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We study scrambling, an avatar of chaos, in a weakly interacting metal in the presence of random
potential disorder. It is well known that charge and heat spread via diffusion in such an interacting
disordered metal. In contrast, we show within perturbation theory that chaos spreads in a ballistic fashion.
The squared anticommutator of the electron-field operators inherits a light-cone-like growth, arising from
an interplay of a growth (Lyapunov) exponent that scales as the inelastic electron scattering rate and a
diffusive piece due to the presence of disorder. In two spatial dimensions, the Lyapunov exponent is
universally related at weak coupling to the sheet resistivity. We are able to define an effective temperature-
dependent butterfly velocity, a speed limit for the propagation of quantum information that is much slower
than microscopic velocities such as the Fermi velocity and that is qualitatively similar to that of a quantum
critical system with a dynamical critical exponent z > 1.
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I. INTRODUCTION

Elucidating the physics of thermalization in isolated
quantum systems [1–4] represents an ongoing challenge in
quantum many-body physics, and great progress has been
made in recent years because of advances in both theory
and experiments [5–12]. In this work, we are interested in
the process of thermalization in interacting disordered
metals, specifically in the physics of quantum information
scrambling. Starting from a local perturbation, scrambling
describes the spreading of quantum entanglement and
information across all of the degrees of freedom in a
system [13–16], leading to a loss of memory of the initial
state. The onset of scrambling is associated with the growth
of chaos and is an intermediate step in the eventual global
thermalization at late times of an isolated quantum many-
body system.
It has become clear recently that certain special corre-

lation functions can probe the onset of scrambling [17,18].
While such correlators first appeared in the literature
many decades ago [19], there has been a revival in their
interest, partly because of their relevance in studying
information scrambling in black holes [17,18,20]. For
two local operators X and Y in a system described by a
Hamiltonian H, these correlation functions are defined as

fðtÞ ¼ Tr½ρ½XðtÞ; Y�†½XðtÞ; Y��; ð1:1Þ

where ρ ∝ e−H=T is the density matrix of an equilibrium
state at temperature T and XðtÞ ¼ eiHtXe−iHt. The intuition
for considering this object is that local operators must grow
in time if information is to spread across a system, and the
commutator measures this growth. Furthermore, in order to
access generic matrix elements of the commutator, one
considers the average of the square of the commutator, fðtÞ,
which is non-negative and avoids phase cancellations. In
contrast, the average of the commutator is a response
function, and these tend to decay to zero at late times in a
chaotic system.
A few comments about fðtÞ may be helpful. When

expanding out fðtÞ in terms of four-point functions, one
finds that it contains both time-ordered and out-of-time-
ordered (OTO) pieces. When dealing with fermionic
operators, it is more convenient to study instead the squared
anticommutator. For noninteracting fermions, the anticom-
mutator is proportional to the single particle propagator and
encodes causality. More generally, one can relate commu-
tators of composite bosonic operators, e.g., fermion bilin-
ears, to the basic fermion anticommutator. For a field theory
defined in the continuum, we use the “regulated” version of
the correlator above, where two of the operators have been
moved halfway along the thermal circle to deal with
spurious divergences.
In a chaotic system with a local Hamiltonian, one expects

fðtÞ to start out small when X and Y are spatially separated
and to grow exponentially in time, fðtÞ ∼ ϵeλLt, where ϵ is a
small parameter that may depend on time and the distance
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between X and Y. By considering an appropriate analytic
continuation of fðtÞ, one can show that there is a funda-
mental upper bound on λLð≤2πkBT=ℏÞ [21]; black holes
and certain random fermion models [18,22] saturate the
bound. On the other hand, in glassy systems, or in systems
that simply fail to thermalize (but are not fully integrable),
fðtÞ may have a power-law form [23]. While a measure-
ment of such correlation functions is highly nontrivial,
naively requiring a “time machine” in the laboratory, a few
novel protocols have been proposed [24–26], and three
preliminary experiments [27–29] have already been carried
out within the last couple of months.
In this paper, we study scrambling in (weakly) interact-

ing diffusive metals [30]. We consider the case of Coulomb
interactions as well as short-range interactions in two and
three spatial dimensions. Based on the general intuition that
disorder slows the spread of charge and heat, one might
also expect that operators spread more slowly in space in a
disordered metal relative to a clean metal. Relatedly, we
expect the effects of interactions to be enhanced relative to
the clean metal since diffusive electrons move slowly
compared to ballistic electrons and the effects of inter-
actions can build up. We compute the growth exponent to
lowest order in the strength of the interaction while carrying
out an infinite resummation over disorder and indeed find
that λL is larger at low T than the corresponding result for a
clean Fermi liquid. We also find that chaos grows in a
ballistic fashion, with a velocity that is parametrically
smaller than the Fermi velocity at low temperatures.
These computations confirm a recent argument by two of

us [23] that even though the transport of charge and energy is
diffusive in suchmetals, generic operators grow ballistically
(see also Refs. [31–33] for a related observation in one-
dimensional systems). This is not too surprising since there
is no reason for the motion of charge and energy to be tied to
the growth of chaos in interacting systems—an extreme
example being that of a many-body localized (MBL) phase
[34,35], where partial scrambling occurs even in the absence
of any transport of charge and heat [23,36–40]. When
considering long-range Coulomb interactions, it is particu-
larly interesting that we find ballistic growth of operators
since the microscopic model does not have a Lieb-Robinson
bound [41]. There are variants of the Lieb-Robinson bound
for systems with power-law interactions [42,43], but these
bounds allow exponential growth of operators with time
while we find only linear growth.
On general scaling grounds, the butterfly velocity can be

estimated to be vB∼
ffiffiffiffiffiffiffiffiffi
Dγin

p
, where D∼ l2τ−1 is the dif-

fusion constant (l≡ mean-free path, τ−1≈ elastic scattering
rate) and γin is a small interaction-induced inelastic scattering
rate [23]. In the presence of weak interactions, we expect

fðt; xÞ ∼ eλLte−x
2=ð4DtÞ; ð1:2Þ

the exponential growth reflects the onset of chaos in
an ergodic system as discussed above, while the latter

contribution is a result of diffusion. Solving for
fðt;RðtÞÞ∼1, where RðtÞ is a typical “operator radius”—
which, given an initial perturbation, defines the region in
space over which information has spread over time t—leads
to R2 ∼ 4DλLt2 (Fig. 1). One therefore obtains a light-cone-
like growth of f with a butterfly velocity

