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A central goal within quantum optics is to realize efficient, controlled interactions between photons and
atomic media. A fundamental limit in nearly all applications based on such systems arises from
spontaneous emission, in which photons are absorbed by atoms and then rescattered into undesired
channels. In typical theoretical treatments of atomic ensembles, it is assumed that this rescattering occurs
independently, and at a rate given by a single isolated atom, which in turn gives rise to standard limits of
fidelity in applications such as quantum memories for light or photonic quantum gates. However, this
assumption can in fact be dramatically violated. In particular, it has long been known that spontaneous
emission of a collective atomic excitation can be significantly suppressed through strong interference in
emission between atoms. While this concept of “subradiance” is not new, thus far the techniques to exploit
the effect have not been well understood. In this work, we provide a comprehensive treatment of this
problem. First, we show that in ordered atomic arrays in free space, subradiant states acquire an elegant
interpretation in terms of optical modes that are guided by the array, which only emit due to scattering from
the ends of the finite system. We also go beyond the typically studied regime of a single atomic excitation
and elucidate the properties of subradiant states in the many-excitation limit. Finally, we introduce the new
concept of “selective radiance.” Whereas subradiant states experience a reduced coupling to all optical
modes, selectively radiant states are tailored to simultaneously radiate efficiently into a desired channel
while scattering into undesired channels is suppressed, thus enabling an enhanced atom-light interface.
We show that these states naturally appear in chains of atoms coupled to nanophotonic structures, and we
analyze the performance of photon storage exploiting such states. We find numerically that selectively
radiant states allow for a photon storage error that scales exponentially better with the number of atoms than
previously known bounds.
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I. INTRODUCTION

The ability to achieve controlled, deterministic inter-
actions between photons and atomic media constitutes an
important resource in applications ranging from quantum
information processing to metrology. As single photons and
atoms typically do not interact efficiently, a common
approach has been to employ atomic ensembles, where
the interaction probability with a given optical mode is
enhanced via a large number of atoms [1]. Atomic ensembles
have enabled a number of spectacular proof-of-principle

demonstrations of quantum protocols, such as coherent
photon storage and quantum memories for light [1–3],
entanglement generation between light and atomic spins
[4], nonlinear interactions between photons at the level of
individual quanta [5–8], and quantum-enhanced metrology
[9–11]. It has also been proposed that such systems could
lead to exoticmany-bodyphysics, such as strongly correlated
photon “gases” [12].
A fundamental limitation in nearly all such possibilities

arises from spontaneous emission, wherein photons in a
desired optical mode (e.g., a Gaussian input beam) that
facilitate the process are absorbed by the atoms and then
rescattered into other inaccessible modes or channels.
Within the context of quantum light-matter interfaces based
on atomic ensembles, it is typically assumed that sponta-
neous emission occurs independently, and at the same rate
given by a single, isolated atom. In that case, the infidelity
or error arising from spontaneous emission for a desired
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process typically decreases with the “optical depth” D of
the medium as 1=D or slower. The optical depth is given by
D ∼ ðλ20=AeffÞN, where N is the atom number and λ20=Aeff
represents the interaction probability between a single atom
and a single photon in the preferred optical mode (λ0 being
the wavelength associated with the atomic transition and
Aeff the beam area). Intuitively, the 1=D (or 1=N) scaling
directly reflects the fact that a given atom is assumed to
succeed or fail independently, and that the success is
enhanced by the number of atoms involved.
Technically, however, the assumption of independent

emission cannot strictly be correct. In particular, as scattering
is a wave phenomenon, the emission into other directions
may exhibit collective interference. In fact, the possibility
that an atomic ensemble can experience a significantly
enhanced radiation rate via interference (“superradiance”)
was already pointed out in the seminal work of Dicke [13],
and has been thoroughly studied for decades [14]. The
complementary phenomenon of subradiance, in which
photon emission becomes highly suppressed, has also been
theoretically studied [15–25], and even observed in recent
experiments [26–28]. Clearly, the possibility to enhance
atom-light interfaces by suppressing unwanted emission is a
tantalizing one, and has started to gain theoretical interest
[18]. However, finding protocols where subradiance clearly
improves the scaling of errors remains an elusive task, in part
because techniques to efficiently address subradiant states
remain poorly developed.
In this paper, we provide a comprehensive description of

