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Processing of digital images is continuously gaining in volume and relevance, with concomitant demands
on data storage, transmission, and processing power. Encoding the image information in quantum-mechanical
systems instead of classical ones and replacing classical with quantum information processing may alleviate
some of these challenges. By encoding and processing the image information in quantum-mechanical
systems, we here demonstrate the framework of quantum image processing, where a pure quantum state
encodes the image information: we encode the pixel values in the probability amplitudes and the pixel
positions in the computational basis states. Our quantum image representation reduces the required number of
qubits compared to existing implementations, and we present image processing algorithms that provide
exponential speed-up over their classical counterparts. For the commonly used task of detecting the edge of an
image, we propose and implement a quantum algorithm that completes the task with only one single-qubit
operation, independent of the size of the image. This demonstrates the potential of quantum image processing
for highly efficient image and video processing in the big data era.

DOI: 10.1103/PhysRevX.7.031041 Subject Areas: Quantum Physics, Quantum Information

I. INTRODUCTION

Vision is by far the most important channel for obtaining
information. Accordingly, the analysis of visual information

is one of the most important functions of the human brain
[1]. In 1950, Turing proposed the development of machines
that would be able to “think,” i.e., learn from experience and
draw conclusions, in analogy to the human brain. Today, this
field of research is known as artificial intelligence (AI) [2–4].
Since then, the analysis of visual information by electronic
devices has become a reality that enables machines to
directly process and analyze the information contained in
images and stereograms or video streams, resulting in
rapidly expanding applications in widely separated fields
like biomedicine, economics, entertainment, and industry
(e.g., automatic pilot) [5–7]. Some of these tasks can be
performed very efficiently by digital data processors, but
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others remain time-consuming. In particular, the rapidly
increasing volume of image data as well as increasingly
challenging computational tasks have become important
driving forces for further improving the efficiency of image
processing and analysis.
Quantum information processing (QIP), which exploits

quantum-mechanical phenomena such as quantum super-
positions and quantum entanglement [8–23], allows one to
overcome the limitations of classical computation and
reaches higher computational speed for certain problems
like factoring large numbers [24,25], searching an unsorted
database [26], boson sampling [27–32], quantum simula-
tion [33–40], solving linear systems of equations [41–45],
and machine learning [46–48]. These unique quantum
properties, such as quantum superposition and quantum
parallelism, may also be used to speed up signal and data
processing [49,50]. For quantum image processing, quan-
tum image representation (QImR) plays a key role, which
substantively determines the kinds of processing tasks
and how well they can be performed. A number of
QImRs [51–54] have been discussed.
In this article, we demonstrate the basic framework of

quantum image processing based on a different type of
QImR, which reduces the qubit resources required for
encoding an image. Based on this QImR, we experimen-
tally implement several commonly used two-dimensional
transforms that are common steps in image processing on a
quantum computer and demonstrate that they run expo-
nentially faster than their classical counterparts. In addition,
we propose a highly efficient quantum algorithm for
detecting the boundary between different regions of a
picture: It requires only one single-qubit gate in the
processing stage, independent of the size of the picture.
We perform both numerical and experimental demonstra-
tions to prove the validity of our quantum edge detection
algorithm. These results open up the prospect of utilizing
quantum parallelism for image processing.
The article is organized as follows. In Sec. II, we firstly

introduce the basic framework of quantum image process-
ing, then present the experimental demonstration for several
basic image transforms on a nuclear magnetic resonance
(NMR) quantum information processor. In Sec. III, we
propose a highly efficient quantum edge detection algorithm,
along with the proof-of-principle numerical and experimen-
tal demonstrations. Finally, in Sec. IV, we summarize the
results and give a perspective for future work.

II. FRAMEWORK OF QUANTUM
IMAGE PROCESSING

In Fig. 1, we compare the principles of classical and
quantum image processing (QImP). The first step for QImP
is the encoding of the 2D image data into a quantum-
mechanical system (i.e., QImR). The QImR model sub-
stantively determines the types of processing tasks and how
well they can be performed. Our present work is based on a

QImR where the image is encoded in a pure quantum state,
i.e., encoding the pixel values in its probability amplitudes
and the pixel positions in the computational basis states
of the Hilbert space. In this section, we introduce the
principle of QImP based on such a QImR, and then present
experimental implementations for some basic image trans-
forms, including the 2D Fourier transform, 2D Hadamard,
and the 2D Haar wavelet transform.

A. Quantum image representation

Given a 2D image F ¼ ðFi;jÞM×L, where Fi;j represents
the pixel value at position ði; jÞ with i ¼ 1;…;M and
j ¼ 1;…; L, a vector f⃗ with ML elements can be formed
by letting the firstM elements of f⃗ be the first column of F,
the next M elements the second column, etc. That is,

f⃗ ¼ vecðFÞ
¼ ðF1;1; F2;1;…; FM;1; F1;2;…; Fi;j;…; FM;LÞT: ð1Þ

Accordingly, the image data f⃗ can be mapped onto a pure
quantum state jfi ¼ P

2n−1
k¼0 ckjki of n ¼ ⌈ log2ðMLÞ⌉

qubits, where the computational basis jki encodes the
position ði; jÞ of each pixel, and the coefficient ck encodes
the pixel value, i.e., ck ¼ Fi;j=ð

P
F2
i;jÞ1=2 for k < ML and
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FIG. 1. Comparison of image processing by classical and
quantum computers. F and G are the input and output images,
respectively. On the classical computer, an M × L image can
be represented as a matrix and encoded with at least 2n bits
[n ¼ ⌈log2ðMLÞ⌉]. The classical image transformation is con-
ducted by matrix computation. In contrast, the same image can be
represented as a quantum state and encoded in n qubits. The
quantum image transformation is performed by unitary evolution
Û under a suitable Hamiltonian.

