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Measuring Entropy and Short-Range Correlations in the Two-Dimensional Hubbard Model
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We measure entropy and short-range correlations of ultracold fermionic atoms in an optical lattice for a
range of interaction strengths, temperatures, and fillings. In particular, we extract the mutual information
between a single lattice site and the rest of the system from a comparison between the reduced density
matrix of a single lattice site and the thermodynamic entropy. Moreover, we determine the single-particle
density matrix between nearest neighbors from thermodynamic observables and show that even in a
strongly interacting Mott insulator fermions are significantly delocalized over short distances in the lattice.
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Quantum mechanical correlations between particles give
rise to collective behavior beyond intuitive imagination.
Numerous classes of many-body states whose properties
occur as result of quantum correlations are known to exist,
such as Bose-Einstein condensates, Mott insulators, quan-
tum magnets, and superconductors. A general feature of a
correlated many-body system on a lattice is a strong
correlation between a single lattice site and its surrounding
environment. These correlations induce the sensitivity and
vulnerability of a many-body state to external perturbations
since even a very localized perturbation can destroy the
nonlocal correlations.

We explore the two-dimensional Hubbard model of spin-
1/2 fermionic atoms in an optical lattice. The Hubbard
model considers the two elementary processes of tunneling
between neighboring lattice sites with amplitude 7 and on-
site interaction between two fermions of opposite spin with
strength U. In a single-band approximation the Hubbard
Hamiltonian reads

H= —tz ehejs+ Uzﬁuﬁn- (1)
(i.j).0 ‘

1

Here, ¢;, (@,Tg) denotes the annihilation (creation) operator
of a fermion on lattice site i in spin state 6 = {7, | }, the
bracket (,) denotes the sum over nearest neighbors, and
i, = éjgém is the number operator. A Mott insulator forms
at half filling and strong repulsion, i.e., for n = (f;;) +
(f;;) =1, and U>1t, kgT. It is characterized by an
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occupation of one particle per lattice site and an energy
gap for the creation of particle-hole excitations of order U
[1]. In contrast, for weak interactions and/or low lattice
fillings, the fermions delocalize into Bloch waves and
constitute a metallic state with finite charge compressibility.

Recently, antiferromagnetic correlations in the Hubbard
model have been studied in several experiments [2—8];
however, access to different correlation functions sheds
light on other properties of the Hubbard model, such as the
charge degree of freedom. In this work, we measure both the
mutual information between a single lattice site and its
environment and the single-particle density matrix between
nearest neighbors Zﬂ(ézaéi +1.0)- The mutual information
measures the amount of correlation between different
subsystems of an optical lattice and has been measured
with bosonic atoms [9]. In contrast, the single-particle
density matrix is notoriously difficult to measure. In weakly
interacting Bose gases, a measurement has been facilitated
by interference experiments after releasing the particles
from a trap [10]. However, in strongly correlated ensembles,
interaction effects would severely challenge the interpreta-
tion of similar experiments. Our novel approach to meas-
uring the single-particle density matrix is different: even
though the correlations are of microscopic origin, they are
macroscopically manifest in the thermodynamic observ-
ables of the system. Reversing this argument, the correla-
tions can be determined from precise thermodynamical
measurements. In the particular case of the single-particle
density matrix, the corresponding thermodynamic quantity
is the kinetic energy. The measurement of kinetic energy
requires knowledge of both pressure and entropy, which we
determine from the density profile recorded as a function of
chemical potential. Previous measurements of the pressure
and/or entropy in cold gases have focused on continuous
(i.e., nonlattice) systems for noninteracting [11] and
strongly interacting [ 12—17] Fermi gases. In a spin-polarized
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gas in an optical lattice, the entropy has been measured site
resolved in the atomic limit, i.e., disregarding fluctuations
from tunneling [18]. Our measurements extend beyond this
by providing a spatially (and thus filling-)resolved detection
of the entropy without the zero-tunneling approximation.
In our experiment, we prepare a spin-balanced quantum
degenerate mixture of the two lowest hyperfine states
|F=9/2,mp=-9/2) and |F = 9/2, mp = =7/2) of fer-
mionic “°K atoms [19,20]. We load the quantum gas into an
anisotropic, three-dimensional optical lattice in which tun-
neling is suppressed along the vertical direction. Hence, the
dynamics is restricted to two-dimensional planes within
which we choose a lattice depth of 5.2(1)E,. <V,, <

