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We consider a general model of unitary parameter estimation in the presence of Markovian noise, where
the parameter to be estimated is associated with the Hamiltonian part of the dynamics. In the absence of
noise, the unitary parameter can be estimated with precision scaling as 1=T, where T is the total probing
time. We provide a simple algebraic condition involving solely the operators appearing in the quantum

master equation, implying, at most, 1=
ffiffiffiffi
T

p
scaling of precision under the most general adaptive quantum

estimation strategies. We also discuss the requirements a quantum error-correction-like protocol must
satisfy in order to regain the 1=T precision scaling in case the above-mentioned algebraic condition is not
satisfied. Furthermore, we apply the methods developed to understand fundamental precision limits in
atomic interferometry with many-body effects taken into account, shedding new light on the performance
of nonlinear metrological models.
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I. INTRODUCTION

With rapid advancements in quantum optical experi-
mental techniques, the field of quantum metrology [1–5]
is entering the stage where ubiquitous quantum features
of light and matter are being harnessed to deliver ultra-
sensitive measuring devices for real-life applications
[6–12]. Along with experimental advances, theoretical
foundations for the field are constantly being developed.
From the first proposals of utilizing squeezed states in
optical interferometry [13], through identification of fun-
damental limits in decoherence-free metrology [14–16],
general methods have been developed, allowing us to take
into account the impact of realistic decoherence effects on
the performance of metrological protocols [17–24], includ-
ing the most general quantum adaptive strategies [25,26].
Most of the available general methods are based

on the integrated form of the dynamics of a quantum
system represented mathematically as a quantum channel
[20,22,25]. This poses a serious difficulty when the
dynamics is provided in terms of a master differential
equation. In this case, obtaining the analytical form of the
integrated dynamics is often impossible. This fact signifi-
cantly limits the utility of the available methods, making it
often necessary to resort to numerical calculations instead

of a more insightful analytical analysis. This deficiency has
been successfully addressed in the case of single-qubit
dynamics, where the full description of performance of the
most general quantum metrological protocols has been
given [26]. In particular, it has been shown that, provided
the noise is represented by a single Pauli operator that is
not proportional to the Hamiltonian itself, one can apply
an error-correction procedure, allowing us to reach the
Heisenberg-like, T2, scaling of quantum Fisher information
(QFI), where T is the total evolution time of the probe
system. On the other hand, for all other kinds of Markovian
noise processes, the optimal QFI is limited by a classical-
like scaling bound proportional to T and hence results in a
standard 1=

ffiffiffiffi
T

p
scaling of precision.

This paper provides a general solution to the problem of
determining optimal performance of adaptive metrological
schemes in a unitary parameter estimation problem for
arbitrary Markovian dynamics. We present an explicit recipe
that allows us to obtain the formulas for the behavior of
QFIFQ in the optimal metrological protocol, based solely on
the operators appearing explicitly in the master equation in
the standard Gorini-Kossakowski-Lindblad-Sudarshan [27]
form, with no need to integrate the dynamics whatsoever.
The probe dynamics we consider is given by

dρ
dt

¼ −iω½H; ρ� þ
XJ
j¼1

LjρL
†
j −

1

2
ρL†

jLj −
1

2
L†
jLjρ; ð1Þ

where ω is the frequencylike parameter to be estimated; it
is associated with the unitary dynamics generated by the
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Hamiltonian H, while Lj are noise operators. In particular,
we show that if

H ∈ S ¼ spanRf1; LH
j ; iL

AH
j ; ðL†

jLj0 ÞH; iðL†
j0LjÞAHg; ð2Þ

where H, AH denote the Hermitian and the anti-Hermitian
part of an operator, then the QFI scales, at most, linearly with
T, and the coefficient for the bound can be obtained from a
solution of a simple semidefinite program. When restricted
to a single-qubit problem, this condition is equivalent to
the one given in Ref. [26], requiring the noise not to be a
single-rank Pauli linearly independent from the Hamiltonian.
If the above linear dependence condition is not satisfied, we
discuss the possibility of implementing a “quantum error-
correction-like” protocol that yields quadratic scaling of QFI
in T. In the qubit case, this is always possible [26] using a
scheme based on preparing a maximally entangled state of
the probe system and an equally dimensional ancilla. Here,
we demonstrate that in higher dimensions, this is, in general,
no longer the case, and this approach is not always sufficient
to overcome the effects of noise.
Later, we apply the newly developed quantitative meth-

ods to determine fundamental precision bounds in atomic
metrological protocols involving many-body interactions.
These methods allow us, in particular, to derive, for the first
time, fundamental precision bounds on nonlinear metro-
logical protocols in the presence of decoherence. In the
absence of decoherence, it is known that, in the case of the
k-body Hamiltonian, nonlinearity may help to improve
the precision scaling of QFI to T2N2k, where N is the
number of atoms involved [28–36]. We show that, in the
case of the k-body Hamiltonian and l-body noise, the linear
dependence condition implies QFI to scale no better than
TN2k−l—a scaling formula identified in Ref. [37] but only
for GHZ states and a limited class of noise models. Apart
from determining the scaling character of the bounds,
we also provide explicit coefficients for the bounds in
the case of linear and nonlinear atomic interferometry in the
presence of single- and two-body losses. Note that we focus
here on unitary parameter estimation in the presence of
noise and do not analyze the problem of estimating the
noise parameter itself. This last problem, while interesting,
does not enjoy equally spectacular quantum gains thanks
to the use of entangled states as the unitary parameter
estimation case. Often, a completely uncorrelated state
proves to be optimal (for example, in the problem of
estimating losses or dephasing strength), while in other
cases, entanglement between a single probe and a passive
ancilla is sufficient to reach optimality [38–42].

II. FORMULATION OF THE PROBLEM

Considering the master equation given in Eq. (1), let us
denote by Eω

t the integrated form of the dynamics so that

ρωt ¼ Eω
t ðρ0Þ ¼

X
j

Kω
t;jρ0K

ω†
t;j ðtÞ; ð3Þ

where Kω
t;j are Kraus operators of the evolution.

The aim is to perform optimal estimation of the ω
parameter under the constraint of a fixed total evolution
time T under the most general adaptive quantum metro-
logical scheme, as depicted in Fig. 1. Given the final state
of the protocol ϱωT , the fundamental limitation on the
precision of estimating ω is given in terms of the quantum
Cramér-Rao bound

Δω ≥
1ffiffiffiffiffiffiffi
FQ

p ; FQ ¼ 2
X
ab

jhaj _ϱωT jjbij2
λa þ λb

; ð4Þ

where FQ is QFI for unitary encoding, the dot signifies
ðd=dωÞ, and jai, λa are eigenvectors and eigenvalues of ϱωT .
In what follows, we use QFI as the figure of merit. Direct
maximization of QFI of the final state over all tunable
elements in the protocol, i.e., input state and controls, is a
virtually impossible task unless a decoherence-free case is
considered where adaptiveness is useless [16].
Luckily, provided the integrated form of the dynamics

in the form of Eq. (3) is given, one can apply the
methods from Refs. [25,26], which allow us to obtain a
universally valid upper bound on QFI valid for arbitrary
adaptive strategy and hence a lower bound on uncertainty.
The bound utilizes the observation that, given a quantum
evolution in the form of Kraus representation (3), one
can consider equivalent Kraus representation ~Kt;j ¼P

j0u
ω
jj0K

ω
t;j0 consisting of operators related by a unitary

matrix with the original ones, or written in a more concise
notation ~K ¼ uK, where ~K ¼ ½ ~Kω

t;0; ~K
ω
t;1;…�T .

