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We study how noise in active dendrites affects information transmission. A mismatch of both noise and
refractoriness between a dendritic compartment and a somatic compartment is shown to lead to an input-
dependent exchange of leadership, where the dendrite entrains the soma for weak stimuli and the soma
entrains the dendrite for strong stimuli. Using this simplemechanism, the noise in the dendritic compartment
can boost weak signals without affecting the output of the neuron for strong stimuli. We show that these
mechanisms give rise to a noise-induced increase of information transmission by neural populations.
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I. INTRODUCTION

Biological systems process information with high effi-
ciency despite a machinery characterized by high intrinsic
variability. This incongruity may be resolved by consider-
ing the beneficial effects of noise on information trans-
mission. At multiple time scales, noise can enhance
information transmission for either subthreshold [1–3] or
suprathreshold signals [4], a phenomenon known as aperi-
odic stochastic resonance. Yet, it is unclear how and to what
extent neuronal populations exploit the noise inherent to the
biophysics of membranes.
Intrinsic noise is known to contribute to the activity of

single neurons [5–8]. It is thought to arise from stochastic
changes in ion channel conformations regulating vesicle
release and action potential generation. If such intrinsic
noise were to play a constructive role in information
transmission by either boosting subthreshold signals or
decorrelating individual elements [1,4,9], its intensity
should be tuned to the particular input [10,11]: too little
noise does not significantly enhance information, too much
degrades it. It is unclear if single neurons can tune the
intensity of intrinsic noise, and if so with what precision.
Preferably, neurons would have a mechanism to gate noise
selectively according to the strength of the input. Here, we
study the extent with which noise in active dendrites affects
the information transmitted by the cell body.
Dendrites are characterized by small compartment sizes

[12–14], large intrinsic noise [15–17], and refractoriness

[18,19], which limits their maximal firing frequency.
Conversely, the cell bodies of neurons are characterized
by large compartment sizes, weak intrinsic noise, and can
sustain high firing frequencies. These two types of neural
subunits are active since they may generate spikes locally
[13,14,18,20]. They are also coupled: a dendritic action
potential can force a spike in the cell body and the back-
propagating action potential couples the compartments in
the reverse direction [12–14,18]. In this article, we show
how these features can perform noise gating, and how this
leads to an enhancement of time-dependent information
transmission.

II. DENDRITE-SOMA SYSTEM

A. Simplified biophysical description

The role of dendrites can be addressed by a simplified
biophysical model with a single dendritic compartment
connected to the cell body. This dendrite-soma system is
typically modeled with resistive coupling between the
dendrite and the soma and a reduced set of ion channels
on both compartments [21–23]. In an instantiation of such
a system (see the Appendix), we simulate the response to
a constant input delivered with equal strength to both
compartments. In addition to this constant component,
and to take into account noisier dendritic dynamics, the
compartments are stimulated with independent noise scaled
to have a 30-fold higher amplitude in the dendrite (see the
Appendix). Figure 1 shows that the response consists of
short and stereotypical action potentials in the soma,
which are often associated with a broader action potential
in the dendrite, consistent with experimental observations
[13,18,20] and detailed compartment modeling [20,24,25].
When the depolarizing input is weak, we find that a dendritic
spikewould consistently precede the somatic spike [Figs. 1(a)
and 1(c)]. In contrast, when the depolarizing input is strong,
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the dendritic spike will generally follow the somatic spike
[Figs. 1(b) and 1(c)]. In addition, we observe that the firing
rate of the two-compartment system follows more closely the
firing rate of an isolated dendritic compartment when the
input is weak, and more closely the firing rate of an isolated
somatic compartment when the input is strong [Fig. 1(d)].

