. C 1. In this case, the electron-phonon
interaction reduces to

HI ≈
X
q;s

~Wq;saq;seiqx̂ þ H:c:; ðC31Þ

where the coupling ~Wq;s accounts for transversal confine-
ment in both the y and z direction; moreover, we set q ¼ qx.
Along the lines of Sec. C 1, again we restrict ourselves to
the Lamb-Dicke regime in which the electron’s motion is

confined to a region much smaller than the wavelength
of the relevant, resonant phonon modes. Then, taking
eiqx̂ ≈ 1þ iqx̂, and introducing displaced bosonic bath
modes as

bq;s ¼ −iðaq;s þ ~W�
q;s=ωq;sÞ; ðC32Þ

b†q;s ¼ iða†q;s þ ~Wq;s=ωq;sÞ; ðC33Þ

we finally arrive at the following microscopic system-bath
model with bilinear coupling between the system [as
described by Eq. (C1)] and a bath of noninteracting
harmonic oscillators (i.e., the phonon reservoir):

HB ¼
X
ν

ωνb
†
νbν; ðC34Þ

HI ¼ x̂
X
ν

gνx̂ν þ x̂2
X
ν

g2ν
2mνω

2
ν
: ðC35Þ

where, to simplify the notation, we introduce the multi-
index ν ¼ ðq; sÞ and gν specifies the coupling strength
between the system and each bath oscillator mode ν.
Following the standard procedure in the literature, in
Eq. (C35) we also include a correction term that acts in
the Hilbert space of the particle only and compensates for a
renormalization of the potential Vðx̂; tÞ ¼ ðm=2ÞWðtÞx̂2
stemming from the system-reservoir coupling [34,105]. In
this model, the reservoir spectral density, defined as

JðωÞ ¼ π
X
ν

g2ν
2mνων

δðω − ωνÞ; ðC36Þ

encodes all features of the environment relevant for the
reduced system description [34].

3. Quantum master equation, quasistationary
state, and effective temperature

The time-dependent, dissipative quantum system
described by Eqs. (C27), (C1), (C34), and (C35), com-
monly referred to as a parametrically driven, dissipative
harmonic quantum oscillator, has been studied in great
detail previously in Ref. [34]. Within one unified Born-
Markov and Floquet framework, the authors of Ref. [34]
have derived a quantum master equation for the electronic
motion, fully taking into account the explicit time depend-
ence of the system Hamiltonian HSðtÞ.
Master equation.—By tracing out the unobserved

degrees of freedom of the phonon reservoir, Kohler et al.
derive an effective equation of motion for the reduced,
electronic density matrix ρ, which is irreversibly coupled to
a thermal phonon reservoir [34]. In addition to the standard
assumptions of a weak system-reservoir coupling (Born
approximation), and a short reservoir correlation time
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(Markov approximation), the analysis has been restricted
to an Ohmic spectral density where JðωÞ ∼ ω (which,
however, may be generalized to a more general setting
straightforwardly). Under these conditions, the central
master equation can be written as

_ρ ¼ −
i
ℏ
½ĤSðtÞ; ρ� þ Lγρ; ðC37Þ

with

Lγρ ¼ γðN þ 1ÞD½ĈSðtÞ�ρþ γND½Ĉ†
SðtÞ�ρ: ðC38Þ

Here, D½c�ρ ¼ cρc† − 1
2
fc†c; ρg is a dissipator of Lindblad

form, γ denotes the effective, incoherent damping rate due
to coupling to the thermal phonon reservoir, and

N ¼
X
n

c22n
ω0 þ nω

ω0

n̄thðω0 þ nωÞ; ðC39Þ

with n̄thðωÞ ¼ ðexp ½ℏω=kBT� − 1Þ−1, refers to a general-
ized effective thermal-bath occupation number. Note that
Eq. (C37) retains the periodicity of the driving and exhibits
Lindblad form. Moreover, the dissipative part of Eq. (C37)
is of the same form as for the well-known undriven
dissipative harmonic oscillator, with the Floquet shift
operators defined in Eqs. (C23) and (C25) replacing the
usual creation and annihilation operators. Note that in the
pseudopotential limit (where c0 is much larger than all
other Floquet coefficients), the effective thermal occupation
reduces to N ¼ n̄thðω0Þ, which is the standard bosonic
thermal occupation at the secular frequency ω0.
The master equation given in Eq. (C37) is valid provided