The bound on QFI for the m ¼ T=t step adaptive
protocol is then given in terms of minimization over
different Kraus representations and reads

FIG. 1. General adaptive quantum metrological scheme. Total
evolution time T is divided into a number m of t-long steps
interleaved with general unitary controls. The collective meas-
urement performed in the end allows us to regard this scheme as a
general adaptive protocol where measurement results at some
stage of the protocol influence the control actions applied at later
steps. This scheme may also mimic a parallel scheme where m
systems in an arbitrary initial entangled state are subject to
evolution through m parallel channels Eω

t for a time t.
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FQ ≤ 4min
~Kω;x

fmkαk þmðm − 1Þkβkðxkαk þ kβk þ 1=xÞg;

ð5Þ

where

α ≔ _~K
† _~K; β ≔ −i _~K

† ~K: ð6Þ

Here, k:k is the operator norm, and x is a positive real
parameter, minimization over which helps to further tighten
the bound. The crucial element here is that the unitary
matrix u can explicitly depend on the estimated parameter
ω. Using the fact that u† _u ¼ −ih for some Hermitian matrix
h, one notes that this dependence enters the computation of
α and β via the substitution

_~K ¼ _K − ihK; ~K ¼ K: ð7Þ

In the most general adaptive approach, it is always
advantageous to take the limit t → 0, as in this case the use
of adaptive gates potentially provides the greatest benefits.
Note that the limit is taken only in the duration of the
sensing map Eω

t , and it does not influence the duration of
the intermediate unitary control gates. In fact, in our model,
we assume that the time needed to perform control gates
is not included in the total resource count; hence, the
continuous limit t → 0 does not affect the control gate time.
At the same time, this limit allows us to have arbitrary many
control gates over the course of the sensing process and
hence results in the most general adaptive strategy.
Keeping this in mind, from now on we replace t with dt.

Taking this limit, we may now utilize known relations
between noise operators Lj and the corresponding Kraus
operators Kj in order to write an explicit Kraus represen-
tation for the dynamics in the lowest order in dt:

K0 ¼ 1 −
�
1

2
L†Lþ iHω

�
dtþOðdt2Þ; ð8Þ

Kj ¼ Lj

ffiffiffiffiffi
dt

p
þOðdt32Þðj ¼ 1;…; JÞ; ð9Þ

where L ¼ ½L1; L2;…�T . Note that Kraus operators’ index
starts at 0, while the noise operators’ index starts at 1. This
approximation correctly recovers the dynamics in the linear
order in dt and captures all the features of Markovian
evolution.
Because of the different dt scaling appearing in K0

and Kj≥1 operators, it will be convenient to introduce the
following structure of the matrix h:

h ¼
� h00 h†

h h

�
: ð10Þ

Minimization over different Kraus representations in
Eq. (5) now amounts to minimization over the matrix h,
and taking into account the limit dt → 0, we get

FQ ≤ 4min
h;x

fTkαkdt−1 þ T2kβkdt−2ðxkαk þ kβk þ 1=xÞg:

ð11Þ

The most interesting challenge posed be the above formula
is to determine the situation where FQ is limited by a bound
scaling linearly in T or where the bound scales as T2, in
which case, achieving the Heisenberg scaling may be
possible.

III. H ∈ S: T SCALING OF QFI

The bound will scale linearly in T if we are able to
find h that makes β ¼ 0þOðdt2Þ as well as α ¼
αð1ÞdtþOðdt2Þ; then by choosing x ¼ 1=

ffiffiffiffiffi
dt

p
, we get

FQ ≤ 4kαð1ÞkT ð12Þ

in the limit dt → 0. Let us write β explicitly in terms of L,
h, H at leading orders in dt:

β ¼ Hdtþ h00ð1 −L†LdtÞ
þ ðh†LþL†hÞ

ffiffiffiffiffi
dt

p
þL†hLdtþOðdt32Þ: ð13Þ

Let us denote time expansion coefficients of h as follows:
h ¼ P

k¼0;1
2
;1;…hðkÞdtk. We now investigate the condition

β ¼ 0 order by order in time. Making β ¼ 0 in orders

Oðdt0Þ and Oðdt12Þ implies that hð0Þ00 ¼ h
ð1
2
Þ

00 ¼ 0 as well as
hð0Þ ¼ 0. The first nontrivial condition appears in OðdtÞ
order, as this is the order where the Hamiltonian H
contributes and setting h ¼ 0 is not enough to get
βð1Þ ¼ 0. With the above substitutions, we may write the
linear-order coefficient of β:

βð1Þ ¼ H þ hð1Þ00 1þ h†ð1
2
ÞLþL†hð1

2
Þ þL†hð0ÞL: ð14Þ

Taking into account that h is Hermitian, this coefficient
can be zero if and only if the Hamiltonian H ∈ S, where
subspace S is defined in Eq. (2). Analyzing the next order,
we get

βð32Þ ¼ h
ð3
2
Þ

001þ hð1Þ†LþL†hð1Þ þL†hð1=2ÞL: ð15Þ

We see that none of the coefficients appearing here
appeared before when considering βð1Þ, so we may put
them all equal to zero, guaranteeing that β ¼ 0þOðt2Þ and
proving the linear scaling of QFI.
In order to obtain a quantitative bound, as given in

Eq. (12), let us now focus on the operator α. Taking into
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account that hð0Þ00 ¼ h
ð1
2
Þ

00 ¼ 0 as well as hð0Þ ¼ 0, the first
nontrivial order is linear in dt, and the corresponding
coefficient reads

αð1Þ ¼ ðhð1
2
Þ1þ hð0ÞLÞ†ðhð1

2
Þ1þ hð0ÞLÞ: ð16Þ

We now need to minimize the operator norm of the above
coefficient over h in order to get the tightest bound:

FQ ≤ 4T min
fhð1Þ

00
;hð1

2
Þ;hð0Þg

kαð1Þk; subject to βð1Þ ¼ 0: ð17Þ

Only in some particular cases can this be done analytically.
Fortunately, the above problem can be implemented
as a semidefinite program, as described explicitly in
Appendix A. The implementation is similar to the one
presented in Ref. [22] for the Kraus operator formulation.
Since the bound (12) involves the operator norm, it may

not be immediately applicable in infinite-dimensional cases
where the operators appearing in the master equation are
unbounded. For example, this is the case when dealing with
continuous variable systems. Following the original deri-
vation of the bound (5), however, one can refine it by taking
into account some properties of the state utilized in the
protocol. In particular, the states we deal with might be
restricted to consist of a finite number of photons or atoms,
or at least have the mean number of particles fixed. It might
also be the case that, by various superselection rules, the
whole Hilbert space is not available, and the bound can be
tightened by analyzing the operator norm of αð1Þ separately
in different superselection sectors. This will amount to the
calculation of operator norms on subspaces. Moreover,
provided sufficient information on the time evolution of the
probe state is given, the bound may even be formulated as
an integral over interrogation time T of a time-dependent
quantity. Namely,

FQ ≤ 4

Z
T

0

minhαð1Þitdt; subject to βð1Þ ¼ 0; ð18Þ

with hαð1Þit ¼ Trρtαð1Þ setting a limit on the gain in QFI
at a given instant of time, and ρt the state of the system at
time t—see Appendix B for details on how to tighten the
bound in these cases.
In what follows, it will be convenient to assume that

the master equation (1) is given in the so-called canonical
form [43,44], where all noise operators are traceless and
orthogonal, TrLj ¼ TrL†

kLj ¼ 0 (see also Appendix C 1).
Let us now briefly comment on the single-qubit

case discussed in Ref. [26]. Since Li operators in the
canonical form are traceless, they can be written as
complex combinations of Pauli matrices. To obtain a
better-than-linear scaling of QFI, the noise must be a
single-rank Pauli matrix linearly independent from the
Hamiltonian. Mathematically, this means that there is
only one Lj ∝ σn⃗∝H. Note that if we had two linearly

independent Lj, they would lead to S being the full space of
2 × 2 Hermitian matrices, thanks to the fact that products
L†
jLj0 appear in the definition of S. Moreover, even with a

single Li that is not proportional to a Hermitian matrix, we
would have two linearly independent Hermitian matrices
from its Hermitian and anti-Hermitian parts; hence the
generated S would again be equal to the whole space of
Hermitian matrices. Consequently, in the qubit case, the
H ∈ S condition is equivalent to the one discussed
in Ref. [26].