B. Integrate-and-fire description

In order to identify central mechanisms from biophysi-
cal models, we use a simple yet accurate abstraction. We
consider that the tip of dendrites can emit stereotypical
spikes associated with a relative refractory period longer
than that at the soma. We therefore model a dendrite-soma
system as two interconnected integrate-and-fire units,
a system studied in the context of connected pairs of

neurons [26,27]. To model dendrite-soma systems, we
consider that each compartment has independent intrinsic
noise, a distinct refractory period, and common stimula-
tion of intensity s. These effects are distinct from dendritic
N-methyl D-Aspartate (NMDA) spikes [25,28–32], cal-
cium spikes [21,22,33], or other simplified models of
dendritic activity lacking either a back-propagating action
potential or a clear refractory period [34,35].
The dendritic (somatic) potential uX (uY) evolves accord-

ing to the Langevin equations

duX ¼ ð−uX þ sÞdt=τ þ
ffiffiffiffiffiffiffiffiffiffiffi
D2

X=τ
q

dWX; ð1Þ

duY ¼ ð−uY þ sÞdt=τ þ
ffiffiffiffiffiffiffiffiffiffiffi
D2

Y=τ
q

dWY; ð2Þ

with membrane time constant τ [36]. Upon reaching a
threshold at uX ðuYÞ > 1, a unit is said to fire. When a unit
fires, it causes a strong potential jump b in the other unit,
consistent with strong active coupling between soma and
dendrites [12–14,20]. This jump is implemented numeri-
cally in the time step after the firing time. After spiking, a
unit remains clamped to the reset potential VX (VY) for unit
X (Y) during an absolute refractory period TR, after which
the membrane potential follows Eqs. (1) and (2). We model
a different relative refractory period with different reset
potentials since it takes a longer time to relax from a lower
reset. We choose VX < VY to model a longer relative
refractory period for the dendrite. Lastly, each unit is
subjected to an intrinsic noise denoted by the independent
Wiener increments dWX and dWY in Eqs. (1) and (2) with
intensity scaled by DX (DY). To comply with the intensity
of intrinsic noise expected in neocortical dendrites [15–17],
we consider that unit X is noisier than unit Y (DX > DY)
and study the dynamics of the system when DX is varied
within a realistic range. Our analysis does not include an
explicit subthreshold coupling between the compartments
reflecting weak electrotonic coupling in the presence of
active spike propagation in cortical dendrites [12–14]. With
these parameter restrictions, the noisier and more refractory
unit (X) models an active dendrite while unit Y corresponds
to the soma, and so it is the output of the system.

III. EXCHANGE OF LEADERSHIP
AS NOISE GATING

A. Exchange of leadership

The coupling between the units implies that whenever
one of the units fires, the other has a high probability to
discharge immediately afterwards. The relative refractory
period prevents another firing event to directly follow this
dual firing. Between these dual spiking events the units
are effectively independent. Then, the first unit reaching
threshold dictates the firing dynamics of the coupled

(a)

(b)

(c) (d)

FIG. 1. Exchange of leadership in a simplified biophysical
model of the dendrite-soma system. (a) The dendrite-soma
system (see the Appendix) receiving a weak input in both the
dendrite and the soma. The membrane potential of the soma (blue
trace) and the dendrite (red trace) shows action potentials initiated
first in the dendritic compartment. (b) For a strong input, the
somatic compartment fires regularly and generally leads the
dendritic action potentials. (c) The fraction of somatic spikes that
are preceded by a dendritic spike within 8 ms (blue full line) and
the fraction of dendritic spikes that are preceded by a somatic
spike by at least 8 ms (orange dashed line) are shown. Spike
timing is taken to be the time of crossing −30 mV from below.
(d) The firing rate of the coupled system is shown as a function of
the input strength (black full line). Isolating the compartments by
fixing the coupling conductance to zero shows that the dendrite-
soma system interpolates between the isolated dendritic compart-
ment (red dashed line) and the isolated somatic compartment
(blue dash-dotted line).
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system. In the subthreshold regime, i.e., for s < 1, the
potential of each unit cannot cross threshold without noise,
and both uX and uY would saturate to s in this case. At this
potential, the noisier unit has a greater probability to fire
since DX > DY . The noisier unit X will fire more often and
therefore be the leader, entraining the more deterministic
unit Y as illustrated in Fig. 2(a). On the other hand, in the
suprathreshold regime (s > 1), both units fire without
noise. Hence, following a spike, unit Y can take advantage
of its higher reset value and cross the threshold before X
[Fig. 2(b)].
An exchange of leadership, or switching, occurs as s