FIG. 1. (a) Snapshot at time t of the spread of chaos in an
interacting diffusive metal. The fuzzy circles of radius ∝ðDtÞ1=2
represent electrons diffusing through a background of impurities
(small black dots). We make an analogy to the spread of an
epidemic [31,44]: An “infected” electron inserted into the center
of the figure at t ¼ 0 diffuses outwards (fuzzy red circle). As it
encounters other diffusing electrons, it infects them. These newly
infected electrons further infect other electrons and so on (fuzzy
green circles). The flight paths of the butterflies track the spread
of the infection. The radius of the region containing infected
electrons (bounded by the dashed red circle) grows ballistically as
vBt. Although not shown in the figure, the electrons also have a
finite lifespan, given by the inverse of the quasiparticle decay
rate. This needs to be taken into account when considering
the population of infected electrons as a function of time. The
function fðt; xÞ is roughly equivalent to the local fraction of
infected electrons at a point x. (b) The behavior of fðt; xÞ for one
operator placed at the center of the figure (red dot) and the other at
a position x shown as a function of x at a given time t. Note that
fðt; xÞ displays a light cone (a time slice of which is bounded by
the dashed red circle; this region exclusively contains infected
particles) within which it has saturated and no longer grows. The
radius of this region grows as vBt.
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vB ¼
ffiffiffiffiffiffiffiffiffiffiffi
4DλL

p
: ð1:3Þ

We show in this paper, by carrying out a perturbative
“ladder” computation [44], that the disordered metal does
obey Eq. (1.2), and the growth exponent λL is indeed mostly
given by the inelastic scattering rate with a singular temper-
ature dependence. Note that the unitarity of quantum
mechanics prevents fðt; xÞ from growing to values ≫1,
and thus it saturates at very long times. Equation (1.2) and
the ladder computation are valid only for the presaturation
growth of f.
The rest of this paper is organized as follows: In Sec. II,

we define our model of interacting electrons in the presence
of static disorder and set up the basic elements required for
carrying out perturbation theory to leading order in the
coupling strength. Section III deals with the perturbative
computation of the important terms contributing to λL and
vB for the case of Coulomb interactions in three spatial
dimensions. In Sec. IV, we consider some additional effects
in perturbation theory, as well as the case of short-range
interactions, and show that our main results are unchanged
by these modifications. Finally, in Sec. V, we study the two-
dimensional version of the problem and point out a subtle
difference between λL and the inelastic scattering rate.
Unless explicitly mentioned, ℏ ¼ kB ¼ 1 in the rest of this
paper.

II. PRELIMINARIES

We consider a model of N species of electrons in d ≥ 2
spatial dimensions subject to random potential disorder
and weak interactions. We do not take any kind of large-N
limit; N is a finite number (N ¼ 2 for the case of spinful
electrons). For most of this work, we focus on the
physically relevant case of long-range Coulomb inter-
actions in a metal; we also analyze the case of short-range
interactions in Sec. IV. From now on, we focus on the three-
dimensional problem with d ¼ 3 unless otherwise stated,
but we analyze the case of two spatial dimensions with
d ¼ 2 in Sec. V.
The Hamiltonian of interest is

H ¼ H0 þHint;

H0 ¼
XN
i¼1

Z
ddxψ†

i ðxÞ
�
UðxÞ − ∇2

2m
− μ

�
ψ iðxÞ;

Hint ¼
XN
i;j¼1

Z
ddxddx0Vbðjx − x0jÞ

× ψ†
i ðxÞψ iðxÞψ†

jðx0Þψ jðx0Þ; ð2:1Þ

where ψ†
i ðxÞ [ψ iðxÞ] represents fermionic creation (anni-

hilation) operators satisfying the usual anticommutation
algebra, μ is the chemical potential, and m is the effective

mass of the electrons. The disorder potential UðxÞ breaks
translational invariance, and we assume

≪UðxÞUðx0Þ≫ ¼ U2
0δ

dðx − x0Þ; ð2:2Þ

where ≪…≫ denotes averaging over disorder realizations
and U0 denotes the strength of disorder. We treat the
interaction Vbðjx − x0jÞ perturbatively, but we allow for
strong disorder via the resummation of various classes of
Feynman diagrams with disorder lines. For Coulomb
interactions in any number of dimensions, Vbðjx − x0jÞ ¼
e2=jx − x0j, where e2 is the small parameter in our
perturbative treatment.
Let us now review the key features of the above theory

before setting up the computation for the correlation
functions describing chaos in Sec. III. The remainder of
this section closely follows the discussion in standard
references (see, e.g., Ref. [30]).
The bare electron imaginary time Green’s function after

including the impurity self-energy [Fig. 2(a)] is

½G0ðϵn; pÞ�−1 ¼ −iϵn þ
p2

2m
− μ −

i
2τ

sgnðϵnÞ; ð2:3Þ

where τ−1 ¼ U2
0gð0Þ is the elastic electron scattering rate

due to disorder [gð0Þ is the density of states at the Fermi
level; we use the convention gð0Þ ¼ 2π

R ½ðd3pÞ=ð2πÞ3�×
δf½ p2=ð2mÞ� − μÞg�.
The real-time Green’s functions are defined as

[ψð0Þ≡ ψð0; 0Þ]

(a)

(b)

(c) (d)

FIG. 2. (a) The impurity self-energy leading to the elastic
lifetime in Eq. (2.3). (b) Disorder correction to the electron
interaction vertex in Eq. (2.6); here and henceforth, the electron
lines contain the effect of the impurity self-energy. (c) Dynamical
screening of the interaction by the disorder-corrected polarization
bubble in Eq. (2.7). (d) The 2-in, 2-out process that provides the
inelastic electron lifetime; here and henceforth, the interaction
line is the dynamically screened interaction.
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θðtÞhfψ iðt; xÞ;ψ†
jð0Þgi

¼ iδijGRðt; xÞ

¼ iδij

Z
ddkdk0
ð2πÞdþ1

GRðk0; kÞeiðk·x−k0tÞ;

θðtÞhfψ iðt; xÞ;ψ†
jð0Þg†i

¼ −iδijGR�ðt; xÞ

¼ −iδij
Z

ddkdk0
ð2πÞdþ1

GAðk0; kÞe−iðk·x−k0tÞ: ð2:4Þ

As is well known in the theory of noninteracting
disordered metals, the disorder averaged product of
Green’s functions in the particle-hole polarization bubble
(density-density correlator) gives rise to the “diffusion”
mode at low frequencies and momenta (jωj, vFq ≪ τ−1),

Πðωm; qÞ ¼
dn
dμ

Dq2

jωmj þDq2
; ð2:5Þ

with the noninteracting diffusion constant D ∝ l2=τ ¼ v2Fτ
(vF ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2μ=m
p

is the Fermi velocity). The noninteracting
compressibility is dn=dμ ¼ Ngð0Þ=ð2πÞ. In the presence of
interactions, the above diffusion mode introduces large
vertex corrections [Fig. 2(b)] to the electron-interaction
vertices,

Γðq;ωm; ϵnÞ ¼ (θðϵnðϵn − ωmÞÞ
þ θðϵnðωm − ϵnÞÞðjωmj þDq2Þ−1τ−1);

ð2:6Þ
where ωm ¼ 2πmT and ϵn ¼ πð2nþ 1ÞT are Matsubara
frequencies at a temperature T, effectively screening
[Fig. 2(c)] the long-range Coulomb interaction to

