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When a physical system is subjected to a strong external multifrequency drive, its dynamics can be
conveniently represented in the multidimensional Floquet lattice. The number of Floquet lattice dimensions
equals the number of irrationally-related drive frequencies, and the evolution occurs in response to a built-in
effective “electric” field, whose components are proportional to the corresponding drive frequencies. The
mapping allows us to engineer and study temporal analogs of many real-space phenomena. Here, we focus
on the specific example of a two-level system under a two-frequency drive that induces topologically
nontrivial band structure in the 2D Floquet space. The observable consequence of such a construction is the
quantized pumping of energy between the sourceswith frequenciesω1 andω2.When the system is initialized
into a Floquet bandwith the Chern numberC, the pumping occurs at a rateP12 ¼ −P21 ¼ ðC=2πÞℏω1ω2, an
exact counterpart of the transverse current in a conventional topological insulator.
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I. INTRODUCTION

A major goal of quantum condensed-matter physics is
the control of many-body electronic and atomic states. A
periodic drive is emerging as one of the most exciting
means for achieving such control. Many proposals for
phases that could be induced by periodic drive, so-called
Floquet phases, have been made recently. References [1–5]
demonstrate driving a band insulator into a topological
phase using circularly polarized radiation or an alternating
Zeeman field. References [6–9] explored topological invar-
iants unique to periodically driven phases and predicted the
Anderson-Floquet anomalous insulator, an unusual system
with fully localized bulk but protected edge states. A
general invariant for interacting systems was proposed in
Refs. [10–13]. References [14–17] even showed that a
driven disordered system in one dimension (1D) could
spontaneously break the discrete time translation sym-
metry, forming the long-sought-after time crystal, while
Refs. [18–20] showed that a periodic drive can delocalize a
many-body localized system. This long list is a clear
indication for the richness of Floquet engineering, with

some of the proposals already having attracted nascent
experimental efforts [21–23].
A periodic drive alters the form of a quantum wave

function. Each state becomes dressed by all possible
harmonics of the drive frequency. The extra degrees of
freedom associated with the amplitudes of the various
drive harmonics effectively raise the dimensionality of the
system and allow it to exhibit new phenomena. While this
observation is at the basis of some of the work mentioned
above, the role of this extra emergent dimension remains
little utilized, with notable exceptions. This exact logic was
used to make an array of optical oscillators into a 1D
Thouless pump [24] and an array of two-dimensional (2D)
oscillators into possessing Weyl points [25], and it even
led to proposals for creating four-dimensional (4D) Hall
phases using driven three-dimensional (3D) arrays of
resonators [26].
Interestingly, there is another example where extra dimen-

sions “magically” emerge: quasicrystals. Quasicrystals are
aperiodic structures that could be understood as projections
of higher-dimensional periodic crystals onto lower dimen-
sions [27–29]. Most simply, a 1D quasicrystal can be
constructed by superimposing two periodic but mutually
incommensurate potentials.
Here, we show a surprising consequence of combining

these two schemes for increasing the dimensionality of a
system. Since the number of extra time dimensions is given
by the number of applied drives with incommensurate
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frequencies, one should be able to produce topological
phenomena rooted solely in the time dimension. In par-
ticular, we demonstrate that subjecting a single spin-1=2
particle to two elliptically polarized periodic waves can
realize the chiral Bernevig-Hughes-Zhang (BHZ) model
[30], which usually resides in two spatial dimensions
(see Fig. 1).
Just as a quantized Hall (spin or charge) conductance is

the earmark of spatial topological phenomena, the signature
of temporal topological phenomena arising from incom-
mensurate drives is energy pumping. First, we show that by
combining drives into a topological temporal texture, the
system will pump energy between the driving fields,
drawing energy from one and feeding it into the other.
This general principle may be of practical importance and
could be used, for instance, to convert photons between
distinct photonic modes in optical cavities (in contrast to the
perturbative nonlinearities that lead to the more conven-
tional phenomena, such as frequency halving or doubling—
e.g., Ref. [31]). The pumping effect on its own will occur
both in rational and irrational frequency combinations.
Second, the energy pumping rate between two incom-

mensurate drives will be quantized. The energy pumping
rate, averaged over time, and in the strong-drive limit,
will be

P ¼ ω1ω2

C
2π

; ð1Þ

with ω1, ω2 the two incommensurate drive frequencies, and
C the Chern number of the relevant topological band. Pure
drives that are mutually rational, as we will show, may
exhibit nonquantized pumping, even when the Chern
number of the synthetic band is C ¼ 0. The topological
nature of the driven system, however, will lend the pumping
effect its robustness against disorder. As soon as temporal
noise in the drives occurs (as long as it is not too strong to
violate the “strong-drive” requirement), the average pump-
ing rate would reduce to Eq. (D2), and no pumping will
take place, on average, in a topologically trivial drive.
Our paper is organized as follows. After providing some

background on Floquet theory and the physics of the
Wannier-Stark ladder, we consider the general properties
of a doubly driven system in Sec. III. Next, in Sec. IV, we
introduce the BHZ path to temporal topological systems
and explore the model’s properties. In Sec. V, we explore
the temporal BHZ model numerically and show that the
topological regime is characterized by energy pumping. In
Sec. VI, we explore the effects of temporal disorder and
show that the topological drive lends the pumping effect
robustness against disorder, for both mutually rational and
incommensurate drives. In Sec. VII, we discuss the con-
nection of our results with other systems and recent
discoveries, and in Sec. VIII, we briefly discuss some
other directions that can be pursued by means of multi-
frequency Floquet engineering.

II. BACKGROUND

A. Floquet theory and the Floquet lattice

The case of a simple periodic drive of arbitrary strength
can be conveniently treated by Floquet theory [32], which
is a time analog of Bloch theory for particles in spatially
periodic potentials. In Bloch theory [33], particles carry
quasimomentum. Analogously, in Floquet theory, when a
system is driven by a single frequency ω (and its harmon-
ics), the energy of eigenstates is replaced by quasienergy E.
Instead of diagonalizing a Hamiltonian, the Floquet
eigenstates (FE) diagonalize the single-period evolution
operator,

UT ¼ T exp

�
−i

Z
T

0

HðtÞdt
�
; ð2Þ

where HðtÞ is the time-dependent Hamiltonian, T is the
time-ordering operator, and T is the time period of the
drive. Therefore, Floquet eigenstates have the form

ΨðtÞ ¼ e−iEtΦðtÞ; UTΦð0Þ ¼ e−iETΦð0Þ: ð3Þ

Furthermore, the time-periodic part of the wave function
can be expanded in the Fourier series,

FIG. 1. We present a model that uses 2D topological insulator
band structure as a guide to engineering the quantized energy
pumping between different frequency modes. (a) A spin-1=2
particle driven by two sources with incommensurate frequencies.
In the topological phase, the spin trajectory (green line) fully
covers the Bloch sphere (blue). The intermode coupling induced
by the spin dynamics pumps energy from one drive (red) to the
other (blue) at a nearly quantized rate. The lower panel shows
effective magnetic-field trajectories for (b) m ¼ 0 (gapless phase
between two topological ones), (c) m ¼ 1.8 (just inside the
topological phase), and (d) m ¼ 2.2 (just outside the topological
phase). The mass m is depicted as a purple arrow [static Bz field;
see Eq. (15) for the definition].
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ΦðtÞ ¼
X
n

e−inωtΦn; ð4Þ

and the index of the expansion harmonic n can be
interpreted as a position in the Floquet lattice. It has the
physical meaning of the number of photons absorbed or
emitted by the system. Substituting this form into the
Schrödinger equation results in the following tight-binding
eigenvalue problem:

EΦn ¼
X
m

hm−nΦm − ωnΦn; ð5Þ

with hl the lth Fourier component of HðtÞ. Indeed, the
count of absorbed photons emerges as an effective force
field, and the tight-binding model resembles a Wannier-
Stark ladder [34] and, in the strong-drive limit, exhibits
Bloch oscillations [35].
The standard—single-frequency—Floquet theorem can

be extended to the case of multiple incommensurate
frequencies. It has been utilized in the study of intense
laser fields acting on atomic and molecular systems [36], as
well as to simulate the Anderson localization in dimensions
higher than one [37]. In both cases, the physical system
subjected to the drive was zero dimensional. Clearly, the
number of independent frequencies translates directly into
the number of dimensions of the Floquet lattice.