is varied from subthreshold to suprathreshold values.
We compute the probability that X entrains Y, PX→Y , by
counting the fraction of X spikes that are immediately
followed by a Y spike. Figure 2(c) shows PX→Y and its
complement PY→X calculated by numerical simulation of
Eqs. (1) and (2) in a typical example of switching. The
dendritic leadership is complete and sustained at subthresh-
old input strengths. As s is increased, dendritic leadership is
diminished and PX→Y decreases. Simultaneously, somatic
leadership is augmented and PY→X increases. In the strong

input regime the exchange of leadership is complete such
that PX→Y reaches zero and PY→X one.
We observe complete switching provided that the rela-

tive dendritic noise DX is sufficiently greater than DY and
sufficiently small compared to the coupling amplitude b
to ensure strong effective coupling. Within this range, the
switching point defined by PX→Y ¼ PY→X ¼ 0.5 is not
constant but increases with DX [Fig. 2(d)]. A mismatch of
the level of noise across compartments combined with a
mismatch of refractoriness can therefore mediate the input-
dependent exchange of leadership.

B. Noise gating

Since the switching seen at strong inputs implies that the
influence of high intrinsic noise in unit X is removed from
the output, we remark that the system effectively reduces,
or gates, noise as a function of input intensity. Furthermore,
gating emerges close to the deterministic threshold, pre-
cisely at the point where the role of noise switches from
beneficial to detrimental in single-unit encoding. It sug-
gests a particular role for noise gating: a more deterministic
encoding of suprathreshold inputs and a noise-assisted
encoding to resolve subthreshold inputs within the same
encoding device and without the use of feedback.

IV. EFFECTS ON ENCODING PRECISION

A. Stationary inputs

To show the role of a dendrosomatic mismatch of noise
on encoding quality, we investigate the consequences of
noise gating on stationary firing statistics (Fig. 3). For various
input strengths s, we compute the mean firing rate and the
variance of the interspike intervals (σ2ISI). At subthreshold
input strengths, the firing rate of the coupled system is
identical to the firing rate of an uncoupled X unit. In this
regime, the dendritic compartment controls the timing of
the somatic compartment, consistent with in vitro recordings
[37] and our biophysical model [Fig. 1(a)]. As the input
strength is increased, the firing rate of the coupled system
starts to deviate from that of an uncoupled X unit, reaching
the firing rate predicted for an isolatedY unit when switching
is complete [Fig. 3(a)]. Interspike interval variance similarly
switches from a variability predicted by the dynamics of
an X-unit subthreshold to a variability predicted by the
dynamics of a Y-unit suprathreshold [Fig. 3(b)], as is to
be expected from the gating of X-unit noise. Notably, the
coupled system follows the strongest firing rate and the
smallest variability, concurrently.
To determine if switching affects signal encoding, we

calculate the Fisher information that interspike intervals T
carry about a constant input. Fisher information measures
how sensitive an observable such as the interspike interval
T is to changes in an input parameter s. In practice, we use
an approximation to the Fisher information rate,

(a)

(b)

(c) (d)

FIG. 2. Noise gating in coupled integrate-and-fire units.
(a) Membrane potential response of Y (somatic, blue dashed
line) and X (dendritic, red full line) units for s ¼ 0.95 and
DX ¼ 3DY . Inset: Expanded view near threshold, where the X
unit crosses first (arrow). (b) Same as (a) but for stronger input
s ¼ 1.15. (c) Entrainment probability for a range of input
strengths, as described in the caption of Fig. 1 The time window
used to establish leadership in the integrate-and-fire model is of
the same order as the integration time step. The input intensity
where entrainment probabilities cross is the switching point.
(d) Dependence of the switching point on DX=DY for different
values of DY . Parameters are described in [36].
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_F ðsÞ ¼ μ0TðsÞ2
μTðsÞσ2TðsÞ