rec —

6.6(1)E,., where E,. = h*z*/(2ma®) denotes the recoil
energy, a = 532 nm is the lattice period, and m is the atomic
mass. The Hubbard interaction parameter U is controlled by
utilizing a Feshbach resonance near 202 G, which provides us
with access to the parameter range from weak to strong
interactions, 0 < U/t < 20. The temperature of the gas is
adjusted by heating due to a hold time in the optical lattice
potential or periodic modulation of the trapping potential
followed by a thermalization time. Thereby, we prepare
equilibrium systems with well-defined parameters ¢, U,
and kpT. By combining radio-frequency spectroscopy and
absorption imaging, we simultaneously detect the in
situ density distributions of singly occupied lattice sites
(“singles”), ng = (ft;s — ft;471; ), and doubly occupied lattice
sites (“doubles™), n, = (f1;471; ), in asingle two-dimensional
layer of the optical lattice. Our technique gives direct access to
the density distribution n(u) as a function of the chemical
potential u. We perform thermometry by fitting the measured
density profile n(u) with numerical linked cluster expansion
(NLCE) calculations of the two-dimensional Hubbard model
[21] and the ideal (U = 0) Fermi gas on a square lattice.

To access the thermodynamics of the Hubbard model, we
first determine the pressure from the measured density
profile n(u) [22] by employing the Gibbs-Duhem relation
SdT — AdP + Ndu = 0, where S denotes the entropy, A
the area, P the pressure, and N the total particle number.
Expressing all extensive quantities in units per lattice site,
pressure and density are related to each other in thermal
equilibrium and at constant temperature by

P(uT) =% / " T)du. @)

In order to limit the accumulation of technical noise in the
numerical integration of the experimental data, we choose a
lower bound of the integration region y,y;, corresponding to
an average lattice site occupation of n(uy;,) = 0.01. The
resulting systematic uncertainty of the pressure is compa-
rable to or below the statistical uncertainty of our data. In
Fig. 1, we show the measured pressure as a function of the
chemical potential x [Fig. 1(a)] and as a function of n
[Fig. 1(b)]. We find that, for low filling, experimentally
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FIG. 1. Pressure as a function of interaction strength and
temperature. (a) Pressure versus chemical potential for different
interaction strengths and temperatures. The uncertainties of the
pressure and the chemical potential are smaller or equal to the
marker size. (b) Pressure versus filling for the same interactions
and the same temperatures as in (a). Horizontal error bars display
the standard error obtained from averaging the density data over
regions of constant chemical potential. The solid lines in (a) and
(b) are the predictions from NLCE data [21] with the exception of
the purple solid line, which represents the ideal Fermi gas on a
lattice; the black, dashed line in (b) is the 7 = O prediction of the
free Fermi gas using the effective mass at the bottom of the lowest
band. (c) Pressure at half filling n = 1 versus interaction strength.
The horizontal error bars display the systematic uncertainties of
U/t, the vertical error bars indicate the uncertainty of determining
half filling from the density profiles n(u). The dash-dotted line is
the infinite-U and zero-temperature prediction P = U/(2a?).

determined pressures are nearly independent of interaction
strength and agree well with the theoretical prediction of
the free Fermi gas. We attribute this behavior to the
suppression of interaction effects at low filling and
the nearly harmonic dispersion relation at the bottom of
the band. However, for n = 0.5, we observe deviations from
the free Fermi gas behavior. For weak interactions,
U/t <3, the pressure is smaller than that of the free
Fermi gas since for n = 0.5 the particles experience the
nonharmonic dispersion, which affects the pressure versus
density relation. For strong interactions, U/t = 8, the
pressure increases over that of the free Fermi gas and, in
particular, develops a near-vertical slope at half filling when
the lattice gas enters into a Mott insulator. This behavior is
associated with the opening of the charge gap of the Mott
insulator, and one can understand the pressure at half filling
in the limit of zero temperature and infinite interactions by

considering the internal energy E = (H) = 0, which leads
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to P = U/(2a*). We plot this relation in Fig. 1(c) and find
asymptotic agreement with our data.