B. Wannier-Stark lattice and Berry curvature

A peculiar feature of Floquet lattices generated by
incommensurate frequency drives is that they always
experience an effective uniform “electric field” applied
in a noncrystallographic direction. This follows from
Eq. (5), as soon as we add additional drives, as described
in detail in the next section (Sec. III).
The projection of the field onto a particular lattice

direction is proportional to the corresponding drive
frequency

Hω⃗ ¼
XN
i¼1

niωi ¼ n⃗ · ω⃗; ð6Þ

where n⃗ is the integer vector of the drive harmonics, and ω⃗
is a vector containing the angular frequencies of the drives.
In analogy to the one-dimensional Wannier-Stark ladders, if
the potential-energy drop over a lattice constant exceeds the
hopping, then the band-structure effects are lost (this
corresponds to the weak-drive regime). On the other hand,
for the strong-drive regime, the effective electric field (i.e.,
frequency) plays the role of a perturbation, and the band
description provides a convenient framework to study
deviations from adiabaticity.
What are the physical implications of the topologically

nontrivial Floquet band structure in the strong-drive case?
In conventional materials, bulk topological invariants, and

Chern numbers in particular, lead to the appearance of
gapless edge modes [38]. In the case of the Floquet lattice,
for a classical coherent drive, the lattice does not have a
boundary (producing such a boundary requires specifically
tailored history dependence and is beyond the scope of this
work). Nevertheless, the pseudoelectric field can induce
chiral propagation, mimicking the edge physics in a finite
crystal. Analogously, we can think of the effective force as
inducing an anomalous velocity, which in two and three
dimensions is

v⃗ ¼ ω⃗ × Ω⃗q⃗; ð7Þ

where Ω⃗q⃗ is the Berry curvature in the Floquet zone,
defined in Eq. (25).
The chiral propagation on the Floquet lattice corresponds

to the energy transfer between the individual drives. In the
case of the two-frequency drive of a two-level system, as we
will show, the pumping power, averaged over long times, is
proportional to the product of frequencies and the Chern
number of the band into which the system is initialized.
Contrary to what would be expected in the standard

(perturbative) n-wave mixing, in the strong-drive regime,
any frequency can be converted into any other, whether
they are rationally or irrationally related. The topological
quantization of the energy pumping in the case of two
rationally related drive frequencies, with no disorder, will
be absent. The nonquantized effect, however, is not robust
against temporal disorder in the drive. When such disorder
is present, as we demonstrate in Sec. VI, even a rational
frequency ratio will result in an averaged energy pumping
rate that is proportional to the Chern number of the band.

III. FLOQUET REPRESENTATION
FOR MULTIPLE-DRIVE FREQUENCIES

The basis for our work is a mapping between a system of
d spatial dimensions subjected to N mutually irrational
drives and a dþ N-dimensional system. In rough terms, the
extra n dimensions in the multidrive Floquet problem
emerge when we consider the number of energy quanta
absorbed from each drive. As we show below, the numbers
of photons absorbed from each drive make up the coor-
dinates in an n-dimensional lattice. The energy associated
with each photon, however, gives rise to an effective force
in this lattice description since the Hamiltonian will contain
diagonal terms

P
iniωi, with ni the number of absorbed

photons from the drive with angular frequency ωi. Below,
we make this analogy more precise.
Consider a system with basis states jαi, with α ¼ 1; 2;…

(for instance, spin states—though they could also be
position states in real space) subject to a Hamiltonian

H ¼
X
α;β

Hαβðφ1;φ2;…Þjαihβj; ð8Þ
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such that each element Hαβðφ1;φ2;…Þ is periodic for
φi → φi þ 2π. We assume linear time dependence for
the φi’s,

φiðtÞ ¼ ωit; ð9Þ
with the ωi’s being mutually incommensurate. The
Schrödinger equation, written in terms of the components
ψα of the wave function jψi ¼ P

αψ
αjαi, is

i∂tψ
αðtÞ ¼ Hαβ½φ⃗ðtÞ�ψβðtÞ: ð10Þ

Equation (10) represents a system under multitone drive.
It can be analyzed in the spirit of Floquet theorem for a
single drive. Following Floquet’s construction, we write the
wave function as

jψðtÞi ¼ e−iEt
X

α;n1;n2;…

ϕα
n⃗e

−in⃗·ω⃗tjαi: ð11Þ

Above, we introduced the vector notation n⃗ · ω⃗ ¼ P
iniωi.

The Hamiltonian can also be expanded in terms of its
Fourier components,

Hαβðφ⃗Þ ¼
X
p⃗

hαβp⃗ e−ip⃗·φ⃗: ð12Þ

Next, we combine Eqs. (10)–(12) and obtain a tight-
binding eigenproblem [39]

ðEþ n⃗ · ω⃗Þϕα
n⃗ ¼

X
p⃗

hαβp⃗ ϕβ
n⃗−p⃗: ð13Þ

Once more, we made use of the vector notation for the set
of integers pi.
Equation (13) describes a hopping problem on what we

will refer to as a Floquet lattice (see Fig. 2). It has as many
dimensions as there are independent drive terms. In
addition, it has a tilt, with the potential Uðn⃗Þ ¼ −n⃗ · ω⃗.
This makes intuitive the interpretation of the Floquet
lattice: ni is the number of photons absorbed by the system
from drive i. Accordingly, if the energy spectrum of the
system in the absence of a drive is bounded, the wave
function ϕα

n⃗ will be exponentially confined to a strip normal
to the direction ω⃗, that is, in the direction ð−ω2;ω1Þ. Along
the strips, the wave functions should be nondivergent,
which fully specifies the eigenvalue-eigenvector problem
(13). Naively, the number of eigenstates is equal to the
lattice size times the dimension of the local Hilbert space.
However, it is easy to see that the number of independent
Floquet eigenstates is the same as for the undriven system.

Indeed, Eq. (13) has a symmetry: If ϕð1Þα
n⃗ is a solution with

quasienergy Eð1Þ, then ϕð2Þα
n⃗ ¼ ϕð1Þα

n⃗−m⃗ is also a solution with
Eð2Þ ¼ Eð1Þ − m⃗ · ω⃗ for any integer vector m⃗. Indeed, both
correspond to the identical solution of the time-dependent
Schrödinger equation (10). This can be verified explicitly,

ψ ð2ÞαðtÞ ¼
X
n⃗

e−iE
ð2Þt−in⃗·ω⃗tϕð2Þα

n⃗

¼
X
n⃗

e−iE
ð2Þt−in⃗·ω⃗tϕð1Þα

n⃗−m⃗

¼
X
n⃗

e−iðEð2Þþm⃗·ω⃗Þt−in⃗·ω⃗tϕð1Þα
n⃗

¼ ψ ð1ÞαðtÞ:

Any initial wave function at t ¼ 0 can be expanded in terms
of the unique Floquet eigenstates.
If not for the linear on-site potential on the lhs of

Eq. (13), the problem would be a translationally invariant
tight-binding model in the Floquet space and could be
trivially solved by a Fourier transform. The Floquet wave
functions would be ϕα

n⃗ðφ⃗Þ ¼ ~ϕαðφ⃗Þeiφ⃗·n⃗. Remarkably, the
energy eigenvalues in the absence of the drive ϵðiÞðφ⃗Þ are
the eigenvalues of Hðφ⃗Þ from Eq. (8). Thus, the angles φ⃗
play the role of momentum for the driven system. In
analogy to the Bloch and Brillouin cases, we refer to the
region 0 < φi < 2π as the Floquet zone.
With tilted potential turned on, the Floquet lattice

eigenvalue problem becomes equivalent to the Stark ladder
in 2D [40]. The tilt produces a change in the momentum
angles as

φ⃗ ¼ φ⃗0 þ ω⃗t: ð14Þ

To find the effects of the tilt on the wave functions, first
consider the situation where the driving is strong, which is
equivalent to the level spacings of ϵðiÞðφ⃗Þ being much
greater than the largest angular frequency. In this case, we
can describe the system using a semiclassical approach
following the motion of a particle with momentum φ⃗ in the
n⃗ lattice space. In this case, if the band structure is
topologically nontrivial, we can obtain chiral “edge”modes

FIG. 2. The Floquet harmonics in a two-drive system give rise
to a two-dimensional space. Each spot represents the n1ω1 þ
n2ω2 ¼ n⃗ · ω⃗ harmonic. If the frequencies are incommensurate,
then the space is infinite. If the ratio ω1=ω2 is rational, however,
the infinite lattice contracts to a cylinder (strip marked in red, with
periodic boundary conditions across the strip). The periodic
drives appear to exert a force in the n⃗ space along the ω⃗ direction.
The motion that arises because of Berry curvature is normal to the
force and is indicated by the dn⃗=dt arrow.
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that drift along the equipotential lines in n⃗. This will be
central to our work.
In the weak driving case, we obtain an effective 1D

hopping model that describes quasicrystal with variable on-
site potential (and variable hopping, if desired). This regime
is not central to the main subject of the paper, but interested
readers may refer to Appendix A.
Let us next consider how the construction above changes

when the frequencies have a rational ratio. Consider a two-
drive system, with ω1p ¼ ω2q, with p and q mutually
prime. First, the mapping (shown above) of the Floquet
problem to a 2D lattice representing the different frequency
components of the generalized Floquet wave function
becomes redundant. The rational ratio can be taken into
account by identifying the ðn1; n2Þ lattice point with
ðn1 þmp; n2 −mqÞ for any integer m. This compactifies
the 2D lattice into a strip with periodic boundary con-
ditions, and the vector ðp;−qÞ connects equivalent points
across the strip’s boundary. So, essentially, the problem is
thereby reduced to that of a cylinder of circumferenceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
, made of a square lattice (Fig. 2; for detailed

treatment, see Appendix B). As we show in the following,
for large

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
, there is no significant difference

between the rational and irrational cases as far the energy
pumping efficiency is concerned. The topologically quan-
tized value is obtained as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
→ ∞.