IV. H ∉ S: POSSIBILITY OF T2 SCALING OF QFI

If H ∉ S and hence βð1Þ cannot be made zero, then the
second term in the bound (11) will not vanish (because of
kβk2 scaling as dt2 and canceling with the 1=dt2 term) and
will result in an upper bound scaling as T2. This gives us
hope for the Heisenberg scaling of precision. Below, we
discuss the possibility to construct an adaptive quantum
error-correction-inspired strategy that allows us to achieve a
T2 scaling of QFI, and we discuss some concrete examples.
In addition to the probe system, we allow for an

additional ancillary system on which the evolution acts
trivially. Let ϱ ¼ jϕihϕj denote the input probe-ancilla
state. The adaptive protocol we consider consists of
intertwining of infinitesimal-time probe evolution

Eω
dtðϱÞ ¼ ϱþ ð−iω½H; ϱ� þ LðϱÞÞdtþOðdt2Þ; ð19Þ

where L represents the noise part of the master equation (1)
and the error-correction map C applied after each infini-
tesimal time step dt. Hence, the final state of the probe and
ancilla systems after the total evolution time T, i.e., after
T=dt applications of the evolution-correction step, reads

ϱωT ¼ CωT ðϱÞ ¼ ðC ∘ Eω
dtÞ ∘

T
dtðϱÞ: ð20Þ

Formally, in the above formula, we should write Eω
dt ⊗ I

instead of Eω
dt, as the map also acts on the ancillary system

in a trivial way. From now on, for simplicity of notation, we
assume that whenever an operator defined on the probe
system acts on the extended probe-ancilla system, it should
be understood as extended in a trivial way.
To simplify the exposition, we assume that estimation of

ω is made around the ω0 ¼ 0 point. Otherwise, by means of
active control, one can always compensate for the nonzero
rotation term −iω0½H; ρ� in the master equation—note that,
in this case, the error-correction operation C may, in
general, depend on ω0. Since QFI depends on the state
and its first derivative at ω0 [see Eq. (4)], it is enough to
consider the first-order expansion of the final state in the
estimated parameter ω: ϱωT ¼ ϱ0T þ ω_ϱ0T þOðω2Þ. The
zeroth-order ϱ0T ¼ C0TðϱÞ is simply the action on the input
state of the dynamics where the Hamiltonian part is
dropped, while the first-order term
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_ϱ0T ¼ −i
Z

T

0

C0T−tð½H; C0t ðϱÞ�Þdt ð21Þ

involves terms of C0T where the Hamiltonian part of the
dynamics enters linearly at different times.
Our goal is to design a protocol that protects the system

from decoherence in such a way that its QFI grows
quadratically in T and hence mimics the performance of
noiseless frequency estimation. First of all, we demand that
our protocol preserves the initial state in the absence of the
unitary evolution ϱ0t ¼ C0t ðϱÞ ¼ jϕihϕj. Furthermore, let us
define a decoherence-free qubit subspaceHQ ¼ fjϕi; jξig,
spanned by the input state as well as an orthogonal state jξi
such that Cð½H; jϕihϕj�Þ ¼ cðjξihϕj − jϕihξjÞ, c ∈ R. The
state on which H acted is being projected back onto the
subspace HQ, under the action of the error-correction step
C. We also assume that c ≠ 0 since otherwise the parameter
ω would not be imprinted on the state at all. This allows us
to simplify the expression in Eq. (21),

_ϱ0T ¼ ic
Z

T

0

C0T−tðjϕihξj − jξihϕjÞdt: ð22Þ

In addition, we require that the control-assisted evolu-
tion C0T−t preserves the coherence jϕihξj, which leads to
_ϱ0T ¼ icTðjϕihξj − jξihϕjÞ. Calculating QFI with eigenvec-
tors fjϕi; jξig and λϕ ¼ 1 yields quadratic FQ ¼ 4c2T2 as
in the case of noiseless frequency estimation. Otherwise,
had the evolution damped the coherence term, resulting in
jjC0t ðjϕihξj − jξihϕjÞjj ≤ e−λt, this would not be possible.
Hence, in summary, the requirements for the error-correction
map C are the following:

ðiÞ Cðjϕihϕj þ dtLðjϕihϕjÞÞ ¼ jϕihϕj þOðdt2Þ; ð23Þ

ðiiÞ Cðjξihϕj þ dtLðjξihϕjÞÞ ¼ jξihϕj þOðdt2Þ: ð24Þ

In fact, the linearity and the trace preserving pro-
perties of C, together with the above conditions, imply
Cðjξihξj þ dtLðjξihξjÞÞ ¼ jξihξj þOðdt2Þ. As a result, the
requirement for QFI to grow quadratically amounts to the
requirement of existence of a two-dimensional subspace
protected from decoherence up to the linear order in time.
We may therefore utilize known results from approximate
quantum error-correction literature, which in this case
reduce to the standard error-correction relation [45] for
the set of error operators consisting of Li and the identity
operator [46]:

ðaÞ hϕjHjξi ≠ 0; ð25Þ

ðbÞ hϕjL†
kLjjξi ¼ hϕjLjjξi ¼ 0; ð26Þ

ðcÞ hϕjL†
kLjjϕi ¼ hξjL†

kLjjξi; ð27Þ

for all k and j, where (a) is an additional requirement that
needs to be satisfied in order to keep nontrivial unitary
evolution in the qubit subspaceHQ. Step-by-step derivation
of the above conditions is provided in Appendix C 2.
Because of the way the single-qubit error-correction

protocols were applied in quantum metrology [26,47–49],
a natural choice for jϕi is the maximally entangled state of
probeþ ancilla jϕi ¼ ð1= ffiffiffi

d
p ÞPijii ⊗ jii. Recall that in

the canonical form of the master equation, all L are traceless
and orthogonal, TrLj ¼ TrL†

kLj ¼ 0 (see Appendix C 1).
The Hilbert-Schmidt orthogonality of Lj is automatically
transferred to the orthogonality of Ljjϕi vectors (where Lj

should in fact be understood here as Lj⊗1). We then
decompose the HamiltonianH¼H⊥þH∥ such thatH∥ ∈ S,
while nonzero H⊥ ∈ S⊥ is orthogonal to all operators in S.
If we now take jξi ¼ ðH⊥jϕi=kH⊥jϕikÞ (note it is, by
construction, orthogonal to jϕi as H⊥ is, in particular,
orthogonal to the identity operator), then one automatically
satisfies the first two conditions. Condition (a) follows from
hϕjH⊥Hjϕi ∝ TrH⊥H ≠ 0, while (b) follows from

hϕjL†
kLjH⊥jϕi ∝ TrH⊥L†

kLj ¼ 0; hϕjLjH⊥jϕi ¼ 0;

ð28Þ

asH⊥ is orthogonal to S with respect to the Hilbert-Schmidt
scalar product. For the qubit case [26], this construction
also guarantees condition (c) to be satisfied, as H ∉ S
implies only one Li ¼ L. Let j0i, j1i be the eigenbasis of
H⊥: H⊥jii ¼ λð−1Þijii (H⊥ is orthogonal to 1 and hence
has �λ eigenvalues). As a result, jξi∝H⊥jϕi∝ ðj0i⊗ j0i−
j1i⊗ j1iÞ, and consequently, hϕjL†Ljϕi ¼ hξjL†Ljξi ¼
TrðL†LÞ=2. In this case, one can state that Eq. (2) is an
“if and only if” condition for the impossibility of obtaining
QFI scaling quadratically with T.
In higher dimensions, however, an error-correction

scheme based on the use of the maximally entangled
state of systemþ ancilla will not work, in general—see
the Note added, which has a reference to the paper [50],
where a universal construction of a quantum error-
correction protocol satisfying all the required conditions
has been provided whenever H ∉ S. In addition, this
shows that the conditions that in our approach could be
regarded as sufficient for quadratic scaling are actually
also necessary.