We next determine the thermodynamic entropy per site s
from the measured pressure at constant chemical potential:

s—azd—P
- dr ’

p=const

(3)

In order to evaluate the entropy reliably, we take data sets
n(u) very finely spaced in temperature increments of
kg AT ~ 0.2¢. For each data set we determine the pressure
from the recorded density profile n(x) and then perform a
numerical derivative with respect to temperature at a fixed
chemical potential. In order to suppress technical noise
entering the numerical derivative, we interpolate the data in
the temperature interval [kzT —t,kgT + t] by a second-
order polynomial and calculate the slope of the fitted
polynomial at temperature 7. A second-order polynomial
is chosen as a minimal model to account for a nonconstant
heat capacity and at the same time to minimize the number
of fit parameters to yield a stable fit of the data. In Fig. 2 we
show a color map of the measured entropy per site as a
function of both temperature and chemical potential for
three different interaction strengths, U/t = 2.4, 8.2, 12. For
the weakest interaction shown, we do not observe a Mott
insulator in the density profiles since the charge gap is

washed out by the comparatively large kinetic energy at
half filling. As a result, we observe the entropy per site to
peak at half filling for all temperatures [Fig. 2(a)]. This is in
agreement with the fact that for weak interactions the
largest number of microstates is available at half filling. For
strong interactions, U/t Z 8, and low temperatures, a Mott
insulator forms at half filling, 4 = U/2, surrounded by
metallic phases at higher and lower chemical potential.
We observe a nonmonotonic variation of entropy versus
chemical potential with a local minimum at y — U/2 =0
signaling that, at constant temperature, entropy is smaller in
the gapped phase and higher in the thermally connected
gapless phase [Figs. 2(b) and 2(c)]. By comparison of
Figs. 2(b) and 2(c), we also show that for stronger
interactions, i.e., a larger gap, this effect extends to higher
temperatures, as expected. We attribute the deviations
between experimental and NLCE data for the lowest
temperatures to the second-order polynomial fitting rou-
tine, which we confirm by analyzing NLCE data with the
same routine as the experimental data and comparing to the
theoretically computed entropies.

We now turn our attention to the comparison between the
thermodynamic and the local entropy which quantifies the
amount of correlations between a single lattice site and its
environment. If one partitions a system into two subsys-
tems A and B, the amount of correlations between the two
subsystems can be quantified by the mutual information
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FIG. 2. Entropy per site versus chemical potential and temperature for different interaction strengths. The top row shows in color code
the complete entropy data set, and the bottom row shows entropy data at selected temperatures together with the corresponding NLCE
data (solid lines). The dotted horizontal line marks the value of log(2). For weak interactions (a) no Mott insulator forms and the entropy
per site peaks at half filling (indicated by vertical dashed lines) at all temperatures explored. For intermediate (b) and strong
(c) interactions at low temperature, one observes a local minimum of the entropy per site owing to the charge excitation gap of the Mott
insulator. Horizontal errors are smaller than the marker size. The vertical error bars display the fit error of the derivative of the
polynomial fit to the pressure data versus temperature. Systematic uncertainties of the entropy arising from the chosen polynomial fitting
routine reach for the lowest temperatures presented values up to 0.1kp.
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I =84+ Sg—Ssp, where Sy = —kgTr[pxlog(px)]
denotes the entropy of the reduced density matrix py of
subsystem X = {A, B}, and S, denotes the entropy of the
full system. In the following, we consider the subsystem A
to be a single lattice site, and subsystem B to be the
thermodynamic bulk excluding the single site A. The
entropy s = s, of a single lattice site is directly determined
from the single-site reduced density matrix by sy, =
—kgy_;pilog(p;). Here, i = {1], 1, ],0} labels the prob-
abilities p; for a site to be occupied with either two
particles, a spin-up particle, a spin-down particle, or no
particles, respectively. These probabilities are directly
determined from the measured singles and doubles
density distributions as pyy = np, py = p, = ng, and
po=1-2ng—np [23]. The entropy of the entire
system with L > 1 sites is S,p = Ls, where s is the
measured thermodynamic entropy per site and, likewise,
Sp = (L — 1)s. Hence, we obtain the mutual information as
I = sy — s, which we plot in Fig. 3 for various fillings,
temperatures, and interaction strengths. For low temper-
atures, we find a mutual information greater than zero,
which indicates correlations between the single lattice
site and its environment. We observe that for low filling
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FIG. 3. Mutual information between a single lattice site and its