Vðωm; qÞ ¼
4πe2

q2
1

1þ Πðωm; qÞ 4πe2q2

¼ 4πe2

q2
jωmj þDq2

jωmj þDðK2 þ q2Þ : ð2:7Þ

In the above expression, K2 ¼ 4πe2dn=dμ is proportional
to the charge compressibility. Note that despite the factor of
e2, we still treat K2 as an Oð1Þ quantity while using
perturbation theory in e2 since dn=dμ ∝ kF in d ¼ 3 (kF≡
Fermi momentum) is large. Equivalently, this amounts to
using perturbation theory in 1=ðdn=dμÞ ∝ 1=(Ngð0Þ).
Nevertheless, we still have K ≪ kF.
Let us also review the computation of the disorder-

averaged electron lifetime, which provides the inelastic
scattering rate [30]. The process in Fig. 2(d), which
includes the effects of the dynamically screened interaction
and the vertex corrections, gives, via Fermi’s golden rule,
the following expression for the out-relaxation rate or the

“inelastic scattering rate” γinðϵÞ for particles with energy
ϵ of a given flavor i [45–47]:

∂ni;ϵ
∂t

����
out

¼ −Ngð0Þ
Z

dϵ0dΩ
2π2

d3q
ð2πÞ3 jV

RðΩ; qÞj2

× Re

�
1

−iΩþDq2

�
2

ni;ϵnFðϵ0Þ(1 − nFðϵ −ΩÞ)

× (1 − nFðϵ0 þΩÞ)
≡ −ni;ϵγinðϵÞ: ð2:8Þ

Here, nFð…Þ is the Fermi-Dirac distribution function. The
incoming particles are on shell, while the outgoing particles
are allowed to be off shell because of the dynamical
interaction VRðΩ; qÞ. At the Fermi level (ϵ ¼ 0), this
simplifies to

γinð0Þ ¼
Ngð0Þ
2π

Z
∞

−∞

dΩ
π

Ω
2sinhðβΩÞ

Z
d3q
ð2πÞ3 jV

RðΩ;qÞj2

×Re

�
1

−iΩþDq2

�
2

≈
8πe4Ngð0Þ

K4

Z
∞

−∞

dΩ
π

Ω
2sinhðβΩÞ

Z
d3q
ð2πÞ3

1

Ω2þD2q4

≈
ð4− ffiffiffi

2
p Þζð3=2Þe2T3=2

4
ffiffiffiffiffiffi
2π

p
d3=2K2

≈ 0.674
e2T3=2

D3=2K2
; ð2:9Þ

where we made the reasonable assumptions q ≪ K and
Ω ∼ T ≪ DK2. We also used the noninteracting result
Ngð0Þ ≈ 2πdn=dμ, as corrections due to interactions will
only correct γinð0Þ at higher orders in e2. At a finite energy
away from the Fermi level, γinðϵÞ ∼ ϵd=2hðϵ=TÞ in d spatial
dimensions, where hðxÞ is a scaling function of x [30].

III. MANY-BODY QUANTUM CHAOS

To study the onset of quantum chaos for the model
introduced in Eq. (2.1), we compute the flavor-averaged
squared anticommutator of electron-field operators pertur-
batively to leading nontrivial order in the coupling e2,

fðt; xÞ ¼ 1

N
θðtÞ

XN
i;j¼1

Tr½e−βH=2fψ iðt; xÞ;ψ†
jð0Þg

× e−βH=2fψ iðt; xÞ;ψ†
jð0Þg†�: ð3:1Þ

The prefactor of 1=N is inserted so that the bare contribution
tofðt; xÞ is free of factors ofN. The splitting of e−βH into two
factors of e−βH=2 ensures that all operator insertions occur at
distinct complex time points, thus avoiding short-distance
divergences. The strict positivity of fðt; xÞ also guarantees
exponential growth at a rate equal to that of the correlator
where e−βH is not split [44,48]. These “regularized” corre-
lators have also been shown to obey fluctuation-dissipation-
like relations [49]. Computing fðt; xÞ involves defining the
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action on a complex-time contour with real time folds
separated by iβ=2 [44,48,50,51]. We must then solve a
Bethe-Salpeter equation arising from the resummation of
different classes of ladder diagrams to determine fðω; qÞ,
which after a Fourier transform yields information about the
spatial and temporal structure of growth of chaos. An outline
of the derivation of the Feynman rules for Eq. (3.1) required
to set up the following diagrammatic calculation is presented
in Appendix A.
Let us first quote the results for the noninteracting case,

where V ¼ 0. Here, we do not expect chaotic growth of
entanglement because the many-body state can be written
as a Slater determinant of exact eigenstates of the one-body
Hamiltonian. Summing the simplest class of ladder dia-
grams without any overlapping disorder rungs (Fig. 3)
yields the correct qualitative result, as shown in
Appendix B. The final answer is

fðt; xÞ ∼ f0ðt; xÞ þ f1ðt; xÞe−x2=4Dt; ð3:2Þ

where f0 is a rapidly decaying function of timewith a rate set
by τ−1 and f1ðt; xÞ ∼ ðDtÞ−3=2 (in d ¼ 3). At times t ≫ τ,
fðt; xÞ is dominated by the second term, which grows
diffusively but then decays as a power law at long times.
The diffusive behavior is expected, as we have merely
computed the particle-hole polarization bubble in real time.
As expected, there is no exponential growth.
We note here an important point, namely, that we are

actually computing ≪fðt; xÞ≫ averaged over different
realizations of disorder. In a disordered metal for which
the localization length of the eigenstates is far larger than the
typical length scale over which the disordered potential
varies, the disorder self-averages; hence, it makes sense to
consider the disorder average of fðt; xÞwithin a single copy
of a system.
We now consider the effects of interactions, using a

diagrammatic formalism that sums all the singular terms
associated with diffusion and “Cooperon” modes perturba-
tively in the interaction strength [52–55]. Our perturbative
computation sums all singular disorder corrections while
working at Oðe2Þ in the interaction, and it is formally
identical to the theory of Altshuler and Aronov [47]. We
examine two effects: (i) dissipative “self-energy” corrections

(Fig. 4) that lead todecay and (ii) “ladder” corrections (Fig. 5)
that lead to an exponential growth of the squared anticom-
mutator [44]. In order to obtain a nontrivial chaotic growth,
the effect of the latter has to overwhelm the former. Let us
discuss them now one by one.

A. Self-energy corrections

The noninteracting Lðω; qÞ [Fig. 3(a)] is given by

Lðω; qÞ ¼ 1

gð0Þτ2ð−iωþDq2Þ : ð3:3Þ

The dissipative self-energy corrections to the above quan-
tity were considered by Castellani et al. [52,53]. These
corrections renormalize Lðω; qÞ at small ω, q to

(a)

(b)

FIG. 3. (a) Resummation of disorder rungs. (b) Relation
between Lðω; qÞ and fðω; qÞ.