XI-WEI YAO et al. PHYS. REV. X 7, 031041 (2017)

031041-2



ck ¼ 0 for k ≥ ML. Typically, the pixel values must be
scaled by a suitable factor before they can be written into
the quantum state, such that the resulting quantum state is
normalized. When the image data are stored in a quantum
random access memory, this mapping takes OðnÞ steps
[55]. In addition, it was shown that if ck and

P
kjckj2 can be

efficiently calculated by a classical algorithm, constructing
the n-qubit image state jfi then takes O½polyðnÞ� steps
[56,57]. Alternatively, QImP could act as a subroutine of a
larger quantum algorithm receiving image data from other
components [41]. Once the image data are in quantum
form, they could be postprocessed by various quantum
algorithms [4]. In Appendix A, we discuss some other
QImR models and make a comparison between the QImR
we use and others.

B. Quantum image transforms

Here, we focus on cases whereML ¼ 2m × 2l (an image
with N ¼ ML ¼ 2n pixels). Image processing on a quan-
tum computer corresponds to evolving the quantum state
jfi under a suitable Hamiltonian. A large class of image
operations is linear in nature, including unitary trans-
formations, convolutions, and linear filtering (see
Appendix C for details). In the quantum context, the linear
transformation can be represented as jgi ¼ Ûjfi, with the
input image state jfi and the output image state jgi. When a
linear transformation is unitary, it can be implemented as a
unitary evolution. Some basic and commonly used image
transforms (e.g., the Fourier, Hadamard, and Haar wavelet
transforms) can be expressed in the form G ¼ PFQ, with
the resulting image G and a row (column) transform matrix
PðQÞ [5]. The corresponding unitary operator Û can then
be written as Û ¼ QT ⊗ P, where P andQ are now unitary
operators corresponding to the classical operations. That is,
the corresponding unitary operations of n qubits can be
represented as a direct product of two independent oper-
ations, with one acting on the first l ¼ log2 L qubits and the
other on the last m ¼ log2 M qubits.
The final stage of QImP is to extract useful information

from the processed results. Clearly, to read out all the
components of the image state jgi would require Oð2nÞ
operations. However, often one is interested not in jgi
itself but in some significant statistical characteristics or
useful global features about image data [41], so it is possibly
unnecessary to read out the output image explicitly.When the
required information is, e.g., a binary result, as in the example
of pattern matching and recognition, the number of required
operations could be significantly smaller. For example, the
similarity between jgi and the template image jg0i (associated
with an inner product hgjg0i) can be efficiently extracted via
the SWAP test [58] (see Appendix D for a simple example of
recognizing specific patterns).
Basic transforms are commonly used in digital media

and signal processing [5]. As an example, the discrete

cosine transform (DCT), similar to the discrete Fourier
transform, is important for numerous applications in
science and engineering, from data compression of audio
(e.g., MP3) and images (e.g., JPEG), to spectral methods
for the numerical solution of partial differential equations.
High-efficiency video coding (HEVC), also known as
H.265, is one of several video compression successors to
the widely used MPEG-4 (H.264). Almost all digital videos
including HEVC are compressed by using basic image
transforms such as 2D DCT or 2D discrete wavelet trans-
forms. With the increasing amount of data, the running time
increases drastically so that real-time processing is infea-
sible, while quantum image transforms show untapped
potential to exponentially speed up over their classical
counterparts.
To illustrate QImP, we now discuss several basic 2D

transforms in the framework of QIP, such as the Fourier,
Hadamard, and Haar wavelet transforms [59–61]. For these
three 2D transforms, P is the transpose of Q. Quantum
versions for the one-dimensional Fourier transform (1D
QFT) [62], 1D Hadamard transform, and the 1D Haar
wavelet transform take time O½polyðmÞ�, which is poly-
nomial in the number of qubits m (see Appendix B for
further details). However, corresponding classical versions
take time Oðm2mÞ. When both input data preparation
and output information extraction require no greater than
O½polyðnÞ� steps, QImP, such as the 2D Fourier, Hadamard,
and Haar wavelet transforms, can in principle achieve an
exponential speed-up over classical algorithms. Figure 2
compares the different requirements on resources for the
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FIG. 2. (a) Comparison of resource costs of classical and
quantum image processing for an image of N ¼ M × L (i.e.,
n ¼ log2 N) pixels with d-bit depth. (b) Space resources com-
parison. Top (bottom) curve represents classical (quantum)
algorithms, with d ¼ 36. (c) Time cost comparison. The two
curves at the top of this graph represent classical algorithms, and
the four curves (Quantum Haar, Quantum Fourier, etc.) at the
bottom represent quantum algorithms.
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classical and quantum algorithms, in terms of the size of the
register (i.e., space) and the number of steps (i.e., time).

