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Applied network science often involves preprocessing network data before applying a network-analysis
method, and there is typically a theoretical disconnect between these steps. For example, it is common to
aggregate time-varying network data into windows prior to analysis, and the trade-offs of this preprocessing
are not well understood. Focusing on the problem of detecting small communities in multilayer networks,
we study the effects of layer aggregation by developing random-matrix theory for modularity matrices
associated with layer-aggregated networks with N nodes and L layers, which are drawn from an ensemble
of Erdős–Rényi networks with communities planted in subsets of layers. We study phase transitions in
which eigenvectors localize onto communities (allowing their detection) and which occur for a given
community provided its size surpasses a detectability limit K�. When layers are aggregated via a

summation, we obtain K� ∝ Oð ffiffiffiffiffiffiffi
NL

p
=TÞ, where T is the number of layers across which the community

persists. Interestingly, if T is allowed to vary with L, then summation-based layer aggregation enhances
small-community detection even if the community persists across a vanishing fraction of layers, provided
that T=L decays more slowly than OðL−1=2Þ. Moreover, we find that thresholding the summation can, in
some cases, cause K� to decay exponentially, decreasing by orders of magnitude in a phenomenon we call
super-resolution community detection. In other words, layer aggregation with thresholding is a nonlinear
data filter enabling detection of communities that are otherwise too small to detect. Importantly, different
thresholds generally enhance the detectability of communities having different properties, illustrating that
community detection can be obscured if one analyzes network data using a single threshold.
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I. INTRODUCTION

Network-based modeling provides a powerful frame-
work for analyzing high-dimensional data sets and complex
systems [1]. Often, a network is best represented by a set of
network layers that encode different types of interactions,
such as categorical social ties [2] or a network at different
instances in time [3], and an important pursuit involves
extending network theory to the multilayer setting [4,5].
Sometimes, however, a multilayer framework can require
too much computational overhead or can represent an over-
modeling (e.g., when the layers are correlated, either in
terms of the edge overlap [6] or other properties [7–9]), and
it can be beneficial to aggregate layers [9–11]. In particular,
aggregation provides a crucial step for analyzing temporal

network data, which is often binned into time windows
[12,13] (see Fig. 1). Layer aggregation and other types of
network preprocessing (e.g., sparsification [14], network
inference [15], and denoising [16,17]) can greatly influence
the resulting network structure, which in turn influences the
outcomes of network analyses and their many applications.
In general, there remains a significant need for improved
theoretical understanding for how such network prepro-
cessing influences network-analysis methodology.
We study the effects of layer aggregation on community

detection, one of the widely used methods for studying
social, biological, and physical networks [18–21]. Com-
munities are typically studied as dense subgraphs and can
represent, for example, coordinating neurons in the brain [13]
or a social clique [22] in a social network. (Hereafter, we
restrict our usage of the term “clique” to the graph-theoretical
meaning of a subgraphwith all-to-all coupling.)Of particular
interest is the detection of small-scale communities, which is
a paradigmatic pursuit for anomaly detection within the
fields of signal processing and cybersecurity [23–28]. In this
context, small communities can represent anomalous events
such as attacks [23], intrusions [24], and fraud [25].
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Given these and many other applications, there is great
interest in understanding fundamental limitations on com-
munity detection [11,26–36]. We highlight recent detect-
ability results for multilayer [10,11,37] and temporal
networks [29]. It is worth noting that much of the
detectability research has focused on large-scale commun-
ities whose sizes areOðNÞ, whereN is the number of nodes
in the network [29–35], and the phase transitions are
typically driven by varying the prevalence (e.g., edge
density) of the communities. In contrast, detectability phase
transitions for small communities can also be onset by
varying their size K [11,26–28] and are thus a type of
resolution limit [36]. We note that the literatures on
detectability and resolution limits have developed inde-
pendently, and there is need for a better understanding of
the relationship between these topics. In particular, a
planted clique in a single-layer Erdős-Rényi (ER) network
is detectable via a spectral analysis only if its size K
surpasses a detectability limit K� ∝ Oð ffiffiffiffi

N
p Þ [26], in which

case, a dominant eigenvector (in this case, that correspond-
ing to the second-largest eigenvalue of the adjacency
matrix) localizes onto the clique. Extending previous
research for the detectability of a clique planted in
single-layer networks [26–28] and a clique that persists
across all layers of a multilayer network [11], herein we
study the detectability of small communities (including, but
not limit to, cliques) planted in a subset of layers in a
multilayer network.
With the application of detecting small communities in

mind, we study the effects of layer aggregation as a network
preprocessing step. We first ask a foundational question:
Across how many layers must a community persist in order
for layer aggregation to benefit detection. To this end, we
study a multilayer network model in which small com-
munities are hidden in network layers generated as ER
networks with N nodes and L layers with (possibly)

heterogeneous edge probabilities. We study detectability
phase transitions wherein eigenvectors localize onto com-
munities, which we analyze by developing random matrix
theory for the eigenvectors of modularity matrices asso-
ciated with an aggregation of the layers. When the
aggregation is given by summation of the adjacency
matrices, the detectability phase transition occurs when a
community’s size K ≪ N surpasses a critical value
K� ∝

ffiffiffiffiffiffiffi
NL

p
=T, where T is the number of layers across

which a community persists. Note that if T depends on L,
then summation-based layer aggregation benefits small-
community detection even if the fraction T=L of layers
containing the community vanishes, provided that the
fraction decays more slowly than OðL−1=2Þ.
We additionally study network preprocessing via

thresholding—that is, we threshold a summation of layers’
adjacency matrices at some value ~L so that there exists an
unweighted edge between two nodes in the aggregated
network if and only if there exists at least ~L edges between
them across the L layers. While it is well known that
thresholding can be used to simultaneously sparsify and
dichotomize a network, here we introduce thresholding as a
nonlinear data filter [38] for enhancing small-community
detection. Specifically, we find that thresholding can, in
some cases, reduce K� by orders of magnitude, revealing
communities that are otherwise too small to detect. We call
this phenomenon super-resolution community detection
and show, for clique detection in sparse networks, that
K� decays exponentially with

ffiffiffiffi
L

p
=T for threshold ~L ¼ T.