V. ATOMIC INTERFEROMETRY WITH
ONE- AND TWO-BODY LOSSES

We now demonstrate an application of the developed
methods to provide bounds in atomic interferometry
models where two-body effects can be placed in the noise
part (two-body losses) or in the Hamiltonian part (the
nonlinear metrology model).
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Let us consider a Bose-Einstein condensate (BEC)
system of two-level atoms, where dynamics is described
by the following master equation:

dρ
dt

¼ −iω½HðkÞ; ρ� þ Lð1ÞðρÞ þ Lð2ÞðρÞ; ð29Þ

where

Lð1ÞðρÞ ¼
X2
i¼1

γi

�
aiρa

†
i −

1

2
fa†i ai; ρg

�
; ð30Þ

Lð2ÞðρÞ ¼
X2
i¼1

γii

�
a2i ρa

†2
i −

1

2
fa†2i a2i ; ρg

�

þ γ12

�
a1a2ρa

†
1a

†
2 −

1

2
fa†1a†2a1a2; ρg

�
ð31Þ

represent one-body and two-body loss processes with
respective loss coefficients γi, γij, and ai represents anni-
hilation operators that remove an atom from the ith mode.

The corresponding noise operators read Lð1Þ
i ¼ ffiffiffiffi

γi
p

ai,

Lð2Þ
ij ¼ ffiffiffiffiffi

γij
p aiaj. We consider two different Hamiltonians

that are associated with the sensing part of the dynamics:

Hðk¼1Þ ¼ 1

2
ða†1a1 − a†2a2Þ; ð32Þ

Hðk¼2Þ ¼ 1

4
∶ ða†1a1 − a†2a2Þ2; ð33Þ

which correspond to linear and nonlinear metrological
scenarios. For clarity of presentation, we put the normal
ordering operation in the definition of Hð2Þ in order to make
sure that we take into account only terms that appear from
the interaction between two different particles.
Let us start with the linear Hamiltonian case k ¼ 1 but

keep both the single- and two-body losses. This kind
of model is well tailored to analyze metrological BEC
experiments such as magnetometry experiments using
spin-squeezed BEC [10]. Let us calculate βð1Þ according
to Eq. (14):

βð1Þ ¼ 1

2
ða†1a1 − a†2a2Þ þ hð1Þ00 1þ

�X
i

ffiffiffiffi
γi

p
h
ð1
2
Þ

i ai þ H:c:

�

þ
X
ij

hð0Þij
ffiffiffiffiffiffiffiffi
γiγj

p
a†i aj þ…: ð34Þ

We now look at the possibility of choosing entries of h so
that we can set the above quantity to zero. Note that
we have not written explicitly the noise operators related
to two-body losses because operators related to two-
body losses appearing in the above equation would be
of the form aiaj; a

†
i aj; a

†
i a

†
ja

0
ia

0
j and would be linearly

independent on the operators appearing in the Hamiltonian
part. Hence, trying to set βð1Þ ¼ 0, we need to focus on
one-body-loss operators only. We are free to put all
coefficients of h in front of terms related to two-body
losses equal to zero. If we succeed in setting βð1Þ ¼ 0 using
only one-body-loss operators, this will also imply that
two-body losses are irrelevant in trying to assess the
fundamental precision limit on frequency estimation in
this case. By inspecting Eq. (34), it is clear that we

can make βð1Þ ¼ 0 by choosing hð1Þ00 ¼ 0, h
ð1
2
Þ

i ¼ 0,

hð0Þ11 ¼ − 1
2
γ−11 , hð0Þ22 ¼ 1

2
γ−12 , hð0Þ12 ¼ 0.

We should remember, however, that when deriving the
final bound using Eq. (16), we face the problem that
operators appearing under the operator norm are
unbounded; hence, the bound will formally be infinite
and thus useless. Physically, this is due to the fact that we
have not set any constraints on the number of atoms we use
in the experiment. From now on, we assume we have N
atoms at our disposal, and at every adaptive step, we replace
the lost atoms with new ones, keeping the number of atoms
constant. We discuss this approach in detail in Appendix B
and argue that, by doing so, we do not lose generality of our
bounds. Thanks to this, we are able to write a†1a1 þ a†2a2 ¼
N1 when calculating the operator norm of αð1Þ, remember-
ing that, in the end, we operate in a fixed particle-number
subspace.
Let us now go back to Eq. (34). With the fixed particle-

number constraint imposed, a†1a1, a
†
2a2 and 1 are no longer

independent operators. This gives us an additional freedom
in choosing coefficients of h in order to keep βð1Þ ¼ 0;

namely, we can take hð1Þ00 ¼−Nξ, hð0Þ11 ¼ γ−11 ðξ− 1
2
Þ, hð0Þ22 ¼

γ−12 ðξþ 1
2
Þ, with ξ being a free parameter. The QFI bound

can now be obtained by minimizing kαk over ξ:

FQ ≤ T min
ξ
kγ−11 ð2ξ − 1Þ2a†1a1 þ γ−12 ð2ξþ 1Þ2a†2a2k:

ð35Þ

The operators a†1a1, a†2a2 commute, and their common
basis is jn;N − ni (where n is the number of atoms in mode
1); hence, in the above minimization, we can replace a†1a1
with n and a†2a2 with N − n:

FQ ≤ T min
ξ

max
0≤n≤N

γ−11 ð2ξ − 1Þ2nþ γ−12 ð2ξþ 1Þ2ðN − nÞ:

ð36Þ

The minimum is achieved for ξ, which satisfies
γ−11 ð2ξ − 1Þ2 ¼ γ−12 ð2ξþ 1Þ2, and it reads

FQ ≤
4TN

ð ffiffiffiffiffi
γ1

p þ ffiffiffiffiffi
γ2

p Þ2 : ð37Þ
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This bound indeed agrees with a known bound ofN particle
interferometry, with losses [20,22,51,52]

FQ ≤
4TtN� ffiffiffiffiffiffiffi

1−η1
η1

q
þ

ffiffiffiffiffiffiffi
1−η2
η2

q �
2
; ð38Þ

where ηi ¼ e−γit after taking the limit t → 0. Note, how-
ever, that the derivation presented in this paper did not
require any educated guess [20] or a numerically indicated
optimal form of the Kraus representation [22], but it
resulted in a purely algebraic analysis of the noise operators
and the Hamiltonian appearing in the master equation.
Moreover, when deriving the bound, we could clearly see
that two-body losses do not have an impact on the bound.
We now study the fundamental bounds in a nonlinear

metrological model with k ¼ 2, in which case

βð1Þ ¼ 1

4
ða†21 a21 þ a†22 a22 − 2a†1a

†
2a1a2Þ þ hð1Þ00 1

þ hð0Þ11;11γ11a
†2
1 a21 þ hð0Þ22;22γ22a

†2
2 a22

þ hð0Þ12;12γ12a
†
1a2†a1a2 þ…; ð39Þ

where we explicitly wrote only terms relevant for
further discussion. In particular, we can ignore the one-
body-loss operators, as they are linearly independent
from the Hamiltonian and hence will not contribute to
the bound. Similarly, as in the linear case, we assume that
we are dealing with N-atom states. Hence, we utilize the
fact that ða†1a1 þ a†2a2Þ2 ¼ N21, implying the following
relation: a†21 a21þa†22 a22þ2a†1a