that the following conditions are satisfied [34]. (i) First, the
Markov approximation is satisfied provided that autocor-
relations of the bath (which typically decay on a time scale
∼ℏ=kBT) decay quasi-instantaneously on the time scale
of system correlations ∼γ−1. In principle, the damping
rate γ should be replaced by the thermally enhanced rate
γeff ¼ γðN þ 1Þ; however, we are interested mostly in the
low-temperature, pseudopotential regime where γeff ≈ γ.
Thus, the Markov approximation yields the condition
ℏγ ≪ kBT. (ii) Second, the (weak-coupling) Born approxi-
mation holds provided that the dissipative damping rate γ is
small compared to the relevant system’s transition frequen-
cies, yielding the requirement γ ≪ ω0. Taking together
conditions (i) and (ii) (and setting ℏ ¼ 1 for the moment)
gives the requirement

γ ≪ ω0; kBT; ðC40Þ

which (as we show below) comprises the regime for
ground-state cooling where γ ≪ kBT ≪ ω0. (iii) Finally,
when deriving Eq. (C37), the reservoir spectral density
JðωÞ is assumed to be Ohmic [i.e., JðωÞ ∼ ω].

Quasistationary state.—Using Eq. (C25), the (asymp-
totic) quasistationary solution ρssðtÞ associated with the
master equation (C37) is readily found to be

ρssðtÞ ¼
1

N þ 1

X∞
n¼0

�
N

N þ 1

�
n
jn; tihn; tj; ðC41Þ

where jn; ti refer to the generalized (time-dependent)
Fock states as discussed above [34]. The quasistationary
solution ρssðtÞ is dark with respect to the phonon-induced
dissipation, that is, LγρssðtÞ ¼ 0 for all times, and, being
a mixture of the Floquet solutions jn; ti, evolves peri-
odically with the period of the driving field, i.e.,
ρssðtþ TÞ ¼ ρssðtÞ.
While the notion of temperature becomes ambiguous

for an explicitly time-dependent problem as considered
here, in the following we adopt the reasoning presented in
Ref. [33] and take the mean kinetic energy [defined as the

quantum kinetic energy hp̂2ðtÞi=2m, time averaged over
one period T ¼ 2π=ω of the fast micromotion] as our
figure of merit for assessing the cooling-heating dynamics
in more detail. To do so, let us first transform our analysis
into a frame that is moving with the electron. Formally,
this transformation is defined as ϱ ¼ U†ðtÞρUðtÞ, with the
unitary operator that satisfies

_UðtÞ ¼ −iHSðtÞUðtÞ: ðC42Þ

Then, in the corresponding interaction picture (which
coincides with the Heisenberg picture defined in Sec. C 1)
the dynamics described by Eq. (C37) reduces to a purely
dissipative master equation, _ϱ ¼ Lϱ,

_ϱ ¼ γðN þ 1ÞD½A�ϱþ γND½A†�ϱ; ðC43Þ

where A ðA†Þ refers to the time-independent annihilation
(creation) operator associated with the reference oscil-
lator discussed in Sec. C 1. Since the Liouvillian L is
time independent, one can easily explain the phonon-
induced cooling dynamics via the eigenstates of A†A, as
defined in Sec. C 1. For simplicity, let us focus on the
pseudopotential regime where N ≈ n̄thðω0Þ, as discussed
above; then, for sufficiently low temperatures ðkBT ≪
ℏω0Þ the cooling dynamics dominate over the heating
processes such that, at the end of the cooling process,
we have hA†Ai ¼ hA2i ¼ hA†A†i ¼ 0. In this regime,
the expectation value for the quantum kinetic energy
reduces to

hp̂2ðtÞi
2m

⟶
cooling ℏ

4ω0

j _uðtÞj2; ðC44Þ

as one can readily deduce from Eq. (C20). Averaging
this expression (which still fully accounts for the time
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dependence of the potential) over one micromotion
period, we obtain

hp̂2ðtÞi
2m

¼ ℏ
4ω0

X
n

jc2nj2ðω0 þ nωÞ2 ðC45Þ

¼ ℏω0

4
þ Δheat; ðC46Þ

where we separate the residual kinetic zero-point motion
in the ground state of the secular reference oscillator
∼ℏω0=4 from the nonzero heating term,