Importantly, we find that different thresholds enhance the
detection of communities with different properties (e.g.,
size and edge density), illustrating how community struc-
ture can be obscured if one uses a single threshold, which is
an important insight for network preprocessing in general.
The remainder of this paper is organized as follows. In

Sec. II, we further specify ourmodel. In Sec. III, we study the
effects of layer aggregation on detectability phase transitions
characterized by eigenvector localization. In Sec. IV, we
highlight implications of our findings with a numerical
experiment involving small-community detection in a tem-
poral network. We provide a discussion in Sec. V

II. MODEL

A. Multilayer networks with planted small communities

We generate L network layers with N nodes so that each
layer l ∈ f1;…; Lg is an ER random graph with edge
probability pl ∈ ð0; 1Þ, which is allowed to vary across the
layers. We plant R communities via the following process.
For r ∈ f1…; Rg, uniformly at random, we select a set
T r ⊂ f1;…; Lg of layers and a setKr ⊂ V ¼ f1;…; Ng of
nodes, and we define an edge probability ρr. The variable
Kr ¼ jKrj ≪ N denotes the size of community r, and we
refer to Tr ¼ jT rj as its persistence across network layers.
Then, for each r, we construct a dense subgraph between

FIG. 1. Preprocessing networks (including multilayer repre-
sentations of temporal networks) often involves aggregating
network data into bins (or time windows). We study how many
layers must contain a community in order for aggregation to
enhance its detection and introduce layer aggregation with
thresholding as a filter enabling super-resolution community
detection.
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nodes Kr in layers T r by first removing edges between
them occurring under the ER model and creating new edges
with probability ρr. To ensure that the communities are
denser than the remaining network, we assume ρr > hpli,
where h·i denotes the mean value across all layers. We
allow self-edges in both the ER model and the planted
communities. We note that the layers are not required to
have a particular ordering, and the community is not
restricted only to consecutive layers. Moreover, we restrict
our study to nonoverlapping communities by assuming that
the communities involve different nodes so thatKr ∩ Ks ¼
0 for any r ≠ s. We leave open the study of eigenvector
localization in the case of overlapping communities.
Finally, we assume

P
rKr ≪ N so that only a small

fraction of nodes are involved in communities, making
them anomalous structures.

B. Layer-aggregation methods

We find that layer aggregation is a preprocessing step for
multilayer networks that can be used to reduce data size
and/or as a data filter to benefit network-analysis outcomes
such as community detection. Following the approach in
Ref. [10], we study two methods for aggregating layers of a
multilayer network:

(i) The summation network corresponds to the weighted
adjacency matrix Ā ¼ P

lA
ðlÞ, where AðlÞ denotes

the symmetric adjacency matrix encoding each net-
work layer l ∈ f1;…; Lg.

(ii) The family of thresholded networks represented by
unweighted adjacency matrices fÂð ~LÞg are obtained
by applying a threshold ~L ∈ f1;…; Lg to the entries
fĀijg of matrix Ā,

Âð ~LÞ
ij ¼

�
1 if Āij ≥ ~L

0 otherwise:
ð1Þ

Note that thresholding dichotomizes the network, and one
can vary ~L to tunably sparsify the network.

III. DETECTABILITY OF SMALL COMMUNITIES
WITH EIGENVECTOR LOCALIZATION

We now develop random matrix theory to analyze how
layer aggregation affects small-community detection. In
Sec. III A, we present results for aggregation by summa-
tion, studying the fraction of layers that must contain a
community in order for layer aggregation to enhance
detection. In Sec. III B, we present results for layer
aggregation with thresholding, highlighting that certain
threshold values can yield super-resolution community
detection.

A. Layer aggregation via summation

1. Random matrix theory for modularity matrices

We first describe the statistical properties of matrix
entries fĀijg. For edges ði; jÞ∈∪rfKr ×Krg, fĀijg are

independent and identically distributed (i.i.d.) random
variables following a Poisson binomial distribution,
PðĀij ¼ aÞ ¼ fPBða;L; fplgÞ, where

fPBða;L; fplgÞ ¼
X
S∈Sa

Y
l∈S

pl

Y
m∈f1;…;LgnS

ð1 − pmÞ; ð2Þ

and Sa denotes the set of ðLaÞ different subsets of layers
f1;…; Lg that have cardinality a (i.e., S1 ¼ff1g;f2g;…g,
S2 ¼ ff1; 2g; f1; 3g;…g, and so on). We note that fPBða;
L; fplgÞ has mean Lhpli and variance Lhplð1 − plÞi.
When the edge probability is identical across the layers
(i.e., pl ¼ p), then Eq. (2) simplifies to the binomial
distribution,

fða;L; pÞ ¼
�
L

a

�
pað1 − pÞP−a; ð3Þ

with mean Lp and variance Lpð1 − pÞ.
For within-community edges ði; jÞ ∈ fKr ×Krg asso-

ciated with community r, the entries fĀijg are i.i.d. random
variables following fPBða;L; fqðrÞl gÞ, where qðrÞl ¼ ρr for

l ∈ T r and otherwise qðrÞl ¼ pl. It follows that the
entries have mean Trρr þ

P
l∈f1;…;LgnT r

pl and variance
Trρrð1−ρrÞþ

P
l∈f1;…;LgnT r

plð1−plÞ. Because the layers
T r are selected uniformly at random, the expected
mean and variance across all possible choices for T r
are given by Trρr þ ðL − TrÞhpli and Trρrð1 − ρrÞ þ
ðL − TrÞhplð1 − plÞi, respectively.
We now study the spectra of the modularity matrix [39],