A related observation, interesting from a mathematical
perspective, is that it is possible to define Floquet eigen-
states for quasiperiodic drive, by means of a limiting
procedure. Specifically, we can approximate any irrational
frequency ratio as a limit of a ratio of two integers both
tending to infinity, ω1=ω2 ¼ limi→∞ðqi=piÞ. Solving a
sequence of Floquet eigenstate problems for progressively
smaller ωi ¼ ðω1=qiÞ ¼ ðω2=piÞ, we find that the eigen-
states indeed converge to a limiting state that one can define
as the quasiperiodic Floquet eigenstate. The demonstration
of this result is given in Appendix C.

IV. TEMPORAL TOPOLOGICAL SYSTEMS

The analogy between multiple incommensurate drives
and multidimensional lattice quantum dynamics allows us
to constructs zero-dimensional topological systems. The
topological effects will arise from the temporal structure of
the wave functions of the driven system. Below, we
construct such a system, which consists of a single spin-
1=2 particle, driven by two incommensurate periodic
drives. We first define the model and then explore its
topological properties. In particular, we consider the semi-
classical motion of the system on the Floquet lattice. We
concentrate on the associated φ⃗ momentum space, espe-
cially when there is Berry curvature associated with the
Floquet-lattice momentum states ψαðφ⃗Þ. Figure 3 depicts
all elements relevant to the discussion and maps out the

motion of the system in the momentum φ⃗ space, as well as
the Berry curvature of the model defined below.

A. BHZ path to temporal topological physics

Let us choose hαβpq in Eq. (13) so that the translationally
invariant tight-binding band structure is topologically non-
trivial. One of the simplest band structures of this type is
half of the BHZ model [30], with the Hamiltonian

H ¼ vx sinðk1Þσx þ vy sinðk2Þσy
þ ½m − bx cosðk1Þ − by cosðk2Þ�σz: ð15Þ

The model yields a quantum Hall insulator (band Chern
numbers �1) for −jb1j − jb2j < m < −jjb1j − jb2jj and
jjb1j− jb2jj<m< jb1jþjb2j. The corresponding Floquet
Hamiltonian is obtained by replacing k1 → ω1tþ φ1 and
k2 → ω2tþ φ2,

H¼ v1 sinðω1tþφ1Þσxþv2 sinðω2tþφ2Þσy
þ½m−b1 cosðω1tþφ1Þ−b2 cosðω2tþφ2Þ�σz: ð16Þ

The interpretation of this Hamiltonian harks back to the
discussion of the emerging Floquet lattice of Sec. III. The
operator e−iωit−iφi absorbs a photon from drive i, thus
realizing a hop on the Floquet lattice in the direction i. In
order to be able to follow the time evolution on the Floquet

FIG. 3. The Floquet zone for two drives. In analogy to a 2D
band structure, we draw the Berry curvature (color plot with side
legend) vs the two offset phases φ1 and φ2. The periodic drives
are akin to a motion along this Floquet zone with φ⃗ ¼ φ⃗0 þ ω⃗t. In
the case of a rational frequency ratio, the system will explore a
closed periodic path through the Floquet zone. Drawn here is
an example of 3ω1 ¼ 2ω2. The pumping effect will be roughly
the integral of the Berry curvature along the path times
ω1ω2 [Eq. (22)].
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lattice, let us explicitly extend the Hilbert space to the direct
product of the spin and lattice spaces, with the wave
function jψi ¼ P

αn⃗ψ
α
n⃗jn⃗ijαi [compare with Eq. (11)]. In

this representation, e�iωit → jni ∓ 1ihnij. We obtain a
tight-binding Schrödinger equation for the wave-function
amplitude on the Floquet lattice,

i∂tψn1;n2 ¼ Hψ jn1;n2 ¼
1

2
ðiv1σx − b1σzÞeiφ1ψn1−1;n2

þ 1

2
ð−iv1σx − b1σzÞe−iφ1ψn1þ1;n2

þ 1

2
ðiv2σy − b2σzÞeiφ2ψn1;n2−1

þ 1

2
ð−iv2σy − b2σzÞe−iφ2ψn1;n2þ1

þ ðmσz − n1ω1 − n2ω2Þψn1;n2 : ð17Þ

We could even go further and Fourier transform the
hopping part of the Hamiltonian to obtain its “momentum
representation” on the tight-binding Floquet lattice:

Hq⃗ ¼ v1σx sinðq1 þ φ1Þ þ v2σy sinðq2 þ φ2Þ
þ ½m − b1 cosðq1 þ φ1Þ − b2 cosðq2 þ φ2Þ�σz;

Hn⃗ ¼ −n⃗ · ω⃗;

H ¼
X
q⃗

Hq⃗n̂q⃗ þ
X
n⃗

Hn⃗n̂n; ð18Þ

where n̂n⃗ is the occupation of site n⃗ ¼ ðn1; n2Þ and
similarly n̂q⃗ is the occupation of the momentum state
ðq1; q2Þ ¼ q⃗. The Hamiltonian written in the form Eq. (18)
mixes the real (frequency) and momentum (phase or time)
space representations. The diagonal partHn⃗ ¼ n⃗ · ω⃗ has the
role of a force, which pushes the momenta q⃗ in the ω⃗
direction. This naturally leads to the momentum evolution

q⃗ ¼ ω⃗t: ð19Þ
B. Photon absorption rates

What would be the manifestation of a topological band
structure in the Floquet lattice? When the Berry curvature is
present, the system will respond to the force implied by
Hn⃗ ¼ −n⃗ · ω⃗ by moving normal to the force in a preferred
direction determined by the band into which the system was
initiated. From the practical standpoint, the “movement” of
the particle within a chiral band corresponds to a process
where photons of one frequency are absorbed and those of
the other are emitted, in the proportions that approximately
[up to uncertainty of the scale ∥hðtÞ∥] conserve energy. In
other words, the rates of work performed by “sources” with
frequencies ωi should add up to approximately zero on
average, but each one can be substantial.
Let us derive expressions for the photon emission and

absorption. From Eq. (18), we readily notice that the offset

phases φi act as a lattice vector potential for the photon
flow. Therefore, the derivative

ĵi ¼
∂H
∂φi

¼ ∂ni
∂t ð20Þ

is the current, or velocity operator, in the Floquet lattice. It
is the rate of absorption or emission of photons with
frequency ωi. The rate of energy absorption (power) is then

∂hEii
∂t ¼ ωihĵii ¼ ωi

∂hn̂ii
∂t : ð21Þ

This intuitive result can also be obtained in another
way. Consider a generic double-drive Hamiltonian as
H ¼ h⃗1ðω1tþ φ1Þ · σ⃗ þ h⃗2ðω2tþ φ2Þ · σ⃗. The time
derivative of the total energy is dE=dt ¼ dhHi=dt ¼
ih ½H;H � i þ hð∂H=∂tÞi ¼ f½∂h⃗1ðω1tþ φ1Þ�=∂tg · h σ⃗ i þ
f½∂h⃗2ðω2tþ φ2Þ�=∂tg · h σ⃗ i. Therefore, change of energy
due to a given source is

∂hEii
∂t ¼ ωi

�∂H
∂ϕi

�
¼ ∂h⃗i

∂t · hσ⃗i: ð22Þ

Note that the same formalism can be applied not only to
determine the work performed by a given frequency drive
but also to separate the energy flows between different
polarizations of the same frequency drive.