(a) (b)

(c) (d)

FIG. 4. The dominant Fock-type self-energy corrections to
Lðω; qÞ, as described in Refs. [52,53]. Each diagram has a partner
diagram generated by reflecting about the horizontal axis.
Hartree-type contributions are not shown; they are suppressed
for sufficiently long-range interactions.

(a)

(b)

(c)

FIG. 5. Ladder insertions at Oðe2Þ, which provide exponen-
tially growing contributions to fðt; xÞ. The “direct” insertion in
diagram (a) provides a contribution that grows at a rate propor-
tional to T2, slower than the “exchange” insertions in diagram (b),
which grow as T3=2. The relationship between the function
fðω; qÞ and the ladder series is shown in diagram (c).
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Lðω; qÞ → 1

gð0Þτ2
Z

−iωþ ~Dq2 − ΣR
Lð0; 0Þ

: ð3:4Þ

For T ≠ 0, ΣLð0; 0Þ ≠ 0. The field renormalization Z and
the renormalization of D → ~D are not of particular concern
to us, as they provide a correction to the growth exponent at
Oðe4Þ; from now on, we take Z ¼ 1 and ~D ¼ D. The finite-
temperature lifetime is important, and it corrects the growth
exponent downwards.
To compute ΣR

Lð0; 0Þ for the correlator spread across the
two time folds, we note the Fock-type diagrams in Fig. 4
(and their partners obtained by reflection about the hori-
zontal axis). We ignore the corresponding Hartree-type
diagrams, which are relatively suppressed by a factor of
K2=k2F [47]. In the Fock diagrams, the time folds are
connected only by static disorder lines andnot the dynamical
interaction, and hence there is no distinction between the
two-time-fold correlator and the real-time retarded particle-
hole correlator. Thus, in the end,we only need to focus on the
contribution arising from Fig. 4(d) and its partner, as was
noted in Refs. [52,53], to get ΣLð0; 0Þ. We have

ΣLðωl > 0; qÞ ¼ 2T
X

Ωm;ϵn<Ωm<ϵnþωl

Z
d3k
ð2πÞ3

×
VðΩm; kÞ

Dðkþ qÞ2 þ jΩm þ ωmj
����
ϵn<0

: ð3:5Þ

We do this sum by contour integration, noting the branch cut
in VðΩm; kÞ as iΩm crosses the real axis and that ϵn is a
fermionic Matsubara frequency. The nonvanishing contri-
bution upon analytically continuing ϵn, ωl → 0 is [53]

ΣR
Lð0; 0Þ ¼ 2gð0Þτ2

Z
d3q
ð2πÞ3

Z
∞

−∞

dΩ
π

1

sinh βΩ
× LðΩ; qÞIm½VRðΩ; qÞ�: ð3:6Þ

We have

Im½VRðΩ; qÞ� ¼ −
4πe2

q2
DK2Ω

Ω2 þD2ðK2 þ q2Þ2

≈ −
4πe2

q2
Ω

DK2
: ð3:7Þ

Hence,

ΣR
Lð0; 0Þ ≈ −

4e2

π2DK2

Z
∞

0

dk
Z

∞

−∞
dx

1

sinh βx
x

Dk2 − ix

¼ −
2e2

πD3=2K2

Z
∞

−∞
dx

1

sinh βx
xffiffiffiffiffiffiffiffi
−ix

p

¼ −
ð4 − ffiffiffi

2
p Þe2T3=2ζð3=2Þffiffiffiffiffiffi
2π

p
D3=2K2

≈ −2.695
T3=2

D3=2K2
:

ð3:8Þ

Note that−ΣR
Lð0; 0Þ is also the decay rate of the Cooperon at

zero external pair momentum and frequency [53,56], which
has been interpreted as the decay rate of electrons in exact
eigenstates near the Fermi level [56–58].

B. Ladder diagrams

In the ladder diagrams with interaction rungs (Fig. 5),
the disorder correction to the interaction vertices occurs
on a single time fold. Therefore, the second term of
Eq. (2.6) does not apply, as it would correspond to the
bare interaction vertex connecting Green’s functions on
opposite time folds before being corrected by disorder, a
possibility that is ruled out by the locality of the bare
interaction vertex in time. Since the dynamic interaction
(which can be interpreted to be mediated by a dynamically
fluctuating boson) rung connects two time folds on
opposite sides of the thermal circle, its propagator is given
by a bosonic Wightman function [44,48,51]

VWðΩ; qÞ ¼ −2Im½VRðΩ; qÞ�
2 sinhðβΩ

2
Þ

¼ 4πe2

q2
DΩ

sinhðβΩ
2
Þ

K2

Ω2 þD2ðK2 þ q2Þ2

≈
4πe2

q2
Ω

DK2 sinhðβΩ
2
Þ : ð3:9Þ

Note that only the dynamical part of the interaction
Vðωm; qÞ − 4πe2=q2 (which behaves like a Landau-
damped boson) contributes to the Wightman function.
Direct insertion.—We first consider the simplest

summation of the ladder diagrams with alternating inter-
action and diffusion rungs, Lðω; qÞ, given by Fig. 5(a).
By explicitly considering the series of diagrams, we see that
the resulting unit F depends only on the frequencies
passing through it but not the momenta. The Bethe-
Salpeter equation for F reads

Fðω; q; k0; k00Þ
¼ Lðω; qÞδðk0 − k00Þ þ Lðω; qÞ

×
Z

d3k1d3k2
ð2πÞ6

dk000
2π

VWðk0 − k000; k1 − k2ÞGR
0

× ðk0 þ ω; k1 þ qÞGA
0 ðk0; k1Þ

× GR
0 ðk000 þ ω; k2 þ qÞGA

0 ðk000; k2ÞFðω; q; k000; k00Þ:
ð3:10Þ

The overall sign of the rung term is þ1, coming from
i2ð−iÞ2, where the factors of i are generated by the
Hubbard-Stratonovich transformation of the Coulomb
interaction to a fermion-boson interaction and the two
real-time fermion-boson interaction vertices. After some
manipulations, and assuming k1, k2 are close to the Fermi
surface, this becomes
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Fðω; q; k0; k00Þ ≈
1

gð0Þτ2
1

ð−iωþDq2Þ δðk0 − k00Þ þ
m2

gð0Þτ2
1

ð−iωþDq2Þ
4πe2

DK2

Z
dϵ1dϵ2
ð2πÞ4

dk000
2π

k0 − k000
sinh

�
k0−k000
2T

	 ln

�
16μ2

ðϵ1 − ϵ2Þ2
�

×
1

ðϵ1 − k0Þ2 þ 1
4τ2

1

ðϵ2 − k000Þ2 þ 1
4τ2

Fðω; q; k000; k00Þ; ð3:11Þ

where we also set ω, q ¼ 0 in the internal fermion Green’s functions because the leading dependence on ω, q for small ω, q
comes from the 1=ð−iωþDq2Þ multiplying the integral. We can rewrite this for small k0, k000 ≪ τ−1 ≪ μ as