B̄ ¼ Ā − Lhpii11T; ð4Þ

based on an ER null model in which each edge has
expected weight Lhpii. Importantly, this null model does
not use knowledge that edges ði; jÞ between nodes i, j ∈
Kr have different expected edge probability [i.e., Trρþ
ðL − TrÞhpii vs Lhpii], which respects our assumption that
it is unknown which nodes are in the hidden community.
We note that one could also define the ER null model
with the observed mean edge probability Lhpii þP

r½ðK2
rTrÞ=N2L�ðρr − hpiiÞ to account for the slight

increase in overall edge probability due to the presence
of small communities. However, this change does not affect
the position of the dominant eigenvalues relative to the
bulk, which is the relevant issue for community detect-
ability, as we will see below. In particular, since
½ðK2

rTrÞ=N2L� ≪ 1 for each r, even the shift of the single
associated eigenvalue within the bulk is negligible; there-
fore, we focus on the null model with expected edge
weight Lhpii.
We develop random matrix theory based on the analysis

in Refs. [27,40]. To this end, we note that B̄ can be written
in the form
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B̄ ¼ hB̄i þX; ð5Þ

where

hB̄i ¼
X
r

θruðrÞðuðrÞÞT ð6Þ

is a rank-R matrix with eigenvalues given by

θr ¼ TrKrðρr − hpliÞ; ð7Þ

and fuðrÞg are normalized indicator vectors for the R
communities that have entries

uðrÞi ¼
( ffiffiffiffiffiffiffiffiffiffiffi

1=Kr

p
i ∈ Kr

0 otherwise:
ð8Þ

The random matrix X has zero-mean entries Xij with
variance Tρrð1−ρrÞþðL−TrÞhplð1−plÞi if ði;jÞ∈Kr×Kr,
and Lhplð1 − plÞi otherwise. In the N → ∞ limit, and
assuming the sizes fKrg grow more slowly thanN, then theP

rK
2
r ≪ N2 matrix entries corresponding to communities

become negligible and X limits to a Wigner matrix [41].
This allows us to use known results for the limiting
dominant eigenvector of low-rank perturbations of
Wigner matrices with variance 1=N. Specifically, we define
γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NLhplð1 − plÞi

p
so that the matrix γX has entries

with variance 1=N in the limit. We similarly define

θ̄r ¼ γθr ¼
TrKrffiffiffiffiffiffiffi
NL

p ρr − hpliffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihplð1 − plÞi
p ð9Þ

so that γB̄ ¼ P
rθ̄ru

ðrÞðuðrÞÞT þ γX. It follows that the
limiting N → ∞ dominant eigenvectors fvðrÞg of γB̄ (and
of B̄ since scalar multiplication does not affect eigenvec-
tors) satisfy [40,42]

jhvðrÞ;uðrÞij2 ¼
�
1 − 1=θ̄2 θ̄ > 1

0 otherwise:
ð10Þ

Note we assume that the dominant eigenvectors have been
suitably enumerated so that vðrÞ corresponds to the eigen-
vector localizing on community r. The value θ̄r ¼ 1
identifies critical points at which there is a phase transition
in eigenvector localization and detectability for community
r, and this gives the critical community size

K�
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T−2
r NL

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihplð1 − plÞi
p

ρr − hpli
: ð11Þ

In other words, a small community can be detected using a
dominant vector vðrÞ of B̄ only whenKr > K�

r . We note that
setting L ¼ Tr ¼ 1, ρr ¼ 1, and pl ¼ p in Eq. (11)

recovers K�
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np=ð1 − pÞp

, which describes the detect-
ability transition for a single planted clique in a single-layer
network [26].
We highlight an important consequence of Eq. (11).

First, if the community persists across some fixed fraction
of the layers, TðLÞ ¼ cL, then K�

r ∝
ffiffiffiffiffiffiffiffiffiffi
N=L

p
; therefore, if

N, p, and Tr=L are held fixed and L increases, then K�
r

vanishes with scaling OðL−1=2Þ. This square-root scaling
behavior is similar to that obtained for detection in layer
aggregation of large-scale communities that persist across
all layers [10]. Second, for fixed N and p, a community of
fixed size Kr and persistence Tr will become impossible to
detect as L increases because K�

r increases with scaling
OðL1=2Þ. This result highlights the importance of knowing
which layers potentially contain the community since the
aggregation of layers lacking the community can severely
inhibit its detection.
Digging further, one can let Tr vary with L and then ask

how K�
r depends on the scaling behavior for Tr. For

Tr ∝ Lβ, Eq. (11) implies K�
r ∝ L1=2−β so that as L → ∞,

K�
r →

�
0 β > 1=2

∞ β < 1=2.
ð12Þ

In other words, Tr, the number of layers containing the
community, must increase with L at least as OðL1=2Þ;
otherwise, summation-based layer aggregating will inhibit
(rather than promote) small-community detection. Note
that T ∝ L−1=2 is a critical case in which K�

r is independent
of L. We highlight that Eq. (12) is somewhat surprising
since summation-based aggregation benefits detection even
if the fraction Tr=L of layers containing the community
vanishes with L, provided that it decays more slowly
than OðL−1=2Þ.

