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Passive Kerr cavities driven by coherent laser fields display a rich landscape of nonlinear physics,
including bistability, pattern formation, and localized dissipative structures (solitons). Their conceptual
simplicity has for several decades offered an unprecedented window into nonlinear cavity dynamics,
providing insights into numerous systems and applications ranging from all-optical memory devices to
microresonator frequency combs. Yet despite the decades of study, a recent theoretical work has
surprisingly alluded to an entirely new and unexplored paradigm in the regime where nonlinearly tilted
cavity resonances overlap with one another [T. Hansson and S. Wabnitz, J. Opt. Soc. Am. B 32, 1259
(2015)]. We use synchronously driven fiber ring resonators to experimentally access this regime and
observe the rise of new nonlinear dissipative states. Specifically, we observe, for the first time to the best of
our knowledge, the stable coexistence of temporal Kerr cavity solitons and extended modulation instability
(Turing) patterns, and perform real-time measurements that unveil the dynamics of the ensuing nonlinear
structure. When operating in the regime of continuous wave tristability, we further observe the coexistence
of two distinct cavity soliton states, one of which can be identified as a “super” cavity soliton, as predicted
by Hansson and Wabnitz. Our experimental findings are in excellent agreement with theoretical analyses
and numerical simulations of the infinite-dimensional Ikeda map that governs the cavity dynamics. The
results from our work reveal that experimental systems can support complex combinations of distinct
nonlinear states, and they could have practical implications to future microresonator-based frequency
comb sources.
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I. INTRODUCTION

Beginning with theoretical studies of bistability [1], the
behavior and dynamics of externally driven nonlinear
optical cavities have been extensively investigated for
almost 50 years. Besides many application prospects—
ranging from all-optical information storage [2–5] to
photonic computing [6,7]—the continuous interest in such
systems stems from the diversity of universal nonlinear
physics they support [8]. Pattern formation and self-
organization [9–13], dissipative solitons [14–20], chaos
[21–24], vortices [25–27], and topological phase solitons
[28] all represent examples of the richness of nonlinear
cavity physics.

The simplest nonlinear optical cavity, which nevertheless
captures much of the principal dynamics, is arguably that of
the passive Kerr cavity. For several decades, the Kerr cavity
model has offered an unparalleled window into complex
cavity dynamics. It has played a particularly “decisive role
in promoting the field of optical pattern formation” [8], and
in elucidating the intimately related emergence of localized
dissipative structures commonly referred to (in optics) as
cavity solitons (CSs) [14,15]. Such CSs correspond to
localized wave packets that sit on top of a nonzero
homogeneous background, and they have been subject to
significant research efforts due to their application pros-
pects as bits in all-optical buffers and processing units (for
comprehensive reviews, see Refs. [14–16,29]). Studies
focused initially on spatial CSs [2], which can manifest
themselves as persisting spots in diffractive nonlinear
systems, such as semiconductor microcavities [4]. More
recently, however, the spotlight has shifted to dispersive
systems and temporalCSs [3,29]: pulses of light circulating
in optical ring resonators. While first observed [30]
and studied [31–33] in macroscopic resonators constru-
cted from single-mode optical fibers, the interest in
temporal CSs has surged over the past couple of years
with the identification of their key role in the generation of
stable frequency combs in optical microresonators [34–40].
Such frequency combs have several potential applications
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in, e.g., telecommunications and spectroscopy [41–45],
fueling continuous efforts to better understand the dynam-
ics that underpin CSs in dispersive Kerr resonators [46–57].
CSs are typically explained to arise under conditions of

coexistence between a periodic pattern and a stable
homogeneous state [29,58]; they correspond to localized
excitations that connect one cycle of the pattern with the
homogeneous state [59]. In a pure Kerr cavity, suitable
conditions can be readily met in the region of continuous
wave (cw) bistability [60], which arises from the tilt of the
Lorentzian cavity resonances induced by the Kerr-
nonlinear phase shift. But of course, the fact that cavity
resonances repeat periodically elicits the following ques-
tion: What if the cavity driving is so strong that the
nonlinear phase shift exceeds 2π, i.e., such that adjacent
spectral resonances actually overlap [as in Fig. 1(a)]?
Despite the decades of study into passive Kerr resonators
and CSs, this question has remained virtually unstudied. It
is only recently that Hansson and Wabnitz theoretically
considered some of the implications of such strong cavity
driving [61], motivated by the large phase shifts (of the
order π) already demonstrated in microresonator frequency
comb experiments [62]. Significantly, the authors predicted
that, under conditions of cw tristability, two different CS
states may simultaneously coexist. Because one of the CS
states was predicted to possess a significantly shorter
duration than the other—and thus be more attractive for

broadband frequency comb generation—they coined the
term “super” CS for its description [61].
In this article, we report on the first combined exper-

imental and theoretical study of passive Kerr cavity
dynamics in the strong-driving regime, as characterized
by nonlinear phase shifts in the vicinity of 2π and beyond.
Our experiments are performed using synchronously
driven optical fiber ring resonators, and we observe
new nonlinear behaviors emblematic of the strong-driving
regime: coexistence of distinct dissipative structures asso-
ciated with adjacent, nonlinearly overlapping cavity res-
onances. In particular, we predict and observe—both
for the first time to our knowledge—localized Kerr CSs
sitting atop periodic Turing patterns arising from the
modulation instability of the underlying homogeneous state.
Furthermore, we report the first experimental observations
of the coexistence of two distinct CS states, as predicted
earlier by Hansson and Wabnitz [61]. All of our exper-
imental results are in excellent agreement with numerical
simulations of the infinite-dimensional Ikeda map that
governs the cavity dynamics, and they conform to a simple
physical interpretation of coexistence of nonlinear states
associated with individual resonances. Notably, although
the full “mixed” states we observe are beyond the standard
mean-field analysis of passive Kerr cavities [10,63], we find
remarkably that their constituent nonlinear structures
are not.
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FIG. 1. Cavity resonances and examples of nonlinear structures. (a) Blue curves at the bottom show power levels of cw steady-state
solutions, while red curves at the top show CS branches predicted individually for the different resonances by the mean-field Lugiato-
Lefever equation (LLE) (see Appendix B). For clarity, the CS branches are plotted as fðδ0Þ ¼ 10 Wþ Ppðδ0Þ=2, where Ppðδ0Þ is the
soliton peak power. (b)–(e) Examples of steady-state nonlinear structures obtained from numerical simulations of the Ikeda map at
different detunings [highlighted in (a) as dash-dotted vertical lines]: (b) MI pattern, δ0 ¼ 1.75π − 2π ¼ −0.25π, (c) CS on a cw
background, δ0 ¼ π, (d) CS coexisting with a MI pattern, δ0 ¼ 1.75π, (e) coexistence of two CSs associated with adjacent resonances,
δ0 ¼ 3.2π. In (e), the dashed red and blue curves correspond to CS profiles predicted individually for the different resonances by the
LLE. The parameters used in all of the calculations are θ ¼ 0.1, Pin ¼ 15 W, ρ ¼ 0.73, β2 ¼ −22 ps2=km, γ ¼ 1.2 W−1 km−1,
L ¼ 100 m. The mean-field results use α ¼ 0.145, corresponding approximately to half the total cavity losses per round-trip (see
Appendix B). Note the different axes in (b)–(d) and (e), highlighting the much larger power and shorter duration of the “super” CS.
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II. THEORY