C. Semiclassical equations of motion
and pumping power

The evolution of position on the Floquet lattice in the
limit of a small applied “electric” field (that is, small
frequency) can be determined from the semiclassical
equations of motion. Within a particular band of Hq⃗, they
are [41]

_⃗n ¼ ∇q⃗ϵq⃗ −∇nHn⃗ ×Ωq⃗;

_⃗q ¼ −∇nHn⃗ ¼ ω⃗: ð23Þ

In the Floquet problem, there is a constant “force” ω⃗, and
we take

q⃗ðtÞ ¼ ω⃗t; ð24Þ

which, after substitution into Eq. (18), as expected, yields
the original problem, Eq. (16). The key to our problem is
the anomalous velocity, related to the Berry curvature (in
2D and 3D)

Ωq⃗ ¼ ẑi
1

2
tr

�
Pq⃗

�∂Pq⃗

∂q1 ;
∂Pq⃗

∂q2
��

; ð25Þ
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with Pq⃗ a projector onto a particular band of Hq⃗ [e.g., for
the lower band, Pq⃗ ¼ ð1 −Hq⃗=ϵq⃗Þ=2].
On average, only the Berry curvature pumps. The energy

that goes between the two drives is then

1

2

∂ðE1−E2Þ
∂t ¼1

2
ðω1;−ω2Þ ·ðω⃗×Ωq⃗Þ¼jΩq⃗jω1ω2: ð26Þ

D. Quantum Hall analogy

The above result can also be obtained by directly
exploiting the analogy with the Hall response in the
topological insulators. Namely, we use the known expres-
sion for the Hall current in order to determine the average
drift velocity of an individual particle. We take unit cell
size 1 and electric field E⃗ ¼ ðω1;ω2Þ. The field points at an
angle α ¼ arctanω2=ω1 to axis 1. For one fully occupied
band with Hall conductivity σxy, the application of the
electric field leads to the transverse current density

j⊥ ¼ σxyE;

which flows in the direction αþ π=2. This current is a
product of particle density and velocity, and since the size
of a unit cell is 1 and the band is fully occupied, the density
is 1. Thus, the drift velocity is v ¼ σxy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
1 þ ω2

2

p
. Its

projection onto axis 1 is v1 ¼ v sin α ¼ σxyω2; therefore,
the rate of energy change along axis 1, which is the same as
the power exerted by mode 1, is

∂E1

∂t ¼ σxyω1ω2 ¼ −
∂E2

∂t ;

equivalent to Eq. (26). There is also an appealing con-
nection to quantum pumping, described in Appendix D.

E. Quantization and the role of incommensurability

If over time the entire Floquet zone is probed by the spin,
we obtain a topologically quantized pumping, as in
Eq. (D2), since

Ωq⃗ ¼
Z

d2q
ð2πÞ2 ωq⃗ ¼

C
2π

; ð27Þ

with C the Chern number of the band. For this to happen,
the frequency ratio ω1=ω2 must be incommensurate. It is
important to note that the quantization will emerge once the
system has enough time to sample the Floquet zone.
If, on the other hand, the frequency ratio is a rational

number, then, over time, the path in the Floquet zone ω⃗t
mod 2π will repeat itself, and only part of the Berry
curvature will be sampled. Therefore, for rational ω1=ω2,
the pumping power is generally not quantized; however, the
average over the phases φ1 and φ2 (which can be inter-
preted as initial conditions) is quantized.

Interestingly, the lack of quantization of the rational-
frequency pumping effect renders it susceptible to temporal
disorder effects. Any temporal disorder effectively averages
over the phase differences between the two drives and also
forces an exploration of the entire two-parameter Brillouin-
Floquet zone. The pumping, on average, will again be
quantized and proportional to the Chern number of the
synthetic 2D space (see Sec. VI).

V. RESULTS OF NUMERICAL SIMULATIONS

Let us now explore the pumping effects described above
numerically. We find that, indeed, in the topological
parameter range, as long as the gap in the corresponding
band Hamiltonian exceeds the drive frequencies (i.e., for a
sufficiently strong drive), energy flows between the two
drives at a nearly quantized rate. A necessary condition for
strong pumping is the high “fidelity”—a large projection of
the spin onto the direction of the instantaneous “magnetic
field” (equivalent to the ability of the spin to stay in one
topological band). We consider these for both incommen-
surate and commensurate drive frequencies. Interestingly,
depending on the initial conditions, the pumping effect for
the rational frequency ratio can exceed its counterpart
for incommensurate systems and persist even outside the
topological regime. The qualitative reason lies in the
incomplete sampling of the Floquet zone in the case of
rational drive and thus a possibility of preferential sampling
of high Berry curvature regions.

A. Technical interlude

Before diving into the numerical results, several techni-
cal aspects of the simulation must be discussed. First, in our
simulation, we integrated the Schrödinger equation to
produce the unitary evolution operator UðtÞ. The
Hamiltonian we use is a special case of Eq. (16):

H
η
¼ sinðω1tþ ϕ1Þσx þ sinðω2tþ ϕ2Þσy
þ ½m − cosðω1tþ ϕ1Þ − cosðω2tþ ϕ2Þ�σz; ð28Þ

with the parameter η defining the overall energy scale.
Roughly speaking, the ratio of η to the fastest frequency ωi
determines whether the strong or weak driving regime is
realized. For the gap parameter m, we consider the topo-
logical (jmj < 2) and nontopological (jmj > 2) regimes. In
our simulation, we constructed UðtÞ as a product of the
“infinitesimal” evolution matrices exp ½−iHðtÞdt�. Our time
discretization step was dt ¼ 0.001, such that ω1dt ¼ 10−4.
Given the unitary evolution operator, it is possible to

calculate the integrated work done by each of the two
drives. As discussed in Sec. IV B, the instantaneous power
spent or absorbed by drive i is
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dWi

dt
¼ hψðtÞj dhiðtÞ

dt
jψðtÞi ¼ hψ0jUðtÞ† dhiðtÞ

dt
UðtÞjψ0i:

ð29Þ

[Here, hiðtÞ ¼ h⃗iðtÞ · σ⃗.] Therefore, we can define the work
operator:

Ŵi ¼
Z

t

0

dtUðtÞ† dhiðtÞ
dt

UðtÞ; ð30Þ

such that Wi ¼ hψ0jŴijψ0i. Alongside UðtÞ, we also
calculated the operators Ŵi for the two drives.
Finally, we must discuss the initial conditions for the

simulation. We would like to have an initial state jψ0i that
would maximize the energy transfer between the two drives
in the topological case. For this purpose, we hark back to
the analogy between the time-dependent Hamiltonian [e.g.,
as written in Eq. (28)] and the Hamiltonian of a real-space
topological insulator. The analogy and the semiclassical
logic of our topological pumping arguments suggest that a
good choice for the initial state is an eigenstate of the
instantaneous Hamiltonian at the beginning of the drive.
When the drive is strong, η ≫ ω1;2, the motion of the
system in the photon-number space will be dictated by the
semiclassical equations (23), with the Berry curvature
determined by the band of the eigenstate jψ0i. In this
strong-drive limit, the eigenstates of the instantaneous
initial Hamiltonian coincide with the Floquet eigenstates
of a periodic system. For weaker drives, it might be
advantageous to initialize the system into a Floquet state
of a periodic system, which approximates the incommen-
surate two-drive system. We explore this briefly in
Appendix E.
The fidelity of the initial state evolution, ψðtÞ ¼ UðtÞψ0,

with respect to the same-band instantaneous eigenstate of
HðtÞ, ψ iðtÞ, is crucial for effective driving in the incom-
mensurate case. It is possible to write the fidelity as

F ¼ hψðtÞjPtjψðtÞi

¼ tr

��
1

2
−
Hð0Þ
2ϵð0Þ

�
U†ðtÞ

�
1

2
−
HðtÞ
2ϵðtÞ

�
UðtÞ

�
: ð31Þ

From the definition of the projection operator at time t, Pt,
it follows that

F ¼ 1

2

�
1þ hσ⃗ðtÞi · h⃗ðtÞ

hðtÞ
�
≡ cos2

θðtÞ
2

; ð32Þ

where θðtÞ is the angle between the spin expectation and
the instantaneous magnetic field at time t. If the spin is not
in an instantaneous eigenstate, then the semiclassical
equations of motion do not apply and the pumping effect
is suppressed. The fidelity is robust, however, as long as the

minimum gap in the band Hamiltonian significantly
exceeds the drive frequencies,

Δ ¼ ηminðjjmj − 2j; jmjÞ ≫ ω1;ω2: ð33Þ

Indeed, one could consider the fidelity in the general
framework of a repeated Landau-Zenner process. Every
few cycles, the phases pass near the point(s) of the Floquet-
Brillouin zone where the gap reaches the minimum. In each
passage, the probability for the spin to shift between the
two bands is

p ∼ e−Δ
2=ð∂H=∂tÞ ≈ e−ðΔ2=vjω⃗jÞ: ð34Þ

Therefore, the spin may maintain its fidelity for exponen-
tially long times in the square of the strength parameter, η:

tmax ∼ exp

	
η2½minðjjmj − 2j; jmjÞ�2

vjω⃗j


: ð35Þ

When studying the rational frequency ratio case, it is
natural to consider the Floquet eigenstates as initial states
for the spin in addition to the instantaneous eigenstates. A
rational frequency ratio implies a strict periodicity of the
Hamiltonian. For ω1 ¼ 2π=Tp and ω2 ¼ 2π=Tq, the
Hamiltonian is periodic with period τ ¼ TLCMðp; qÞ, with
LCMðp; qÞ the lowest common multiple of p and q.
Typically, initialization into Floquet eigenstates results in
faster pumping at short and intermediate times, but more
importantly, since they are the eigenstates of UðτÞ, the
pumping power itself is a periodic function of time.