C. Experimental demonstrations

We now proceed to experimentally demonstrate, on a
nuclear spin quantum computer, some of these elementary
image transforms. With established processing techniques
[63,64], NMR has been used for many demonstrations of
quantum information processing [47,62,65,66].
As a simple test image, we choose a 4 × 4 chessboard

pattern,

Fb ¼
1

2
ffiffiffi
2

p

2
6664
1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

3
7775; ð2Þ

whose encoding and processing require four qubits. We
therefore chose iodotrifluoroethylene (C2F3I) as a 4-qubit
quantum register, whose molecular structure and relevant
properties are shown in Fig. 3(a). We label 19F1, 19F2, 19F3,
and 13C as the first, second, third, and fourth qubit,
respectively. The natural Hamiltonian of this system in
the doubly rotating frame [67] is

Hint ¼
X4
j¼1

πνjσ
j
z þ

X4
1≤j<r≤4

π

2
Jjrσ

j
zσrz; ð3Þ

where νj represents the chemical shift of spin j, and Jjr is
the coupling constant between spins j and r. The experi-
ments were carried out at 305 K on a Bruker AV-400
spectrometer in a magnetic field of 9.4 T.
The input image preparation is illustrated in Fig. 3(b).

Starting from the thermal equilibrium and using the line-
selective method [68], we prepare the pseudopure state
(PPS) ρ0000 ¼ ϵj0000ih0000j þ ½ð1 − ϵÞ=16�I16, where
ϵ ≈ 10−5 is the polarization and I16 denotes the 16 × 16
unit operator. The operator UPPS1 equalizes all populations
except that of the state j0000i, and a subsequent gradient
field pulse destroys all coherences except for the homo-
nuclear zero quantum coherences (ZQC) of the 19F nuclei.
A specially designed unitary operator UPPS2 is applied to
the system and transforms these remaining ZQC to non-
ZQC, which are then eliminated by a second gradient
pulse. The resulting PPS has a fidelity of 98.4% defined
by jtrðρthρexptÞj=½trðρ2thÞtrðρ2exptÞ�1=2, where ρth and ρexpt
represent the theoretical and experimentally measured
density matrices, respectively. The last operator Uencode
turns j0000ih0000j into the image state ρimg ¼ jfimgihfimgj,
which corresponds to the input image. The three unitary
operations UPPS1, UPPS2, and Uencode are all realized by

gradient ascent pulse engineering (GRAPE) [69], each
having theoretical fidelity of about 99.9%.
For a 4 × 4 image, the three image transformation

operators that we consider are

ÛHaar ¼ A⊗2
4 ;

ÛFourier ¼ QFT⊗2
4 ;

ÛHadamard ¼ H⊗4; ð4Þ

where the Haar, Fourier, and Hadamard matrices are

A4 ¼
1

2

2
6664

1 1 1 1

1 1 −1 −1ffiffiffi
2

p
−

ffiffiffi
2

p
0 0

0 0
ffiffiffi
2

p
−

ffiffiffi
2

p

3
7775; ð5Þ
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FIG. 3. (a) Properties of the iodotrifluoroethylene molecule.
The chemical shifts and J-coupling constants (in Hz) are given by
the diagonal and nondiagonal elements, respectively. The mea-
sured spin-lattice relaxation times T1 are 21 s for 13C and 12.5 s
for 19F. The chemical shifts are given with respect to the reference
frequencies of 100.62 MHz (carbon) and 376.48 MHz (fluorines).
(b) Preparation of the input image states. Two unitary operators
UPPS1 and UPPS2 and two z-axis gradient field pulses are used to
prepare the pseudopure state (PPS) ρ0000. Then Uencode realizes
quantum image encoding. (c) Quantum circuits for the Haar
wavelet, Fourier, and Hadamard image transforms, where H is a

Hadamard gate and R ¼
h
1 0

0 i

i
is a phase gate.
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QFT4 ¼
1

2

2
6664
1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

3
7775; ð6Þ

and

H ¼ 1ffiffiffi
2

p
�
1 1

1 −1

�
: ð7Þ

The corresponding quantum circuits and the actual pulse
sequences in our experiments are shown in Figs. 3(c) and 4,
respectively. Each unitary rotation in the pulse sequences
is implemented through a Gaussian selective soft pulse,
and a compilation program is employed to increase the
fidelity of the entire selective pulse network [70]. The
program systematically adjusts the irradiation frequencies,
rotational angles, and transmission phases of the selective
pulses, so that up to first-order dynamics, the phase errors
and unwanted evolutions of the sequence are largely

compensated [71]. The resulting fidelities for the π refo-
cusing rotations range from 97.2% to 99.5%, and for the
π=2 rotations from 99.7% to 99.9%. We use the GRAPE
technique to further improve the control performance. The
compilation procedure generates a shaped pulse of rela-
tively high fidelity, which serves as a good starting point
for the gradient iteration. So the GRAPE search quickly
reaches a high performance. The final pulse has a numerical
fidelity of ≈99.9%, after taking into account 5% rf
inhomogeneity. The whole pulse durations of implement-
ing the Haar, Fourier, and Hadamard transforms are 21.95,
19.86, and 3.81 ms, respectively.
Since the isotropic composition of our sample corre-