The experiments that follow are based on an optical fiber
ring resonator that is coherently driven by quasi-cw laser
light. Several prior studies, performed in the regime of
comparatively small nonlinear phase shifts, have demon-
strated such systems to be ideal test beds for the exper-
imental exploration of passive Kerr cavity phenomena
[30,31,33,54,64,65]. We begin by briefly recalling the
model equations that govern the system behavior as well
as the steady-state solutions they are known to support. We
then argue and demonstrate by means of numerical sim-
ulations how new combinations of nonlinear states can
emerge when adjacent resonances overlap.

A. Model equations

The evolution of the slowly varying electric field
envelope in a coherently driven fiber ring resonator is
governed by a (generalized) Ikeda map [35,61,63,66,67].
In the beginning of each round-trip, a cw driving field Ein

with power Pin ¼ jEinj2 is coherently superimposed on the
lightwave circulating in the resonator, such that the time-
domain electric field envelope Emþ1ðz; τÞ at the beginning
of the (mþ 1)th cavity transit obeys the following boun-
dary condition:

Emþ1ðz ¼ 0; τÞ ¼
ffiffiffi
θ

p
Ein þ

ffiffiffi
ρ

p
Emðz ¼ L; τÞe−iδ0 : ð1Þ

Here, z is the longitudinal coordinate along the optical fiber
forming the resonator, τ is time defined in a reference frame
moving at the group velocity of light in the fiber, θ is the
power transmission coefficient of the coupler (located at
z ¼ 0) used to inject the driving field Ein into the cavity, L
is the round-trip length of the resonator, and δ0 is the phase
detuning between the driving field and a cavity resonance.
For simplicity, we lump all dissipation (arising, e.g., from
the input coupler, fiber absorption, or component loss along
the fiber loop) in the boundary condition, with 1 − ρ
describing the total power lost per round-trip; the parameter
ρ is fully determined by the cavity finesse F , with
ρ ≈ 1�2π=F (valid in the limit F ≫ 1). With this approxi-
mation, the field envelope Emðz ¼ L; τÞ at the end of the
mth cavity transit can be obtained by numerically integrat-
ing a generalized nonlinear Schrödinger equation [68],

∂Emðz; τÞ
∂z ¼ −i

β2
2

∂2Em

∂τ2 þ iγ½RðτÞ � jEmj2�Em; ð2Þ

where β2 is the group-velocity dispersion (GVD) coeffi-
cient, γ is the nonlinearity coefficient, and RðτÞ ¼
ð1 − fRÞδðτÞ þ fRhRðτÞ is the nonlinear response function
that includes both the instantaneous Kerr nonlinearity
[δðτÞ is the Dirac delta function] and stimulated Raman
scattering (SRS), with fR the Raman fraction of the

nonlinearity (for silica glass, fR ¼ 0.18) and hRðτÞ the
Raman response function [69].
As we see below, SRS is key to fully explaining our

experimental observations; however, its role is to merely
perturb the nonlinear states supported by pure Kerr cavity
dynamics (see Appendix A). Accordingly, we begin our
discussion by neglecting SRS and set fR ¼ 0. In this limit,
Eqs. (1) and (2) describe a dispersive cavity with a purely
instantaneous Kerr nonlinearity. Because of the equivalence
between paraxial-beam diffraction and dispersive pulse
spreading [70], the system is analogous to a spatially
diffractive Kerr cavity, and can thus be considered a generic
representation of a one-dimensional Kerr cavity. We remark
in this context that, under specific conditions, Eqs. (1) and
(2) can be averaged (see Appendix B) into a single mean-
field equation [63] that is fully analogous to the celebrated
Lugiato-Lefever equation (LLE) of spatially diffractive
cavities [10]. Although our experimental conditions are
beyond such a mean-field approximation, the LLE never-
theless provides important insights (as we discuss below).

B. Coexistence of multiple nonlinear states

We are interested in the regime of anomalous dispersion
(β2 < 0), where the nonlinear Schrödinger equation Eq. (2)
is self-focusing (for silica fibers, γ > 0). In this regime,
passive Kerr cavities are well known to support three
families of nonlinear states, each of which correspond to
a distinct steady-state solution of the Ikeda map [60]. These
are the (i) homogeneous cw states, (ii) periodic (Turing)
patterns, and (iii) localized CSs. The different states are
closely interrelated: patterned states arise from the modu-
lation instability (MI) of a cw state, while CSs can be
understood as combinations of patterned and cw states,
corresponding to singular cycles of the pattern sitting atop a
cw background [29]. To illustrate how new combinations
can emerge when the driving is so strong that adjacent
resonances overlap, we plot in Fig. 1(a) the cw steady-state
solutions of the Ikeda map (blue curves; see also
Appendix C) for parameters similar to the experiments
that follow (listed in the caption of Fig. 1). Here, dotted
lines correspond to states that are unconditionally unstable
(and are not considered further), while dashed lines high-
light states that exhibit MI. Also shown (as red curves) are
the CS branches predicted for each individual resonance
based on the mean-field LLE [30,60]. For clarity, only the
upper branch of the CS solution is shown; the lower branch,
which bifurcates subcritically from the lower cw state, is
unconditionally unstable and will not be discussed further.
In the upper branch, the CSs exhibit self-pulsing insta-
bilities (associated with a Hopf bifurcation) for small
(relative) detunings [15,31,54]. As these instabilities do
not influence our main findings, they are not discussed
further.
The cw solutions in Fig. 1(a) represent periodically

repeating cavity resonances that are tilted due to the Kerr
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nonlinearity (for the parameters we use, the Kerr tilt is
ϕNL ≈ 2.7π). Besides those solutions, inspection of
Fig. 1(a) allows us to identify four possible combinations
of nonlinear states, and in Figs. 1(b)–1(e), we show results
from direct numerical simulations of the Ikeda map that
illustrate these different behaviors [71]. The simulations all
use different cavity detunings [labeled δb−e in Fig. 1(a)] and
initial conditions (MI states grow from random noise while
CSs are excited by assuming an initial condition corre-
sponding to a suitable sech profile on a cw background).
First, referring to resonance (1), as labeled in