B. Incommensurate drives

Let us demonstrate the pumping effects in the regime that
best reflects the semiclassical limit, in which the Berry
curvature effects are dominant. Simulating the system at
η ¼ 2 yields near-perfect pumping effects essentially all the
way to the topological transition atm ¼ 2. In Fig. 4, we see
the energy transfer for several values of the gap parameter
m, alongside the fidelity associated with the overlap of the
initial state with the instantaneous eigenstate [as defined
in Eq. (31)].
Throughout our analysis here, we use the incommensu-

rate frequency pair ω1 ¼ 0.1 and ω2 ¼ γω1, with γ ¼
1
2
ð ffiffiffi

5
p þ 1Þ ≈ 1.618, the golden ratio. The offset phases

are ϕ1 ¼ π=10, ϕ2 ¼ 0. We explore the evolution up to
times t ¼ 104, where the pumping effect is clearly visible.
We vary m and η in our exploration.
The energy pumping rate indeed saturates to the one

expected from the semiclassical analysis. For a system with
Chern number 1, we expect an average Berry curvature of
Ω ¼ ð1=2πÞ and an energy pumping rate of dE=dt ¼
ðω1ω2=2πÞ ¼ 0.00257518, as in Eq. (26). From linear
regression of the plots in Fig. 4, we obtain excellent
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agreement with the semiclassical theory. Similarly, the
fidelity also remains near perfect throughout the evolution,
up to m ≈ 1.8. There, Δ ¼ ηjm − 2j ¼ 0.4, which is com-
parable to ω2 ≈ 0.1618, and the quasiadiabaticity condition
is expected to break down. For larger values of m, outside
the topological regime, the gap reopens and fidelity
improves, but pumping becomes small.
As η is reduced, the regime of ineffective pumping,

where the gap Δ becomes comparable to or smaller than
ω1;2, expands. This is visible in Fig. 5, which shows the
pumping rate as a function of m and η for a broad region of
parameter space. We explore smaller values of η, as well as
the demise of this effect at weaker drives in Appendix F.

C. Commensurate drive frequencies

The energy pumping effect, and Eq. (22) in particular,
can also be explored for a rational frequency ratio. In this
case, however, it is not the Chern number that determines
the effect but rather the integral of the Berry curvature along
a closed path in the two-dimensional “Floquet zone,” as
shown in Fig. 3. We study this regime here for the
frequency ratio ω1=ω2 ¼ 2=3 (with ω1 ¼ 0.1) and the
strong drive η ¼ 2. Additional results for weaker drives
are given in Appendix F.
As discussed in Sec. VA, when the frequency ratio is

rational, the Hamiltonian is strictly periodic, and we can
initiate the spin into a Floquet eigenstate of HðtÞ. This
results in a periodic pumping profile and typically larger
pumping power, compared to the initialization into instan-
taneous eigenstates (a detailed comparison between the two
initiation procedures is given in Appendix E).
The pumping profile for 1.2 < m < 2.2, with offset

phases ϕ1 ¼ π=10, ϕ2 ¼ 0, and Floquet eigenstate initial-
ization is shown in Fig. 6. As can be seen, the energy
pumping effect is present in the entire topological region.
Indeed, the pumping rate may exceed the quantized

FIG. 4. The energy flow and fidelity for themodel of Eq. (28) in the
strong-drive regime, η ¼ 2, ω1 ¼ 0.1, and ω2 ¼ γω1 ≈ 0.1618.
(a) The total work done by drives 1 and 2 as a function of time
for different m’s. Each pair of lines is displaced on the time axis for
clarity. The time axis is given in cycles of drive 1, while the work is
normalized by ω2. The quantized rate corresponds to slope 1.
(b) Fidelity vs time of a state initialized in the instantaneous eigenstate
of Hðt ¼ 0Þ and measured against the eigenstate of HðtÞ. All
fidelities start at 1 at t ¼ 0 and are offset vertically for clarity.
(c)Thepowerpumpedasa functionof theparameterm averagedup to
time t ¼ 2000. The quantized pumping is marked by the gray line at
dE=dt ¼ ω1ω2=2π. The initial phases for theseplots areϕ1 ¼ π=10,
ϕ2 ¼ 0. The strong-drive regime realizes the topological pumping
prediction up tom ∼ 1.8. Both fidelity and pumping deteriorate close
to the phase transition because of the closing of the band gap.

FIG. 5. Energy pumping between two frequency sources for
varying η and m. The parameters of the system for this plot are
ω1 ¼ 0.1 and ω2 ¼ γω1. The pumping rate was averaged over the
time range t < 10 000. The theoretical (ideal) value for the
chosen parameters is jP1 − P2j ¼ ω1ω2=π ≈ 0.00515036.
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theoretical value since the energy pumping effect is now
determined by the Berry curvature along a particular
periodic path through the Floquet zone, rather than its
average over the whole Floquet zone. Different paths can be
selected by varying the offset phases. This dependence is
illustrated in Fig. 7. It is also interesting to note that the
offset-phase dependence is stronger for initialization into
Floquet eigenstates, rather than into instantaneous eigen-
states of the Hamiltonian (not shown).

VI. TEMPORAL DISORDER AND THE
RESTORATION OF PUMPING QUANTIZATION

Phase noise of the drives leads to a surprising effect.
Above, in Sec. V C, we emphasized and demonstrated that
a commensurate pair of frequencies may induce pumping
even in a parameter regime with a zero Chern number. In
addition, we showed that even in the topological regime,
pumping is not quantized, and it depends on the initial
phase difference between the two mutually rational phases.
Temporal disorder, however, is tantamount to averaging
over all initial phases, and, in doing so, it restores the
quantized nature of the pumping effects and makes it
proportional to the Chern number of the underlying band
structure.

FIG. 6. The energy flow in the strong-drive regime, η ¼ 2, for
rational frequency ratio, ω2 ¼ ð3=2Þω1, with Floquet state
initialization. (a) The total work done by drives 1 and 2 as a
function of time for different m’s. Each pair of lines is displaced
on the time axis for clarity. (b) The power pumped as a function of
the parameter m averaged up to time t ¼ 2000. The pumping in
the commensurate case could be stronger than its incommensu-
rate counterpart. Furthermore, pumping may persist in the non-
topological regime since the system does not average the Berry
curvature of the entire Floquet zone. In the case of the offset
angles chosen, even when m ¼ 2.2, the system explores regions
with net positive Berry curvature. The gray line is at
dE=dt ¼ ω1ω2=2π ¼ 0.002387, signifying the pumping due to
Berry curvature of the Chern number C ¼ 1 band. The initial
phases for these plots are ϕ1 ¼ π=10;ϕ2 ¼ 0.

FIG. 7. Pumping profile for different offset phases for
ω2 ¼ ð3=2Þω1. (a) Accumulated work for Floquet initial states.
(b) Average power for t < 2000. We takem ¼ 1, η ¼ 1, and ϕ1 ¼
nπ=5 with n ¼ 0, 1, 2, 3, 4. The Floquet zone path of this system
for one offset phase combination is shown in Fig. 3. Floquet
eigenstate initial conditions were used. For these parameters,
there were no significant differences with instantaneous eigen-
state initialization. Here, too, ω1ω2=2π ¼ 0.002387.
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To demonstrate this principle, we consider a random
noise in the drive’s frequency. We choose the noise to be
akin to

ϕi ¼ ωitþ ϕð0Þ
i þ δiðtÞ; ð36Þ

with i¼1, 2, andwith _δiðtÞ_δiðt0Þ¼Di ·ð1=
ffiffiffi
π

p
τÞe−ðt−t0Þ2=τ2δij.

Such disorder removes the periodicity of the commensur-
ately driven problem.Also,whereas the commensurate drive
explores only a discrete set of lines crossing theϕ1,ϕ2 space,
the noise makes the phases meander and explore the entire
space. After time T, one expects a phase meander of order

ðΔϕiÞ2 ¼ DiT.
Temporal disorder can also have detrimental effects. If

the phase jitter is too strong, it will cause the fidelity of the
spin state to drop [note that _δiðtÞ is an instantaneous
correction to the frequency, and, if too large, spin cannot
track the total magnetic field]. This can lead to a rapid
deterioration of the pumping effect. However, by increasing
the disorder correlation time, the fidelity can be preserved.
Another effect is that if the angular frequencies of the drives
fluctuate significantly, the pumping power would be
affected. The quantized pumping corresponds to an integer
number of photons of one frequency per cycle of the other.
However, if the energy value of each photon varies with
time, the pumping power also becomes noisy. Both of these
effects are suppressed for large enough correlation time

τ—when the angular frequency fluctuations, _δ2i ∼ ðD=τÞ,
are small

ffiffiffiffiffiffiffiffiffi
D=τ

p
≪ ω1;2.