sponds to natural abundance, only ≈1% of the molecules
contain a 13C nuclear spin and can therefore be used as
quantum registers. To distinguish their signal from that
much larger background of molecules containing 12C
nuclei, we do not measure the signal of the 19F nuclear
spins directly, but transfer the states of the 19F spins to the
13C spin by a SWAP gate and read out the state information
of the 19F spins through the 13C spectra. Thus, all signals of
these four qubits are obtained from the 13C spectra.
We apply the Haar wavelet, Fourier, and Hadamard

transforms to the input 2D pattern, using the corresponding
sequences of rf pulses. To examine if the experiments have
produced the correct results, we perform quantum state
tomography [72] of the input and output image states.
Compared with theoretical density matrices, the input-
image state and the corresponding transformed-image
states have fidelities in the range of [0.961, 0.975], As
an alternative to quantum state tomography, we also
reconstruct state vectors jψ expti ¼

P
16
k¼1 c

expt
k jki directly

from the experimental spectra. The input-image and the
transformed-image states are experimentally read out and
the decoded image arrays are displayed in Fig. 5. The top
row shows the experimental spectra. The middle row
shows the corresponding measured image matrices (only
the real parts, since the imaginary parts are negligibly
small) as 3D bar charts whose pixel values are equal to the
coefficients of the quantum states. The bottom row repre-
sents the same image data as 2D gray scale (visual
intensity) pictures. The experimental and theoretical
data agree quite well with each other, with the image
Euclidean distances [73] ∥Fexpt − Fth∥=∥Fth∥ ≈ 0.08 in the
input data and ∈ ½0.09; 0.12� in the resulting data after
processing.

III. QUANTUM EDGE DETECTION ALGORITHM

A typical image processing task is the recognition of
boundaries (intensity changes) between two adjacent
regions [74]. This task is not only important for digital
image processing, but is also used by the brain: It has
been shown that the brain processes visual information by
responding to lines and edges with different neurons [75],
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FIG. 4. Pulse sequences for implementing the (a) Haar,
(b) Fourier, (c) Hadamard image transform, (d) the operation
e½−iðI1z I2zþI3z I4zÞπ�, and (e) e½iðI1z I2zþI3z I4z Þπ=2�. Here, τ1 ¼ j1=2J34j and
τ2 ¼ j1=2J12j − j1=2J34j, respectively. The rectangles represent
the rotation RðθÞ with the phases given above the rectangles.
The rotation angles θ1¼−0.1282π, θ2¼−0.2634π, θ3¼0.0894π,
θ4 ¼ −2πν1τ2, θ5 ¼ −2πν2τ2, θ6 ¼ −2πν3τ1, θ7 ¼ θ4=2,
θ8 ¼ θ5=2, and θ9 ¼ θ6=2. The time order of the pulse sequence
is from left to right.
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which is an essential step in many pattern recognition tasks.
Classically, edge detection methods rely on the computa-
tion of image gradients by different types of filtering masks
[5]. Therefore, all classical algorithms require a computa-
tional complexity of at least Oð2nÞ because each pixel
needs to be processed. A quantum algorithm has been
proposed that is supposed to provide an exponential speed-
up compared with existing edge extraction algorithms [76].
However, this algorithm includes a COPY operation and a
quantum black box for calculating the gradients of all the
pixels simultaneously. For both steps, no efficient imple-
mentations are currently available. Based on the afore-
mentioned QImR, we propose and implement a highly
efficient quantum algorithm that finds the boundaries
between two regions in Oð1Þ time, independent of the
image size. Further discussions regarding more general
filtering masks are given in Appendix C.
Basically, a Hadamard gate H, which converts a

qubit j0i → ðj0i þ j1iÞ= ffiffiffi
2

p
and j1i → ðj0i − j1iÞ= ffiffiffi

2
p

, is
applied to detect the boundary. Since the positions of any
pair of neighboring pixels in a picture column are given by
the binary sequences b1…bn−10 and b1…bn−11, with bj ¼
0 or 1, their pixel values are stored as the coefficients
cb1…bn−10 and cb1…bn−11 of the corresponding computational
basis states. The Hadamard transform on the last qubit
changes them to the new coefficients cb1…bn−10 � cb1…bn−11.
The total operation is then

I2n−1 ⊗ H ¼ 1ffiffiffi
2

p

2
6666666666664

1 1 0 0 � � � 0 0
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; ð8Þ

where I2n−1 is the 2n−1 × 2n−1 unit matrix. For an n-qubit
input image state jfi ¼ P

N−1
k¼0 ckjki (N ¼ 2n pixels), we

have the output image state jgi ¼ ðI2n−1 ⊗ HÞjfi as

I2n−1 ⊗ H∶

2
6666666666664

c0
c1
c2
c3
� � �
cN−2

cN−1

3
7777777777775

↦
1ffiffiffi
2

p

2
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c0 þ c1
c0 − c1
c2 þ c3
c2 − c3
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cN−2 þ cN−1