†
2a1a2 ¼NðN−1Þ1, which

allows us to again introduce a free parameter ξ into

coefficients of h: hð0Þ11;11¼ 1
4
γ−111 ðξ−1Þ, hð0Þ22;22¼ 1

4
γ−122 ðξ−1Þ,

hð0Þ12;12 ¼ 1
2
γ−112 ðξþ 1Þ, hð1Þ00 ¼ − 1

4
ξNðN − 1Þ. Using Eq. (5),

we arrive at the following bound:

FQ ≤ min
ξ

T
4

			2γ−112 ðξþ 1Þ2NðN − 1Þ1

þ a†21 a21ðγ−111 ðξ − 1Þ2 − 2γ−112 ðξþ 1Þ2Þ
þ a†22 a22ðγ−122 ðξ − 1Þ2 − 2γ−112 ðξþ 1Þ2Þ

			: ð40Þ

Since all operators under the operator norm commute and
have a common eigenbasis jn;N − ni, we can write the
above bound explicitly, replacing a†21 a21 with nðn − 1Þ and
a†22 a22 with ðN − nÞðN − n − 1Þ. Calculating the operator
norm now amounts to maximization over n. In the case
γ11 ¼ γ22, the above problem has an explicit solution,
which in the limit of large N reads

FQ ≤
N2T
γ12

(
2

ð1þ ffiffi
λ

p Þ2 λ ≥ 1

1
1þλ λ < 1

; ð41Þ

where λ ¼ 2γ11=γ12. To the best of our knowledge, this is
the first example of a fundamental bound in the nonlinear
metrology model, taking into account many-body
decoherence effects. Details of the above derivation, as
well as the discussion of the case γ11 ≠ γ22, are presented in
Appendix D.

VI. QUANTUM METROLOGY WITH GENERAL
MANY-BODY INTERACTIONS

Let us now investigate what can be said, in general,
concerning the fundamental bounds in nonlinear metrology
models with many-body interactions, without specifying
the actual form of the dynamics but just its nonlinear
character and trying to identify the resulting characteristic
scaling of QFI.
Consider a system of N atoms, where the Hamiltonian

part is a result of k-body interactions, while the noise part
is of the l-body type. To be more specific, we consider the
dynamics of the form

dρ
dt

¼ −iω

"X
ν∈ϒk

Hν; ρ

#
þ γ

X
μ∈ϒl;j

Lμ;jρL
†
μ;j −

1

2
ρL†

μ;jLμ;j

−
1

2
L†
μ;jLμ;jρ; ð42Þ

where ϒk ¼ fði1;…; ikÞg represents all k element combi-
nations of the N element set, and the operator index ν ∈ ϒk
denotes particles that a given operator acts on. We have also
introduced a positive coefficient γ in order to be able to
discuss effects of rescaling the noise strength. In what
follows, we assume that k; l ≪ N. This is a general scenario
considered in the field of nonlinear metrology [28–36] but,
very often, without the noise part. Including the noise part
in this form in the analysis is extremely challenging and
has only been analyzed for very specific noise models and
only in the case of input GHZ states [37].
Clearly, plugging all operators directly into formulas for

α and β would make the problem intractable in the case of
large N. We show that it is possible to apply our tools
effectively to the dynamics of n ≥ max ðk; lÞ, n ≪ N
atoms, and from this analysis, we can infer the final scaling
for the whole system of N atoms. Recall that while
investigating the fundamental limits to adaptive schemes,
we always consider the limit t → 0, and the only relevant
order of the dynamics we need to take into account is the
linear one. Hence, we may replace the original dynamics as
represented by Eq. (42) with a scheme where each n-tuple
of particles experiences the dynamics sequentially. By a
Trotter expansion argument, this will only introduce an
Oðt2Þ difference because of a potential lack of commuta-
tion of the operators acting on different subsets of particles
(see Fig. 2). This represents the dynamics in terms of
elementary operations εω

0;γ0
t acting on n particles only,

which we refer to as subchannels. In the above scheme, the
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H box denotes a free unitary evolution of k particles for a
time t, while the L box represents the noisy part of the
dynamics, which also lasts for a time t. In order to keep
the equivalence to the original problem, we need to
rescale the noise coefficient γ0 ¼ γ=χl, where χl ¼
ðNnÞðnlÞ=ðNl Þ ∝ Nn−l. The rescaling is necessary since the
number of noisy gates applied is enhanced by a factor of χl
compared with the original dynamics. Similarly, we need to
modify the Hamiltonian evolution by rescaling ω0 ¼ω=χk∝
ωN−ðn−kÞ—in the example of Fig. 2, this is not necessary
since k ¼ n.
Let us assume that it is possible to find an hε that makes

βε ¼ 0þOðt2Þ, where βε should be understood as the β

operator corresponding to the elementary dynamics εω
0;γ0

t .
This again corresponds to the situation where the
Hamiltonian H belongs to Sε, which is constructed from
noise operators entering εω

0;γ0 according to Eq. (2). We can

now apply the bound (11), treating εω
0;γ0

t as the fundamental
building block for the adaptive strategy; since there are
now ðNnÞT=t such elementary blocks, we arrive at

FQ ≤ 4ðNnÞ∥αð1Þεω
0 ;γ0∥T.

Let us inspect Eqs. (14) and (16) in order to understand
the impact of the rescaling factors χl, χk on the value of the
above bound. Rescaling of γ introduces an additional
1=

ffiffiffiffi
χl

p
factor to all L operators. Additionally, taking into

account that the Hamiltonian is rescaled by the 1=χk factor,
according to Eq. (14), in order to satisfy the βð1Þ ¼ 0

constraint, hð0Þ needs to be rescaled by χl=χk while hð1
2
Þ byffiffiffiffi

χl
p

=χk factors.
Together with Eq. (16), this implies that αð1Þ is rescaled

by χl=χ2k. Therefore, we finally arrive at

FQ ≤ 4T∥αð1Þεω;γ∥
�
N
n

�
χl
χ2k

∝ TN2k−l: ð43Þ

Note that the obtained scaling agrees with what we have
obtained in the models discussed in Sec. V. Thus, the case
where βð1Þ could be zero corresponds to either n ¼ 1,
k ¼ 1, l ¼ 1 or n ¼ 2, k ¼ 2, l ¼ 2, and indeed, we obtain,
respectively, TN and TN2 scalings. This shows that the
general approach based on splitting the complex multi-
particle dynamics into small subchannels involving only
the number of particles required to model a given degree
of nonlinearity is sufficient to obtain a proper scaling of
the precision bounds. This general approach can also be
utilized to obtain quantitative bounds, which will be the
subject of a separate publication [53].
The N2k−l scaling of QFI, or equivalently N−ðk−l=2Þ

scaling of parameter estimation precision, was also
observed in Ref. [37] for protocols based on utilizing
the GHZ class of states and models where all H and Li
operators commute. Our approach proves the scaling for
both the most general class of states and for adaptive
strategies. Once our bound can be derived (i.e., βð1Þ can be
set to zero), we can claim that, in models considered in
Ref. [37], indeed the GHZ and product states provide the
optimal scaling. In the more general approach, however,
where arbitrary states and adaptive strategies are allowed,
this will not necessarily be the case.
To show both the power and simplicity of our approach,

let us therefore consider the class of dynamics, which we
refer to as nonlinear metrology with multiparticle dephas-
ing, where Li and H commute as considered in Ref. [37],
and try to apply our methods to derive general precision
bounds in this case. We take Hν ¼ σν1z ⊗ … ⊗ σνkz and
Lμ ¼ σμ1z ⊗ … ⊗ σμlz . Let us inspect the structure of the
subspace S [see Eq. (2)] and invoke the representation of
the dynamics in terms of subchannels ε as depicted in
Fig. 2. We look for what k, l we can satisfy the H ∈ Sε

condition. The obvious case is k ¼ l when we simply
consider n ¼ k ¼ l subchannels, in which case, the oper-
ator H is proportional to the operator L. Similarly, we can
show that H ∈ S if k ¼ 2l since if we take n ¼ k we can
obtainH from products of L acting on two separate subsets
of l particles. More generally, provided k is even and
k ≤ 2l, we can consider n ¼ lþ k=2 particle subchannels
and obtain H by multiplying L acting on two sets of l
particles where ðl − k=2Þ of them overlap. Thus, the
product of two σz on overlapping particles is the identity,
and we can obtain a 2l − 2ðl − k=2Þ ¼ k fold tensor
product of σz acting on the remaining particles.
In particular, for nonlinear metrology k ¼ 2 and linear

dephasing l ¼ 1, we automatically get the FQ ≲ TN3

bound, while for the two-body Hamiltonian k ¼ 2 and
nonlinear dephasing l ¼ 2, we get FQ ≲ TN2, proving the
fundamental character of the scaling obtained in Ref. [37].
However, if we take k ¼ 1 and l ¼ 2, then according to our
approach, H ∉ Sε—as we cannot obtain a single σz from
products of two or four σz that appear in the definition of