Fig. 1(a), MI analysis of the Ikeda map [67] reveals that
the upper cw state exhibits MI for cavity detunings
δ1 ¼ δ0 ≳ δMI ¼ −0.30π. Indeed, at the cavity detuning
δb ¼ −0.25π, periodic patterns emerge from an initially
noisy background [Fig. 1(b)]. When the detuning increases
beyond the up-switching point, which marks the lower
boundary of cw bistability, CSs can be expected [30,60].
For moderate detunings (δ0 < 2π), they correspond to the
standard CSs that sit on top of a cw background [Fig. 1(c),
δc ¼ π], with the background coinciding precisely with the
stable lower cw state of the resonance (being the only stable
cw state available). However, in the strong driving regime,
where adjacent resonances overlap, the lower state of the
first resonance eventually morphs into the upper state of its
neighbouring resonance [labeled (2) in Fig. 1(a)], and can
therefore be expected to exhibit MI. Remarkably, as
evidenced by the Ikeda-map simulation for δd ¼ 1.75π,
CSs continue to exist in this region [Fig. 1(d)]. They now
sit, however, on top of a background that is not cw, but
rather a periodic Turing pattern ensuing from the MI of the
upper branch of the second resonance (being the only
background state available).
The possibility of CSs existing atop modulated

backgrounds has been previously noted in other contexts
[72–75]. In particular, Hachair et al. have shown exper-
imental and theoretical evidence of spatial CSs sitting atop
a spatially homogeneous background that exhibits slow
temporal oscillations due to an underlying Hopf instability
[72], while Hansson and Wabnitz have theoretically iden-
tified temporal CSs in a dual-pumped system where the
modulated background is simply due to the beating of two
separate driving fields [73]. Both of these scenarios are
fundamentally different from that shown in Fig. 1(d), where
the rapid modulation ensues from the Turing (or modula-
tion) instability of the homogeneous state, and thus
corresponds to an extended (nonhomogeneous) nonlinear
dissipative structure in its own right. Interestingly, we find
that the CSs do not, in general, sit at the extrema of the
pattern. For example, for the parameters used in Fig. 1(d),
the soliton is found slightly offset from a maximum. Full
analysis of this behavior and its parameter dependence is
beyond the scope of our current work, but we remark that
the resulting asymmetric field profiles bear resemblance to

observations of spontaneous symmetry breaking in passive
Kerr cavities driven by short pulses [76].
Finally, if the driving is sufficiently strong, such that the

CS branch from the first resonance extends into the region
of cw bistability of the second resonance, a situation may
arise where the CS solutions associated with two adjacent
resonances can coexist, as predicted in Ref. [61]. In this
regime, the intracavity field is composed of two different
CS states with distinct characteristics (duration, peak
power), both of which sit on top of the lower state cw
solution of the second resonance [Fig. 1(e), δe ¼ 3.2π].
The standardmean-field analysis of passive Kerr cavities—

based on the simple LLE [10,63] with fully distributed
driving and loss [see Appendix B]—is unable to capture the
full mixed nonlinear states associated with overlapping
resonances [Figs. 1(d) and 1(e)]. This can be readily under-
stood by recalling that the cw response of the LLE corre-
sponds to a unique Lorentzian resonance [see Appendixes B
and C], fundamentally limiting the model’s reach to states
associated with a single resonance (i.e., MI patterns or CSs
atop a cw background). In this context, we reemphasize that
the CS branches shown in Fig. 1(a) are obtained individually
for each resonance using the LLE, and should therefore be
understood as qualitative predictions only. Somewhat sur-
prisingly, however, we find that, although the full mixed
states are beyond the simple LLE, the constituent nonlinear
states are not, despite the large absolute detunings. For
example, the dashed red and blue curves in Fig. 1(e) showCS
profiles predicted by the LLE for two different cavity
detunings, as measured from the centers of the respective
linear resonances (δ1 ¼ δ0 ¼ 3.2π and δ2 ¼ δ1 − 2π ¼
1.2π). As can be seen, the individual profiles predicted by
the LLE are in excellent agreementwith theCSs thatmake up
the full mixed state obtained from the Ikeda map (black
curves). This is an unexpected result: the LLE is derivedwith
the assumption δ0 ≪ 1, yet here we find it correctly
predicting the characteristics of individual CSs even when
δ0 > 2π. Although the LLE cannot capture the coexistence
of different nonlinear states, this finding further consolidates
its broad usefulness even outside the regions where it can be
considered strictly valid. For example, we can now readily
explain the different temporal durations of the two CSs
shown inFig. 1(e): theLLEpredicts thewidthof aCS to scale
asΔτ ∝ δ−1=20 [60], and so the soliton associatedwith the first
resonance expectedly possesses a significantly shorter dura-
tion (and broader spectrum) than the one associated with the
second resonance. The term “super” CS was coined by the
authors of Ref. [61] to highlight this difference, yet we
emphasize that the two solitons should be understood as the
same structures at different detunings [as apparent from
Fig. 1(a)].

III. EXPERIMENTAL SETUPS

To experimentally study the existence of the new mixed
nonlinear states, a passive Kerr cavity platform capable of
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generating large nonlinear phase shifts of the order of
2π is required. As ϕNL ≈ θPinγLF 2=π2, this calls for a
strongly driven cavity with a high finesse and a long round-
trip length. We achieve suitable conditions by using
macroscopic fiber ring resonators that are synchronously
driven by quasi-cw pulses. Although similar systems have
previously been used to successfully study Kerr cavity
dynamics [54,65,67], they have not been optimized to
allow access to the highly nonlinear regime where adjacent
resonances overlap.
Our experiments are performed using two different fiber