subradiance in the case where atoms form ordered arrays.
We also present an explicit construction of a protocol
exploiting suppressed emission into undesired channels,
which enables an exponential improvement in infidelity as
a function of atom number over previously known bounds.
Our main results are summarized as follows.
(1) We first consider infinite 1D or 2D arrays of atoms,

which consist of an electronic ground state jgi and excited
state jei that couple to light through a dipole transition.
Examining the case of a single collective excitation, we
find that a set of perfectly subradiant states with zero decay
rate emerges, which can be interpreted as optical “guided
modes.” Specifically, in exact analogy to guided modes of
conventional optical fibers or photonic structures, the spin-
wave excitations that constitute these subradiant states have
associated wave vectors that are mismatched from free-
space radiation fields, which consequently prevents the
decay of energy from these states.
(2) In the case of a finite array, a set of single-excitation

collective atomic modes can exhibit decay rates which are
polynomially suppressed with atom number N. The finite
decay rate can be understood as emerging from scattering
of guided excitations into free space through the boundaries
of the array.
(3) We go beyond the most frequently studied case of

subradiance within a single-excitation manifold and

investigate the nature of multiexcitation subradiant modes.
Specifically, we show that subradiance is largely destroyed
when excitations spatially overlap, as the scattering of two
excitations generates many wave vectors that couple to
free-space radiation due to the “hard core” nature of spins.
In 1D arrays, we find that a “fermionic” ansatz works well
to describe multiexcitation subradiant modes, where these
multiexcitation states are constructed from antisymmetric
combinations of single-excitation subradiant modes in
order to enforce a spatial repulsion (i.e., “Pauli exclusion”)
of excitations. These states preserve the same polynomial
suppression of decay rate with atom number for any low
density of excitations.
(4) Having elucidated the salient properties of subradiant

states in free-space atomic arrays, we introduce the new
concept of “selectively radiant” states. In particular, while
subradiant states couple weakly to all electromagnetic
modes, to realize an efficient atom-light interface it is
instead desirable to construct states that are simultaneously
superradiant to a preferred photonic mode and subradiant to
all the others. We show that one natural way to achieve such
a scenario is by coupling an atomic array to the guided
modes of a nanophotonic structure, such as an optical
nanofiber [29–33]. As the wave vectors of the guided
modes of the structure itself are mismatched from free-
space radiation, it becomes possible for a set of atomic spin
waves to efficiently couple to these guided modes, while
retaining a suppressed coupling to free-space modes. We
analyze the specific protocol of photon storage [3,34] using
an atomic array coupled to a nanofiber [35,36], and find
numerically a storage infidelity that is exponentially small
in the atom number or optical depth, ∼ expð−DÞ. This
scaling represents an exponential improvement over the
best previously established error bound of ∼1=D [37,38],
derived assuming that emission into undesired modes is
independent.
This article is structured as follows. In Sec. II, we begin

by introducing a theoretical framework for atom-light
interactions that does not invoke the typical assumption
of independent atomic emission, and instead formally
and exactly describes collective emission and interactions
of atoms via photon fields. In Sec. III, we apply this
formalism to investigate single- and multiexcitation sub-
radiant states in atomic arrays, with the main results
having already been summarized above. In Sec. IV, we
present the idea of selectively radiant states and analyze
the efficiency of a quantum memory consisting of a
chain of atoms close to a nanofiber. Finally, in Sec. V,
we discuss possible implementations and other photonic
platforms for observing subradiant physics. We provide an
outlook in Sec. VI.

II. SPIN MODEL

Here, we introduce a theoretical formalism to describe
the fully quantum interaction between atoms and radiation
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fields, which is valid in the presence of any linear, isotropic,
dielectric media. This rather general formalism enables us
to equally treat the case of atomic arrays in free space
(Sec. III), or interacting via the guided modes of an optical
fiber (Sec. IV). In particular, we present a model in which the
field is integrated out and the dynamics of the atomic internal
(“spin”) degrees of freedom follow a master equation that
depends only on atomic operators. Moreover, once the time
evolution of the atoms is solved for, one can recover the field
at any point in space by means of a generalized input-output
equation.
The first step to describe how atoms couple to radiation