; ð3Þ

where μ0T is the derivative of the mean interspike interval
with respect to the mean input s. The quantity described by
Eq. (3) is widely used in studies of neural coding since it is
a lower bound on the Fisher information of a population of
spiking neurons with independent noise [38,39].
Consistent with the firing rate and interval variability we

describe above, _F of the coupled system is predicted by
X-unit properties subthreshold and by Y-unit properties
after complete switching. In the limit of both small and
large input strengths, the coupled system shows _F as high
as the maximum between isolated X or Y units [Fig. 3(c)].
Since for s < 1 _F is enhanced by noise, we observe that the
stochastic enhancement due to X-unit noise is preserved
in the dendrite-soma system. Near threshold, however, the
coupled system shows lower _F than the isolated Y unit.
To summarize, Fig. 3 suggests that noise gating is benefi-
cial for encoding either weak or strong signals, but not
input strengths that lie predominantly close to the deter-
ministic threshold. For these perithreshold inputs, the
isolated Y unit translates small input increments into
consistently strong firing rate changes while the coupled
system randomly switches between X- and Y-driven firing
with similar rates.

B. Time-dependent inputs

These observations suggest that if a time-dependent
input is less often around threshold values, while sampling
more consistently both subthreshold and suprathreshold
input intensities, then noise gating could enhance the
encoding of time-dependent inputs. To achieve this, the
coupled system would rely on noisier unit X when the input

is below the deterministic threshold at s ¼ 1. When the
input is above the deterministic threshold, the system
would switch to a more deterministic encoding by relying
on Y units. Therefore, we hypothesize that noise gating
can enhance encoding of a time-dependent input, even
for inputs distributed predominantly above threshold.
Additionally, the enhancement should be robust for large
dendritic noise since strong noise does not degrade the
suprathreshold part of the signal due to noise gating.
To test this hypothesis, we simulate 8000 dendrite-soma

systems receiving the same time-dependent input sðtÞ with
mean s̄ > 1, in the regime of suprathreshold stochastic
resonance [4]. An estimate of the population activity is
constructed by summing the 8000 spike trains from all Y
units. Encoding quality is quantified by Shannon’s infor-
mation for the classic channel with additive Gaussian noise
[40–42],

M ¼ −
Z

∞

0

log2½1 − CðfÞ�df; ð4Þ

where CðfÞ is the coherence between the population
activity and the input sðtÞ for each frequency f [43]. M
encapsulates the frequency-resolved measure of correlation
between input and output fluctuations CðfÞ into a single
quantity. This quantity is distinct from the average firing
rate, and it is used as a lower bound on the mutual
information between the time-dependent input and the
set of spike trains.
Figure 4 shows M for increasing intrinsic dendritic

noise and two types of input currents sðtÞ. For the first type,
we consider a jump-diffusion process (JDP) producing
random fluctuations around two states with random switch-
ing times between the high and the low states. The JDP
parameters [44] are chosen to produce a bimodal distribu-
tion centered slightly above threshold such that the switch-
ing point [Fig. 2(d)] may cross the center of the input
distribution as DX is varied [Fig. 4(a)]. Although the exact
mutual information has not yet been derived for JDPs, this
process is chosen to ensure a bimodal distribution of inputs
without imposing a periodic structure. It is a physiologi-
cally realistic input distribution since sinusoidal sensory
inputs and up and down states are frequently treated in the
context of neuroscience [45–47]. We compare JDP encod-
ing with encoding of a Gaussian process (GP) simulated
with the Euler-Maruyama method with matched mean and
variance [Fig. 4(b)], focusing, as a first step, on narrow
input distributions.
For narrow input distributions, a resonance as a function

ofDX=DY is seen for the JDP but not the GP [Figs. 4(d) and
4(e)]. Consistent with a more frequent sampling of elevated
_F perithreshold [48], M is generally higher for the
unimodal input than for the bimodal input. At the maxi-
mum, or resonance, and only for the bimodal input, the
coupled system surpasses in encoding quality a more
deterministic population made of isolated Y units