ring resonators, both of which consist of a loop of optical
fiber closed on itself with a fiber coupler. The first resonator
is similar to the one used in Refs. [32,33]. It is built around a
90=10 coupler, is 100 m long, and incorporates an optical
isolator to inhibit stimulatedBrillouin scattering (SBS) and a
wavelength-division multiplexer that does not play a role in
the experiments we report here. The cavity has a total
measured finesse of 20 (ρ ≈ 0.73), which corresponds to
27% losses per round-trip. This cavity is ideal for the study
of coexistence between a CS and a MI pattern; however, its
limited length and finesse prevent access to the regimewhere
two distinct CS states coexist. Our second cavity has been
custom-built to overcome this issue. It uses a 95=5 coupler,
has a total length of 300 m, and does not include an isolator
or a wavelength-division multiplexer, thereby yielding a
higher finesse of about 48 (ρ ≈ 0.88). Both cavities are
composed entirely of standard telecommunication single-
mode optical fiber (SMF-28) with nonlinearity and group-
velocity dispersion coefficients γ ¼ 1.2 W−1 km−1 and
β2 ¼ −22 ps2 km−1 (at 1550 nm), respectively.
The two different resonators offer complementary advan-

tages for the study of different nonlinear structures. In
particular, while the 300-m-long cavity in principle allows
access to all the different regimes of interest, we find that its
long length and high finesse obstruct the active stabilization
of the cavity detuning. As the detailed study of coexisting CS
and MI states greatly benefits from such stabilization, the
100-m-long cavity is more ideal for the exploration of that
regime. As we show below, the study of coexisting CS states
does not critically require active stabilization, and can thus
be satisfactorily accomplished using our 300-m-long cavity.
Each of the cavities is driven by quasi-cw pulses

synchronized to their respective round-trip time. The
driving pulses are generated by passing the output of a
narrow linewidth, 1550 nm, distributed feedback, cw fiber
laser through an intensity modulator, followed by a 2-W
erbium-doped fiber amplifier [54]. After spectral filtering to
remove the amplified spontaneous emission component of
the signal, we obtain flattop pulses with 4–10-ns duration
and a peak power up to 10 W. Thanks to the large peak
power of the quasi-cw driving pulses, very large nonlinear
phase shifts can be induced. For the 100-m-long cavity, we
estimate the maximum phase shift to be around 2.1π; for
the 300-m-long cavity, we can reach phase shifts in excess

of 4π. At this point, we note that the driving pulses
are sufficiently short to mitigate the detrimental effects
of SBS, and we do not observe any signatures of SBS in our
experiments. In fact, this represents a key feature in our
experiments: the high finesse of our 300-m-long cavity is
precisely underpinned by the absence of an optical isolator
that is required for SBS suppression under pure cw
driving [30].
To directly monitor the Kerr cavity dynamics, both

resonators include a 99=1 tap coupler whose 1% output
port permits direct measurement of the intracavity field.
This field is characterized using either an optical spectrum
analyzer, frequency-resolved optical gating (FROG) or a
real-time measurement system consisting of a 12.5-GHz
amplified photodiode and a 40 GSa/s real-time oscillo-
scope. At about 50 ps, the temporal resolution of this real-
time measurement system is significantly longer than the
picosecond time scales of the CS and MI patterns we wish
to observe. Nonetheless, as we see below, provided that
individual CSs remain separated from one another by more
than this resolution, it is possible to clearly observe the
system’s dynamical evolution and to infer the emergence of
new nonlinear mixed states.

IV. RESULTS

A. Coexistence of CSs and MI patterns

We first describe results we obtain using our 100-m-long
cavity, namely, the observation of temporal CSs sitting on a
periodic MI pattern [as in Fig. 1(d)]. In these experiments,
we set the pump power of the nanosecond driving pulses to
about 10 W, which induces a nonlinear Kerr tilt of about
2.1π, thus permitting the overlap of two consecutive
resonances. To stabilize the phase detuning δ0, we use a
proportional-integral-derivative servo system that monitors
the average power exiting the resonator at the 99=1 tap
coupler (locking the average output power to a set level
locks the detuning [32]).
MI analysis of the Ikeda map [67] predicts that, for our

experimental conditions, an individual resonance will
support patterned MI states for detunings larger than a
threshold value of δ2 ≈ −0.25π, corresponding to δ1 ¼
2π þ δ2 ≈ 1.75π relative to the preceding resonance. For
the sake of discussion, we start by demonstrating the
standard configuration of a CS sitting atop a cw back-
ground [as in Fig. 1(c)], and lock the pump detuning just
below the MI threshold, at δ2 ≈ −0.29π (δ1 ≈ 1.71π). The
blue curve in Fig. 2(a) shows the optical spectrum mea-
sured at the output of the 99=1 tap coupler before a CS is
excited. As can be seen, the spectrum is composed
of a single component at the pump wavelength, evidencing
a quasi-cw intracavity field. We then excite a temporal
CS corresponding to the first resonance (with detuning
δ1 ¼ 1.71π) by abruptly perturbing the system. Specifically,
by cycling the sign of the proportional component of the

COEXISTENCE OF MULTIPLE NONLINEAR STATES IN A … PHYS. REV. X 7, 031031 (2017)

031031-5



proportional-integral-derivative servo’s output, we rapidly
(within 100 ms) sweep the cavity detuning towards the
zero of the first resonance and then back to its original value.
(As in Refs. [34,49], CSs are excited as the detuning is
scanned back to the original value.) After this perturbation,
the spectrum measured at the cavity output [red curve in
Fig. 2(a)] clearly shows a broad sech2-shaped feature
indicative of a temporal CS, superimposed on top of the
original quasi-cw field. Figure 2(b) shows corresponding
spectra obtained from numerical simulations (parameters
as quoted above), andwe can see very good agreementwith
experimental observations. [This simulation, and all the
simulations that follow, is obtained from Eqs. (1) and (2)
using experimental parameters quoted previously, and
with SRS included with fR ¼ 0.18.] Note that the quasi-
cw components appear broader in our experimentally
measured spectra simply due to the finite (∼50 pm)
resolution of our optical spectrum analyzer. We also
note that most of the small dips and peaks in the CS
spectrum (visible in both measurements and simulations)

correspond to Kelly-like sidebands arising from the
cavity periodicity: their spectral positions agree with
wavelengths extracted from well-known phase-matching
conditions [47,77]. Polarization-resolved measurements
reveal that small additional peaks, present only in the
experimentally measured spectra, arise from the coupling
between two orthogonal polarization states, as recently
detailed in Ref. [78]. Corroborating evidence is presented
in Ref. [79].
To now demonstrate the new combination of a CS and