Disorder thus causes the commensurate drive case to
have the same energy pumping properties as the incom-
mensurate case, in the long time limit, or for short times
upon disorder averaging. A system with effective Chern
number vanishing will not exhibit pumping, while a system
in the topological regime will exhibit quantized pumping.
Surprisingly, disorder reinforces the topological pumping
quantization rule for any choice of drive frequencies.
To demonstrate the above conclusion, we simulated the

commensurate case with varying degrees of disorder,
disorder correlation time, and varying initial phases. We
simulated over time spans corresponding to about 30 cycles
of the slower drive and averaged over 20 disorder realiza-
tions. Figure 8 contrasts the pumping rate vs initial phase
shift for a disorder-free system, and a system with D1 ¼ 0,
D2 ¼ 2.4 × 10−3 (corresponding to a phase meandering of
order Δϕ2 ∼ 2) and correlation time τ ¼ 20 for ω1 ¼ 0.1,
ω2 ¼ ω1 · 3=2. The simulations in the figure are all for
η ¼ 2, with one example in the topological drive phase,
m ¼ 1.4, and another in the trivial drive phase, m ¼ 2.6.
We carry out a disorder average for the pumping rate, which
is essentially equivalent to a long-time average in the
adiabatic limit. The average is well quantized and inde-
pendent of the initial phase, as expected.

VII. DISCUSSION

A. Possible experimental realizations

The two-frequency drive could be implemented in a
variety of systems. The model we describe is that of a spin-
1=2 particle, subject to the magnetic field of two elliptically
polarized light beams, normal to each other, in addition to a
magnetic field normal to both beams. With the magnetic
fields that correspond to intensities of 1 W=cm2, and
g-factor 2, the pumping effect could be realized with drives
in frequencies of the order of f ∼ 1 MHz. One possibility is
to have a gas of alkaline atoms (e.g., rubidium) trapped in
an optical cavity.

FIG. 8. A comparison of the energy pumping rates vs initial
phase of drive ω1, ϕ1 (while holding ϕ2 ¼ 0), for rational drive
frequency ratios with and without temporal disorder. The results
shown for the disordered cases are averaged over several
realizations, and the disorder applied is a frequency random
walk with temporal correlations as described in Sec. VI along
with the additional parameters of the simulation. (a) The topo-
logical regime, with m ¼ 1.4. The disorder brings the average
energy pumping rate back to the universal and initial-phase-
independent value of ω1 · ω2=2π. (b) The nontopological regime,
with m ¼ 2.6. Although the rational frequency ratio allows for
significant pumping well within the trivial driving phase, the
effect lacks the topological protection, and disorder eliminates
the pumping. The results in both plots are averaged over 20
realizations. The error bars represent the standard deviation of
the average.

TOPOLOGICAL FREQUENCY CONVERSION IN STRONGLY … PHYS. REV. X 7, 041008 (2017)

041008-11



We discussed two types of initialization: into instanta-
neous eigenstates of the Hamiltonian and into the Floquet
eigenstates (for the case of rational frequency ratios). In the
limit of strong drive (slow frequency), they correspond to
approximately the same state and similar pumping powers.
We tacitly assumed that an arbitrary desired spin state can
be created by the standard nuclear magnetic resonance
(NMR)-like pulsing techniques and that the drive
Hamiltonian can be turned on instantaneously. While
theoretically consistent (the drive frequencies are slower
than the frequency scales corresponding to the drive
amplitudes), for an experiment, a simpler protocol would
be desirable. One protocol to initialize into an instanta-
neous eigenstate is as follows.
(1) Apply a strong static field to the spin and wait a

sufficiently long time for it to relax into its ground
state. If desired, apply a π pulse to put it into the
excited state.

(2) Change the field slowly to the one that corresponds
to the desired time-dependent Hamiltonian at time
zero.

(3) Gradually increase drive frequencies from zero to
the target values in the Hamiltonian.

An even simpler protocol can work as well, if the
relaxation rate for the spin (T1 time) is shorter than the
drive periods and the temperature is below the typical spin
level splitting. One can simply start applying the stationary
Hamiltonian, and spin itself will relax into a state closely
approximating the instantaneous eigenstate. Indeed, our
preliminary results on including dissipation show that
pumping survives dissipation, and it can, in fact, help to
stabilize the topological pumping.
The discussion in terms of electronic spins could be

transported easily to other two-level systems. The quantum
limit may be particularly amenable to experimental study
using superconducting qubit systems [42]. The appeal of
this scheme is both in the exquisite level of control over
the qubit and in the extreme measurement sensitivity to the
photon occupation numbers in the superconducting
resonant circuitry. Yet another attractive feature of the
superconducting devices, and Josephson junctions in par-
ticular, is the access to the ac Josephson effect in order to
drive the superconducting phase by applying dc voltage.
Manipulation of the superconducting phases has indeed
been considered as a means to explore and control
topological phases in multiterminal Josephson junctions
[43,44] and is mathematically analogous to the phase
control provided by the ac drive that we consider in the
present work.
Another interesting direction that one could explore is the

use of electronic spin in systems with a strong spin-orbit
coupling. For instance, once could consider a Weyl semi-
metal [45–48], with Hamiltonian near the Weyl nodes of

H ¼ vσ⃗ · ðp⃗ − eA⃗Þ; ð37Þ

where v is the Fermi velocity, p⃗ the electronic momentum,
and A⃗ the vector potential of the light. We neglect Zeeman
coupling altogether. Consider two beams that are elliptically
polarized, propagating in the x and y directions, and
affecting an electron in a state with p⃗ ¼ pzẑ. If the light’s
vector potential reaches amplitudes ejA⃗j ¼ ejE⃗j=ω > p, the
electron will realize the Hamiltonian (16). The amplitudes
realizable for such a scheme could be significantly higher,
into the gigahertz regime. This assumes electric fields in
excess of 100 V=m and having access to electrons with
momenta smaller than h=1 μm. Even larger fields would
allow operation in even higher frequencies, possibly in the
terahertz range. Similar arguments could be applied to the
surface state of a topological insulator subject to a mag-
netic field.
Needless to say, realizations in a solid-state regime will

have other issues such as disorder and the need for the
electron to remain in a particular momentum state for many
radiative cycles. Pursuing these directions will be the focus
of future work.

B. Generalizations

There are two ways in which the model can be naturally
generalized: by considering larger spins and by allowing
the driving fields to have their own dynamics. The
generalization of our results to larger spins is straightfor-
ward. Indeed, the dynamics of the expectation value of the
spin is given by the Bloch equations, which are indepen-
dent of the spin size [49],

_⃗SðtÞ ¼ i½H; S⃗ðtÞ� ¼ S⃗ðtÞ × h⃗ðtÞ: ð38Þ

The Bloch equations are linear in spin, and therefore, the
precession frequency is independent of the spin size. The
strong-drive criterion needed for the energy pumping for
general spin size, in the language of the Bloch equations,
corresponds to having the instantaneous Larmor frequency
jh⃗ðtÞj higher than the pump frequencies ωi—the same
condition as for a spin-1=2 particle. On the other hand,
from Eq. (22), the pumping power depends linearly on the
spin size; thus, by taking a large magnetic particle with low
magnetic anisotropy (e.g., a Yttrium iron garnet sphere
[50]), or NMR or electron spin resonance systems [51], one
can dramatically increase the pumping power to macro-
scopic levels.
One practical way to include the dynamics of the drive

fields is by considering a closed system of spin and two
electromagnetic cavities resonating at the drive frequencies.
The cavities can be initialized into semiclassical coherent
states to represent the periodic drives. The energy pumping
will act to change both amplitudes (and phases) of the
drives, eventually taking the system out of the topological
regime. Our preliminary results indeed show that the
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system reaches the topological state boundary, after which
the pumping direction reverses, albeit at a reduce rate.
Treating photons quantum mechanically raises several

new questions. Perhaps most appealing is the possibility of
using the two-frequency topological effects to pump energy
from a laser of one frequency into a cavity with another
frequency. Additional questions are as follows:

(i) What kinds of entangled spin-photon states are
achievable?

(ii) Is there is a spontaneous transition into the pumping
regime if one of the cavities is initialized into a
vacuum state?

(iii) Can a superradiance transition occur in a system of
multiple spins in the cavities? We leave these
theoretical problems for future study.