cN−2 − cN−1

3
7777777777775

: ð9Þ

Here, we are interested in the difference cb1…bn−10 −
cb1…bn−11 (the even elements of the resulting state): If the
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FIG. 5. Experimental results of quantum image transformations. (a) Input 4 × 4 image, (b) Haar-transformed image, (c) Fourier-
transformed image, (d) Hadamard-transformed image. In (a), the spectral amplitude is zoomed-in by 3.2 times. The experimental spectra
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two pixels belong to the same region, their intensity
values are identical and the difference vanishes, other-
wise their difference is nonvanishing, which indicates a
region boundary. The edge information in the even
positions can be extracted by measuring the last qubit.
Conditioned on the measurement result of the last qubit
being 1, the state of the first n − 1 qubits encodes the
domain boundaries. Therefore, this procedure yields the
horizontal boundaries between pixels at positions 0=1,
2=3, etc.
To obtain also the boundaries between the remaining

pairs 1=2, 3=4, etc., we apply the n-qubit amplitude
permutation to the input image state, yielding a new image
state jf0i with its odd (even) elements equal to the even
(odd) elements of the input one jfi (e.g., c02k ¼ c2kþ1 and
c02kþ1 ¼ c2kþ2). The quantum amplitude permutation can
be efficiently performed in O½polyðnÞ� time [61]. Applying
again a single-qubit Hadamard rotation to this new image
state jf0i, we get the remaining half of the differences. An
alternative approach for obtaining all boundary values is to
use an ancilla qubit in the image encoding (see Appendix E
for a suitable quantum circuit). For example, a 2-qubit
image state ðc0; c1; c2; c3Þ can be redundantly encoded in
three qubits as ðc0; c1; c1; c2; c2; c3; c3; c0Þ. After applying
a Hadamard gate to the last qubit of the new image state, we
obtain the state ðc0 þ c1; c0 − c1; c1 þ c2; c1 − c2; c2 þ c3;
c2 − c3; c3 þ c0; c3 − c0Þ. By measuring the last qubit,
conditioned on obtaining 1, we obtain the reduced state
ðc0 − c1; c1 − c2; c2 − c3; c3 − c0Þ, which contains the full
boundary information. With image encoding along differ-
ent orientations, the corresponding boundaries are detected,
e.g., row (column) scanning for the vertical (horizontal)
boundary.
This quantum Hadamard edge detection (QHED) algo-

rithm generates a quantum state encoding the information
about the boundary. Converting that state into classical
information will require Oð2nÞ measurements, but if the
goal is, e.g., to discover if a specific pattern is present in
the picture, a measurement of single local observable
may be sufficient. A good example is the SWAP test (see
Appendix D), which determines the similarity between a
resulting image and a reference image.
As a numerical example, Fig. 6 shows the outcome of the

QHED algorithm simulated on a classical computer for
an input binary (b=w) image Fcat. For this simple demon-
stration, we use only a binary image; nevertheless, the
QHED algorithm is also valid for an image with general
gray levels. A 256 × 256 image Fcat is encoded into a
quantum state jfcati with 16 qubits instead of 216 ¼ 65536
classical bits (i.e., 8 kB). Then a unitary operator I215 ⊗ H
is applied to jfcati. The resulting image decoded from the
output state demonstrates that the QHED algorithm can
successfully detect the boundaries in the image.
To test the QHED algorithm experimentally, we encode

a simple image

Fe ¼
1

2
ffiffiffi
2

p

2
6664
0 1 0 0

1 1 1 0

1 1 1 1

0 0 0 0

3
7775 ð10Þ

in a quantum state jfei of our 4-qubit quantum register.
We then apply a single-qubit Hadamard gate to the last
qubit while keeping the other qubits untouched, i.e.,

(a) (b)

FIG. 6. Numerical simulation for the QHED algorithm. (a) Input
256 × 256 image. (b) Output image encoding the edge informa-
tion. The pixels in white and black have amplitude values 0 and 1,
respectively.
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FIG. 7. Experimental results of the QHED algorithm. The
upper panels are the 13C spectra (blue curves) for (a) the input
image Fe and (b) output image representing the edge information,
along with the simulated ones (red curves). The simulated spectra
are shifted for clarity. In (a), the spectral amplitude is zoomed-in
by 1.8 times. In (b), the top (bottom) spectrum is the result after
applying a Hadamard gate to jfei (the processed image jf0ei after
the amplitude permutation). The 13C spectra were obtained by
applying π=2 readout pulses. The lower two panels are the image
array results of (c) the input 4 × 4 image and (d) the output image
representing the edge information. The images are plotted as
amplitude 3D bar charts (top) and 2D visual intensity pictures
(bottom) with each square representing one pixel.
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Ûe ¼ I8 ⊗ H. The edge information with half of the pixels
(even positions) in the resulting state jgei ¼ Ûejfei is
produced, which can be read out from the experimental
spectra. We separately perform two experiments to obtain
the boundaries for odd and even positions with and
without the amplitude permutation, as described above.
To test if the processing result is correct, we measure the
input and output image states and obtain their fidelities in
the range of [0.972, 0.981]. The experimental results of
boundary information are shown in Fig. 7, along with
some corresponding experimental spectra. Compared
with the theoretical data, the experimental input and
output images have image Euclidean distance of 0.06 and
0.08, respectively.