a MI pattern [as predicted in Fig. 1(d)], we repeat the
experiment above but with the cavity detuning locked just
above the threshold of MI of the second resonance at
δ2 ≈ −0.21π (δ1 ≈ 1.79π). Similar to Fig. 2(a), the blue
curve in Fig. 2(c) shows the measured spectrum in the
absence of CSs. In agreement with the prediction that no
stable cw state should exist, we see clear spectral signatures
of a MI pattern: sidebands equally spaced by 160 GHz. We
then excite a CS using the same detuning-sweep approach
as above, and the red curve in Fig. 2(c) shows the spectrum
measured after the perturbation. Remarkably, we again see
the broad sech2-shaped feature characteristic of a CS, but
now superimposed on top of the original MI pattern.
Figure 2(d) shows the spectrum of a numerically simulated
state corresponding to a CS atop a MI pattern, and we see
very good agreement with experimental observations. In
addition to spectral measurements, we also record the
FROG trace of this state. This is shown in Fig. 2(e), and
consists of two components: a temporally extended, modu-
lated structure with a period of 6.3 ps, and an isolated
picosecond pulse centered around the zero delay. The trace
is clearly consistent with an intracavity field akin to that
shown in Fig. 1(d), i.e., a picosecond-scale temporal CS
surrounded by a 160-GHz MI pattern. Our experiments
show that this state persists as long as the cavity detuning
stays locked, which typically corresponds to a time scale of
several minutes (equivalent to hundreds of millions of
photon lifetimes).
To further confirm that the results in Figs. 2(c) and 2(e)

correspond to a genuine mixed state, where the CS sits
directly atop a MI pattern, we measure the time-resolved
round-trip-by-round-trip dynamics of the intracavity field.
In order to clearly distinguish between a cw background
and a MI pattern (whose 160-GHz repetition rate is beyond
the bandwidth of our detectors), we record the output field
after a 1.6-nm (full width at half maximum) bandpass filter
that is offset by about 1.5 nm from the pump wavelength.
This removes the cw component at the pump wavelength,
thus ensuring that all measured signals are purely borne of
the MI and CS fields.
The density map in Fig. 3(a) shows a sequence of

experimentally recorded oscilloscope traces, concatenated
on top of each other so as to illustrate the round-trip-by-
round-trip evolution of the intracavity field. The measure-
ment is taken immediately after the CS excitation process,
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FIG. 2. Experimental evidence of coexisting CSs and MI
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when the detuning sweep has settled to the constant value
of δ1 ¼ 1.79π, and it captures the nascent MI pattern
(extended light blue trace) emerging from the cw back-
ground (zero signal, dark blue) that initially surrounds a
single CS. It is worth highlighting that the weak temporal
modulations (of the light blue background) around the
measured CS signal do not correspond to the MI pattern.
With a period of about 70 ps, these modulations simply
stem from the impulse response of our 12.5-GHz detection

system (photodetector and oscilloscope). The 160-GHz MI
pattern cannot be directly resolved with our photodetector,
and its emergence is rather evidenced by the increase in
background signal level (recall that the measurement is
taken after an offset filter that removes the cw component).
Surprisingly, as soon as the MI pattern emerges, the peak

amplitude of the CS signal begins to noticeably oscillate
with a period of about 16.1 round-trips. These oscillations
(along with the other surrounding dynamics) are fully
captured by numerical simulations of our experiment, as
shown in Fig. 3(b). To better corroborate our experimental
findings, the simulation results we show here are post-
processed to mimic our detection methods (i.e., the
simulation takes into account the offset filter and the
impulse response of our detection system). Closer analysis
of the unprocessed data [cf. Fig. 3(c)] reveals that the
oscillations in the peak amplitude of the CS signal originate
from the group-velocity mismatch between the CS and the
MI pattern, dominantly caused by the soliton’s Raman self-
frequency shift [37,48,51,81]. Specifically, SRS shifts the
spectral center of the soliton towards longer wavelengths,
which gives rise to a change in group velocity (see
Appendix A); the oscillations in power measured through
the offset filter arise as the CS drifts across the periodic MI
pattern [see Fig. 3(c) and the animation in the Supplemental
Material [80]]. Given that the temporal period of the
measured pattern is about 6.3 ps, and that the oscillations
have a constant period of 16.1 round-trips, we experimen-
tally estimate a CS drift rate of V ¼ 0.39 ps=round-trip.
This, in turn, corresponds to a Raman self-frequency
shift of Δf ¼ V=ð2πβ2Þ ∼ −27 GHz, in close agreement
with the subtle 25 GHz redshift inferred from the exper-
imentally measured spectrum shown in Fig. 2(c). Both of
these values are also in excellent agreement with those
extracted from our simulations: Vsim ∼ 0.40 ps=round-trip
and Δfsim ∼ −28 GHz. Note that, if we neglect SRS in our
simulations (setting fR ¼ 0), the oscillations in CS peak
amplitude cease, further confirming that the behavior
ensues from Raman-induced redshift.
The experimental results shown in Figs. 2 and 3 very

clearly confirm that the states we observe correspond to a
genuine mixed state where a CS is surrounded by an
extended MI pattern, and this interpretation is fully cor-
roborated by our numerical simulations. In addition to
representing the first experimental observation of such a
state, it is also worth emphasizing that, to the best of our
knowledge, the coexistence of MI patterns and CSs
associated with adjacent resonances has not even been
theoretically proposed before.

B. Coexistence of distinct CS states

The 100-m-long cavity, used in the experiments we
describe above, does not easily permit nonlinear phase
shifts sufficient for two adjacent resonances to simulta-
neously support temporal CSs. To access that regime, we

Time (ps)

R
ou

nd
−

tr
ip

s

Experiment

−400 −200 0 200 400
0

50

100

150

200

250

300

350

400

450

500

Time (ps)

Simulation

−400 −200 0 200 400

−40 −20 0 20 40 60 80 100

350

400

450

500

Time (ps)

In
tr

ac
av

ity
 p

ow
er

 (
50

 W
/D

iv
.)