(a) (b)

(c)

FIG. 3. The firing statistics of isolated units constitute asymp-
totic curves for the dendrite-soma system. (a) Firing rate of
coupled system (black line), X unit alone (i.e., dendrite alone, red
line), and Y unit alone (i.e., soma alone, blue line) for different
input strengths. (b) The interspike interval variance of the coupled
system follows the minimum between isolated X and Y units.
(c) Fisher information about the input strength. Parameters are
described in [36].
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[dash-dotted line in Figs. 4(d) and 4(e)]. This stochastic
enhancement is seen for a large range of intrinsic noise. The
coupled system also surpasses a population of isolated X
units with the corresponding intrinsic noise intensity, again
only for bimodal inputs. The resonance in Fig. 4(d) can be
understood by recalling that two competing processes
result from an increase in DX. On the one hand, weaker
signals can trigger spikes, which increases the coding range
and therefore M. On the other hand, the switching point
increases, decreasing the range of inputs encoded by the Y
unit [Fig. 2(d)], which decreases reliability and therefore
M. The output unit (unit Y) representation of bimodal
inputs can therefore be enhanced by noise in an auxiliary
unit (unit X). The optimal noise results from a trade-off
between increasing the coding range and decreasing the
coding reliability.
The particular scenario illustrated in Fig. 4(c) corre-

sponds to a coding enhancement with respect to the isolated
Y units of up to 61% in M [Fig. 4(c)]. Finite-size effects
deteriorate this enhancement, which can be verified by
halving the population size. This results in a reduction of
the enhancement to 42% in M. We find that the enhance-
ment inM is not detectable for a population of 250 coupled
systems, but is present for a population of 500 coupled
systems. The enhancement holds for sinusoidal inputs,
which can be verified by using a sinusoidal input with
matched bimodal peaks. Furthermore, the enhancement
necessitates a paucity of perithreshold input strengths,
which can be verified by simulating a JDP with a mean

increased from 1.04 to 1.14, such that the leftmost peak is
close to the deterministic threshold. This manipulation
removes the stochastic enhancement. We conclude that
intrinsic dendritic noise, when gated by input intensity, may
improveM for inputs rarely lying close to threshold. Also,
this enhancement is more pronounced in range and ampli-
tude than with classical mechanisms for stochastic reso-
nance [1–4] [see red curve in Fig. 4(d)].
In the context of neuroscience, the inputs are likely to

be broadly distributed. We thus consider a broad GP
input distribution with twice the standard deviation of
the distribution shown in Fig. 4. We find that even when
the average input is above threshold [Fig. 5(a)], the coupled
system shows stochastic enhancement over a large range
of intrinsic noise levels [Fig. 5(b)]. Since M remains high
even at the largest levels of noise we consider, the dendrite-
soma system can tolerate noise coming in addition to noise
expected from intrinsic sources [15–17]. Background syn-
aptic noise and finite-size noise are examples of extrinsic
noise sources that could contribute to this enhancement.
To verify that the information enhancement is not simply

due to a rate increase, we normalize M by the average
firing rate ν and consider the quantity

E ¼ M
rþ ν

: ð5Þ

Since every spike comes with a metabolic energy cost, E is
interpreted as a measure of energy efficiency of information

(a)

(b) (c)

(d) (e)

FIG. 4. Stochastic resonance for bimodal input distributions.
(a) Schema illustrating a neural ensemble made of dendrite-soma
systems (black), somatic units alone (blue), or dendritic unit alone
(red). Input distribution for (b) the JDP and (c) a GP with mean
matched to that of the JDP. (d) For the JDP, M calculated from
the summed activity of 8000 coupled units (black line) surpasses
that of isolated Y-unit compartments (blue dot-dashed line) and of
isolated dendritic compartments (red dashed line) for a broad
range of dendritic noise. (e) The resonance for a GP is reduced
with respect to the resonance of obtained using the JDP (d). We
use τ ¼ 10 ms to represent M in bits per second; see [36] for all
other parameters.