IV. CONCLUSION

In summary, we demonstrate the potential of quantum
image processing to alleviate some of the challenges brought
by the rapidly increasing amount of image processing. Instead
of the QImR models used in previous theoretical research
on QImP, we encode the pixel values of the image in the
probability amplitudes and the pixel positions in the computa-
tional basis states. Based on this QImR, which reduces the
required qubit resources, we discuss the principle of QImP
and experimentally demonstrate the feasibility of a number of
fundamental quantum image processing operations, such
as the 2D Fourier transform, the Hadamard, and the Haar
wavelet transform, which are usually included as subroutines
in more complicated tasks of image processing. These
quantum image transforms provide exponential speed-ups
over their classical counterparts. As an interesting and
practical application, we present and experimentally imple-
ment a highly efficient quantum algorithm for image edge
detection, which employs only one single-qubit Hadamard
gate to process the global information (edge) of an image;
the processing runs in Oð1Þ time, instead of Oð2nÞ as in the
classical algorithms. Therefore, this algorithm has significant
advantages over the classical algorithms for large image data.
It is completely general and can be implemented on any
general-purpose quantum computer, such as trapped ions
[77,78], superconducting [45,48,79], and photonic quantum
computing [80,81]. Our experiment serves as a first exper-
imental study towards practical applications of quantum
computers for digital image processing.
In addition to the computational tasks we show in this

paper, quantum computers have the potential to resolve
other challenges of image processing and analysis, such as
machine learning, linear filtering and convolution, multi-
scale analysis, face and pattern recognition, and image
and video coding [4,46–49]. Image and video information
encoded in qubits can be used not only for efficient
processing but also for securely transmitting these data
through networks protected by quantum technology. The
theoretical and experimental results we present here may
well stimulate further research in these fields. It is an open

area to explore and discover more interesting practical
applications involving QImP and AI. This paradigm is
likely to outperform the classical one and works as an
efficient solution in the era of big data.
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APPENDIX A: COMPARISON OF QImRs

Thus far, several QImR models have been proposed. In
2003, Venegas-Andraca and Bose suggested the “qubit
lattice” model to represent quantum images [52] where each
pixel is represented by a qubit, therefore requiring 2n qubits
for an image of 2n pixels. This is a quantum-analog
presentation of classical images without any gain from
quantum speed-up. A flexible representation of quantum
images (FRQI) [53] integrates the pixel value and position
information in an image into an (nþ 1)-qubit quantum state
ð1= ffiffiffiffiffi

2n
p ÞP2n−1

k¼0 ðcos θkj0i þ sin θkj1iÞjki, where the angle
θk in a single qubit encodes the pixel value of the corre-
sponding position jki. A novel enhanced quantum represen-
tation (NEQR) [54] uses the basis state jfðkÞi of d qubits to
store the pixel value, instead of an angle encoded in a qubit
in FRQI, i.e., an image is encoded as such a quantum state
ð1= ffiffiffiffiffi

2n
p ÞP2n−1

k¼0 jfðkÞijki, where jfðkÞi ¼ jC0
kC

1
k…Cd−1

k i,
with a binary sequenceC0

kC
1
k…Cd−1

k encoding the pixel value
fðkÞ. Table I compares our present QImR, which we refer
to as quantum probability image encoding (QPIE), with the
other two main quantum representation models: FRQI
and NEQR. It clearly shows that the QImR we use here
(QPIE) requires fewer resources than the others.
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APPENDIX B: QUANTUM WAVELET
TRANSFORM

Here, we discuss the implementation circuit and com-
plexity of the quantum Haar wavelet transform. Generally,
the M ×M Haar [82] wavelet transform AM (M ¼ 2m,
m ¼ 0; 1; 2;…) can be defined by the following equation
as

AM ¼
�
AM=2 ⊗ BX

IM=2 ⊗ BX̄

�
; ðB1Þ

where A1 ¼ 1, IM=2 is a M=2 ×M=2 unit operator,

BX ¼ ½11�= ffiffiffi
2

p
, and BX̄ ¼ ½1 − 1�= ffiffiffi

2
p

. This implies, for
M ¼ 2,

A2 ¼
�
BX

BX̄

�
¼ 1ffiffiffi

2
p

�
1 1

1 −1

�
¼ H; ðB2Þ

that is, A2 is a Hadamard transform. We can recursively
decompose the quantum Haar wavelet transform (Fig. 8) as
follows:

AM ¼
�
AM=2

IM=2

�
SMðIM=2 ⊗ A2Þ; ðB3Þ

where SM is the qubit cyclic right shift permutation:
SMji1i2…im−1imi ¼ jimi1i2…im−1i, and with ij ¼ 0 or 1
and m the number of qubits. Specifically, S4 is the SWAP

gate to interchange the states of the two qubits: ji1i2i →
ji2i1i. Therefore, the corresponding circuit consists of the
following controlled gates.
(1) C0ðHÞ; C1ðHÞ; C2ðHÞ;…; Cm−1ðHÞ,
(2) C0ðS2mÞ; C1ðS2m−1Þ;…; Cm−2ðS4Þ.

Here, CkðUÞ is a multiple qubit controlled gate described as
follows:

CkðUÞji1i2…ikijψi ¼ ji1i2…ikiUī1 ī2…īk jψi; ðB4Þ
where ī1ī2…īk in the exponent of U means the product of
the bits’ inverse ī1ī2…īk, and ī ¼ NOTðiÞ. That is, if the
first k control qubits are all in state j0i, the m − k qubit
unitary operator U is applied to the lastm − k target qubits,
otherwise the identity operator is applied to the last m − k
target qubits.
Since S2m−k can be implemented by ðm − k − 1Þ SWAP

gates, the circuit for CkðS2m−kÞ is composed of ðm − k − 1Þ
CkðSWAPÞ gates. C1ðSWAPÞ can be implemented by 3
C2ðNOTÞ gates [59]. Hence, the implementation of
CkðS2m−kÞ needs in total 3ðm − k − 1Þ Ckþ1ðNOTÞ gates.
Both CkðHÞ and CkðNOTÞ can be implemented with linear
complexity, for k ¼ 0;…; m − 1. Hence, we conclude that
the quantum Haar wavelet transform can be implemented
by Oðm3Þ elementary gates.