Simulation (unprocessed)

Signal (arb. units)

0 0.2 0.4 0.6 0.8 1

)b()a(

(c)

FIG. 3. Real-time dynamics of a CS on top of a patterned
background. (a) Vertically concatenated segments extracted from
a single oscilloscope trace measured at the cavity output after an
offset filter, showing the round-trip-by-round-trip evolution of the
intracavity field after the detuning has settled to a constant value.
(b) Corresponding results from numerical simulations, processed
to take into account the experimental detection method. The
oscillatory features arise from the CS drifting across the MI
pattern. (c) Temporal profiles at four different round-trips (in-
dicated on the right) extracted from the simulation before taking
into account the experimental detection method. The profiles are
vertically offset for clarity. For a full animation of the simulation,
see Supplemental Material [80].
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use our 300-m-long, high-finesse cavity. We set the peak
power of the flattop driving pulses to about 2.6 W, which
generates a Kerr tilt of 3.7π. For these parameters, the
cavity is predicted to exhibit cw tristability for detunings
δ2 > 0.22π (δ1 > 2.22π) measured from the second (first)
resonance. Note that this tristability is not directly observ-
able (as, e.g., characteristic hysteresis behavior), as the cw
states are stable only against homogeneous (cw) perturba-
tions; the unavoidable MI of the two upper states hides
direct signatures. Of course, the presence of two modula-
tionally unstable (and one unconditionally stable) cw states
underpins the coexistence of two distinct CS states [see
Fig. 1(a)], which therefore acts as a convincing signature of
tristability.
Numerical simulations of the Ikeda map show that, for

large detunings, the direct excitation [30,82] of a “super”
CS is extremely difficult, requiring a very carefully shaped
initial condition. As it is not feasible to experimentally
tailor a perturbation with sufficient precision, we rely on the
spontaneous excitation and adiabatic transformation of CSs
as the cavity detuning is continuously increased [34,49].
Specifically, to reach an intracavity state consisting of two
distinct CSs atop a cw background [as in Fig. 1(e)], we scan
the frequency of the pump laser across two cavity reso-
nances. To facilitate the interpretation of our experimental
data, we first describe results obtained from correspond-
ing numerical simulations of Eqs. (1) and (2). For these
simulations, we set the initial detuning to δ0 ¼ −0.2π,
continuously increase it to δ0 ¼ 2.7π over 350 round-trips,
then subsequently maintain it at this level for 100 further
round-trips. Results are shown in Fig. 4, where we plot
the simulated evolution of the intracavity intensity over a
500-ps time window as a function of round-trip number and
detuning.
In our simulation, we first see the formation of a MI

pattern across the entire cavity [round-trips 50–85, labeled
“MI 1” in Fig. 4(a)] as we scan along the first resonance. As
expected based on earlier studies [60], the pattern is initially
stable, but then transforms into an unstable state consisting
of fluctuating structures. Around the 100th round-trip, a
sequence of localized temporal CSs is seen to emerge from
the unstable MI state, evolving freely until the detuning
reaches the second resonance [round-trips 85–270, “CS 1”
in Fig. 4(a)]. The CSs occasionally collide with one another,
which leads to merging or annihilation depending on the
precise detuning at the round-trip of collision [49,64]. We
can also see how the CSs exhibit markedly curved trajecto-
ries. This is due to the combined effect of SRS, GVD, and
the continuously increasing detuning. Specifically, the CS
drift rate is proportional to the Raman-induced redshift
(V ∝ β2Δf), which has been shown to be quadratically
proportional to the detuning (Δf ∝ δ20) [81]. At round-trip
270, the driving laser passes the MI threshold of the second
resonance, and we can indeed see the emergence of a
periodic pattern that coexists with the CSs from the first

resonance [“MI 2” in Fig. 4(a)]. As before, the MI pattern is
initially stable but develops strong round-trip-to-round-trip
fluctuations for larger detunings.
Our simulations show that the CSs emerging from the

first resonance have a high likelihood of disappearing in the
unstable MI region of the second resonance. More detailed
analysis reveals that, although CSs can stably coexist with
stable MI patterns, they tend to annihilate in the unstable
MI regime as they collide with sufficiently large back-
ground fluctuations. In the simulation shown in Fig. 4(a),
only a single temporal CS (highlighted by a white arrow)
survives the MI region, persisting as the detuning increases
to the regime of cw tristability. In that region, the CS from
the first resonance coexists with those reshaping from the
unstable MI pattern associated with the second resonance;
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FIG. 4. (a) Numerical simulation of the Ikeda map, showing the
intracavity dynamics as the cavity detuning is scanned across two
cavity resonances and then maintained at δ0 ¼ 2.7π. Dashed
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regimes, as indicated. (b) Simulated temporal profile at round-
trip 400, before the collision of the two CSs associated with
different resonances. SCS is the “super” CS associated with the
first resonance. For a full animation of the simulation, see
Supplemental Material [83].
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the former now corresponds to a “super” CS as defined in
Ref. [61]. Because this “super” CS is associated with a
much larger detuning than those associated with the second
resonance, it possesses a significantly shorter duration
[as seen in Fig. 4(b)], and as a result, a more pronounced
Raman-induced redshift (see also Appendix A). This
difference in central wavelengths is evident based on
the visibly different group velocities. [We emphasize that
the soliton trajectories are linear (instead of curved) in the
regime of CS coexistence, as the detuning is maintained at a
constant value in this region.] Because of their different
velocities, the “super” CS eventually collides with a soliton
associated with the second resonance, and is annihilated
due to the perturbation suffered.
In the experimental measurements corresponding to

simulations shown in Fig. 4, we monitor the round-trip-
by-round-trip evolution of the intracavity field as we scan
the pump laser across consecutive resonances. Specifically,
we record the output of the 99=1 tap coupler using two
12.5-GHz photodetectors that are simultaneously sampled
by the 40 GSa/s real-time oscilloscope: the first photodiode
detects the output field directly, thus recording a signal
proportional to the energy of each CS, while the second
photodiode measures the output after it has been spectrally
filtered by a 1-nm optical bandpass filter offset by 2 nm from
the driving laser. Because the spectral width of a CS
associated with the first (second) resonance is about 2 nm
(1nm) in the regimewhere theycoexist, our seconddetection
channel responds primarily to the presence of the solitons
associated with the first resonance (i.e., the “super” CSs).
This allows us to unambiguously discriminate experimen-
tally between the two types of nonlinear structures.
In Figs. 5(a) and 5(b), we show oscilloscope traces

recorded by our direct and offset filtered detection channels,
respectively. As in our simulations above, the cavity detun-
ing continuously increases until round-trip 350, after which
we allow the system to evolve freely (i.e., without changing
or locking the pump cavity detuning [84]). Despite the
limited temporal resolution of our detection system, the
experimental oscilloscope traces show all the features
predicted in the numerical simulations. Indeed, the intra-
cavity field first corresponds to an unstable MI state, out of
which emerges a sequence of CSs that display noticeably
curved time-domain trajectories. When the detuning
increases beyond the MI threshold of the second resonance
(around round-trip 270), a new (unstable)MI state arises and
wipes out most of the CSs associated with the first
resonance. However, as highlighted by the white arrow in
Fig. 5(a), a single CS survives the MI region unscathed,
coexisting with a sequence of newly formed solitons
associated with the second resonance. We can indeed easily
distinguish between the two types of CS states based on two
clear experimental observations. First, the solitons clearly
exhibit different drift velocities: the lone soliton of the first
resonance follows the trajectory it had prior to theMI region,