Fðω; q; k0; k00Þ ≈
1

gð0Þτ2
1

ð−iωþDq2Þ δðk0 − k00Þ þ
m2

gð0Þ
lnð4μτÞ

ð−iωþDq2Þ
2e2

πDK2

Z
dk000
2π

k0 − k000
sinh

�
k0−k000
2T

	Fðω; q; k000; k00Þ: ð3:12Þ

As a matrix equation, we have

F ¼ I=ðgð0Þτ2Þ
ð−iωþDq2ÞI − 2e2 lnð4μτÞ

vFDK2 A0

; ð3:13Þ

where the elements ofA0 are given by the integral kernel of
the previous equation (3.12). Note that the translationally
invariant structure of A0 implies plane-wave eigenstates.
The growing part of fðω; qÞ is obtained by appending
external lines to F, capping off the ladder sum, and
integrating over momenta [which just provides two
factors of gð0Þτ ¼ R ½ðd3kÞ=ð2πÞ3�GR

0 ðk0; kÞGA
0 ðk0 − ω; kÞ

for ω ≪ τ−1] and frequencies [Fig. 5(c)]: fðω; qÞ ¼
ðgð0ÞτÞ2 R ½ðdk0Þ=2π�½ðdk00Þ=2π�Fðω; q; k0; k00Þ. Therefore,
F and A0 have the same eigenvectors, and the largest
positive eigenvalue of A0 (¼ πT2) provides the growth
exponent

λð0ÞL ≈
2πe2

vFDK2
T2 lnð4μτÞ: ð3:14Þ

Thus, the growth exponent produced by the simplest direct
ladder insertion considered above is insufficient to over-
whelm the T3=2 decay rate from the self-energy corrections.
Therefore, we need to consider other ladder insertions at
Oðe2Þ and check to see if they generate an exponent that
successfully competes with the decay rate. Henceforth, we
ignore the contribution of A0 to the ladder sum.
Exchange insertion.—As discussed above, we need to

consider additional ladder insertions at the same order in
perturbation theory, which at least compete with the
previously computed decay rate. At Oðe2Þ, these come
from Fig. 5(b). The sum of the two insertions gives the
following integral equation:

Fðω; q; k0; k00Þ
¼ Lðω; qÞδðk0 − k00Þ

þ Lðω; qÞ
Z

d3k1
ð2πÞ3

d3k2
ð2πÞ3

d3k3
ð2πÞ3

dk000
2π

VWðk0 − k000; k2 − k3ÞLðk0 þ ω − k000; k2 þ q − k3ÞGR
0 ðk0 þ ω; k1 þ qÞGAðk0; k1Þ

× GR
0 ðk0 þ ω; k2 þ qÞGA

0 ðk000; k1 − k2 þ k3ÞGR
0 ðk000 þ ω; k3 þ qÞGA

0 ðk000; k3ÞFðω; q; k000; k00Þ

þ Lðω; qÞ
Z

d3k1
ð2πÞ3

d3k2
ð2πÞ3

d3k3
ð2πÞ3

dk000
2π

VWðk0 − k000; k3 − k2ÞLðk000 þ ω − k0; k2 þ q − k3ÞGR
0 ðk0 þ ω; k1 þ qÞGAðk0; k1Þ

× GR
0 ðk0 þ ω; k2 þ qÞGA

0 ðk000; k1 − k2 þ k3ÞGR
0 ðk000 þ ω; k3 þ qÞGA

0 ðk000; k3ÞFðω; q; k000; k00Þ: ð3:15Þ

The overall sign of this contribution is þ1 for the same reasons as above. Moreover, the two contributions are equal
to each other. As before, we ignore the small ω, q contribution coming from within the integrand and throw out the
short-wavelength and high-frequency parts of the interaction. Since the interaction is long-ranged, the largest contribution
to the integrals comes when the momentum k2 − k3 appearing in the internal interaction and in the diffusion rungs is
small compared to the momenta flowing through the internal fermion lines, which are OðkFÞ. We thus shift k3 → k3 þ k2
and then ignore k3 everywhere except in the interaction and diffusion rungs, which are singular at small k3. Then,
we have
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Fðω; q; k0; k00Þ

≈
1

gð0Þτ2
1

ð−iωþDq2Þ δðk0 − k00Þ þ
8πe2

τ4ð−iωþDq2ÞK2

Z
d3k3
ð2πÞ3

dϵ1dϵ2
ð2πÞ2

dk000
2π

k0 − k000
sinhðk0−k000

2T Þ
1

ðϵ1 − k0Þ2 þ 1
4τ2

1

ðϵ2 − k000Þ2 þ 1
4τ2

×
1

ϵ1 − k000 þ i
2τ

×
1

ϵ2 − k0 − i
2τ

1

D2k43 þ ðk0 − k000Þ2
Fðω; q; k000; k00Þ

≈
1

gð0Þτ2
1

ð−iωþDq2Þ δðk0 − k00Þ þ
4e2

πð−iωþDq2ÞK2

Z
∞

0

dk3

Z
∞

−∞

dk000
2π

k0 − k000
sinhðk0−k000

2T Þ
k23

D2k43 þ ðk0 − k000Þ2
Fðω; q; k000; k00Þ

≈
1

gð0Þτ2
1

ð−iωþDq2Þ δðk0 − k00Þ þ
e2

ffiffiffi
2

p

ð−iωþDq2ÞD3=2K2

Z
dk000
2π

k0 − k000
sinhðk0−k000

2T Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijðk0 − k000Þj

p Fðω; q; k000; k00Þ: ð3:16Þ

This gives the matrix equation

F ¼ I=ðgð0Þτ2Þ
ð−iωþDq2ÞI − e2

ffiffi
2

p
D3=2K2 A1

; ð3:17Þ

where the matrix elements of A1 are given by the integral kernel in the last line of Eq. (3.16). As was the case with A0,
the largest positive eigenvalue of A1 comes from an eigenvector with constant entries. We thus obtain the net growth
exponent after taking into account the dissipative self-energy:

λð1ÞL ¼ e2T3=2ð4 − ffiffiffi
2

p Þζð3=2Þffiffiffi
π

p
D3=2K2

þ ΣR
Lð0; 0Þ ¼

e2T3=2ð5 − 3
ffiffiffi
2

p Þζð3=2Þffiffiffi
π

p
D3=2K2

≈ 1.116
e2T3=2

D3=2K2
: ð3:18Þ

Hence,

fðω; qÞ ¼ ðgð0ÞτÞ2
Z

dk0
2π

dk00
2π

Fðω; q; k0; k00Þ ¼
gð0Þ
ð2πÞ2

1

−iωþDq2 − λð1ÞL

: ð3:19Þ

This result returns Eq. (1.2) after a Fourier transform.

IV. ADDITIONAL CONSIDERATIONS

In the previous section, we computed the squared
anticommutator and the leading Oðe2Þ correction to the
growth exponent by doing an infinite resummation of the
disorder lines. It is natural to ask the following questions:
(i) Do ladder diagrams with a different skeleton structure of
the disorder lines affect the exponent? (ii) What is the
contribution of the other diagrams at Oðe2Þ that have been
ignored in Fig. 5 above? (iii) How sensitive are the above
results to the specific form of the (Coulomb) interaction,
Vðjr − r0jÞ?
We address all of these concerns one by one in this

section.