APPENDIX C: IMAGE SPATIAL FILTERING

Spatial filtering is a technique of image processing,
such as image smoothing, sharpening, and edge enhance-
ment, by operating the pixels in the neighborhood of the
corresponding input pixel. The filtered value of the target
pixel is given by a linear combination of the neighborhood
pixels with the specific weights determined by the mask

TABLE I. Comparison of different QImRs for an image F ¼ ðFi;jÞM×L with d-bit depth (for the caseM ¼ L ¼ 2m

and n ¼ 2m).

Image representation FRQI NEQR QPIE

Quantum state ð1=2mÞP22m−1
k¼0 ðcos θkj0i þ sin θkj1iÞjki ð1=2mÞP22m−1

k¼0 jfðkÞijki jfi ¼ P
22m−1
k¼0 ckjki

Qubit resource 1þ 2m dþ 2m 2m
Pixel-value qubit 1 d 0
Pixel value θk fðkÞ ¼ C0

kC
1
k…Cd−1

k ck
Pixel-value encoding Angle Basis of qubits Probability amplitude

SM AM/2

H H H H H

SM

H

AM/2

qubits

= log  M 
2

FIG. 8. Quantum circuit for the Haar wavelet transform AM. H
is a Hadamard gate, and A2 ¼ H for the case M ¼ 2. SM is
the qubit cyclic right shift permutation SM∶ji1i2…im−1imi →
jimi1i2…im−1i, which can be implemented by m − 1 SWAP gates.
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values [5]. For example, given an input image F ¼
ðFi;jÞM×M and a general 3 × 3 filtering mask,

W ¼

2
64
w11 w12 w13

w21 w22 w23

w31 w32 w33

3
75; ðC1Þ

spatial filtering will give the output image G ¼
ðGi;jÞM×M with the pixel Gi;j ¼

P
3
u;v¼1 wuvFiþu−2;jþv−2

ð2 ≤ i; j ≤ M − 1Þ. Here, we construct a linear filtering
operator U such that g⃗ ¼ Uf⃗, where f⃗ ¼ vecðFÞ and
g⃗ ¼ vecðGÞ. f⃗ and g⃗ are both M2-dimensional vectors,
and the dimension of U is M2 ×M2. We prove that U can
be constructed as

U ¼

2
66666666664

E

V1 V2 V3

. .
. . .

. . .
.

. .
. . .

. . .
.

V1 V2 V3

E

3
77777777775
; ðC2Þ

where E is an M ×M identity matrix, and V1, V2, V3 are
M ×M matrices defined by

V1 ¼

2
66666666664

0

w11 w21 w31

. .
. . .

. . .
.

. .
. . .

. . .
.

w11 w21 w31

0

3
77777777775
M×M

; ðC3Þ

V2 ¼

2
66666666664

1

w12 w22 w32

. .
. . .

. . .
.

. .
. . .

. . .
.

w12 w22 w32

1

3
77777777775
M×M

; ðC4Þ

V3 ¼

2
66666666664

0

w13 w23 w33

. .
. . .

. . .
.

. .
. . .

. . .
.

w13 w23 w33

0

3
77777777775
M×M

: ðC5Þ

Proof.—Since g⃗ ¼ vecðGÞ, we have gk ¼ Gt;sþ1, with
k ¼ tþMs (1 ≤ k ≤ M2; 1 ≤ t ≤ M; 0 ≤ s ≤ M − 1). For
t ≠ 1, M and s ≠ 0, M − 1, we have

gk ¼ Gt;sþ1 ¼ ðW � FÞt;sþ1

¼ w11Ft−1;s þ w21Ft;s þ w31Ftþ1;s

þ w12Ft−1;sþ1 þ w22Ft;sþ1 þ w32Ftþ1;sþ1

þ w13Ft−1;sþ2 þ w23Ft;sþ2 þ w33Ftþ1;sþ2:

Let h⃗ ¼ Uf⃗, then we have hk ¼
P

i¼1

M2

Uk;ifi. From the
expression of U in Eq. (C2), we can see that the nonzero
elements are

Uk;Mðs−1Þþt−1 ¼ w11; Uk;Mðs−1Þþt ¼ w21;

Uk;Mðs−1Þþtþ1 ¼ w31; Uk;Msþt−1 ¼ w12;

Uk;Msþt ¼ w22; Uk;Msþtþ1 ¼ w32;

Uk;Mðsþ1Þþt−1 ¼ w13; Uk;Mðsþ1Þþt ¼ w23;