is to quantize the electromagnetic field. The traditional
approach involves explicitly finding a normal mode decom-
position of the fields and associating bosonic annihilation
and creation operators to each mode. This is well suited to
cases where a limited number of modes are assumed to be
relevant (such as a high-Q cavity). In our case, though, as
we want to exactly capture collective effects in spontaneous
emission involving all modes, such an approach becomes
unwieldy (as in free space) [14,39] or impossible, such as
for complex dielectric structures. We require a more general
technique that allows us to treat these situations. Such a
framework was developed by Welsch and co-workers
[40–43], and is based on the classical electromagnetic
Green’s function (or Green’s tensor).
The Green’s function Gðr; r0;ωÞ is the fundamental

solution of the electromagnetic wave equation and
obeys [44]:

∇ × ∇ ×Gðr; r0;ωÞ − ω2

c2
ϵðr;ωÞGðr; r0;ωÞ ¼ δðr − r0Þ1;

ð1Þ

where ϵðr;ωÞ is the position-dependent and possibly
frequency-dependent relative permittivity of the medium.
The Green’s function physically describes the field at
point r due to a normalized, oscillating dipole at r0. Gαβ is
a tensor quantity (fα; βg ¼ fx; y; zg), as α and β refer to
the possible orientations of the field and dipole, respec-
tively. Here, we deal with cases where the Green’s
function can be solved analytically, but for more complex
structures it is also possible to obtain it numerically
[45–47]. In the following, we introduce a prescription
of how to write down an equation that relates the field and
the atomic coherence operators, built upon the intuition
provided by classical physics. For a more formal deriva-
tion of the field quantization, we refer the reader to
Refs. [40–43,48].
In the frequency domain, the analogous classical prob-

lem that one would like to solve is to find the total field
Eðr;ωÞ at point r, given a known input fieldEpðr;ωÞ and a
collection of N polarizable dipoles pjðωÞ located at rj,
which are excited by the fields and rescatter light them-
selves. The values of pjðωÞ are not known a priori, since

they depend on the polarizability and the total field at rj
[solving for pjðωÞ is discussed in following steps]. As the
field at any given point in space is just the sumof the external
or driving field and the field rescattered by the dipoles, we
find Eðr;ωÞ ¼ Epðr;ωÞ þ μ0ω

2
P

N
j¼1Gðr; rj;ωÞ · pjðωÞ,

where μ0 is the vacuum permeability.
The question is how to translate this classical equation

into an equation for quantum operators. In fact, the
quantum nature of the field is inherited from the quantum
properties (e.g., correlations and fluctuations) of the
sources, while the field propagation remains the same as
both the quantum and classical fields obey Maxwell’s
equations. Therefore, the above equation is valid for
quantum fields, but replacing pjðωÞ by the dipole moment
operator p̂jðωÞ, and Eðr;ωÞ by the field operator Êþðr;ωÞ,
where the superscript refers to the positive-frequency
component. In the case that the quantum dipoles are atoms,
one can make a further approximation, taking advantage
of the fact that an atom only has a significant optical
response in a narrow bandwidth around its resonance
frequency ω0. Thus, one is able to approximate Gðr; rj;ωÞ
by Gðr; rj;ω0Þ, which allows the Fourier transform of the
equation to become local in time. Then, one arrives at the
generalized input-output equation in the time domain,
which reads [41,49,50]

ÊþðrÞ ¼ Êþ
p ðrÞ þ μ0ω

2
0

XN
j¼1

Gðr; rj;ω0Þ ·℘ σ̂jge: ð2Þ

To obtain the above expression, we make use of the fact that
p̂j ¼ ℘�σ̂jeg þ℘σ̂jge, where σ̂jeg ¼ jejihgjj is the atomic
coherence operator between the ground and excited states
of atom j and℘ is the dipole matrix element associated with
that transition. This equation is valid in the Markovian
regime, where the dispersion in the Green’s function can
be neglected and the replacement of Gðr; rj;ωÞ by
Gðr; rj;ω0Þ is well founded. For this to be true, two
conditions have to be fulfilled. First, the retardation arising
from the physical distance between atoms can be ignored
[51,52]. For atoms in free space, this means that they should
sit much closer than the length of a spontaneously emitted
photon (≲1 m). Second, the electromagnetic environment
itself should not have very narrow-bandwidth features
(e.g., one must avoid the strong coupling regime of cavity
QED [53]).
What remains now is to solve for the dipoles (in this case,