A. Crossed disorder rungs

Instead of using the diffusion rung Lðω; qÞ considered
thus far, we can sum diagrams with maximally crossed
disorder rungs (Fig. 6). As is well known, this gives

Lcðω;QÞ ¼
1

gð0Þτ2ð−iωþDQ2Þ ; ð4:1Þ

where Q is the total momentum of the incoming or
outgoing particle-particle pairs. As with Lðω; qÞ, ω is still
the net lateral frequency transfer above, as the disorder
rungs cannot transfer frequency. At the noninteracting
level, this gives

FIG. 6. A diagram in the “maximally crossed” series. The sum
of this series gives Lcðω;QÞ as discussed in the main text.
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fcðω; 0Þ ¼
Z

d3k
ð2πÞ3

d3k0

ð2πÞ3
dk0
2π

×
1

gð0Þτ2( − iωþDðkþ k0Þ2)
×GR

0 ðk0; kÞGA
0 ðk0 − ω; kÞGR

0 ðk0; k0Þ
×GA

0 ðk0 − ω; k0Þ: ð4:2Þ

It is easy to see that this expression does not have a pole at
smallω, and hencewe do not need to consider contributions
withLc as the base unit. (In two spatial dimensions, there is a
logarithmic singularity at smallω that is still weaker than the
pole in the contribution with L.) We can also insert Lc as an
internal rung in the series with L as the base unit, such as by
replacing Lðk0 − k000; k2 − k3Þ → Lcðk000 − k0; k1 þ k3Þ in
the integrand of Eq. (3.15). However, in this case, the same
small momentum then does not appear in both the inter-
action and Lc rungs, and the resulting contribution is thus
less singular than the one in Eq. (3.15), scaling as subleading
powers of T starting at T2.
Similarly, we can consider insertions such as those in

Fig. 5 but with additional internal L rungs. These are also
less singular than the ones shown, for the same reason.

B. Additional diagrams at Oðe2Þ
At Oðe2Þ, we have to also consider the diagrams shown

in Fig. 7. In the diagrams given by Figs. 7(a) and 7(b), the
internal interaction line carries only the external frequency
and momentum. We assume that the Coulomb interaction
actually has a long static screening length ξ ≫ l, where
l ¼ vFτ is the disorder mean-free path, and that we are
probing scrambling at length scales x ≫ ξ.
The interaction line in Fig. 7(a) is given by

VA
ξ ðω; qÞ ¼ lim

q→0

4πe2

q2 þ ξ−2
iωþDq2

iωþDðK2 q2

q2þξ−2
þ q2Þ

¼ 4πe2

ξ−2
:

ð4:3Þ
The insertion in Fig. 7(a) in the limit of small external
frequency and momentum ðω; qÞ is then given by

Nigð0Þ2 πe2

τ2ξ−2

Z
dϵ1
2π

dϵ2
2π

1

coshðβk0=2Þ coshðβk000=2Þ
×

1

ϵ21 þ 1=ð4τ2Þ
1

ϵ1 þ i=ð2τÞ
1

ϵ22 þ 1=ð4τ2Þ
1

ϵ2 þ i=ð2τÞ

¼ igð0Þ2τ2 πe
2

ξ−2
1

coshðβk0=2Þ coshðβk000=2Þ
: ð4:4Þ

The factor of i comes from ð−iÞ3 from the three advanced
Green’s functions, and the additional factor of N arises
because the flavor indices on the left and the right sides of
the diagram are decoupled. The partner insertion obtained
by reflection about the horizontal axis is the complex

conjugate of this, so their sum vanishes. For the insertion in
Fig. 7(b), the internal Wightman line is given by

VW
ξ ðω; qÞ ¼ lim

q→0

4πe2

q2 þ ξ−2
ω

sinhðβω
2
Þ

×
DK2 q2

q2þξ−2

ω2 þD2ðK2 q2

q2þξ−2
þ q2Þ2

¼ 0; ð4:5Þ

so this diagram is not important. In Fig. 7(c), the internal
Wightman line carries the external frequency ω≲ λL ≪ T,
so it can be approximated by ½4πe2=ðDK2p2Þ�T, where p is
an internal momentum. However, in this case, once again,
the same small momentum p does not appear in both the
interaction and the internal L or Lc, so this diagram ends up
being less singular and scales as subleading powers of T
starting at T2. For Fig. 7(d), the internal interaction line is
just −i½ð4πe2Þ=K2�, and we get, for the insertion, after
appropriately shifting momenta, for both the internal L and
internal Lc cases,

Nigð0Þπe2
τ4K2

Z
dϵ1
2π

dϵ2
2π

d3k
ð2πÞ3

dk000
2π

1

coshðβk0=2Þcoshðβk000=2Þ
×

1

ðϵ21þ 1
4τ2
Þ2

1

ϵ1þ i
2τ

1

ϵ22þ 1
4τ2

1

ϵ2þ i
2τ

1

Dk2− iðk0−k000Þ

¼−
3Nigð0Þπe2τ2

K2

Z
d3k
ð2πÞ3

dk000
2π

1

coshðβk0=2Þcoshðβk000=2Þ
×

1

Dk2− iðk0−k000Þ
: ð4:6Þ

(a)

(c) (d)

(b)

FIG. 7. Ladder insertions atOðe2Þ, in addition to the ones shown
in Fig. 5, that do not change the growth exponent λL. Diagrams (a)
and (b) have partner diagrams generated by reflection about the
horizontal axis. Diagrams (c) and (d) have two partners each, from
reflection about the horizontal and vertical axes. Other diagrams
(not shown) similar to (c) and (d), with the internal resummed
disorder lines terminating on the same time fold instead of opposite
time folds, vanish because of integrations over Green’s functions
with poles on the same side of the real axis.

QUANTUM BUTTERFLY EFFECT IN WEAKLY … PHYS. REV. X 7, 031047 (2017)

031047-9



Reflecting this insertion about the horizontal axis produces its complex conjugate, and reflection about the vertical axis
effectively interchanges k0, k000 . The four contributions then sum to zero.