surrounding environment for different fillings, interactions, and
temperatures. (a) Data used to extract the mutual information, for
the exemplary case of U/t = 8.2(5) and kzT/t = 1.09(5). The
mutual information is given by the difference between the single-
site entropy s, and the thermodynamic entropy per site s. Mutual
information for n =0.20(2) (b), n =0.67(2) (c), and n =
1.00(2) (d). The lines are theory predictions extracted from
NLCE data (solid lines) and for the noninteracting Fermi gas on a
lattice (dash-dotted lines). The color code is the same for all plots.
Error bars display the statistical measurement uncertainty.

[Fig. 3(b)], for which the effects of interactions are
generally weak, the mutual information is mostly indepen-
dent of the interaction strength. In contrast, at half filling
[Fig. 3(d)] we observe a larger mutual information for weak
interactions than for strong interactions. For high temper-
atures, the mutual information approaches zero, indicating
the absence of any correlations.

In order to gain further insight into the nature of the
correlations between a single site and its environment, we
study the first-order correlation function G()(1)=

ZG@jﬁ&iH,a) between neighboring lattice sites i and
i+ 1. The first-order correlation function, normalized
to the density G (0) = n, measures the degree of
delocalization of the fermions and has not been measured
in optical-lattice experiments before. In the tight-binding
approximation, which is well fulfilled in our optical lattice,
G (1) is available through a measurement of the kinetic
energy of site i, £y ; = —tzm(éT Cio)Oizjin = —4:GM(1).

ioc —jl. 1 —
We deduce the kinetic energy from spatially resolved
measurements of the total energy of the lattice gas, combin-
ing the measurements of entropy, pressure, and density, and

the interaction energy given by Unp:
E, = (sT + un — Pa*) — Unp. (4)

In Fig. 4, we plot the magnitude of the kinetic energy for
the different interactions investigated. For weak interactions
the magnitude of the kinetic energy peaks at half filling,
similar to the mutual information (Fig. 3). Hence, we
identify delocalization as the mechanism to provide the
correlation between a single lattice site and the environment
for the lowest interaction. Conversely, for stronger inter-
actions the shape of the kinetic-energy curves changes
qualitatively as the peak shifts to a lower filling because
of the emerging Mott gap. Athalf filling the magnitude of the
kinetic energy decreases with increasing interaction
strength, signaling the crossover towards a localized,
Mott-insulating state.

The measured nearest-neighbor correlations provide a first
glimpse at the single-particle density matrix G (|i—j|)=
S (el e o) in the lattice. With the measurements shown
here, we can determine the single-particle density matrix
for the values |i — j| = 0, 1. Concentrating on the case of
half filling (even though the discussion can be generalized
to any filling), we find G(!)(0) = 1, and in the case of the
metallic phase (U/t = 2.4), G1)(1) = 0.29(2). This drop
is in line with the expected thermal de Broglie wavelength,
which at a temperature of kg7 =1t is approximately
Aqg = a. For higher temperature, the spatial correlations
drop correspondingly faster. In contrast, for a Mott insu-
lator (U/t = 12), the drop is from G (0) = 1to GV)(1) =
0.11(5) even though the temperature is even lower. This
indicates localization of the fermions with increasing
interaction strength. We note, however, that even for the
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FIG. 4. Kinetic energy versus chemical potential and temperature. The top row shows in color code the complete kinetic energy data
set, and the bottom row shows cuts at selected temperatures together with the corresponding NLCE theory (solid lines). While the atoms
are maximally delocalized for weak interactions, for strong interactions the delocalization is only reduced, but not fully suppressed.
Error bars display the statistical measurement uncertainty; see Appendix.

strongest interaction explored by our experiment, the atoms
are not fully localized [24] even though the compressibility
of the state is almost zero [20].