σ̂ge) themselves. We do so by writing down Heisenberg-
Langevin equations for the atomic internal degrees of
freedom, starting from the full atom-field Hamiltonian.
Intuitively, the atomic spin σ̂ieg will be driven by the
quantum field at position ri. However, as the field itself
depends only on other atoms via the input-output equation,
the atomic dynamics can be fully derived from an equivalent
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master equation of the form _̂ρA ¼ −ði=ℏÞ½H; ρ̂A� þ L½ρ̂A�
[54], where ρ̂A is the atomic density matrix, and the
Hamiltonian and Lindblad operators read

H ¼ ℏω0

XN
i¼1

σ̂iee þ ℏ
XN
i;j¼1

Jijσ̂iegσ̂
j
ge; ð3aÞ

L½ρ̂A� ¼
XN
i;j¼1

Γij

2
ð2σ̂jgeρ̂Aσ̂ieg − σ̂iegσ̂

j
geρ̂A − ρ̂Aσ̂

i
egσ̂

j
geÞ: ð3bÞ

In the above expressions, the rates for coherent and dis-
sipative interactions between atoms i and j are, respectively,
given by

Jij ¼ −
μ0ω

2
0

ℏ
℘� · ReGðri; rj;ω0Þ ·℘; ð4aÞ

Γij ¼ 2μ0ω
2
0

ℏ
℘� · ImGðri; rj;ω0Þ ·℘; ð4bÞ

where the sign of Jij is taken to be opposite of that of
Refs. [40–43,47,48]. In the above Hamiltonian, we neglect
Casimir interactions between ground-state atoms (of the
form σ̂iggσ̂

j
gg), as their spatial decay is very fast (∼1=d6 in free

space, d being the interatomic distance) [43].
The dynamics under the master equation can analogously

be described in the quantum jump formalism of open
systems [55]. In this formalism, the atomic wave function
evolves deterministically under an effective non-Hermitian
Hamiltonian that reads H ¼ ℏω0

P
N
i¼1 σ̂

i
ee þHeff , with

Heff ¼ −μ0ω2
0

XN
i;j¼1

℘� ·Gðri; rj;ω0Þ ·℘ σ̂iegσ̂
j
ge; ð5Þ

along with stochastically applied “quantum jump” operators
to account for the population recycling term (σ̂jgeρ̂Aσ̂ieg) of
Eq. (3b). While Heff describes just the interaction of atoms
through emission and reabsorption of photons, one can
directly add other terms to the Hamiltonian to account for
external driving fields.
To conclude, we point out that although the full

formalism above has only been rigorously and generally
developed in recent years, many aspects have long been
used within atomic physics and quantum optics. For
example, for a single atom or other quantum emitter,
the spin model becomes trivial and yields just the total
spontaneous emission rate. Thus, the calculation of
enhancement of spontaneous emission near dielectric
structures is standardly reduced to the calculation of
the Green’s function [56–58]. Alternatively, such equa-
tions are often used to model the optical response of dense
three-dimensional atomic gases [59–63].

III. FREE SPACE: SUBRADIANT STATES

We now apply the spin model we describe in the previous
section to investigate the properties of subradiant states
associated with ordered atomic arrays in free space.
Recently, the peculiar linear optical properties of periodic
atomic arrays have started to attract interest [17–22,
24,25,64–66]. This includes the identification of guided
modes supported by infinite arrays [22,23,65], and states
with very long lifetimes in finite arrays [17–22,24,25,64,66].
Here,weprovide a clear and intuitive connection between the
existence of guided modes in infinite arrays and subradiant
states in a finite system.We provide conditions for the lattice
constants in 1D and 2D that enable single-excitation guided
Bloch modes with zero decay rate to emerge, which are
decoupled from free-space radiation due to wave vector
mismatch. We then analyze a single excitation in a finite
lattice, and show how the guided modes acquire a nonzero
decay rate due to scattering into electromagnetic radiation at
the system boundaries. We also analyze the scaling of the
decay rates with system size and elucidate the spatial
structure of subradiant states. Finally, wego beyond previous
studies of single-excitation subradiance (where the atoms can
equivalently be treated as classical dipoles) to the rich physics
of the multiexcitation case. In particular, in one dimension,
we show that multiexcitation subradiant states exist for any
low density of excitations, and that their wave functions have
fermionic character.
The atoms are assumed to be tightly trapped, so that