(a)

(b)

(d)

(e)
(c)

FIG. 5. Stochastic resonance for wide input distributions.
(a) Input distribution of the GP chosen to cover a large range
around a high mean s̄. Using the same color code as in
Fig. 3, (b) shows M and (c) shows E (in bits per spikes) for
different DX calculated with input distribution in (a). We restrict
the range for intrinsic noise such that the standard deviation of uX
remains smaller than 0.5, which would correspond to substantial
membrane potential fluctuations in physical units. (d) M and
(e) E for different values of the mean input and for a fixed level of
intrinsic noise DX ¼ 15DY . Parameters are described in [36].

NOISE GATED BY DENDROSOMATIC INTERACTIONS … PHYS. REV. X 7, 031045 (2017)

031045-5



transfer [49,50]. We report here a quantity in bits per spike,
but this can be converted into bits per adenosine triphos-
phate (ATP) molecule using numerical estimates of the
number of ATP molecules used for the generation of an
action potential [49]. The parameter r is interpreted as the
firing rate at which the energy expenditure of action
potential generation equals the energy expenditure of
maintaining a depolarized membrane potential. This
parameter is thought to vary substantially across neuron
types [51], but to be relatively low (we fix r ¼ 5 Hz).
Figure 5(c) shows an enhanced efficiency for large
dendritic noise in the coupled system. In addition, the
efficiency of the coupled system surpasses the efficiency of
either a population of somatic compartments or a popula-
tion of dendritic compartments with matched level of
intrinsic noise.
We now ask how enhancement depends on the mean

input. The M of the coupled system matches that of
isolated X units when the mean is subthreshold [Fig. 5(d)],
but surpasses those of isolated X and Y units when the mean
is suprathreshold. Therefore, for broadly distributed inputs,
noise gating allows stochastic enhancement on a broad
range of intrinsic noise levels, thus alleviating the need for
precise noise tuning in neurons. The energy efficiency is
similarly enhanced [Fig. 5(e)], but shows two peaks: a first
peak subthreshold, matching the enhancement obtained by
isolated dendritic units, and a second, much higher peak
suprathreshold, exceeding the efficiency of isolated somatic
units. These results are consistent with the enhanced M
[Fig. 5(d)] and a firing rate that follows the largest of
either unit [Fig. 1(d) and Fig. 3(a)]. Hence, noise gating in
dendrite-soma systems allows an efficient encoding
through a stochastic enhancement of subthreshold signals
that preserves deterministic encoding suprathreshold.

V. DISCUSSION

Several other theoretical studies pointed to a functional
relevance of spiking or nonlinear summation in dendrites.
One view holds that dendrites function as sigmoidal units
[28,29]. This simple description was shown to capture
the time-average firing rate of biophysical neuron models
with detailed morphology and active dendritic conduc-
tances supporting NMDA spikes [25,31,52]. Modeling
studies have shown that this architecture provides multiple
advantages, namely, specific sensory computations [53],
enhanced memory capacity [30,35], enhanced dynamic
range [54,55], and flexible gating of specific pathways
[32]. These computational advantages are based on a
phenomenological description of the time-averaged firing
rate, which could remain consistent with the timing-
dependent mechanisms we describe here. Additionally,
the timing-dependent network synchrony mechanism
discussed in Ref. [34] is likely to hold in the presence
of noise gating. Therefore, we add to the known

computational advantages of nonlinear dendrites an
improvement of encoding precision based on spike-timing
interactions.
Experimental studies point to a surprising diversity of