FIG. 2. Equivalent (up to linear order in t) representation of the
N-particle dynamics in the form of a subsequent action of the
k-particle Hamiltonian H and l-particle noise L on all n-particle
subsets of the total N particles (the circuit is given for n ¼ k ¼
3 ≥ l ¼ 2). Since the number of applications of the noise part is
enhanced here by a factor χl ∝ Nn−l, we need to rescale the noise
coefficient in the above scheme to γ0 ∝ γ=χl to preserve the
equivalence. Similarly, if n > k, we would need to rescale the
frequency parameter to ω0 ¼ ω=χk. This representation allows us
to calculate the bound on QFI for the whole dynamics by analyzing

the properties of an elementary n-particle subchannel εω
0;γ0

t .

RAFAŁ DEMKOWICZ-DOBRZAŃSKI et al. PHYS. REV. X 7, 041009 (2017)

041009-8



Sε. Note that, indeed, in this case, the subspace spanned
by j0i⊗N � j1i⊗N is actually immune to decoherence as all
Li operators involve the product of two σz acting on
different sites and therefore yield a trivial 1 factor when
acting on states from this subspace. Still, the single-body
Hamiltonian acts nontrivially, and we get FQ ∝ T2N2,
showing the possibility of better-than-linear scaling both
in N and in T and demonstrating that, indeed, in this case
the bound FQ ≲ TN2k−l ∝ T is invalid.
Let us also comment here on the issue of optimization of

quantum metrological protocols under the fixed definite
particle number or just the mean number of particles fixed.
In linear metrology, QFI scales quadratically in the
decoherence-free case, and hence, maximization of QFI
under fixed mean particle number may lead to surprising
conclusions for the possibility of beating Heisenberg
scaling or even reaching arbitrarily high values (see,
e.g., Ref. [54]). This should be understood as a deficiency
of the QFI figure of merit, which, in general, provides only
a lower bound on achievable uncertainty via the Cramér-
Rao bound, whereas saturability of the bound requires more
detailed arguments [34,55–57]. If decoherence makes QFI
scale linearly with the number of particles, though, this
issue becomes nonexistent, and one can replace fixed
particle numbers with mean particle numbers in the for-
mulas for the bounds [3,23,58]. In the nonlinear models
discussed above, even in the presence of decoherence, the
bounds will, in general, scale superlinearly with particle
numbers; hence, again, the task of maximizing QFI under
the fixed mean particle number will be ill-posed, and as a
result, a meaningful discussion of such problems would
require going beyond the QFI paradigm.

VII. CONCLUSIONS AND DISCUSSION

Throughout this work, we have assumed Markovian
semigroup dynamics. Validity of this approximation
requires, in particular, coarse graining of the evolution of
the system on time scales larger than the environmental
characteristic relaxation time scales. Therefore, the “con-
tinuous limit” t → 0 that we have adopted while deriving
our bounds should be understood as the limit of very short
times but still in the regime where the Markovian approxi-
mation holds. Consequently, the fundamental character of
the bounds we derive hinges upon the assumption that one
cannot operate on time scales shorter than the ones
characteristic for the Markovian approximation. If this
assumption is dropped, one may expect different time
scalings of QFI (see, e.g., Refs. [59–61]). Still, combining
the framework of the most general adaptive protocols
with non-Markovian or even Markovian nonsemigroup
dynamics is a nontrivial task. In particular, focusing solely
on the reduced system dynamics may not be, in general,
sufficient to describe the effects of control operations
acting on the system, and more information on the

systemþ environment interaction may be required.
Moreover, in such scenarios, one cannot a priori justify
the framework where the time used up by control oper-
ations is not relevant, or argue that a model with infinitely
many control operations is the optimal one. We feel that
providing a general framework to study the potential of
adaptive quantum metrological protocols in the presence of
non-Markovian noise goes beyond the direct generalization
of the methods of this paper, and we leave this task for
future research.
Another way of generalizing the results of this work is to

assume the environment can be partially monitored, which
may open up completely new possibilities of fighting
decoherence. It is also interesting to study multiparameter
estimation scenarios where adaptiveness seems to already
play some role at the decoherence-free level [62].
To conclude, we have provided a simple algebraic

criterion, Eq. (2), determining, at most, linear time scaling
of QFI in the estimation of a unitary parameter under
general Markovian dynamics. Its high utility stems from
the fact that it deals directly with the Hamiltonian and noise
operators appearing in the master equation and does not
require integration of the dynamics. We have shown how
the bounds can be derived in atomic interferometric models
involving many-body interactions. In the qubit case, we
showed that the condition (2) is sufficient and necessary for
fundamental linear time scaling of QFI. In the case of
arbitrary dynamics in arbitrary dimensions, however, it has
only been proven to be a sufficient condition. Whether it is
also a necessary one remains an open question.
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Note added.—Recently, Ref. [50] appeared, where, in
addition to the independent derivation of the results
presented in Sec. III of our paper, an explicit construction
of the quantum error-correction protocol has been pro-
vided, yielding T2 scaling of the QFI whenever condition
(2) is not satisfied. As a result, this paper answered the
open problem stated above on whether the condition (2) is
indeed the if and only if condition for the impossibility of
preserving the T2 scaling of QFI via the most general
quantum protocols in the presence of noise for systems of
arbitrary dimensions. Note also that our conditions for an
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effective error-correction protocol [Eqs. (25)–(27)] are
equivalent to the ones provided in Ref. [50]. In particular,
by expressing the projectorΠC from Ref. [50] using jϕi, jξi
from Sec. IVof our paper as ΠC ¼ jϕihϕj þ jξihξj, we see
that their condition (15) is equivalent to ours [Eqs. (26) and
(27)], while their condition (17) is equivalent to our
Eq. (25)—on the one hand, we can always find two states
in this subspaceΠC that are coupled by the Hamiltonian; on
the other hand, if two states from the subspace are coupled,
the action of the Hamiltonian is nontrivial. Finally, let us
briefly describe how the universal error-correction code of
Ref. [50] appears in our language. The key idea is to use
the spectral decomposition of the part of the Hamiltonian
perpendicular to the noise spaceH⊥ ¼ P −Q, where P and
Q are orthogonal and positive semidefinite, and TrP ¼
TrQ since H⊥ is traceless by construction. Next, on the
probe-plus-ancilla system, we define the corresponding
purification states jpi and jqi, satisfying

P ¼ h⊥TrAjpihpj and Q ¼ h⊥TrAjqihqj; ð44Þ

where h⊥ > 0 since H⊥ is nonzero. Then, the virtual qubit
states of Sec. IV can be defined as jϕi¼ð1= ffiffiffi

2
p ÞðjpiþjqiÞ

and jξi ¼ ð1= ffiffiffi
2

p Þðjpi − jqiÞ.