2. Numerical validation and scaling behavior

We support Eqs. (10) and (11) in Fig. 2, using numerical
experiments with N ¼ 104 nodes and edge probabilities
fplg drawn from a Gaussian distribution with mean p ¼
0.01 and standard deviation σp ¼ 0.001. We focus on the
case of clique detection (i.e., ρ ¼ 1), hiding the clique in
T ¼ 2 of the L ¼ 16 layers. In Fig. 2(a), we plot the entries

fvðrÞi g (symbols) of the dominant eigenvector of the
modularity matrix for the summation network as well as

the entries fuðrÞi g for the indicator vector, which are
nonzero only for nodes i ∈ K involved in the clique. We
show results for community sizes Kr ∈ f6; 26; 86g, which
respectively place the system below, just above, and well
above the phase transition. The illustration highlights that
as K increases, vector vðrÞ aligns with uðrÞ. We quantify this
localization phenomenon by plotting in Fig. 2(b) observed
(symbols) and predicted values of jhv; uij2 given by
Eq. (10) (curve). Note that the values of jhvðrÞ; uðrÞij2
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depict a phase transition that occurs at a critical subgraph
size K�

r given by Eq. (11): jhvðrÞ; uðrÞij2 > 0 when
Kr > K�

r , whereas jhv; uij2 ¼ 0 when Kr ≤ K�
r . This phase

transition in eigenvector localization drives a phase tran-
sition for community detection based on vðrÞ. Arrows
indicate the values of Kr used in panel (a).
In Fig. 3(a), we compare observed (symbols) and

predicted values of jhv; uij2 given by Eq. (10) (curves)
for varying Kr with Tr ∈ f1; 2; 4; 8g. Open symbols
indicate the parameters used in Fig. 2, whereas filled
symbols indicate the mean value of jhv;uij2 for 10 trials
in which the layers’ edge probabilities fplg are drawn
uniformly from [0, 0.02]. Note that as Tr increases, the
curves shift to the left, illustrating that as the community
persists across more layers, the localization phenomenon is
stronger and the hidden community is easier to detect. In
Fig. 3(b), we study the dependence of K�

r on the number of
layers, L, and we compare the effect of keeping Tr fixed vs
allowing Tr to grow with L. Specifically, we set either
TrðLÞ ¼ 20 or TrðLÞ ¼ L, and we plot the value of K�

r
given by Eq. (11). Note that if the community persists
across a fraction of the layers—that is, TrðLÞ ¼ cL for
some constant c—then K�

r vanishes with scaling OðL−1=2Þ.
However, if Tr is held fixed, then K�

r increases with
scaling OðL1=2Þ.

In summary, these experiments illustrate how layer
aggregation through summation can enhance small-
community detection if the community persists across
sufficiently many layers, but it can obscure detection if
the community is present in too few layers. We will see in
the next section that thresholding the summation can help
overcome this problem, potentially reducing the detect-
ability limit by orders of magnitude to yield super-
resolution community detection.

B. Thresholding as a nonlinear data filter

1. Random matrix theory for modularity matrices

We now study layer aggregation with thresholding as a
filter that enhances small-community detection. We begin
by solving for effective edge probabilities for the thresh-
olding process [10]. Thresholding the summation

P
lA

ðlÞ at
~L yields a binary adjacency matrix Âð ~LÞ with entries Âð ~LÞ

ij ∈
f0; 1g indicating whether or not Āij ≥ ~L. For edges
ði; jÞ∈∪rfKr ×Krg, Āij follows a Poisson binomial
distribution fPBða;L; fplgÞ given by Eq. (2), and the
inequality is satisfied with probability

p̂ð ~LÞ ¼ P½Āij ≥ ~L� ¼ 1 − FPBð ~L − 1; L; fplgÞ; ð13Þ

where FPBða; L; fplgÞ is the associated cumulative distri-
bution function (CDF). For edges ði; jÞ ∈ fKr ×Krg, Āij

follows a Poisson binomial distribution fPBða;L; fqðrÞl gÞ
given by Eq. (2), and the inequality is satisfied with
probability

FIG. 2. Eigenvector localization yields detectability phase
transition. (a) Entries vðrÞi (symbols) of a dominant eigenvector
of the modularity matrix for the summation network of a
multilayer network with a hidden community of size Kr.
Parameters include Tr ¼ 2, L ¼ 16, N ¼ 104, ρ ¼ 1, and the
edge probabilities fplg of layers are Gaussian distributed with
mean hpli ¼ 0.01 and standard deviation σp ¼ 0.001. To allow
visualization, we assume nodes i ∈ f1;…; Kg are in the com-

munity, and we only visualize vðrÞi for nodes i ∈ f1; 100g. As
shown by the illustration, as Kr increases, vðrÞ aligns with the
indicator vector uðrÞ, which is nonzero only for the Kr ≪ N

entries uðrÞi that correspond to nodes in the community, Kr.
(b) Observed (symbols) and predicted (curves) values of
jhvðrÞ;uðrÞij2 given by Eq. (10) quantify this localization phe-
nomenon. Arrows indicate the values of K used for panel (a). The
critical size K�

r such that jhvðrÞ;uðrÞij2 ¼ 0 for Kr ≤ K�
r, whereas

jhvðrÞ;uðrÞij2 > 0 for Kr > K�
r marks a phase transition—that is,

both in terms of eigenvector localization and detectability of the
community.

FIG. 3. Influence of community persistence Tr on eigenvector
localization for summation-based layer aggregation. (a) Observed
(symbols) and predicted values of jhvðrÞ;uðrÞij2 given by Eq. (10)
(curves) vs Kr for Tr ∈ f1; 2; 4; 8g. Open symbols indicate the
parameters used in Fig. 2, whereas filled symbols indicate when
the layers’ edge probabilities fplg are drawn uniformly from [0,
0.02]; we plot the mean value of jhvðrÞ;uðrÞij2 across 10 choices
for the sets Kr and T r. (b) Critical size K�

r given by Eq. (11) vs L
for fixed Tr (dashed line) and Tr ¼ L (solid line). As indicated by
Eq. (12), layer aggregation by summation can enhance or inhibit
detection depending on whether or not the scaling for TrðLÞ
exceeds OðL1=2Þ.
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ρ̂ð
~LÞ

r ¼ P½Āij ≥ ~L� ¼ 1 − FPBð ~L − 1; L; fqðrÞl gÞ; ð14Þ

where qðrÞl ¼ ρr for l ∈ T r and otherwise qðrÞl ¼ pl. In the
case of a clique (i.e., ρr ¼ 1), Eq. (14) can be written as