Δheat ¼
ℏ
4ω0

X
n≠0

jc2nj2ðω0 þ nωÞ2; ðC47Þ

which may be viewed as micromotion-induced heating.
While the full expression given in Eq. (C45) can be
evaluated numerically using the well-known solutions of
the Mathieu equation (compare, for example, Ref. [33]),
a simple estimate (for q2 ≪ 1) shows Δheat ≳ ℏω0=4.
Therefore, in agreement with the results presented in

Ref. [33] for trapped ions, we then find hp̂2ðtÞi=2m≳
ℏω0=2 for the time-averaged kinetic energy in the
pseudopotential regime, which coincides with twice
the residual kinetic zero-point motion in the ground
state of the reference oscillator.
In conclusion, our analysis shows that micromotion does

lead to some heating as compared to the naive estimate
based on the slow secular motion only, but (in the
pseudopotential regime of interest, where q2 ≪ 1) this
apparent heating mechanism is strongly suppressed and
amounts to merely a factor of 2 increase only in the
particle’s time-averaged kinetic energy.

4. Exact numerical simulations and discussion

Setup.—Since the electronic dynamics described by
Eq. (C37) are purely Gaussian, an exact solution is feasible.
Therefore, in the following we complement our analytical
findings with numerically exact simulations for the elec-
tron’s dynamics. Based on Eq. (C37), one can readily
derive a closed dynamical equation,

d
dt

v ¼ MðtÞv þ CðtÞ; ðC48Þ

where v is a five-component vector comprising the first-
and second-order moments; that is, v ¼ ðhx̂it; hp̂it; hx̂2it;
hp̂2it; hx̂ p̂þp̂ x̂itÞ⊤. Since the first- and second-order
moments are decoupled, the dynamical matrix M is of
block-diagonal form.
Numerical results.—As illustrated in Fig. 3, in the

regime q2 ≪ 1 we numerically find that (i) the electronic
motion can be described very well by a simple damped

harmonic oscillator with secular frequency ω0, (ii) the
electronic motion is cooled by the phonon reservoir, and
(iii) the Lamb-Dicke approximation is well satisfied. Let
us elaborate on these statements in some more detail.
(i) When disregarding micromotion, the dynamics can
approximately be described by a simple damped harmonic
oscillator with secular frequency ω0. As shown in Fig. 3,
the effective, time-independent master equation,

_ρ ¼ −iω0½a†a; ρ� þ γðn̄thðω0Þ þ 1ÞD½a�ρ
þ γn̄thðω0ÞD½a†�ρ; ðC49Þ

with a ða†Þ denoting the usual annihilation (creation)
operators for the canonical harmonic oscillator, captures
well the most pertinent features of the electronic dynamics,
provided that q2 ≪ 1; compare the dashed orange line in
Fig. 3. (ii) As suggested by our analytical analysis, the
phonon reservoir provides an efficient cooling mechanism
for the electron provided that the host temperature is
sufficiently low; that is, kBT ≪ ω0. (iii) Regarding the
last statement (iii), we numerically verify that both the
expectation value for the electron’s motion as well as
the corresponding fluctuations are small compared to the
SAW wavelength, λ ¼ 2π=k, i.e., khx̂it ≪ 1 and kσx ≪ 1,
with σ2x ¼ hx̂2it − hx̂i2t . Furthermore, the Lamb-Dicke
approximation underlying the bilinear system-bath inter-
action Hamiltonian [compare Eq. (C35)] can be justified as
follows. Since the effective transition frequency ω0 is much
smaller than the SAW driving frequency (ω0¼ εω, with
ε ≪ 1), the same is true for the relevant phonon wave

number k0. Using the relation ω0 ¼ vðbÞs k0 (where vðbÞs

refers to the speed of sound associated with some relevant

bulk phonon mode), the latter can be expressed as k0 ¼
εðvs=vðbÞs Þk (with vs denoting the speed of sound of the
SAW mode driven by the IDTs, as usual). Therefore, even
for higher Rayleigh SAW modes whose speed of sound vs
may exceed the lowest value of vðbÞs , our approximate
treatment of the system-bath Hamiltonian is well justified,

provided that vs ≲ vðbÞs =ε holds. Note that material-
engineering strategies as discussed in the main text would

increase vs in the same way as vðbÞs , providing a very good
justification for our linearized Hamiltonian Eq. (C35)
since k0 ≲ εk.
Finally, the parameter regime of interest is summarized

and discussed extensively in Sec. II of the main text,
while the experimental feasibility thereof is discussed in
Sec. III.