C. Short-range interactions

Based on the analysis of Sec. III, we see that the Lyapunov exponent is simply given by

λð1ÞL ¼ −2gð0Þτ2
Z

ddk
ð2πÞd

Z
∞

−∞

dk0
2π

Im½VRðk0; kÞ�
sinhðβk0=2Þ

Re½Lðk0; kÞ� þ 4gð0Þτ2
Z

ddk
ð2πÞd

Z
∞

−∞

dk0
2π

Im½VRðk0; kÞ�
sinhðβk0Þ

Lðk0; kÞ

¼ −2gð0Þτ2
Z

ddk
ð2πÞd

Z
∞

−∞

dk0
2π

Im½VRðk0; kÞ�
sinhðβk0=2Þ

Lðk0; kÞ þ 4gð0Þτ2
Z

ddk
ð2πÞd

Z
∞

−∞

dk0
2π

Im½VRðk0; kÞ�
sinhðβk0Þ

Lðk0; kÞ; ð4:7Þ

as Im½VRðk0; kÞ� and Im½Lðk0; kÞ� are both odd functions of k0 for the interactions we consider. Since j1=sinhðβk0=2Þj >
j2=sinhðβk0Þj, the first term of the above (coming from the ladder sum of Fig. 5) always dominates the second (coming from
the self-energy corrections), and the exponent is thus always positive if sgnðIm½VRðk0; kÞ�Þ ¼ −sgnðk0Þ. For a short-range
interaction that does not vanish as q → 0 [we take a contact interaction for which VR

bsðqÞ ¼ V0], screening by the diffusion
produces

VR
s ðω; qÞ ¼ V0

−iωþDq2

−iωþD0q2
; Im½VR

s ðω; qÞ� ¼ V0

ωðD −D0Þq2
ω2 þD02q4

; D0 ¼ D

�
1þ dn

dμ
V0

�
> D: ð4:8Þ

Inserting this into Eq. (4.7), we see that all the integrals con-
verge and that λð1ÞL ∼þV2

0T
3=2 for d ¼ 3. Thus, short-range

interactions behave qualitatively in the sameway as Coulomb
interactions from the point of view of scrambling, consistent
with previous work on the inelastic scattering rate [30].

V. TWO SPATIAL DIMENSIONS

In two spatial dimensions, the diffusion-screened
Coulomb interaction is [30]

VR
2 ðω;qÞ ¼

2πe2

q
−iωþDq2

−iωþDK2qþDq2
; K2 ¼ 2πe2

dn
dμ

:

ð5:1Þ

We probe scrambling at length scales x much larger than
the mean-free path l and the screening length K−1

2 but
smaller than the eventual localization [59] length lekFl of
the electron wave functions [30]. [The light-cone-like
growth of fðt; xÞ will be arrested beyond this localization
length; i.e., the operator-radius RðtÞ is bounded by this
length.] Then, the same approximations and lines of
reasoning we used in three dimensions also work in two
dimensions, and the Lyapunov exponent is still given by
Eq. (4.7) with d ¼ 2. Inserting this dynamically screened
Coulomb interaction, we obtain the leading contribution

λð1ÞL2 ¼ e2

2DK2

Z
∞

0

dk0

�
1

sinhðβk0=2Þ
−

2

sinhðβk0Þ
�

¼ e2T
DK2

ln 2 ¼ T
2πDðdn=dμÞ ln 2

≈
e2R□

h
kBT
ℏ

ln 2; ð5:2Þ

where R□ ¼ 1=ðe2Dðdn=dμÞÞ is the sheet resistivity [47]
and we restored factors of kB and ℏ. This cannot saturate
the universal bound λL ≤ 2πkBT=ℏ unless the effective
coupling e2R□=h becomes large, which also determines
crossover or transition to an insulating state. According to
experimental results reported in Ref. [60] and the theory
discussed in Ref. [61], the density-tuned metal-insulator
crossover or transition occurs at around R□ ≈ 3h=e2, which
is smaller than the value required to saturate the bound by
about a factor of 3. This indicates that the metallic state has
a Lyapunov exponent numerically (but not parametrically)
smaller than the bound.
From Eq. (5.2) above, we see that it contains the

difference of two terms. The term being subtracted is the
decay rate of electrons in exact eigenstates of the disorder
potential [56,57], whereas the term being added gives the
rate at which chaos spreads, i.e., how electrons would be
infected within an epidemic picture (see Fig. 1) if there
were no electron “deaths.” Both these terms individually
contain a logarithmic infrared divergence, which cancels
when their difference is taken. The logarithmic divergence
in the exact eigenstate decay rate was removed in a self-
consistent computation [58], by using the rate itself as an
infrared energy cutoff, but this is not required here. For the
exact eigenstate decay rate, the self-consistent computation
provides instead a regularized logarithmic factor of
lnðπDðdn=dμÞÞ [30,47,58], which does not appear in the
Lyapunov exponent.
Let us comment now on why the logarithmic divergence

cancels out in the expression for the Lyapunov exponent
but appears in the exact eigenstate decay rate. It arises from
an infrared divergence in the collision integral in Eq. (2.8)
when the energy transfer in a collision approaches zero. At
zero energy transfer, the interaction of the electrons with
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another particle-hole excitation (or, equivalently, the boson
representing the Coulomb interaction) is like the electrons
scattering off a random static potential. Each instance of
such a scattering event can be described by a quadratic
integrable Hamiltonian and is hence incapable of producing
chaos. However, this process still leads to decoherence of
the individual electron wave packets and hence contributes
to the decay rate. A similar cancellation between singular
pieces of self-energy and ladder contributions coming from
zero-energy-transfer collisions was first pointed out by two
of us in the computation of the Lyapunov exponent of a
Fermi surface coupled to a gapless fluctuating gauge field
in Ref. [51]. For the short-range interactions considered in
the previous section, the logarithmic factor still cancels in

the Lyapunov exponent, and we obtain λð1ÞL2 ∼þV2
0T.

VI. DISCUSSION

We have studied the spread of many-body quantum
chaos due to electron-electron interactions in diffusive
metals. We find that chaos spreads ballistically, even
though quasiparticles are transported diffusively. This is
because the spread of chaos is linked only to the propa-
gation of quantum information about inelastic collisions of
quasiparticles, which does not require the transport of
quasiparticles themselves. In three dimensions, we found
that the Lyapunov exponent scales as the inelastic scatter-
ing rate of quasiparticles, whereas in two dimensions the
inelastic scattering rate is larger than the Lyapunov expo-
nent by a logarithmic factor arising from “classical”
collisions that do not involve quantum fluctuations. In d
spatial dimensions, we find λL ∼ Td=2, which leads to
vB ∼ Td=4. Comparing the form of the butterfly velocity
to a scaling form vB ∼ T1−1=z, where z is the dynamical
exponent, we find that our result is qualitatively similar to
that of a critical system with z > 1. While our computations
in d ¼ 2 and 3 were carried out with the 1=r Coulomb
interaction, we expect similar results to hold in d ¼ 2 for
the ln r Coulomb interaction.
Remarkably, we find the above ballistic growth of

operators even though the Coulomb interaction is long-
ranged and no microscopic Lieb-Robinson bound exists.
This result is a particularly striking example of the idea that
the butterfly velocity can function like a low-energy Lieb-
Robinson velocity [62]. It raises the question of what other
long-range models might be harboring an emergent ballistic
growth of operators at low energy.
We note the recent experimental measurement by