we can treat the positions of the particles as classical
points rather than dynamical variables. In this situation,
we substitute in Eqs. (2)–(5) the free-space Green’s
tensor Gðri; rj;ω0Þ ¼ G0ðrij;ω0Þ, with rij ¼ ri − rj.
Here, G0ðr;ω0Þ is the solution to Eq. (1) when setting
ϵðr;ωÞ ¼ 1, and can be written as

G0ðr;ω0Þ ¼
eik0r

4πk20r
3

�
ðk20r2 þ ik0r − 1Þ1

þ ð−k20r2 − 3ik0rþ 3Þ r ⊗ r
r2

�
; ð6Þ

where r ¼ jrj and k0 ¼ 2π=λ0 ¼ ω0=c is the wave number
corresponding to the atomic transition energy. For a single
atom, evaluating Eq. (4b) simply reproduces the well-
known vacuum emission rate Γii ¼ Γ0, where Γ0¼ω3

0j℘j2=
3πℏϵ0c3. The single-atom energy shift Jii in Eq. (4) arising
from G0 formally yields a divergence and is set to zero in
what follows, as it should be incorporated into a renor-
malized resonance frequency ω0. In Sec. IV, the Green’s
function of a nanofiber is decomposed into a free space
and a scattered component,G ¼ G0 þGsc, whereGsc does
produce a finite, observable contribution to Jii.
For concreteness, we restrict ourselves to the following

lattice geometries: one-dimensional (1D) linear chains and
closed circular rings, two-dimensional (2D) square, and
three-dimensional (3D) cubic lattices. However, it should
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become clear that the underlying principles should be
general to other lattice structures as well. In the following,
the number of atoms and lattice constant are denoted by N
and d, respectively.

A. Infinite lattice (single excitation)

Let us consider first a perfectly ordered infinite array of
atoms. Despite the infinite lattice being unrealistic, it
provides insight into the problem thanks to its mathematical
simplicity. In this case, the system is perfectly translation-
ally invariant by any lattice vector displacement, and thus,
both atomic and electromagnetic eigenmodes must obey
Bloch’s theorem.
For a single excitation stored in the system, the eigen-

states of the effective atomic Hamiltonian of Eq. (5) are
spin waves, with well-defined quasimomentum k, which
can always be chosen to be within the first Brillouin zone.
For such states, whose creation operators can be written as
S†k ¼ N−1=2P

je
ik·rj σ̂jeg, the single excitation is delocalized

and shared in a coherent way among all the atoms.
Classically, these states are analogous to oscillating dipoles
where the phase of dipole j is given by eik·rj.
As the Bloch modes are eigenstates of the effective

Hamiltonian, they satisfy HeffS
†
kjgi⊗N ¼ ℏðJk − iΓk=2Þ

S†kjgi⊗N . Here, Jk and Γk are real quantities and can be
identified as the frequency shift of mode k (relative to the
bare atomic frequency ω0) and the decay rate, respectively.
One can readily show that, in terms of the single-atom
spontaneous emission rate Γ0, they are given by

Jk
Γ0

¼ −
3π

k0
℘̂� · Re ~G0ðkÞ · ℘̂; ð7aÞ

Γk

Γ0

¼ 6π

k0
℘̂� · Im ~G0ðkÞ · ℘̂; ð7bÞ

where ~G0ðkÞ ¼
P

je
−ik·rjG0ðrjÞ is the discrete Fourier

transform of the free-space Green’s tensor.
We now show that, when the atoms are placed at close

enough distances, dipole-dipole interactions can dramati-
cally modify the decay rates of collective states. As the
simplest case, let us consider an infinite one-dimensional
chain of atoms first, oriented along the ẑ direction. In that
case, the wave vector kz constitutes an index for the modes,
and one can consider the dispersion relation of frequency
ωðkzÞ ¼ ω0 þ Jkz versus kz. For a periodic structure,
regardless of the system details, one expects the dispersion
relation to exhibit general characteristics [see Fig. 1(a)].
First, and as mentioned before, kz is uniquely defined only
within the first Brillouin zone (jkzj ≤ π=d), and thus, it
suffices to plot the dispersion relation in that region.
Second, it is helpful to draw the “light line,” i.e., the
dispersion relation ω ¼ cjkzj corresponding to light propa-
gating in free space along the ẑ direction [dashed line of