active dendrites. The mechanism we describe here is likely
to remain relevant when a combination of long refractory
period, small subthreshold coupling, and large noise is
achieved. We argue that high intrinsic noise and small
subthreshold coupling is expected in thin basal dendrites
more than one electrotonic constant away from the cell
body. First, from measurements of dendrite diameter at the
tip of dendrites (0.5–0.6 μm [56,57]) and experimental
estimates of the effective length of a compartment (250 μm
[20]), the effective dendritic surface area is estimated to be
approximately 400–500 μm2. Second, theoretical studies
[16] predict that a compartment with surface area of
500 μm2 would exhibit noisy fluctuations with standard
deviation of 1 mV from the stochastic opening of ion
channels, a tenfold increase from observed somatic noise
[58] (consistent with our DX=DY ∼ 10). Such basal den-
drites have accrued refractoriness [18,19], and longer
action potentials [20,59]. Therefore, the known properties
of thin basal or oblique dendrites are consistent with the
mechanisms we describe here.
Other dendritic compartments may implement different

functions. Notably, the apical tuft of cortical pyramidal cells
is known to generate calcium regenerative events, which lead
to a burst of action potentials [60,61] and a dendritic control
on somatic gain [62,63]. In addition, interactions between
synaptic plasticity and dendritic dynamics have been the
focus of much recent attention [32,64–66]. In summary,
although these mechanisms are not immediately compatible
with those we describe here, they can be combined in a
juxtaposition of distinct, spatially segregated compartments
within the same dendritic tree.
If noise gating is taking place in the nervous system

according to the mechanism we describe in this article,
we predict that spikes encoding a weak stimulus would
have been initiated more frequently by the dendrites,
whereas spikes encoding a strong stimulus would have
been initiated more frequently at the soma. Given exper-
imental evidence indicating a connection between the shape
of the action potential and the site of initiation [14,67], it
appears possible to test this prediction experimentally.
Furthermore, focal pharmacological manipulations can be
used to determine the role of active dendritic conductances
for different strengths of sensory stimulation [68,69].
As a second prediction, we note that the dendritic

refractory period should be substantially greater than in
the soma for the switching point to be in the typical range
of firing rate. Although there are clear indications that the
dendrite is more refractory to spiking [18,19], we are not
aware of a direct measurement showing a longer relative
or absolute refractory period in the dendrites. A potent
discrepancy is likely, given the different composition of
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ion channels in dendrites [70]. Noting that lengthening of
the relative refractory period may arise from either a spike-
triggered hyperpolarization or a spike-triggered increase
in the action potential threshold [71], an electrophysiology
experiment [13,20,37,60] can be designed to measure
the difference between somatic and dendritic refractory
processes.

VI. CONCLUSION

The mechanism we outline in this article may provide a
functional role of intrinsic noise in active dendrites, where
the dendrite act as a noise-assisted encoder, acting only at
small firing rates. Also, we describe how the effects of
intrinsic noise in a subsystem can be gated by a mismatch
of refractory periods between compartments. To conclude,
we outline a novel mechanism for information enhance-
ment by intrinsic noise. This coding strategy allows us to
communicate substantially more information per action
potential, an interesting approach given the metabolic costs
of action potential transmission. Because the mechanism
is simple and easy to implement, it can inspire novel
engineering approaches to signal detection.

ACKNOWLEDGMENTS

We thank Tilo Schwalger, Jean-Claude Béïque, and Len
Maler for helpful discussions, as well as FRQNT post-
doctoral scholarships (R. N.) and the NSERC Discovery
Grants (A. L. and R. N.) for funding.

APPENDIX: SIMPLIFIED BIOPHYSICAL MODEL
OF THE DENDRITE-SOMA SYSTEM

We model the soma-dendrite system as two connected
electrical compartments with different densities of voltage-
gated ion channels. We note that this biophysical description
is lacking multiple biophysical details, namely, multiple
dendrites, impedance mismatch between soma and dendrite,
multiple other types of ion channels, and active or quasiactive
propagation. Yet, this two-compartment abstraction has been
instrumental for understanding many features of dendritic
computation [21,22,62,72,73].
The somatic membrane potential us and the dendritic

membrane potential ud evolve according to Kirchoff’s
circuit law for the conservation of current,