APPENDIX A: CALCULATING THE BOUND VIA
SEMIDEFINITE PROGRAMMING

Given that the conditionH ∈ S is satisfied, we know that
the scaling of QFI is bound to be linear in T. In order to
obtain the tightest bound of the form (12), we need to
minimize the operator norm of αð1Þ, keeping the constraint
βð1Þ ¼ 0. First, we construct a matrix A,

A ¼
� ffiffiffi

λ
p

1 hð1
2
Þ†1þL†hð0Þ

hð1
2
Þ1þ hð0ÞL

ffiffiffi
λ

p
1⊗J

�
: ðA1Þ

Minimizing the operator norm ∥αð1Þ∥ is now equivalent to
minimizing λ subject to A ≥ 0, with the additional con-
straint coming from the equation βð1Þ ¼ 0. The QFI bound
can therefore be written as

FQ ≤ 4T min
fhð1Þ

00
;hð1

2
Þ;hð0Þg

λ; subject to A ≥ 0; βð1Þ ¼ 0:

ðA2Þ

The problem of determining the bounds is now fully
specified as a semidefinite program using only the oper-
ators appearing in the master equation.

APPENDIX B: TIGHTENING THE BOUND
USING PHYSICAL CONSTRAINTS

The bound in the form (11), which involves operator
norms, may in some cases be tightened by taking into

account additional physical constraints present in the
problem considered.

1. Superselection rules

It is often the case in practice that the experimentalist
does not have access to operations that create coherence
between some sectors of the total Hilbert space. For
example, there is no photonic experiment in which one
is able to create, manipulate, or detect coherence between
sectors of different total numbers of particles nt ¼ a†1a1 þ
a†2a2 þ… in all modes (including local oscillators). This is
a consequence of symmetries, like the time translation
symmetry enforcing energy conservation in the example
with particles. It is usually the case that the evolution,
Eq. (1), does not create such coherences either, unless the
evolution is “active” and describes the interaction of the
system with a source. This can be formalized by introduc-
ing a map

Pð·Þ ¼
X
k

Pk · Pk ðB1Þ

with PkPj ¼ δk;jPk, which projects the state of the systems
onto sectors that are eigenspaces of the conserved quan-
tities labeled by k. Control operations and evolution are
incoherent; they commute with map P, implying, for
instance, that H is block diagonal, PðHÞ ¼ H.
Under such circumstances, QFI of a state ρ might be

overestimating the extractable classical Fisher informa-
tion of the estimated parameter, as the information might
be, for example, encoded in the coherence between
different sectors. To get a tight expression, one then
has to explicitly account for the conservation law by
looking at QFI of the incoherent state PðρÞ. A similar
treatment can be done in our case. Since the projection
map P ∘P ¼ P commutes with both the controls and the
evolution and has to be applied on the final state, we can
explicitly account for the conservation law by consider-
ing the process ~EωðtÞ where the free evolution induced by
the master equation (1) is interjected with P after each
infinitesimal time step t,

ρωðt0 þ tÞ ¼ ~EωðtÞðρðt0ÞÞ ¼ P ∘ EωðtÞ ∘Pðρðt0ÞÞ: ðB2Þ

This composed channel ~EωðdtÞ has a different set of
Kraus operators:

K0;k ¼ Pk − Pk

�
1

2
L†Lþ iHω

�
PktþOðt2Þ; ðB3Þ

Kj;kl ¼ PkLjPl

ffiffi
t

p þOðt3=2Þ: ðB4Þ

But, as before, we can get the condition for the linearity of
QFI as
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βð1Þ ¼ H þ
X
k

hð1Þ00;kPk þ hk
†ð1

2
ÞPkLPk þ PkL†Pkhk

ð1
2
Þ

þ
X
k;l

PkL†hð0ÞklPlLPk: ðB5Þ

Note that because H is block diagonal, we set all the
entries of h leading to terms of the form Pk · Pl with
ðk ≠ lÞ to zero. Hence, when the process is incoherent
as described by the map P, QFI scales linearly if each
Hk ¼ PkHPk satisfies

Hk ∈ spanfPk; ðPkLjPkÞH; iðPkLjPkÞAH;
ðPkL

†
jPlLiPkÞH; ðPkL

†
jPlLiPkÞAHg ðB6Þ

for all l; j, and i.
Analogously, the minimization of the operator norm of

αð1Þ should be found for a block-diagonal operator:

αð1Þ ¼
X
kl

�
h
ð1
2
Þ

k Pk þ hð0ÞklPlLPk

�†

×
�
h
ð1
2
Þ

k Pk þ hð0ÞklPlLPk

�
: ðB7Þ

2. Restriction to a subspace

The most obvious situation is when the system state is
restricted to live in a particular subspace of the Hilbert
space, and neither the Hamiltonian nor the noise operators
Li, nor the active control operations move the state out of
this space. In this case, all operator norms appearing in
Eq. (11), as well as conditions on vanishing operators β,
should be understood as restricted to this subspace. For
example, this is the case for atomic or optical systems
with a fixed number of particles. Formally, let P be the
projection on the subspace. In all the formulas involving β
and α operators, we should simply replace all H and Li by,
respectively, PHP and PLiP. This situation can be viewed
as a special case of the superselection rule situation when
we leave only a projection on a single subspace.

3. Fixing the number of particles in the
protocol involving losses

Let us consider the situation where we start with a state
with a fixed number of particles which experiences losses
as in the case of the models discussed in Sec. V. If we start
with an N-atom state, then clearly, because of losses, we
end up with a mixture of states with different atom
numbers. Recall, however, that we work in the most general
adaptive metrological scenario. We therefore assume that,
at each adaptive step, we feed the system back with the lost
atoms and carry on the evolution with an N-atom state. In
practice, this would amount to performing a nondemolition
measurement of the number of remaining atoms; then,
since every state of n < N atoms can be isomorphically

transcribed to the state of N atoms, we do not lose any
parameter information that was potentially present in the
state as a result of earlier dynamics. With this in mind, and
recalling that adaptive steps in the most general strategy can
be chosen to be infinitesimally small, we can effectively
think of this situation as an evolution with a fixed number
of particles.

4. Taking into account the state-time dependence

Let us consider the situation where we have some
additional knowledge of the form of the state of the system
as it evolves in time under our protocol. Let us denote the
general error-correction-assisted evolution by a completely
positive trace preserving map Cωt . Let the initial state of the
system plus ancilla be ϱ0 ¼ jψ0ihψ0j; then, the state at time
T is given by

ϱωT ¼ CωT ðϱ0Þ ¼
X
i

Kijψ0ihψ0jK†
i ; ðB8Þ

with some Kraus operators Ki. We assume here that the
error-correction protocol does not depend on time, but this
is not crucial for the results that follow. QFI of any such
channel satisfies

FQ ≤ 4min
~K

Tr
X
i

_~Kijψ0ihψ0j _~K
†
i ; ðB9Þ

with the minimization over all Kraus representations of
the channel ~K≃K. As we argued before, the channel can
be decomposed into a product of infinitesimal channels
CωT ¼ ○

m¼T=dt
n¼1 Cωdt so that a Kraus operator of the global

overall process Ki ¼ Πm
n¼1Kin . Thus, the derivative _KT=dt

gives rise to a sum of m terms, with each term having a
derivative on an individual _Kin . This observation, together
with the trace-preserving property of Cωt , allows us to
rewrite the rhs of Eq. (B9) as

4

Z
dt0Tr

X
it0

_~Kit0Eω;t0 ðϱ0Þ _~K
†
it0

þ 4

Z
t0>t00

dt0dt00Tr
X
it0

_~Kit0C
ω
t0−t00

�X
it00

~Kit00C
ω
t00 ðϱ0Þ _~Kit00

�
~K†
it0

þ H:c: ðB10Þ
Choosing the local Kraus representation K such that the
corresponding βð1Þ is set to zero at the order dt (if this is
possible) sets the last two terms to zero and gives the bound