Fig. 1(a)]. Physically, the light line is significant because it
separates states of very different character, as we now
describe.
To see this, let us consider the field generated by a spin-

wave excitation, which is given by Eq. (2) under the
replacement σ̂jge → eikzzj (it is sufficient to consider the
limit of classical dipoles for this argument). One can always
expand the field EðrÞ in terms of plane wave components,
EðrÞ ¼Pqz;q⊥Eqz;q⊥e

iqzzþiq⊥·r⊥ . The state is clearly of
Bloch’s form, and thus, only a discrete set of wave vectors
qz ¼ kz þ gz (gz being any reciprocal lattice vector) will
contribute. At the same time, the wave equation requires
that the axial and perpendicular components of the wave
vector satisfy ðqzÞ2 þ q⊥ · q⊥ ¼ ðω=cÞ2. Thus, one can
readily verify that a spin wave outside the light line
(jkzj > ω=c) has an associated electromagnetic field com-
posed of axial wave vectors jqzj > ω=c. This in turn
implies that q⊥ is imaginary, and the field is guided and

(a)
(b)

(c)

FIG. 1. (a) Generic dispersion relation of frequency ωðkzÞ
versus Bloch wave vector kz for single-excitation modes of an
infinite, one-dimensional chain. The Bloch vector kz is only
uniquely defined within the first Brillouin zone jkzj ≤ π=d. The
dashed black line is the light line, and corresponds to the
dispersion relation of light in vacuum propagating along the ẑ
direction; i.e., ω ¼ cjkzj. Atomic modes in the region enclosed
within the light line (shaded) are generally unguided and radiate
into free space. Outside the light line (jkzj > ω=c), the modes are
guided and subradiant, as the electromagnetic field is evanescent
in the directions transverse to the chain. The dispersion relation is
generally expected to be rather flat and centered around the bare
atomic resonance frequency ω0. (b) Collective frequency shifts
and (c) decay rates for an atomic chain along ẑ with lattice
constant d=λ0 ¼ 0.2, for parallel (blue) and transverse (red)
atomic polarization. Circles correspond to the results for a finite
system with N ¼ 50 atoms. The analytical expressions for the
infinite chain are denoted by solid lines and approximate well the
finite chain results, except for a small region close to the light
line. In the infinite lattice case, the modes with jkzj > ω0=c are
perfectly guided and the decay rate Γkz is exactly zero. The light
line (black dashed line) appears vertical over the very narrow
frequency ranges plotted here.
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decays evanescently away from the structure. Therefore,
these guided modes are decoupled from all optical modes
propagating in free space, and their inability to radiate away
energy leads to perfect subradiance (exactly zero decay
rate). Conversely, modes within the light line are generally
unguided and can radiate energy out to infinity.
The concepts we outline above regarding the separation of

the dispersion relation into guided and radiative regions are
actually quite general, and well known in the context of
periodically modulated dielectric waveguides (“photonic
crystals” [67]). An atomic chain might appear quite different
physically, but mathematically the same set of principles
apply. Furthermore, while it is difficult to prove independent
of lattice geometry and atomic level configuration, onewould
generally expect that for atoms any guided modes would
occur within a narrow bandwidth (on the order of the atomic
transition linewidthΓ0=2π ≲ 10 MHz) around the resonance
frequency (ω0=2π ∼ 300 THz), where the atoms have a
significant optical response. Thus, in Fig. 1(a), the band
structure appears rather flat. Then, a sufficient condition for
guidedmodes to exist in an atomic chain is essentially that the
light line intersects the edge of theBrillouin zone kz ¼ π=d at
a frequency ωðkzÞ greater than the atomic resonance. This
condition can be rewritten as a condition on the lattice
constant d < λ0=2 required to support guided modes.
Equipped with this general intuition, we now quantita-

tively investigate the dispersion relation for the 1D infinite
chain of two-level atoms with polarization parallel or
transverse to the array. The collective frequency shifts
are derived in greater detail in Appendix A, and read