VIII. CONCLUSIONS

In this work, we have demonstrated that it is possible to
implement multidimensional topological band structures
purely in the frequency space. The implementation relies
on the ability to apply strong drives of incommensurate
frequencies. The approach was illustrated using the two-
dimensional BHZ [30] model constructed by pumping a
two-level system (spin-1=2 particle) with two elliptically
polarized waves of incommensurate frequencies. The
observable in this case is the quantized energy pumping
power between the two drives, which is the direct analog of
the quantized transverse Hall conductivity of the original
real-space model. As such, the driving occurs in the
topological regime of the model and remains effective as
long as the drive’s frequencies are lower than the minimal
band gap in the model (quasiadiabatic regime).
The multiple-drive paradigm we propose here gives rise

to the possibility of engineering emergent band models.
These emergent band structures could produce interesting
and potentially useful dynamics of photonic systems as
well as access new entangled states of photons and matter.
Furthermore, they are not limited to the two-drive example
presented in our manuscript.
The implementation of the BHZ model in Floquet space

that was our focus here is just one example of a model that
can be implemented by means of strong ac driving. Many
more exotic models can be built and analyzed by the same
approach, by applying more drive frequencies (equivalent
to going to higher-dimensional frequency spaces) or by
pumping systems with more levels (including spatially
extended ones). In particular, by applying three pump
frequencies to a four-level system, one may be able to
construct the 3D extension for the BHZ model [52]. The
topological invariant in this case is the second Chern
number that represents the magneto-electric response.
Again, an effective electric field is built into the Floquet
model by construction. It will be interesting to determine
what observable the orbital magnetic response would
correspond to in the Floquet implementation.

Pumping spatially extended systems by space-time-
dependent drives is another direction worth exploring.
Mixing real space with Floquet space gives a simple
interpretation of such classic effects as the Thouless pump
in terms of the 2D quantum Hall effect (Appendix G) and
can also help discover new phenomena. For instance, by
pumping the 1D spatial lattice with two incommensurate
frequencies, one may be able to construct 3D topological
insulators with SUð2Þ Landau levels [53,54]. By applying
even more drives, one may be able to access and study even
more exotic states, such as the eight-dimensional quantum
Hall effect [55]. Finally, one can consider pumping non-
linear spatially quasiperiodic systems. By doing so, one
may be able to access effective spatial dimensionalities
higher than three. Indeed, in the context of perturbative
nonlinear optics, 1D quasiperiodic spatial structures have
been utilized to enable high-efficiency second and third
harmonic generation [56,57].
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APPENDIX A: WEAK DRIVE

When the drive is weak, the motion of the system in
Floquet space is highly restricted. This can be seen from

ðEþ ω1nþ ω2mÞϕα
nm ¼ hαβpqϕ

β
n−p;m−q: ðA1Þ

Because of the large energy mismatches between neighbor-
ing sites, the “particle” can hop on the lattice only along a
1D “Manhattan” path that skirts the constant-energy line,
e.g., Eþ ω1nþ ω2m ¼ 0. The sites of the corresponding
1D model have on-site energies given by

unm ¼ ω1nþ ω2m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
1 þ ω2

2

q
ðn sin αþm cos αÞ:

This on-site energy is proportional to the distance between a
lattice point ðn;mÞ and the line cutting through the lattice at
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angle α. For tan α irrational, this distance is a quasiperiodic
quantity; hence, the system represents a 1D lattice with
quasiperiodic on-site potential. This can be compared to the
well-studied case of the Fibonacci quasicrystal [58]. In that
case, tan α ¼ γ and the on-site energies are all the same, but
the hoppings are different if they derive from the “vertical”
(m-direction) or the “horizontal” (n-direction) hopping.
Clearly, we can also introduce such asymmetry by choosing
h01 ≠ h01, however, the mapping to 1D only applies if
ωi ≫ jhj, and thus, it is not possible to exactly replicate the
limit of pure bond “disorder.” The spectrum of this problem
is dense everywhere because of the symmetry E → Eþ
ω1nþ ω2m accompanied by wave-function translation.
Because of the quasiperiodic potential, we expect the wave
functions to be localized along the effective 1D lattice.

APPENDIX B: COMMENSURATE DRIVE
FREQUENCIES: DETAILED TREATMENT

When drives are incommensurate, the wave function ϕn⃗ in
Eq. (11) is defined on the whole 2D Floquet plane since all
frequencies nω1 þmω2 are unique. Suppose now that
ω1=ω2 ¼ p=q, with p < q mutually prime integers. It is
easy to see that if p ¼ 1, then nω1 exhausts all the possible
frequencies. For p ≠ 1, the number of independent frequen-
cies is p times larger. Thus, in the commensurate case,
Floquet space is “compactified” into a strip of width p along
the ω1 axis. The boundary conditions are periodic along the
ω2 direction, but with an “offset” of q, introducing a
shear (twist).
Let us see how this comes about in detail. As before, the

Schrödinger equation is

i∂tψ
αðtÞ ¼ HαβðtÞψβðtÞ; ðB1Þ

with HðtÞ ¼ Hðω1t;ω2tÞ, where Hðθ1; θ2Þ is 2π periodic
in θ1;2. Hence,

Hðω1t;ω2tÞ ¼
X
m⃗

hm⃗e−iω⃗·m⃗t ¼
X
strip

~hm⃗e−iω⃗·m⃗t; ðB2Þ

where we combined all terms with the same frequencies,
thus reducing summation to a strip of frequencies
described above.
Similarly, the Floquet representation for the wave func-

tion is

ψðtÞ ¼ e−iEtϕðtÞ ¼
X
n⃗

e−iEt−iω⃗·n⃗tϕn⃗

¼
X
strip

e−iEt−iω⃗·n⃗t ~ϕn⃗: ðB3Þ

Substitution into the Schrödinger equation leads to the
expected result: When the action of the Hamiltonian seems
to take the system outside the strip, a shift by �ð−q; pÞ

brings it back into the strip. This corresponds to the
“sheared” periodic boundary conditions in the strip.
An alternative selection of unique frequencies is a tilted

ribbon with the regular (nonsheared) periodic boundary
conditions. The construction is the same as in the case of
carbon nanotubes with helicity ðp; qÞ. The Hamiltonian
induces hopping on the nanotube; the energy-conserving
dynamics corresponds to hopping along the nanotube
circumference (perimeter

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
).

Note that if p; q ≫ 1, then the compactification should
not be noticeable, and one does not expect any difference
between irrationally and such rationally related frequencies
(e.g., if one constructs topological insulators in Floquet
space).

APPENDIX C: FLOQUET EIGENSTATES
IN QUASIPERIODIC POTENTIALS

When drives are quasiperiodic (irrational frequency
ratio), the Floquet theorem does not directly apply since
one cannot define the evolution operator over the full
period. Nonetheless, a quasiperiodic drive with irrational
ω2=ω1 ¼ γ can be approximated by a periodic one,
ω2=ω1 ¼ p=q (p and q are positive, relatively prime
integers). For instance, for γ the golden mean, q and p
can be chosen as consecutive Fibonacci numbers. Then, the
drive is periodic, with the period T ¼ pT1 ¼ qT2, and the
Floquet theorem can be applied. Hence, one can ask
whether in the limit of p; q → ∞, the FE converge to
unique states. These could be naturally defined as the
Floquet eigenstates for the case of incommensurate drives.
For a periodic drive, FE have the formΨðtÞ ¼ e−iEtΦðtÞ,

with ΦðtÞ periodic. The FE are the eigenstates of the
evolution operator over the period

UðTÞ ¼ T exp−i
Z

T

0

Hðt0Þdt0:

For a two-level system (TLS), this is a 2 × 2 matrix that
can be easily computed and diagonalized to find FE.

1. Observations

To test the convergence of Floquet eigenstates,
we studied Hamiltonian Eq. (28) with parameters η ¼ 1
and m ¼ 1.5. We considered ω2=ω1 ¼ limi→∞pi=qi ¼ r,
with irrational r chosen as γ (with ω1 ¼ 0.3) and

ffiffiffi
2

p
(with ω1 ¼ 0.5). We used continued fraction representa-
tions of γ ¼ [1=(1þ f1=½1þ ð1=1þ � � �Þ�g)]. and

ffiffiffi
2

p ¼
1þ [1=(2þ f1=½2þ ð1=2þ � � �Þ�g)] terminated at a finite
level to obtain the sequences of (the best [59]) rational
approximations. The largest-denominator approximations
that we considered were 2584=1597 for γ and 3363=2378
for

ffiffiffi
2

p
. In Fig. 9, the deviation, jΔΨji¼jΨpi=qi−Ψpmax=qmax

j,
is plotted as a function of jpi=qi − rj for the two cases [the
reference values are Ψ2584=1597 ≈ ð0.094þ 0.496i; 0.863Þ†
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and Ψ3363=2378 ≈ ð−0.230 − 0.446i; 0.865Þ†]. Both show
approximately linear convergence, indicating the existence
of the Floquet eigenstates for incommensurate drive
frequencies. We also find, as expected, that in the limit
of small frequencies (ωi ≪ η), the FE are nearly the
eigenstates of the instantaneous Hamiltonian.