Kapitulnik et al. of local thermal diffusivity using an optical
method [63]. It would be interesting to measure the local
heat diffusion constant in an interacting diffusive metal
using this method. The heat diffusion constant is given by
the ratio of thermal conductivity and specific heat; at low
enough temperatures, in a regime where both of these
quantities are dominated by the electronic contribution, it

would be interesting to compare the measured diffusion
constant to the known quasiparticle diffusion constantD that
appears to be relevant to quantum chaos. While in the
noninteracting case, one expects the thermal diffusivity to be
equal to D, significant deviations may arise because of
interactions, especially in two dimensions [64].
In this work, we only focused on disorder averaged

correlation functions in the diffusive, ergodic phase.
However, one could also ask about rare-region effects
[65,66]. For example, can rare “localized” regions in the
ergodic phase impede the spread of chaos? How does the
different inelastic scattering rate in these regions [67] affect
the Lyapunov exponent? Alternatively, could there be rare
regions, with very little disorder, that lead to an even faster
butterfly velocity? In dimensions greater than one, the
effects of such rare regions are expected to be significantly
suppressed, but we leave a detailed study for future work.
Finally, it would also be interesting to study the growth of
entanglement in an interacting diffusive metal and compare
it to the spread of chaos. We also leave this question for
future study.
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APPENDIX A: OUTLINE OF FEYNMAN RULES
FOR THE COMPLEX-TIME CONTOUR

In this appendix, we briefly outline the Feynman rules on
the complex-time contour work that are used to compute
Eq. (3.1). A detailed derivation of Feynman rules for such
scenarios has been presented earlier in Refs. [44,48]. We
split the Hamiltonian H into three pieces corresponding to
the clean noninteracting system, the disordered potential,
and the interaction term,

H ¼ H0 þHint ≡Hclean
free þHdis

free þHint: ðA1Þ

ForHclean
free , Eq. (3.1) simply factorizes byWick’s theorem

into a product of a retarded Green’s function and an
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advanced Green’s function. When disorder is included,
we have

ψdis
freeðt; xÞ ¼ ðT e−i

R
t

0
dtHdis

free½t;ψ clean
free �Þψ clean

free ðt; xÞ
× ðT e−i

R
t

0
dtHdis

free½t;ψ clean
free �Þ†; ðA2Þ

where T denotes time ordering. The exponentials contain-
ing Hdis

free may now be expanded; this produces corrections
to Eq. (3.1) with H ¼ Hclean

free that can be contracted by
Wick’s theorem and the disorder average Eq. (2.2). Since
the disorder is time independent, this produces, to lowest
order, the disorder self-energy corrections to the Green’s
functions [Fig. 2(a)] and also the disorder ladder correc-
tions in Fig. 3(a). These corrections can then be resummed
to obtain the noninteracting fðt; xÞ as shown in
Appendix B.
With the inclusion of interactions, we use

ψðt; xÞ ¼ ðT e−i
R

t

0
dtðHdis

free½t;ψ clean
free �þHint½t;ψ clean

free �ÞÞψ clean
free ðt; xÞ

× ðT e−i
R

t

0
dtðHdis

free½t;ψ clean
free �þHint½t;ψ clean

free �ÞÞ†: ðA3Þ

It is helpful to consider, for the purposes of this illustration,
decoupling the four-fermion interactions using a bosonic
field φðω; kÞ with a propagator given by the unscreened

Coulomb interaction VbðkÞ. The perturbative expansion
now generates the corrections shown in Fig. 4 that involve
the usual correction to the Green’s functions due to
interactions, along with a new set of corrections that
involve the contraction of the boson field across the
e−βH=2 thermal factors of Eq. (3.1),

VWðω; kÞ≡ Tr½e−βH=2φðω; kÞe−βH=2φð−ω;−kÞ�: ðA4Þ

The expression for this Wightman propagator VW is
provided in Eq. (3.9), and its relation to the spectral
function is derived in detail in Refs. [48,51]. These new
corrections generate the diagrams shown in Fig. 5. Note
that interaction corrections to the e−βH=2 thermal factors in
Eq. (3.1) correspond to the dressing of the Wightman
propagators, which we take into account since we use the
dynamically screened Coulomb interaction for VW in
Eq. (3.9).

APPENDIX B: ABSENCE OF CHAOS IN THE
NONINTERACTING DISORDERED METAL

In this appendix, we derive the expression for fðt; xÞ in
the noninteracting scenario. We have [see Eq. (3.1)
and Fig. 3]

fðω; qÞ ¼
Z

ddkdk0
ð2πÞdþ1

GR
0 ðk0 þ ω; kþ qÞGA

0 ðk0; kÞ

þ
Z

ddk1ddk2
ð2πÞ2d

dk0
2π

GR
0 ðk0 þ ω; k1 þ qÞGA

0 ðk0; k1ÞGR
0 ðk0 þ ω; k2 þ qÞGA

0 ðk0; k2ÞLðω; qÞ: ðB1Þ

The diffusion rung Lðω; qÞ is given by the following resummation of disorder rungs:

Lðω; qÞ ¼ U2
0 þ U2

0

Z
ddk
ð2πÞd G

R
0 ðk0 þ ω; kþ qÞGA

0 ðk0; kÞLðω; qÞ

¼ U2
0 þ U2

0

Z
ddk
ð2πÞd

1
k2
2m − μ − k0 þ i

2τ

1
ðkþqÞ2
2m − μ − k0 − ω − i

2τ

Lðω; qÞ

≈ U2
0 þU2

0

Z
ddk
ð2πÞd

1
k2
2m − μ − k0 þ i

2τ

1
k2
2m − μ − k0 − i

2τ

�
1þ ω

k2
2m − μ − k0 − i

2τ

þ
�

k · q=m
k2
2m − μ − k0 − i

2τ

�
2
�
Lðω; qÞ

≈ U2
0 þU2

0gð0Þ
Z

dϵ
2π

1

ðϵ − k0Þ2 þ 1
4τ2

�
1þ ω

ϵ − k0 − i
2τ

þ q2v2F=d
ðϵ − k0 − i

2τÞ2
�
Lðω; qÞ; ðB2Þ

Lðω; qÞ ¼ 1

gð0Þτ2ð−iωþDq2Þ ; ðB3Þ

where D ¼ v2Fτ=d, and in the intermediate steps, we
expanded in small q assuming that the largest contributions
to the integrals come from the regions with k ∼ kF ¼

mvF ≫ q, and that μ ≫ τ−1 ≫ jωj. We assumed that
Lðω; qÞ does not depend on any other combinations of
momenta and frequencies passing through it apart from
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(ω, q), which turns out to be self-consistent. Each disorder
rung is multiplied by a factor of −i2 ¼ 1, where the i’s
come from the real-time electron-disorder vertices. We thus
see that fðt; xÞ ∼ f0ðt; xÞ þ f1ðt; xÞe−x2=ð4DtÞ, where f0
decays rapidly in time at a rate given by τ−1 and f1 is a
slowly varying function of space and time. Henceforth, we
ignore f0 as we are interested in long times t ≫ τ and we
set f1 to 1. Since there is no exponential growth in fðt; xÞ,
we conclude that the noninteracting disordered metal does
not have many-body quantum chaos.
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