while the curvatures of the newly formed solitons’ trajecto-
ries are reset. [Note that, as in Fig. 4, the detuning does not
change for round-trips beyond 350, explaining the linear
(rather than curved) trajectories.] Second, only the soliton of
the first resonance appears in the trace measured in our
offset-filtered detection channel [see Fig. 5(b)], evidencing
itsmuch larger spectralwidth compared to the other solitons.
Taken together, these results reveal unequivocally that we
observe the coexistence of different CS states associated
with adjacent resonances. Similarly to our numerical sim-
ulations, our experiments also show clear evidence (around
round-trip 680) of the “super”CSof the first resonance being
annihilated after it collides with a soliton associated with the
second resonance.
We must note that scanning into the regime of CS

coexistence is a probabilistic process, as solitons from the
first resonance can annihilate when crossing the unstable
MI regime of the second resonance. Intuitively, the number
of solitons surviving the MI regime (per scan realization)
increases with the temporal duration of the quasi-cw pump
pulses (as more solitons can be sustained overall) and the
rate of detuning scan (as less time is spent in the unstable
MI regime). We confirm these dependencies by means of
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extensive Monte Carlo simulations (for details, see
Supplemental Material [79]). Because of the difficulty of
actively stabilizing our 300-m-long cavity, experimental
analysis of the statistics is intractable using our current
setup. Nevertheless, we emphasize that the results pre-
sented in Fig. 5 are highly repeatable: only a few minutes of
manual data accumulation and analysis in the laboratory is
enough for a positive observation of a long-lasting “super”
CS. In our fiber-based experiment (that is influenced by
SRS), the lifetimes of the “super” CSs are also probabi-
listic: the number of round-trips before a collision occurs
depends on the (random) configuration of solitons after
the chaotic MI stage. Although the lifetimes are typically
measured in tens of round-trips, outliers persisting for
hundreds of round-trips (as in Figs. 4 and 5) are not
infrequent (for statistics, see Supplemental Material [79]).

V. DISCUSSION AND CONCLUSIONS

We report the first combined experimental and theoreti-
cal study of Kerr cavity dynamics in the strongly nonlinear
regime, where adjacent cavity resonances overlap. We
demonstrate how new combinations of nonlinear states
may emerge in this regime, and how they can be understood
as mixed states composed of structures associated with
individual resonances. To the best of our knowledge, we
present the first experimental demonstration of the stable
coexistence between a temporal CS and a MI pattern, and
report the first experimental signatures of the coexistence
and interactions between two distinct CS states. In this way,
our work directly confirms the theoretically predicted
existence of “super” CSs [61]. More generally, however,
our theoretical and experimental results show that the
coexistence of nonlinear structures is not limited to CSs,
but encompasses arbitrary combinations of structures
associated with adjacent resonances, including periodic
patterned states (both stable and unstable).
Our work raises a number of interesting questions for

follow-up research: what are the (nonlinear) dynamics of
coexisting CSs and MI patterns in the absence of Raman
scattering; how are the dynamics stemming from over-
lapping resonances related to dynamics of dual-pumped
Kerr cavities; is it possible to systematically control the
excitation probability and lifetimes of “super” CSs in
realistic systems? Furthermore, we expect that our general
findings will resonate beyond passive Kerr cavities, and
that novel mixed states await discovery in other dissipative
systems exhibiting tilted homogeneous solutions, such as,
e.g., quadratically nonlinear optical resonators [85,86]. By
identifying and experimentally confirming the general
concept of coexisting nonlinear states, our work paves
the way for the future study of such dynamics.
Before closing, we briefly comment on the relevance of

our findings to studies of microresonator frequency combs
that are currently under intense investigations. Assuming
critical coupling and high cavity finesse, the maximum

nonlinear phase shift of a cw state can be approximated as
ϕNL ≈ γPinLF=π. While ϕNL ≪ 2π in most microresona-
tor studies, strong nonlinearities (and hence large nonlinear
phase shifts) are required for the generation of ultrabroad-
band frequency combs. Indeed, a Kerr tilt of about 0.7π
was reached when generating an octave-spanning comb in
a 40-μm-radius silica microtoroid (F ≈ 1.2 × 106) driven
with Pin ≈ 1W [62]. To our knowledge, this represents the
largest Kerr nonlinear phase shift reported to date in a
microresonator experiment, yet we envisage that the
continuous push towards broader spectral bandwidths
could ultimately propel such systems into the highly
nonlinear regime with ϕNL ≳ 2π. More immediately, by
showing that the LLE can be safely applied to predict CS
characteristics even when the condition δ0 ≪ 1 is not
strictly satisfied, our work consolidates the equations’
broad applicability to situations that are of more immediate
relevance to current-day microresonator frequency comb
experiments (with δ0 ∼ 1). Finally, although we focus on
resonances that overlap due to Kerr nonlinear phase shifts,
we speculate that other mechanisms (e.g., interactions
between different mode families) could engender similar
overlap even for ϕNL ≪ 2π. This speculation is corrobo-
rated by recent experimental observations of microresona-
tor frequency combs that show qualitative signatures of
coexisting nonlinear states [87]. Our work demonstrates
that such structures can physically arise due to the overlap
of adjacent resonances, and could thus represent a key step
towards explaining the particular frequency comb struc-
tures observed.
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APPENDIX A: STIMULATED RAMAN
SCATTERING