Note that we only tested the FE convergence in the
gapped phase. While we have not tested it explicitly, we
expect that in the gapless points (jmj ¼ 0, 2), the limit may
not exist since small changes in frequencies would lead to
topologically distinct trajectories in the Floquet zone.

APPENDIX D: QUANTUM PUMP ANALOGY

It is tempting to rewrite the Berry curvature of Eq. (25) as

Ωq⃗ ¼ ẑi
1

2ϵ2q⃗
tr

�
Pq⃗

�∂Hq⃗

∂q1 ;
∂Hq⃗

∂q2
��

ðD1Þ

[this is easy to see since tr½Pq⃗Hq⃗ð∂Pq⃗=∂qiÞ� ¼ 0]. This
result leads to a formula for the pump power,

1

2

∂ðE1 − E2Þ
∂t ¼ ω1ω2

2ϵ2q⃗
tr

�
Pq⃗

�∂Hq⃗

∂q1 ;
∂Hq⃗

∂q2
��

: ðD2Þ

Equation (D2) bears close similarity to the quantum
pumping formula [60], except that instead of the S matrix,
the derivatives in the commutator are of a Hamiltonian.
Indeed, the photons that enter and leave the driven system
do not have a conservation law (since they have different
frequencies), and therefore, they cannot be assigned an S
matrix. This equation may suggest that a generalization of
the quantum pumping formula for conserved but non-
quantized quantities, such as energy, may exist.

|p/q - r |
10–6 10–5 10–4

|Δ
 Ψ

|

10–2

10–1

100

FIG. 9. Convergence of Floquet eigenfunctions for ω1=ω2 ¼
pi=qi → r, where r is irrational [the golden mean, γ ¼ 1.6180…
(blue line) and

ffiffiffi
2

p
(orange line)]. Note that jΔΨj is calculated

relative to the best rational approximation used (2584=1597 for γ
and 3363=2378 for

ffiffiffi
2

p
); it is approximately linear in jp=q − rj.

Parameters of the Hamiltonian are described in the text.
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FIG. 10. Comparison of evolution starting from instantaneous (solid lines) and Floquet (dotted lines) eigenstates. Rational frequencies
in panels (a)–(c) are approximations of the golden mean γ. The Hamiltonian scale is η ¼ 1 and ω1 ¼ 0.1, with ω2 stated on the plots.
Panel (c) illustrates how the energy transfer for the rational drive depends on the relative phase, ϕ2 − ϕ1 ¼ 0, 1.5, 3, 4.5, starting from
the respective instantaneous eigenstates. The variation is due to sampling of different closed lines in the phase Brillouin zone.
Panel (d) illustrates how initializing into a Floquet eigenstate (computed for ω2 ¼ 144=89ω1) enhances pumping at long times for the
irrational drive.
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APPENDIX E: FLOQUET VS INSTANTANEOUS
EIGENSTATE INITIALIZATION

In Fig. 10, we consider two rational approximations to
the golden mean: ω2 ¼ 3=2ω1 and ω2 ¼ 144=89ω1, for
η ¼ 1 and ω1 ¼ 0.1. First, even in the case of small
commensuration, ω2=ω1 ¼ 2=3, there is significant pump-
ing. The rate of pumping is similar to the one for a nearby
incommensurate ratio. As mentioned in Sec. IV E, for the
commensurate drives, the Floquet zone is not fully
sampled, and hence, the results can depend on the relative

phase between the drives. Indeed, varying the initial phase
shift does lead to different pumping rates [see Fig. 10(c)].
In Figs. 10(a), 10(b), and 10(d), we have compared the

initializations in the instantaneous eigenstates (solid lines)
and the Floquet eigenstates (dotted lines). In all cases we
considered, we found that initialization in the Floquet
eigenstates leads to faster pumping. For incommensurate
drive frequencies, Fig. 10(d), the initialization was in the
Floquet eigenstate of ω2 ¼ 144=89ω1 (approximation to
the incommensurate FE discussed in Appendix C). That
initialization led to faster and more linear pumping, with
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FIG. 11. Same as Fig. 10, but for η ¼ 0.5.
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FIG. 12. Same as Fig. 10, but for η ¼ 0.2.
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the value near the theoretical upper limit, Eq. (26). The
reason for faster pumping can be traced to higher average
fidelity in the FE.
In Figs. 11 and 12, we consider the energy pumping, for

the same parameters as in Fig. 10, but for reduced
Hamiltonian scales, η ¼ 0.5 and η ¼ 0.2, respectively.
Consistently with the expectation, the energy pumping is
suppressed, particularly strongly for larger denominator
(and irrational) fractions ω1=ω2. Interestingly, for small
denominators, e.g., 2=3, the pumping persists even for
relatively small η.

APPENDIX F: ADDITIONAL
NUMERICAL RESULTS

In addition to the numerical results we presented in the
text, we explored the intermediate and weak-drive regimes
of the double-drive BHZ model. We present these numeri-
cal results here for completeness. Unless stated otherwise,
ω1 ¼ 0.1 and ω2 ¼ γω1, where γ is the golden mean.

1. Intermediate drives, η= 0.5, 1

For η values that exceed ω1;2, but not by much, we still
see a strong pumping effect deep in the topological regime.
The effect subsides, however, well before the phase
boundary between the topological and trivial parameter
regimes [Figs. 13(a) and 14(a)]. As can be seen from
Figs. 13(b) and 14(b), this is a result of the fidelity being
lost after a finite time in parameter ranges close to or
beyond the topological transition into the trivial range. This
is associated with the system exploring parts of the Floquet
zone where the band gap of the underlying BHZ model is
comparable to the drive frequencies.
Figures 13(c) and 14(c) show the power absorbed by

the drives averaged over the first 2000 time units of
the evolution as a function of the gap parameter m for
η ¼ 0.5, 1. The transition between the pumping regime and
the trivial regime is quite abrupt.

2. Weak drives, η ≤ ω1;2

To explore the weak-drive regime, we considered η ¼ 0.1.
As Fig. 15 suggests, initializing the system with the
instantaneous eigenstate of the Hamiltonian Hð0Þ results
in negligible pumping. Initialization in a Floquet eigenstate
of a periodic approximation does not qualitatively change
the result, as can be seen from Fig. 12(d).

APPENDIX G: THOULESS PUMP, RELOADED

In this section, we provide the reinterpretation of
the Thouless pump [61] using the Floquet lattice con-
struction. The Thouless pump is a classic example of a
driven system that shows quantized transport behavior.
Consider a one-dimensional tight-binding lattice, xi ¼ i,
with a spatially and time-dependent on-site potential,

Vðx; tÞ ¼ A cosðω0t − kxiÞ. The potential is time periodic,
and thus, we can take advantage of the Floquet trans-
formation described in Sec. III. As a result, we obtain a
two-dimensional lattice—one spatial dimension that no
longer has spatially varying potential, and one frequency
dimension, with the superimposed linear potential corre-
sponding to an applied electric field of strength ω0. The
hopping in the positive (negative) frequency direction is

FIG. 13. Work (a) and fidelity (b) in the intermediate drive
regime for η ¼ 1. We initialized the system with the instantaneous
eigenstate of Hð0Þ, where the initial phases for these plots are
ϕ1 ¼ π=10, ϕ2 ¼ 0. (c) Power pumped averaged for t < 2000 as
a function of gap parameter m.
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Ae�ikxi . The phase factor corresponds to an effective linear-
in-x vector potential pointing in the y (frequency) direction.
This is equivalent to a uniform magnetic field of strength k
piercing the lattice. We therefore see that the Thouless
pump in 1D maps onto a quantum Hall problem in 2D.
Indeed, the topological invariant in Ref. [61] is nothing but
the Chern number in the mixed coordinates of spatial
momentum and time momentum (phase). Because of the

presence of crossed electric and magnetic fields, a particle
placed in the lattice will experience drift, with velocity
orthogonal to both, of the magnitude given by their ratio,
vdrift ¼ ω0=k. This is nothing but the speed of the potential
in the original problem, which yields the pumping result of
the Thouless pump.

FIG. 15. Work and fidelity in the weak-drive regime. (a) Energy
transfers for η ¼ 0.1. (b) Fidelities of the initial state, an
instantaneous eigenstate of Hð0Þ, and the instantaneous eigen-
states of HðtÞ. The initial phases for these plots are
ϕ1 ¼ π=10;ϕ2 ¼ 0. (c) Power pump averaged for t < 2000 as
a function of gap parameter m.

FIG. 14. Work (a) and fidelity (b) in the intermediate drive
regime for η ¼ 0.5. We initialized the system with the instanta-
neous eigenstate of Hð0Þ, where the initial phases for these plots
are ϕ1 ¼ π=10, ϕ2 ¼ 0. (c) Power pumped averaged for t < 2000
as a function of gap parameter m.
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