ρ̂ð
~LÞ

r ¼ 1 − FPBð ~L − Tr − 1; L − Tr; fplgl∈T r
Þ: ð15Þ

Given the effective edge probabilities for the network
and a community (i.e., p̂ð ~LÞ and ρ̂ð

~LÞ
r , respectively), it is

straightforward to study the detectability limits of a
community for thresholded networks using Eqs. (10)
and (11). In particular, we substitute L ¼ Tr ¼ 1 to obtain

jhv̂ðrÞ;uðrÞij2 ¼
�
1 − 1=θ̂2r θ̂r > 1

0 otherwise;
ð16Þ

where v̂ðrÞ is a dominant eigenvector of modularity matrix

B̂ ¼ Âð ~LÞ − p̂ð ~LÞ11T ð17Þ

and θ̂r¼Kðρ̂ð ~LÞr − p̂ð ~LÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np̂ð ~LÞð1− p̂ð ~LÞÞ

q
. Setting θ̂r ¼ 1

gives a detectability limit for each community r in terms of

the effective edge probabilities p̂ð ~LÞ and ρ̂ð
~LÞ

r ,

K̂�
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np̂ð ~LÞð1 − p̂ð ~LÞÞ

q
ρ̂ð

~LÞ
r − p̂ð ~LÞ

: ð18Þ

Equations (16)–(18) illustrate that the detectability limits
for thresholded networks depend only on the effective edge
probabilities; however, these depend sensitively on the
choice of threshold ~L.
Importantly, K̂�

r given by Eq. (18) can potentially be
orders of magnitude smaller than K�

r given by Eq. (11), a
phenomenon we call super-resolution detection. In addition
to numerical experiments that will follow below, we further
study this phenomenon by comparing K̂�

r and K�
r for

network parameters wherein we can obtain deeper insight.
We consider clique detection (i.e., ρr ¼ 1) in a sparse
network (i.e., pl ≪ 1) and focus on the threshold value
~L ¼ Tr to obtain

K̂�
r ≈

ffiffiffiffi
N

p ffiffiffiffiffiffiffiffiffiffi
p̂ðTrÞ

q
: ð19Þ

Using these assumptions also in Eqs. (13) and (15), we find
the effective edge probabilities p̂ðTrÞ ¼1−FPBðTr−1;

L;fplgÞ and ρ̂ðTrÞ
r ¼1. Furthermore, we apply Hoeffding’s

inequality [43] to obtain p̂ðTrÞ ≤ e−2Lðhpli−Tr=LÞ2 . Noting
0 < hpli ≪ Tr=L, we find the hpli → 0 limiting bound

p̂ðTrÞ ≤ e−2T
2
r=L; ð20Þ

illustrating that p̂ðTrÞ and K̂�
r decay exponentiallywithT2

r=L.
On the other hand,we use the sparsity assumption inEq. (11)
to obtain

K�
r ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NLhpli

p
ffiffiffiffiffi
T2
r

p : ð21Þ

Thus, in this case, K�
r decays asOð1=

ffiffiffiffiffiffiffiffiffiffiffi
T2
r=L

p
Þ, whereas K̂�

r

decays exponentially (i.e., considerably faster) with T2
r=L.

2. Numerical validation and super-resolution detection

We now support Eqs. (13)–(18) with numerical experi-
ments and illustrate that certain thresholds lead to super-
resolution community detection. We consider the detection
of a dense subgraph that is hidden in both (a) a dense
network with hpli ¼ 0.5 and (b) a sparse network with
hpli ¼ 0.01. Both networks were constructed with
N ¼ 104, σp ¼ 0.001, ρr ¼ 1, L ¼ 16, and Tr ¼ 5.
In Fig. 4, we compare observed (symbols) and predicted

values (curves) of the effective edge probabilities p̂ð ~LÞ

given by Eq. (13) and ρ̂ð
~LÞ

r given by Eq. (14) as a function of
the threshold ~L. Note in both panels that the effective edge
probability p̂ð ~LÞ of the background network always decays
with increasing ~L. In contrast, the effective edge probability
between nodes in the community depends on whether or

not ~L > Tr: ρ̂
ð ~LÞ
r ¼ 1 when ~L ≤ Tr since ρ ¼ 1, whereas

ρ̂ð
~LÞ

r decays with increasing ~L for ~L > Tr. Importantly, the
rate of decay depends on the network’s mean edge density
hpli: ρ̂ð ~LÞ slowly decreases for the dense network, whereas
it abruptly drops for the sparse network.
In Fig. 5, we plot observed (symbols) and predicted

values (curves) for jhvðrÞ;uðrÞij2 given by Eq. (16) vs K for
different choices of ~L. The parameters used are identical to
those of Fig. 4, and panels (a) and (b) again depict results
for hpli ¼ 0.5 and hpli ¼ 0.01, respectively. We highlight
several important observations. First, note in both panels
that ~L ¼ Tr ¼ 5 yields better detectability than ~L ¼ 1.
However, when ~L > Tr, we find contrasting results for
sparse and dense networks. For the sparse network shown
in Fig. 5(b), the hidden community becomes harder to
detect when ~L > Tr (see curve for ~L ¼ 16), which intui-

tively occurs because ρ̂ð
~LÞ

r rapidly decays and the thresh-
olded networks will no longer contain a dense subgraph.
On the other hand, for the dense network depicted in
Fig. 5(a), increasing ~L can improve detectability when
~L > Tr (see curve for ~L ¼ 10).
We now present an experiment highlighting the occur-

rence of super-resolution community detection for certain
threshold values. In Fig. 6, we study the dependence of
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the critical community size K�
r on the threshold ~L. We

plot K̂�
r given by Eq. (18) as a function of ~L for

p ∈ f0.01; 0.05; 0.2; 0.5g, N ¼ 104, ρ ¼ 1, σp ¼ 0.001,
L ¼ 16, and either (a) Tr ¼ 5 or (b) Tr ¼ 10. Note that
for the sparsest network, i.e., p ¼ 0.01, the minimum value
of K� occurs when ~L ¼ Tr (vertical dashed line).
Interestingly, as the mean edge density p ¼ hpli increases,
the threshold ~L at which K̂�

r attains its minimum value
shifts from ~L ¼ Tr towards ~L ¼ L. The horizontal lines on
the right edge of the panels indicate K�

r given by Eq. (11)
for the summation network.
Importantly, note that for a wide range of parameters, K̂�

r
for the thresholded networks is significantly smaller than
K�

r for the corresponding summation networks. In particu-
lar, one can observe for p ¼ 0.1 and ~L=L ¼ Tr=L in
Fig. 6(b) that K̂�

r is many orders of magnitude smaller
than K�

r [Oð10−6Þ times here]. In other words, thresholding

the summation can dramatically improve detectability as
compared to summation without thresholding. This sur-
prising result contrasts our previous findings for the
detectability of large communities that persist across all
layers [10], where it was found that thresholding always
inhibited detection (although optimal thresholds were
found to minimize inhibition).

IV. SMALL-COMMUNITY DETECTION
IN TIME-VARYING NETWORKS

We now present an experiment involving small-commu-
nity detection in time-varying networks to highlight several
practical insights following from our theoretical results.
Note that unlike Sec. III, where there were no restrictions
on which layers a community persists, we now assume that
each community persists across consecutive layers. We
conducted experiments for a synthetic temporal network
with N ¼ 104 nodes and L ¼ 32 time layers, each of which
is drawn from an ER network with edge probability pl,
which we drew from a Gaussian distribution with mean
p ¼ 0.01 and standard deviation σp ¼ 0.001. We then
planted R ¼ 4 communities, each involving Kr ¼ K ¼ 8
nodes, in the following sets of layers: T 1 ¼ f3; 4; 5g for
community 1, T 2 ¼ f7;…; 15g for community 2, T 3 ¼
f18;…; 22g for community 3, and T 4 ¼ f24;…; 30g for
community 4. In Fig. 7(a), we provide a representative
illustration of the temporal network, where we indicate in
which layers the communities are present. We also
illustrate by the shaded region an example time window,
or bin, WwðtÞ ¼ ft − ðw − 1Þ=2;…; tþ ðw − 1Þ=2g for
t ∈ fðw − 1Þ=2; L − ðw − 1Þ=2g, that contains layers to
be aggregated.

FIG. 4. Effective edge probabilities for threshold-based layer
aggregation. Observed (symbols) and predicted values given by
Eqs. (13) and (15) (curves) for the effective edge probability of

the background network, p̂ð ~LÞ, and for a community, ρ̂ð
~LÞ

r , as a
function of ~L. Network parameters include N ¼ 104, L ¼ 16,
T ¼ 5, and σp ¼ 0.001 and either (a) hpli ¼ 0.5 or
(b) hpli ¼ 0.01. Note that for the sparse network in panel (b),
ρ̂ð ~LÞ undergoes an abrupt drop when ~L surpasses Tr ¼ 5.

FIG. 5. Detectability phase transitions for threshold-based layer
aggregation. We plot jhvðrÞ;uðrÞij2 vs community size Kr with
identical parameters to those used to produce Fig. 4 except with
selected choices for the threshold ~L.

FIG. 6. Super-resolution community detection for threshold-
based layer aggregation. We plot K̂�

r given by Eq. (18) as a
function of ~L for p ∈ f0.01; 0.05; 0.2; 0.5g, N ¼ 104, ρ ¼ 1,
σp ¼ 0.001, L ¼ 16, and either (a) Tr ¼ 5 or (b) Tr ¼ 10. Note

that the ~L value yielding the minimum K̂�
r occurs at ~L ¼ Tr

(vertical dotted lines) for sparse networks, whereas it increases
with increasing p [e.g., compare p ¼ 0.01 and p ¼ 0.5 in panel
(b)]. The horizontal lines on the right edge of the panels indicate
K�

r given by Eq. (11) for summation networks. Importantly,
thresholding can potentially decrease K̂�

r by many orders of
magnitude as compared to K�

r .
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We first consider aggregation by summation. In
Fig. 7(b), we illustrate by color the values jhvðrÞ;uðrÞij2
for the aggregation of layers across bins WwðtÞ. In
particular, we show Eq. (10) under the variable substitu-
tions TrðWwðtÞÞ ↦ T and w ↦ L, where TrðWwðtÞÞ ¼
jWwðtÞ ∩ T rj is the number of layers in which community
r is present in bin WwðtÞ. We show results for several bin
widths w ∈ f1; 3; 5; 7; 9g. The green arrows indicate, for
each r, the bin location and w value at which jhvðrÞ;uðrÞij2
obtains its maximum. As expected, jhvðrÞ;uðrÞij2 obtains its
maximum for each community r when the bin WwðtÞ is
exactly the set of layers in which community r is present,
WwðtÞ ¼ T r (i.e., when Tr ¼ w).
Before studying aggregation by summation and thresh-

olding, we first make several important observations using
Fig. 7. First, note that for w ¼ 1 in panel (b), no commun-
ities are detectable. In other words, all communities are
undetectable if the layers are studied in isolation. However,
they can be detected if the layers are binned into time
windows. Second, because the optimal bin size w is unique
to every community (i.e., because they have different

persistence Tr ∈ ½3; 9�), there is no bin size that is best
for all communities. In fact, detectability requires Kr > K�

r
given by Eq. (11), which requires that, for each community,
w is not too large or too small. For example, community 1 is
only detectable when w ¼ 3, and community 3 is only
detectable when w ∈ ½3; 7�.
One final important observation for Fig. 7(b) is that even

when communities are detectable, the values jhvðrÞ;uðrÞij2
are not very large—specifically, jhvðrÞ;uðrÞij2 ≤ 0.7 in all
cases. This can be problematic since detection error rates
increase as jhvðrÞ;uðrÞij2 decreases, approaching 100%
error as jhvðrÞ;uðrÞij2 → 0. (See Ref. [27] for an analysis
of error rates based on a hypothesis-testing framework for
clique detection in single-layer networks.) Because
jhvðrÞ;uðrÞij2 remains small for community 1 for all choices
of w, it effectively remains undetectable by summation-
based layer aggregation.
We now illustrate layer aggregation with thresholding as

a filter that can allow greatly improved small-community
detection for the temporal network shown in Fig. 7(a),
including the accurate recovery of community 1. In Fig. 8,