J∥kz
Γ0

¼ −
3

2k30d
3
Re½Li3ðeiðk0þkzÞdÞ þ Li3ðeiðk0−kzÞdÞ

− ik0dLi2ðeiðk0þkzÞdÞ − ik0dLi2ðeiðk0−kzÞdÞ�; ð8aÞ

J⊥kz
Γ0

¼ 3

4k30d
3
Re½Li3ðeiðk0þkzÞdÞ þ Li3ðeiðk0−kzÞdÞ

− ik0dLi2ðeiðk0þkzÞdÞ − ik0dLi2ðeiðk0−kzÞdÞ
þ k20d

2Lnð1 − eiðk0þkzÞdÞ þ k20d
2Lnð1 − eiðk0−kzÞdÞ�;

ð8bÞ

where LinðxÞ is the polylogarithm of order n. These
expressions are plotted in Fig. 1(b) for the particular value
of d=λ0 ¼ 0.2. Here, the light line is indicated as before by
a dashed line, but since Γ0=ω0 ∼ 10−8, it appears essentially
as a vertical line.
As anticipated, we can see in this figure that the bands

occupy only a narrow bandwidth around the resonance
frequency, except close to the light line for transverse
polarization. The exact shape of the bands depends on the
value ofd=λ0 and the polarizationdirection, and, for instance,
the effective mass at the zone edge (jkzj ¼ π=d) is negative
(positive) for parallel (transverse) polarization. Exactly at

the light line the expression for J⊥kz (J
∥
kz
) becomes nonanalytic

and diverges (has a derivative that diverges).
The collective decay rates can also be analytically

derived (see Appendix A):

Γ∥
kz

Γ0

¼ 3π

2k0d

X
gz

jkzþgz j≤k0

�
1 −

ðkz þ gzÞ2
k20

�
; ð9aÞ

Γ⊥
kz

Γ0

¼ 3π

4k0d

X
gz

jkzþgz j≤k0

�
1þ ðkz þ gzÞ2

k20

�
: ð9bÞ

These summations run over reciprocal lattice vectors that
satisfy jgz þ kzj ≤ k0. That is, only the diffracted waves
enclosed within the light line will contribute to the decay
rate. When jkzj > k0, there are no values of gz satisfying the
above condition. Thus, the decay rates are zero and we
mathematically recover the result previously anticipated—
modes beyond the light line are perfectly guided without
radiative losses. The decay rates are plotted in Fig. 1(c). As
we can see from the expressions above, at the light line the
state can be subradiant or radiant depending on the
polarization direction. This results in a discontinuity at
the light line for transverse polarization.
A similar set of results can be obtained for a 2D array.

Considering a square lattice in the ŷ-ẑ plane [Fig. 2(a)], the
corresponding first Brillouin zone for Bloch wave vectors
extends over the region jkyj, jkzj ≤ π=d, as shown in
Fig. 2(b). The set of electromagnetic fields propagating
in the plane at the atomic frequency ω0 have a wave vector
of magnitude k0, which defines a circle centered around the
origin in k space, as illustrated in Fig. 2(b). Similar to 1D, a
sufficient condition for spin-wave excitations to be guided
is that the wave vector lies outside of this circle. It should
be noted that the longest “distance” in the first Brillouin
zone from the origin extends along the diagonal, and has
magnitude kmax ¼ ffiffiffi

2
p

π=d. Thus, in 2D, guided modes
exist as long as k0 < kmax, which translates into a maxi-
mum allowed lattice constant d=λ0 ¼ 1=

ffiffiffi
2

p
.