Uk;Mðsþ1Þþtþ1 ¼ w33;

and for other i, Uk;i ¼ 0. Since f⃗ ¼ vecðFÞ, we have

fMðs−1Þþt−1 ¼ Ft−1;s; fMðs−1Þþt ¼ Ft;s;

fMðs−1Þþtþ1 ¼ Ftþ1;s; fMsþt−1 ¼ Ft−1;sþ1;

fMsþt ¼ Ft;sþ1; fMsþtþ1 ¼ Ftþ1;sþ1;

fMðsþ1Þþt−1 ¼ Ft−1;sþ2; fMðsþ1Þþt ¼ Ft;sþ2;

fMðsþ1Þþtþ1 ¼ Ftþ1;sþ2:

By direct comparison, it is readily seen that hk ¼ gk.
Hence, we have g⃗ ¼ Uf⃗.
We can deduce that U is unitary if and only if w22 ¼ �1

and other elements are all zero in W [Eq. (C1)]. In general,
the linear transformation of spatial filtering is nonunitary.
For a nonunitary linear transformation U, we can try to
embed it in a bigger quantum system, and perform a
bigger unitary operation to realize an embedded trans-
formation U [83]. Alternatively, the quantum matrix-
inversion techniques [41,50] could also help to perform
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some nonunitary linear transformations on a quantum
computer.

APPENDIX D: DETECTING SYMMETRY
BY QImP

Here, we present a highly efficient quantum algorithm
for recognizing an inversion-symmetric image, which
outperforms state-of-the-art classical algorithms with an
exponential speed-up. First, we use the NOT gate (i.e., the
Pauli X operator σx) to rotate the input image 180° with
respect to the image center. Then we utilize the SWAP test
[58] to detect the overlap between the input and rotated
images: The larger the overlap, the better the inversion
symmetry of original image. This algorithm is described as
follows.
(1) Encode an input M × L ¼ 2m × 2n image into a

quantum state jfi with n ¼ mþ l qubits.
(2) Perform a NOT operation on each qubit such that

the basis ji1i2…ini switches to the complementary
basis jī1 ī2…īni (i.e., UNOT ¼ NOT⊗n ¼ σ⊗n

x ),
where i1; i2;…; in ¼ 0 or 1 and ī ¼ NOTðiÞ. Since
iþ ī ¼ 1, we have i1i2…in þ ī1ī2…īn ¼ 11…1.
Therefore, the bases are swapped around the center;
i.e., the image is rotated by 180°.

(3) Using the SWAP test method [4,47], we detect the
overlap between two states before and after applying
NOT operation to the input pattern; a measured
overlap value hfjUNOTjfi [84] can efficiently supply
useful information on the inversion symmetry of the
input pattern.

Estimating distances and inner products between state
vectors of image data in ML-dimensional vector spaces
then takes time OðlogMLÞ on a quantum computer, which
is exponentially faster than that of classical computers
[85,86]. Here, a specific example of a 2 × 2 image is
provided for illustration. To rotate the input image matrix
by 180° as follows,

�
1 3

2 4

�
⟶
Rotation

180°

�
4 2

3 1

�
: ðD1Þ

The input state of left-hand image is ðj00i þ 2j01i þ
3j10i þ 4j11iÞ= ffiffiffiffiffi

30
p

. Applying a NOT gate to each qubit,
the input state is transformed to (j11i þ 2j10i þ 3j01iþ
4j00iÞ= ffiffiffiffiffi

30
p

(corresponding to the rotated image on the
right-hand side). It is clear that the input image has been
rotated by 180° around its center, which corresponds to
point reflection in 2D.

APPENDIX E: VARIANT OF
QHED ALGORITHM

In order to produce full boundary values in a single step,
a variant of the QHED algorithm uses an auxiliary qubit for
encoding the image. The quantum circuit is shown in

Fig. 9. The operation D2nþ1 is an nþ 1-qubit amplitude
permutation, which can be written in matrix form as

D2nþ1 ¼

2
6666666666664

0 1 0 0 � � � 0 0

0 0 1 0 � � � 0 0

0 0 0 1 � � � 0 0

0 0 0 0 � � � 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 0 � � � 0 1

1 0 0 0 � � � 0 0

3
7777777777775

: ðE1Þ

It can be efficiently implemented in O½polyðnÞ� time
[61]. For an input image encoded in an n-qubit state
jfi ¼ ðc0; c1; c2;…; cN−2; cN−1ÞT , a Hadamard gate is
applied to the input state j0i of the auxiliary qubit, yielding
an (nþ 1)-qubit redundant image state jfi⊗ðj0iþj1iÞ=ffiffiffi
2

p ¼2−1=2ðc0;c0;c1;c1;c2;c2;…;cN−2;cN−2;cN−1;cN−1ÞT .
The amplitude permutation D2nþ1 is performed to yield a
new redundant image state 2−1=2ðc0; c1; c1; c2; c2; c3;…;
cN−2; cN−1; cN−1; c0ÞT . After applying a Hadamard gate to
the last qubit of this state, we obtain the state 2−1ðc0þ
c1;c0−c1;c1þc2;c1−c2;c2þc3;c2−c3;…;cN−2þcN−1;
cN−2−cN−1;cN−1þc0;cN−1−c0ÞT . By measuring the last
qubit, conditioned on obtaining 1, we obtain the n-qubit
state jgi ¼ 2−1ðc0 − c1; c1 − c2; c2 − c3;…; cN−2 − cN−1;
cN−1 − c0ÞT , which contains the full boundary information.
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