FIG. 7. Detectability of small communities in temporal networks with summation-based binning into time windows. (a) Illustration of
a temporal network with L ¼ 32 time layers and hidden communities that persist across different time layers. The shaded region
indicates a bin, or time window, of size w ≤ L at time t for which the layers will be aggregated, which is a process that can be used to
discretize and/or smooth the network data. The bin contains layers WwðtÞ ¼ ft − ðw − 1Þ=2;…; tþ ðw − 1Þ=2g. (b) We illustrate by
color the values jhvðrÞ;uðrÞij2 for the aggregation of layers across bins WwðtÞ for each of the four communities r ∈ f1; 2; 3; 4g. In
particular, we show Eq. (10) under the variable substitutions TrðWwðtÞÞ ↦ T and w ↦ L, where TrðWwðtÞÞ is the number of layers in
which community r is present in bin WwðtÞ. Layer aggregation across each bin was implemented by summation. We study a temporal
network with N ¼ 104, L ¼ 32, p ¼ 0.01, σp ¼ 0.001, and we show results for several bin widths w ∈ f1; 3; 5; 7; 9g. The hidden
communities all contain Kr ¼ 8 nodes and have different persistent lengths Tr as depicted in panel (a). The green arrows indicate, for
each r, the bin location and w value at which jhvðrÞ;uðrÞij2 obtains its maximum.
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we plot jhv̂ðrÞ;uðrÞij2 given by Eq. (16) with the variable
substitutions TrðWwðtÞÞ ↦ T and w ↦ L into Eqs. (13)–
(18). Results reflect the aggregation of layers into bins
WwðtÞ for each of the four communities r ∈ f1; 2; 3; 4g
and with bin sizes w ∈ f1; 3; 5; 7; 9g. Panels (a)–(c) indi-
cate results for different thresholds, ~L ∈ fw; 0.8w; 0.5wg.
Our first observation for Fig. 8 is that none of the

communities can be detected (for any threshold) if the
layers are analyzed in isolation (see results for window size
w ¼ 1). This result is similar to that shown in Fig. 7(b) for
summation without thresholding (i.e., whenever w ¼ 1, we
find jhv̂ðrÞ;uðrÞij2 ¼ jhvðrÞ;uðrÞij2 ¼ 0). In other words, the
detectability of communities is only made possible through
layer aggregation.
Our next observation is that the values jhv̂ðrÞ;uðrÞij2 are

either zero or close to one, which is in sharp contrast to the
values of jhvðrÞ;uðrÞij2 shown in Fig. 7(b), which can be
observed to obtain many values across the range [0, 0.7]. In
other words, in this experiment, the use of thresholding as a
filter allows small communities to be either strongly
detected or not detected—there is no middle ground for
weak detection (which is the case for layer aggregation
without thresholding). This is important since error rates for
community detection vanish as jhv̂ðrÞ;uðrÞij2 → 1 [27].
Our final observation is that different threshold values

enhance the detectability of different communities. For
example, community 1 is detectable when w ¼ 3 for ~L ≥
0.8w but not for ~L ¼ 0.5w [compare panels (a) and
(b) to panel (c)]. Similarly, community 3 is detectable when
w ¼ 9 for ~L ≤ 0.8w but not for ~L ¼ w [compare panels (b)

and (c) to panel (a)]. Interestingly, in this experiment, we
were able to identify a combination of parameters ð ~L;wÞ
that allows accurate detection of all four communities—
that is, jhv̂ðrÞ;uðrÞij2 ≈ 1 for bin WwðtÞ only when com-
munity r is present in time layer t [i.e., t ∈ T r]; otherwise,
jhv̂ðrÞ;uðrÞij2 ≈ 0. We highlight these values of ð ~L;wÞ in
panel (b) with a violet box. However, we stress that these
“best” values for ð ~L; wÞ arise in this experiment because the
communities are relatively similar in size (i.e., Kr ∈ ½3; 9�)
and density (i.e., ρr ¼ 1). In general, one should not expect
there to exist one choice of parameters ð ~L;wÞ to work well
for all communities since the detectability-limit criterion
given by Eq. (18) depends on a complex interplay between
the network and community parameters fplg, ρL, Tr, Kr,
L, and ~L.

V. DISCUSSION

There is considerable need to better understand how
network preprocessing affects network-analysis method-
ologies. Herein, we studied how different methods for layer
aggregation affect the detectability of small-scale commun-
ities in multilayer networks (including multilayer repre-
sentations of temporal networks). Small-community
detection is widely used for anomaly detection in network
data [23–28]; in cybersecurity, for example, it allows
detection of harmful events such as attacks [23], intru-
sions [24], and fraud [25]. Understanding limitations on
small-community detection provides insight towards the
detectability of these harmful activities. Despite most