APPENDIX D: CASE STUDY AND
PRACTICAL CONSIDERATIONS

In this appendix, we provide further details regarding
several practical considerations that are relevant for a
faithful experimental realization of our proposal. First,
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we provide a comprehensive overview of the key quantities
of our analysis and self-consistent estimates thereof. Next,
we address microwave-induced heating effects. Lastly, we
discuss electron spin decoherence effects due to (nuclear)
spin noise.
Case study.—Typical parameter regimes for the key

quantities of our analysis are given in Table II. The
parameters are chosen self-consistently with respect to
the requirements derived in the main text; see Eq. (6).
Note that the high-SAW frequencies lead to large energy
scales in the effective (harmonic-oscillator) problem. For
comparison, ions are typically confined in traps with
harmonic-oscillator energy ℏω0 ∼ 10 MHz [30]. For the
SAW velocity vs, we assume an ultrafast PSAW mode in
AlN/diamond (vs ≈ 18 km=s), as described in the main
text, and a corresponding effective hole massm ¼ 1.1m0 in
the host material GaN where the 2DEG is located.
Heating.—In order to avoid excessive heating of the

effective electron temperature above the dilution-fridge
temperature in the presence of rf driving, we either need
(i) the heat dissipation Wheat to be balanced by the applied
cooling power Pcool (for which, in an actual experiment, the
way the sample is heat sunk is very important) or (ii) the
heat dissipation to be too slow to change the electron’s
temperature on relevant experimental time scales after the
IDT-induced driving has been turned on. In the following,
we argue why the requirements (i) and (ii) can both be
fulfilled under realistic conditions. (i) First, recall that our
proposal is based on low-power SAWs (as a direct
consequence of the limitations imposed by Mathieu’s
equation) [60]. Since the potential amplitude due to a
single IDT is limited by Mathieu-like stability arguments as
VIDT ¼ VSAW=2 ¼ ðq=2ÞES ≲ 0.5 meV, the proposed
setup operates at SAW-induced amplitudes that are about
2 orders of magnitude smaller than what is common for
SAW-induced electron transport experiments (where typ-
ically VIDT ≈ 40 meV [13,61]). Based on experimental
results presented in Refs. [13,106,107], we find that
SAW amplitudes VIDT ≈ 1 meV can be reached with an
applied rf power P ≈ −10 dBmð0.1 mWÞ, in the desired
SAW frequency range ω=2π ≈ 30 GHz (as needed to
enter the pseudopotential regime), whereas high-amplitude
electron transport measurements operate at P >
þ10 dBmð10 mWÞ [13]. This estimate is based on experi-
ments with relatively wide IDTs in GaAs; therefore, the
power budget P could be further reduced (if needed) by
reducing the width W of the IDTs (which is typically
several hundreds of μm long [108], i.e., much longer than
necessarily required for an acoustic trap or lattice) and/or

using strongly piezoelectric materials [19,20,109] where
the electromechanical coupling efficiency is much larger
than for the weakly piezoelectric material GaAs. Heating
effects as a function of the applied rf power P have been
investigated experimentally in detail in Refs. [106,107]:
Here, at a comparatively large microwave power P ¼
þ5 dBm, the SAW-induced heating has been measured
to be WSAW

heat ≈ 0.1 mW. We may estimate this source of
heating as WSAW

heat ≈ ℏω × ðVSAW=V0Þ2κ, where ℏω is the
energy of a single phonon and the second factor gives the
total phonon loss rate in terms of the phonon number
Nph ≈ ðVSAW=V0Þ2 and the decay rate κ ¼ ω=Q; here, V0

refers to the amplitude associated with a single phonon [98]
and Q is the quality factor associated with the driven
SAW mode. However, it has been shown in Ref. [107] that
WSAW

heat accounts for ∼10% of the overall heating only,
due to the limited efficiency of the IDTs. While this ratio
may be improved with more sophisticated IDT designs
[19,20,110], an overall heating of Wheat ≈ 10WSAW