In the context of Kerr cavity dynamics studied in our
work, stimulated Raman scattering dominantly manifests
itself by shifting the spectral center of mass of MI patterns
and temporal CSs towards longer wavelengths through the
so-called intrapulse Raman scattering [37,48,51]. Similarly
to soliton self-frequency shift in optical fiber [88], the
magnitude of the frequency shift scales as Δf ∝ Δτ−4,
whereΔτ is the temporal duration of the nonlinear structure
[89]. Compounded by the fact that the duration of CSs
scales as δ−1=20 , the effect can thus be expected to be
particularly important for CSs at high detunings, withΔf ∝
δ20 [81]. Because of dispersion, the frequency shift also
gives rise to change in group velocity, resulting in a
temporal drift with respect to the reference frame moving
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at the velocity of light of the pump wavelength [81].
Specifically, over a single round-trip, a spectral shift Δf
will result in the accrual of an extra group delay given
by V ¼ 2πΔfβ2L.
Because, for constant parameters, different nonlinear

structures are associated with different temporal durations
[see, e.g., Fig. 1(e)], they may experience different degrees
of Raman self-frequency shift. As shown in Figs. 3 and 5,
the resulting group-velocity variations result in identifiable
signatures in real-time measurements, allowing us to
reliably discriminate between different nonlinear states.
It is important to emphasize that, in a dissipative cavity

system with constant parameters, the nonlinear structures
perturbed by SRS typically reach steady state in the sense
that the spectral shift Δf and corresponding (per round-
trip) relative group delay V remain constant from round-trip
to round-trip [48]. This should be contrasted with the
dynamics of conventional (conservative) solitons in single-
pass fiber or waveguide systems, namely, continuous
spectral redshift (accompanied by temporal deceleration)
along propagation [68]. In this context, we emphasize that
the curved temporal trajectories observed in Figs. 4 and 5
are simply manifestations of the (adiabatically) increasing
detuning (V ∝ Δf ∝ δ20), and should not be confused with
deceleration in single-pass systems with constant param-
eters. Finally, we note that these curved trajectories agree
quantitatively with the trajectories expected to arise from
the interplay of Raman redshift, group-velocity dispersion,
and a continuously increasing detuning [81].

APPENDIX B: MEAN-FIELD APPROACH

If the slowly varying field envelope Eðz; τÞ does not
change significantly as it propagates once around the fiber
loop [such that Eðz; τÞ ≈ Eð0; τÞ on the right-hand side
of Eq. (2)], and if the cavity detuning and losses are both
small (δ0, ρ ≪ 1), the Ikeda map [Eqs. (1) and Eqs. (2)] can
be averaged into a single externally driven nonlinear
Schrödinger equation [35,48,51,63]:

tR
∂Eðt; τÞ

∂t ¼
�
−α − iδ0 −

iLβ2
2

∂2

∂τ2
�
Eþ

ffiffiffi
θ

p
Ein

þ iγL½RðτÞ � jEðτÞj2�E; ðB1Þ

where α ≈ ð1 − ρÞ=2. In the absence of the Raman non-
linearity (fR¼0), Eq. (B1) is fully analogous to the Lugiato-
Lefever equation of spatially diffractive Kerr cavities [10].
Because the standard derivation of Eq. (B1) assumes

δ0 ≪ 1 [63], it is not particularly surprising that the
equation cannot describe the mixed states involving several
adjacent resonances with δ0 ≈ 2π (see also the discussion
on cw solutions in Appendix C). However, as shown in
Fig. 1(e), we generically find that the individual nonlinear
states (CSs, patterns) that make up the mixed states are
quite well reproduced by Eq. (B1), provided that the cavity

detuning δ0 is quoted relative to the appropriate resonance
(and that the cavity has high finesse so as to ensure that the
intracavity field evolves only slightly over one round-trip).
This result is somewhat surprising, as it demonstrates the
ability of the mean-field Eq. (B1) to accurately predict the
characteristics of CSs even at very large detunings, δ0 ≫ 1.
In this context, we emphasize that, although the CS
branches shown in Fig. 1(a) are obtained by applying
an iterative Newton-Raphson algorithm [35] on Eq. (B1),
full simulations of the Ikeda map predict similar ranges of
CS existence (with discrepancies arising mostly from the
finite finesse).
Finally, we note briefly that Kartashov et al. have very

recently proposed a generalized LLE [90], where the driving
term is localized around a point rather than distributed
around the whole ring resonator [as in Eq. (B1)].
Furthermore, Conforti and Biancalana have proposed a
set of coupled LLEs to describe interactions between
adjacent cavity modes [91]. Similarly to the Ikeda map,
both of these approaches appear to allow for the full
description of coexisting nonlinear states.

APPENDIX C: cw STEADY-STATE SOLUTIONS

The cw [∂Emðz; τÞ=∂τ ¼ 0] steady-state [Emþ1ðz¼0Þ¼
Emðz¼0Þ] solutions of the Ikeda map [Eqs. (1) and (2)]
satisfy the familiar Airy equation of a nonlinear Fabry-
Pérot resonator,

P ¼ θPin

ð1 − ffiffiffi
ρ

p Þ2½1þ F sin2ðδ0−γLP
2

Þ� ; ðC1Þ

where P ¼ jEmðz ¼ 0Þj2 and Pin ¼ jEinj2 correspond to
power levels of the intracavity and the driving fields,
respectively, and F ¼ 4

ffiffiffi
ρ

p
=ð1 − ffiffiffi

ρ
p Þ2. The solutions of

Eq. (C1) describe the periodically repeating, tilted cavity
resonances,whose peaks are nonlinearly displaced byϕNL¼
γLPmax, where Pmax¼θPin=ð1− ffiffiffi

ρ
p Þ1=2≈θPinF 2=π2 is

the peak intracavity power. When the maximum phase
displacement ϕNL is larger than the resonance width
Δϕ ¼ 2π=F , the cw response becomes multivalued and
exhibits the well-known hysteresis of dispersive optical
bistability. In the more extreme situation, where ϕNL > 2π
[as in Fig. 1(a)], adjacent resonances actually overlap. In
addition to bistability associatedwith individual resonances,
such a large nonlinear tilt can give rise to regions of cw
tristability, i.e., regions where the system has three homo-
geneous equilibrium points that are stable against cw
perturbations [61].
In the mean-field limit, where the Kerr cavity dynamics

are described by Eq. (B1), the cw steady-state solutions
satisfy the well-known cubic polynomial:

θPin ¼ ðγLÞ2P3 − 2δ0γLP2 þ ðα2 þ δ20ÞP: ðC2Þ
In contrast to Eq. (C1), the solutions of Eq. (C2) describe a
single nonlinearly tilted Lorentzian resonance. To illustrate
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the difference, in Fig. 6 we compare the cw solutions
obtained from the two different models (parameters as in
Fig. 1). As can be seen, the cw solutions obtained from
Eq. (C2) (black dashed lines) agree very well with a single
cycle of the periodically repeating resonances predicted
by Eq. (C1) (gray solid curves), but decay to zero as
δ0 → �∞. This should make clear why the mean-field
Eq. (B1) is unable to describe mixed states consisting of
structures associated with adjacent resonances.
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