C
dus
dt

¼ −gLðus − ELÞ −
X
i

IðsÞi − gcðus − udÞ þ IðsÞext;

ðA1Þ

C
dud
dt

¼ −gLðud − ELÞ −
X
i

IðdÞi − gcðud − usÞ þ IðdÞext ;

ðA2Þ

where C ¼ 0.75 pF is the compartment capacitance, gL ¼
0.2 nS is the leak conductance, and EL ¼ −70 mV is the
leak reversal potential. The two compartments are coupled
via the coupling conductance gc ¼ 0.02 nS.
Each compartment contains a different set of voltage-

gated ion channels. The soma is modeled with a combi-
nation of inactivating sodium conductance INa and fast
rectifying potassium conductance IK:

X
i

IðsÞi ¼ IðsÞNa þ IðsÞK : ðA3Þ

The sodium conductance follows the Hodgkin-Huxley
kinetics with an activation gate m and an inactivation gate

h, INa ¼ gðsÞNam
3hðus − ENaÞ, where gðsÞNa ¼ 20 nS is the

maximal conductance and ENa ¼ 60 mV is the reversal
potential for sodium. The potassium conductance is mod-

eled with a single activation gate IK ¼ gðsÞK nðus − EKÞ,
where gðsÞK ¼ 10 nS is the maximal conductance and EK ¼
−70 mV is the reversal potential for potassium. The
kinetics of the gating variables x ∈ fm; h; ng follows
τxðusÞ _x ¼ x0ðusÞ − x, with τxðuÞ and x0ðuÞ described in
Table I. The dendrite contains these two types of ion
channels, but with lower densities:

X
i

IðdÞi ¼ IðdÞNa þ IðdÞK : ðA4Þ

In the dendritic compartment, the maximal conductance

of sodium is gðdÞNa ¼ 10 nS and the that of potassium to

gðdÞK ¼ 8.0 nS. The kinetics of the gating variables x ∈
fm; h; ng follows τxðudÞ _x ¼ x0ðudÞ − x, with τxðuÞ and
x0ðuÞ described in Table I.

TABLE I. Hodgkin-Huxley kinetics for three types of voltage-gated ion channels. Parametrization follows experiments in neocortical
neurons [74–76].

Symbol τxðuÞ½ms� x∞ðuÞ
m f1 − exp½−ðu − 35 mVÞ=9 mV�g=(ðu − 35 mVÞð0.182þ 0.124Þ

×f1 − exp½−ðu − 35 mVÞ=9 mV�g)
0.182=½0.182þ 0.124
×f1 − exp½−ðu − 35 mVÞ=9 mV�g)

h 109=(2.6ðuþ 50 mVÞ=f1 − exp½−ðuþ 50 mVÞ=5 mV�g
−ðuþ 75 mVÞ=f1 − exp½ðuþ 75 mVÞ=5 mV�g)

1=f1þ exp½ðuþ 65 mVÞ=6.2 mV�g

n f1 − exp½−ðu − 25 mVÞ=9 mV�g=(ðu − 25 mVÞ(0.02þ 0.002
×f1 − exp½−ðu − 25 mVÞ=9 mV�g))

0.02=(0.02þ 0.002
×f1 − exp½−ðu − 25 mVÞ=9 mV�g)
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Each compartment receives an external input that is
partitioned into three terms:

IðsÞext ¼ Irh þ I þ σsξ
ðsÞ; ðA5Þ

IðdÞext ¼ Irh þ I þ σdξ
ðdÞ: ðA6Þ

The term Irh ¼ 0.57 pA is a constant current corresponding
to the rheobase of the system. The additional current I
controls the current injected into the compartments with
respect to this rheobase. We also include independent
background noises ξðsÞ and ξðdÞ drawn from a normal
distribution [∼N ð0; 1Þ] independently at every time step of
size dt ¼ 0.1 ms and for each compartment. The noise
amplitude is scaled by σs ¼ 0.1 pA in the soma and
σd ¼ 3 pA in the dendrite.
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