heat ≈
1 mW is still compatible with the cooling power of
state-of-the-art dilution refrigerators, which can reach
Pcool ¼ 1 mW at T ≈ 100 mK [111]; here, to maximize
the cooling efficiency in an actual experiment, attention
should be paid to the specific way the sample is heat sunk.
Since the proposed AL setup operates at much lower rf
power levels [P≲ −10 dBmð0.1 mWÞ as compared to
P ¼ þ5 dBmð3 mWÞ], the overall heat dissipation Wheat
can be balanced by the applied cooling power Pcool for
the specific parameters under consideration. This finding
is further supported by the experiments presented in
Refs. [106,107], where for low-power SAWs no significant
heating above the base temperature has been observed.
(ii) Second, the IDTs generating the SAWs can be placed
very far away from the center of the trap, without losing
acoustic power, thereby reducing local heat dissipation near
the center of the trap due to the applied rf power. For
example, in Ref. [13] (and many similar setups) the SAW
transducer has been placed approximately 2 mm away from
the center of the sample. In this way, the dominant local
heating at the IDT may be suppressed efficiently, at least on
time scales that are short compared to the one set by the
material-specific thermal diffusivity (which specifies the
rate of transfer of heat from the IDT to the cold center of
the trap). While this time scale is strongly material
dependent, a rough estimate for GaAs shows that it can
lie in the millisecond range (for IDTs placed ∼1 mm away
from the center of the trap), which is much longer than any
relevant experimental time scale. This reasoning is also in

TABLE II. Important (energy) scales for an exemplary setup with ES ¼ 1 meV and f ¼ 50 GHz. d denotes the distance between the
screening layer and the 2DEG.

ℏω [μeV] q ¼ VSAW=ES ℏω0 [μeV] V0 [μeV] nb ¼ V0=ℏω0 a ¼ λ=2 [nm] d [nm] t [μeV� U [μeV] kBT [μeV]

207 0.5–0.7 37–51 31–61 0.85–1.2 180 10–100 0.7–1.8 5–270 1–10
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line with experimental results showing that the effective
temperature increase could be further reduced when using
pulsed schemes rather than continous wave (CW) [106];
note that this approach is fully compatible with our dis-
cussion on optimized driving schemes. In summary, we
conclude that for realistic cooling powers and/or IDTs
placed sufficiently far away from the center of the trap,
microwave-induced heating effects should not lead to a
significant increase of the effective particle temperature (as
compared to the base temperature) since the AL setup is
based on low-amplitude SAWs with VIDT ≲ 0.5 meV, as a
direct consequence of theMathieu-type stability arguments.
Nuclear spin noise.—The observation of coherent spin

physics as outlined in Sec. IV may be impeded by electron
spin decoherence. ForGaAs-based systems, the electron spin
coherence time scale will be largely limited by the relatively
strong hyperfine interaction between the electronic spin and
the nuclei in the host environment [112], resulting in a
random, slowly evolvingmagnetic (Overhauser) field for the
electronic spin, and eventually leading to a loss of spin
coherence on a time scale ∼T⋆

2 . The latter depends on the
number of nuclear spins the electron effectively interacts
with. Since the electron’s spatial extension Δx=a ≈
1=ðπ ffiffiffiffiffiffiffiffi

2nb
p Þ is comparable to the typical size of gate-defined

quantum dots for realistic parameter values, we estimate
T⋆
2 ∼ 15 ns [112]. Then, in the first approximation, the

detrimental effects due toOverhauser noisemay be neglected
provided that the condition J ≫ 1=T⋆

2 is fulfilled, i.e., if
coherent spin exchange ∼1=J is much faster than electron
spin dephasing. According to our estimates provided above,
this regime is within reach even for GaAs-based systems,
where electron spin dephasing is known to be relatively fast
[112]. In this respect, evenmore promising estimates apply to
nuclear-spin-free systems, such as 28Si=SiGe, where the
influence of nuclear spins on the electron spins is largely
eliminated [84].While such a silicon-based setupwill require
a more sophisticated heterostructure including some piezo-
electric layer on top (as has been studied experimentally in
Ref. [24]), it should profit from significantly prolonged
dephasing times T⋆

2 > 100 μs [113]. Finally, as argued, for
example, in Ref. [14], Overhauser-field-induced spin
dephasing can be suppressed based on motional-narrowing
techniques, when moving around the acoustic dots (lattice
sites) such that the electron effectively samples many differ-
ent Overhauser fields.
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