FQ ≤ 4

Z
T

0

dtTr

�X
it

_~K
†
it
_~Kit

�
Cωt ðϱ0Þ: ðB11Þ

The terms in the parentheses are equal to αð1Þ, so we just
obtained a state-dependent upper bound on QFI,
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FQ ≤ 4

Z
T

0

dt min
~Ks:t:βð1Þ¼0

Tr αð1ÞðtÞρt: ðB12Þ

Note that this is in accordance with the general (state-
independent) bound, as for any state ρ, it is true that
Tr αð1Þρ ≤ kαð1Þk. Moreover, if one knows some properties
of the time evolution of the state ρt under the error-
correction-assisted protocol, the bound in Eq. (B12) can
be much tighter than the generic one kαð1ÞkT.
To give a specific example of the utility of such a bound,

consider atomic interferometry in the presence of single-
particle losses as discussed in Sec. V. While deriving the
bound, we assumed that lost atoms can be replaced with
new ones. However, one might consider a more realistic
situation where this is not the case and the lost atoms are
not being replaced. For simplicity, let us assume that losses
are state independent, γ1 ¼ γ2 ¼ γ. This means that, start-
ing with a state of N atoms, after time t, we will have an
average number of atoms equal to Ne−γt. Applying the
time-dependent bound, and using Eq. (37) (which is also
valid for incoherent mixtures of states with different
numbers of atoms, where the mean number is N), we
can therefore write

FQ ≤
Z

t

0

dt0
Ne−γt

γ
¼ N

γ2
ð1 − e−γTÞ; ðB13Þ

which is, in general, tighter than FQ ≤ NT=γ.

APPENDIX C: ERROR-CORRECTION SCHEME

1. Canonical form of noise operators

If any of the noise operators Lj are not traceless, they can
be decomposed into Lj ¼ λ1þ L̄j, with Tr1L̄j ¼ 0. Under
this substitution, the Lindblad operator remains the same
(now denoted by L̄j), but an additional Hamiltonian term
−i½ i

2
ðλ�L̄j − λL̄†

jÞ; ρ� appears in the master equation, which
can be compensated by control operations. In addition,
for any set of noise operators fLjg, it is always possible to
find an equivalent (i.e., giving rise to the same dynamics)
set fL̄jg of operators that are orthogonal [43] under the
Hilbert-Schmidt product. Hence, one can always put the
noise operators in the form TrLj ¼ 0 and TrL†

kLj ¼ 0 for
all j and k.

2. Derivation of error-correction conditions (25)–(27)
A general map C, which maps the system from the big

Hilbert space H back onto a qubit subspace HQ, can be
written as

Cð·Þ ¼
X
l

Rl · R
†
l; ðC1Þ

with Rl ¼ μljϕihΦlj þ λljξihΞlj satisfying 1H ¼P
lR

†
lRl ¼ P

lðjμlj2jΦlihΦlj þ jλlj2jΞlihΞljÞ. For our
purpose, it is natural to consider the case where the two
subspaces HΦ ¼ spanfjΦlig and HΞ ¼ spanfjΞlig are
orthogonal, and the operator ΠΞ ¼ P

ljλlj2jΞlihΞlj and
ΠΦ ¼ 1H − ΠΞ are orthogonal projectors. The map is then
fully specified by the projector ΠΞ and the operator
M ¼ P

lμlλ
�
ljΞlihΦlj. Given that dimðHΞÞ ≤ dimðHΦÞ,

it is possible to find a Kraus representation of the map C
for which the vectors λ�ljΞli are orthonormal; hence, we
assume this result in the following [the same holds for
μ�ljΦli in the case dimðHΞÞ > dimðHΦÞ]. Recall that we
require the error-correction scheme to preserve the qubit
subspace spanned by jϕi and jξi under the action of the
noise L. For the map C, this implies

TrΠΞðjϕihϕj þ dtLðjϕihϕjÞÞ ¼ 0; ðC2Þ

TrΠΞðjξihξj þ dtLðjξihξjÞÞ ¼ 1; ðC3Þ

TrΠΞðjϕihξj þ dtLðjϕihξjÞÞ ¼ 0; ðC4Þ

TrMðjϕihϕj þ dtLðjϕihϕjÞÞ ¼ 0; ðC5Þ

TrMðjξihξj þ dtLðjξihξjÞÞ ¼ 0; ðC6Þ

TrMðjϕihξj þ dtLðjϕihξjÞÞ ¼ 1: ðC7Þ

The first three equations imply that jϕi ∈ HΦ and
jξi ∈ HΞ, as well as Lkjϕi ∈ HΦ and Lkjξi ∈ HΞ
for all k. Equations (C5) and (C6) impose, in addi-
tion, hϕjL†LMjϕi ¼ hξjML†Ljξi ¼ 0. Finally, Eq. (C7)
requires that TrMjϕihξj ¼ 1, allowing us to write
M ¼ jξihϕj þM⊥, and

TrM
X
k

LkjϕihξjL†
k −

1

2
ðhξjL†Ljξi þ hϕjL†LjϕiÞ ¼ 0:

ðC8Þ

This condition can be satisfied if and only if there is a
unitary U relating all the vectors Lkjϕi to Lkjξi. In this
case, setting M ¼ U satisfies Eq. (C8). In turn, such a
unitary exists if and only if one has

hϕjL†
kLjjϕi ¼ hξjL†

kLjjξi ∀ j; k; ðC9Þ

i.e., the Gramm matrices for the two vector sets are
the same.
In summary, an error-correction scheme that satisfies all

of the requirements above exists if and only if one can find
two states jϕi and jξi such that

ðaÞ hϕjHjξi ≠ 0; ðC10Þ
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ðbÞ hϕjL†
kLjjξi ¼ hϕjLjjξi ¼ 0; ðC11Þ

ðcÞ hϕjL†
kLjjϕi ¼ hξjL†

kLjjξi; ðC12Þ

for all k and j. Conditions (b) and (c) are properties of error
correction, while (a) has to be satisfied in order to keep
nontrivial unitary evolution in the qubit subspace HQ.

APPENDIX D: DERIVATION OF THE
FUNDAMENTAL PRECISION BOUND IN

NONLINEAR METROLOGY WITH
TWO-BODY LOSSES

Starting from Eq. (40) and substituting a†21 a21 with
nðn − 1Þ and a†22 a22 with ðN − nÞðN − n − 1Þ, calculation
of the operator norm amounts to maximization over
0 ≤ n ≤ N. The bound (40) can therefore be rewritten as

FQ ≤ min
ξ

max
n

T
4
½ðξ − 1Þ2Aþ ðξþ 1Þ2B�; ðD1Þ

where

A ¼ nðn − 1Þ
γ11

þ ðN − nÞðN − n − 1Þ
γ22

;

B ¼ 4ðN − nÞn
γ12

: ðD2Þ

Performing minimization over ξ yields ξ ¼ ðA − BÞ=
ðAþ BÞ, and consequently,

FQ ≤
N2T
γ12

max
0≤x≤1

�
1

4ð1 − xÞx

þ 1
γ12
γ11

ðx − 1
NÞxþþ γ12

γ22
ð1 − xÞð1 − x − 1

NÞ
�
−1
; ðD3Þ

where we introduced x ¼ n=N, 0 ≤ x ≤ 1. In the case
γ11 ¼ γ22, this maximization can be performed analytically
and results in

FQ ≤
N2T
γ12

8<
:

2ð1−1=NÞ
ð1þ ffiffi

λ
p Þ2 λ ≥ 1 − 2

N

1
1þλ N

N−2
λ < 1 − 2

N ;
ðD4Þ

where λ ¼ 2γ11=γ12, and it yields Eq. (41) in the N ≫ 1
limit. In the general case γ11 ≠ γ22, the maximization over x
can be easily performed numerically.
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