In conclusion, we measure short-range correlations in the
two-dimensional Hubbard model and show that at low
temperatures a single lattice site develops correlations with
the surrounding environment. In particular, we find that
even for strongly interacting Mott insulators with a vanish-
ing compressibility the fermions are still significantly
delocalized over neighboring lattice sites. We note that
the technique we present here determines the full thermo-
dynamic entropy, including the entropy in the spin sector
without the need for spin-resolved measurements. Hence, it
could find use in future attempts to cool strongly correlated
quantum gases by reshuffling the entropy [8,25,26].

We thank A. Daley and C. Kollath for discussions. The
work has been supported by DFG (SFB/TR 185), the
Alexander von Humboldt Stiftung, EPSRC, and ERC
(Grant No. 616082).

APPENDIX: ERROR ANALYSIS

Here, we specify the uncertainties of the measured
quantities and Hubbard parameters and provide details
about the error analysis of the derived thermodynamic
quantities.

The statistical uncertainties of the measured singles and
doubles density ng, are given by the standard error
resulting from averaging the recorded images over regions

of constant chemical potential with a bin size of
Ap = h x 100 Hz. The uncertainty of the total density n =
2(ng + np) is then obtained by adding the individual
uncertainties in quadrature. The systematic uncertainties
of the Hubbard parameters U and t are derived from the
calibration uncertainties of the lattice depth along the three
directions and the uncertainty in the parametrization of the
Feshbach resonance [20]. Statistical uncertainties of the
temperature 7 and the chemical potential pyr = U/2 at
half filling are obtained from simultaneously fitting the
recorded singles and doubles density profiles ngp(u) to
numerical simulations of the two-dimensional Hubbard
model [21] or the ideal (U = 0) Fermi gas on a square
lattice. The systematic error of uyp is negligible as the
maximum of the singles density ng(u) provides a model-
independent calibration of the half-filling point. The
extracted temperatures are confirmed within the statistical
uncertainties by fitting the low-filling regions of the density
profile to the ideal (U = 0) Fermi gas on a square lattice.

The statistical uncertainty of the pressure P(u) is
obtained by adding the individual statistical uncertainties
of the total density n(y) in quadrature. The systematic
uncertainty of the chemical potential axis is converted into
an additional systematic uncertainty of the pressure only in
Fig. 1(c), where the pressure at half filling is shown.

The statistical uncertainty of the entropy s(p) is obtained
from the fit errors of the second-order polynomial fit to the
pressure data P(T') for a given u. Systematic uncertainties of
the entropy originating from the chosen temperature interval
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Average values (a) and uncertainties (b) of the individual terms contributing to the magnitude of the kinetic energy |E; |- Note

that in the calculation of the error of the Kinetic energy AE; the term nAyu cancels with the pressure uncertainty A, P concerning the
uncertainty of the chemical potential. The term A, P denotes the pressure uncertainty due to the uncertainty of the density n. The solid
lines show the theoretical expectation of the individual terms obtained from NLCE data of the two-dimensional Hubbard model [21].

and the order of the polynomial fit function have been
estimated by applying the same routine to numerical density
data of the two-dimensional Hubbard model [21]. In the
explored temperature regime, we obtain a maximum deviation
between the theoretical value of the entropy and the value
obtained with our routine of 0.1ky. The statistical uncertainty
of the single-site entropy s, (u) is directly obtained from the
uncertainties of the singles and doubles densities ng p.

In the calculation of the uncertainty of the kinetic
energy [see Eq. (4)], we take into account the correlation
between the terms un and Pa? regarding a variation of the
chemical potential. This can be seen by calculating the
total differential of the kinetic energy where the two terms
ndy and —dPa* = —ndu cancel. Therefore, the uncertainty
of the kinetic energy does not depend on the uncertainty
of the chemical potential as long as the density n does not
vary significantly within the chemical potential error inter-
val. For clarity, we plot in Fig. 5 the average values and
corresponding uncertainties of the individual terms contrib-
uting to the average value and uncertainty of the kinetic
energy for the representative parameter set U/t = 8.2(5)
and kgT/t = 0.68(2).
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