FIG. 8. Detectability of small communities in temporal networks with time-window binning by summation and thresholding. We
illustrate by color the values jhv̂ðrÞ;uðrÞij2 given by Eq. (16) for each of the four communities r ∈ f1; 2; 3; 4g with the variable
substitutions TrðWwðtÞÞ ↦ T and w ↦ L into Eqs. (13)–(18). Results are shown for bins of width w ∈ f1; 3; 5; 7; 9g for a temporal
network with N ¼ 104 nodes, L ¼ 32 time layers, and hidden communities as depicted in Fig. 7(a). The communities each contain
Kr ¼ K ¼ 8 nodes and have different persistence lengths Tr. Layer aggregation across each bin was implemented by summation and
thresholding at ~L. Panels (a)–(c) respectively indicate the choices ~L ¼ w, ~L ¼ 0.8w, and ~L ¼ 0.5w. The violet box in panel (b) indicates
combinations of thresholds and bin sizes that yield accurate detection of all four communities. We stress, however, that since the
detectability-limit criterion given by Eq. (18) depends on a complex interplay between the community and network characteristics, one
should not, in general, expect there to exist a single best combination for all communities.
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networks inherently changing in time, previous theory for
limitations on small-community detection have been
restricted to single-layer networks [26,27] or summation-
based aggregation [11]. We highlight that our model and
analysis generalizes these previous works in several ways:
(i) A community has edge probability ρ ∈ ð0; 1� and is not
necessarily a clique, (ii) a community can persist across a
subset of layers, (iii) the mean edge probability pl can
vary across network layers, and (iv) the multilayer or
temporal network can simultaneously contain several
communities.
Motivated in this way, we developed random matrix

theory [27,40] to analyze detectability phase transitions in
which the dominant eigenvectors of modularity matrices
associated with layer-aggregated multilayer networks local-
ize onto communities, thereby allowing their detection. We
developed theory for when a community with Kr ≪ N
nodes is hidden (i.e., planted) in Tr ≤ L layers of a
multilayer network with N nodes and L layers. We found
a detectability phase transition to occur for a given
community r when its size Kr surpasses a detectability
limit. When layers are aggregated by summation, the
detectability limit K�

r is given by Eq. (11) and has the
scaling behavior K�

r ∝
ffiffiffiffiffiffiffi
NL

p
=Tr. Surprisingly, if L is

allowed to vary, this implies that summation-based aggre-
gation enhances community detection even if the commu-
nity exists in a vanishing fraction Tr=L of layers, provided
that Tr=L decays more slowly thanOðL−1=2Þ. This result is
surprising since layer aggregation still benefits community
detection despite the fact that most layers carry no
information about the community.
We also introduced and studied the utility of layer

aggregation with thresholding as a nonlinear data filter
to enhance small-community detection. Our analysis [par-
ticularly, Eq. (18)] revealed that in addition to implement-
ing sparsification and dichotomization, thresholding can
allow super-resolution community detection, whereby the
detectability limit decreases by several orders of magnitude
(see Fig. 6). In particular, we showed in Sec. III B that K̂�

r

decays exponentially with
ffiffiffiffi
L

p
=Tr for clique detection in

layer-aggregated sparse networks filtered by threshold
~L ¼ Tr.
To illustrate practical implications of our results, in

Sec. IV we presented an experiment involving the detection
of small communities in a time-varying network, high-
lighting the following key insights:

(i) Aggregating time layers into appropriate-sized bins
can allow the detection of small communities that
would otherwise be undetectable (that is, if the
layers were considered in isolation or if all layers
were aggregated).

(ii) Layer aggregation by summation enhances commu-
nity detection if the community persists across
sufficiently many [specifically, OðL1=2Þ] layers;
otherwise, it can obscure detection.

(iii) Layer aggregation with thresholding is a filter that
can allow super-resolution community detection of
small communities that are otherwise too small for
detection.

(iv) The threshold that best enhances the detection of a
small community depends on many parameters, and
the detection of multiple communities should, in
general, utilize multiple thresholds.

We have thus provided a theoretical framework support-
ing how small-community detection in temporal network
data can be improved through network preprocessing in
which network layers are binned into time windows and are
aggregated using summation with thresholding. This filter-
ing, however, should not be approached as a “one-size-fits-
all” procedure. In particular, we find that there exist optimal
time window sizes w and layer-aggregation strategies that,
in general, are unique to each community (i.e., depending
on its size, density, persistence across the layers, etc.).
While it is important to consider a range of window sizes
and layer-aggregation methods, this leads to an unavoid-
able trade-off between computational cost and sufficient
exploration of different parameters.
Before concluding, we discuss implications of our work

regarding the topic of eigenvector localization in complex
networks, which is an important topic in network science
[44,45] for the study of centrality [46–48], spatial analysis
[49], and core-periphery structure [50,51]. In particular,
there is growing interest in extending these ideas to time-
varying [52] and multilayer networks [53]. Recently,
Ref. [54] showed that an Anderson-localization-type tran-
sition occurs for material transport on several real-world
networks (e.g., interconnected ponds of melting sea ice,
porous human bone, and resistor networks) and noted that
they did not observe the wave interference and scattering
effects that typically occur for Anderson localization (a
widely studied phenomenon in which eigenfunctions
localize onto defects in disordered materials [55,56]).
Reference [54] found the phase transition to coincide with
a phase transition in network connectivity due to eigen-
vector localization onto different connected components.
Our work complements these findings, showing that a
similar localization phenomenon can be brought on by
small communities—that is, localization does not neces-
sarily require network fragmentation. (We note in passing
that connected components can be interpreted as one, and
perhaps the strictest, notion of a community.) Future
research should further explore the connection between
community-based and connected-component-based eigen-
vector localization on networks, and their relationship to
Anderson localization in materials. (See Refs. [57,58] for
related research using network-based models for disordered
and composite materials.)
Finally, we highlight other extensions to our work that

would be interesting to pursue. Motivated by applications
for data fusion, recent research [11] considered weighted
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averaging of adjacency matrices, allowing them to optimize
the weights for the different network layers. It would be
interesting to extend our research to weighted averages,
which should be fairly straightforward by redefining h·i in
Eqs. (9)–(11) with weights. We leave open the joint
optimization of weighting and thresholding. Finally, it
would also be interesting to use our method to study the
temporal behavior of communities [59], such as a set of
nodes that form a recurring community in different time
windows (i.e., periodically or stochastically).
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