Analogous to the 1D case, we can obtain closed
mathematical expressions for the decay rates in the 2D
lattice. They are given by

Γ∥
k

Γ0

¼ 3π

k30d
2

X
g

jkþgj≤k0

k20 − jðkþ gÞ · ℘̂j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − jkþ gj2

p ; ð10aÞ

Γ⊥
k

Γ0

¼ 3π

k30d
2

X
g

jkþgj≤k0

jkþ gj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − jkþ gj2

p ; ð10bÞ

from which we recover again the important result that
Bloch states with jkj > k0 do not radiate out to infinity.
For these states, the electromagnetic field is now confined
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within the plane, and evanescently decays away from the
lattice in the transverse direction. The decay rates are
plotted in Fig. 2(c) and 2(d) for atomic polarizations along ẑ
and x̂ directions, for the particular value of d=λ0 ¼ 0.2,
which defines the light line as the circle k0 ¼ 0.4π=d,
beyond which the decay rate is exactly zero.
We remark that the previous considerations are valid

regardless of the specific atomic structure, provided that the
atom in question contains only a single ground state (see
Sec. V for a discussion of the subtleties associated with a
ground-state manifold).
The previous analysis for the 2D lattice provides another

interesting result. As Fig. 2(d) shows, for transverse atomic
polarization in a 2D square lattice, subradiance can emerge
not only outside the light line, but also at the center of the
Brillouin zone, that is, for Bloch states with quasimomen-
tum k ∼ ð0; 0Þ. Physically, the origin of this effect can be
understood as follows. On one hand, and as previously
discussed, for d=λ0 < 1 the field created by such a state is
generally evanescent at all diffraction orders except for the

component g ¼ 0 [cf. Eq. (10b)], which corresponds to a
plane wave propagating perpendicularly to the atomic
plane. On the other hand, the state k ¼ ð0; 0Þ corresponds
to an array of dipoles that are in phase. However, dipoles
oscillating in phase and perpendicularly to the atomic plane
are forbidden to radiate energy in the perpendicular
direction, and thus, the state must be subradiant. In contrast,
as soon as d=λ0 > 1, there will be other g components that
are not evanescent, yielding a radiative state. We note that,
although only the state k ¼ ð0; 0Þ has exactly zero decay
rate, other modes around this point will also show a strong
suppression in the emission rate relative to Γ0.

B. Finite lattice (single excitation)

In this section, we analyze the decay rates and spatial
properties of single-excitation eigenstates, for a lattice of
finite size. We show that all eigenstates now acquire a non-
zero decay rate, and subradiant states can be identified as
those for which the rate is suppressed with increasing
system size. The small value of the decay can be interpreted
as arising from the finite system boundaries, which scatter a
mode propagating in the bulk into free space.

1. 1D linear chain

In the following, we consider a finite chain of atoms
along ẑ, with a linear polarization along the chain (unless
otherwise stated). However, a similar set of conclusions is
obtained for the transverse polarization case.
Scaling of the most subradiant decay rates with system

size.— The effective atomic Hamiltonian of Eq. (5) con-
serves the excitation number in the system, and thus, it can
be diagonalized in blocks with fixed excitation number.
Before proceeding farther, we discuss a technical but
important point. Since the effective Hamiltonian is non-
Hermitian, in general the eigenstates will not be orthogonal
in the standard quantum mechanical sense (i.e., two
eigenstates jψ ii and jψ ji will not satisfy hψ ijψ ji ¼ δij)
[48]. The infinite lattice case presents an exception, as
Bloch’s theorem is still enforced. While this implies that
general quantum mechanical rules, such as for eigenstate
decompositions of states and observables, do not apply, we
nonetheless investigate the properties of the eigenstates
further. This is physically motivated as they still represent
nonevolving states under the Hamiltonian (aside from an
overall phase and amplitude); thus, for example, they might
be expected to shed light on how a general state behaves at
long times.
We consider the case of a 1D chain of N atoms with

lattice constant d, for which numerical diagonalization of
Heff in the one-excitation manifold produces N eigenstates
(denoted by jψξi, 1 ≤ ξ ≤ N) and complex eigenvalues.
As in the infinite case, the eigenvalues can be written in the
form Jξ − iΓξ=2, with Jξ and Γξ representing the frequency
shift relative to ω0 and the decay rate, respectively.

(a) (b)

(d)(c)

FIG. 2. (a) Illustration of a square lattice of atoms in the ŷ-ẑ
plane, with lattice constant d. (b) Corresponding reciprocal lattice
in 2D, with lattice constant 2π=d. The collective modes have
well-defined quasimomentum k ¼ ðky; kzÞ within the first
Brillouin zone, which is indicated by the blue square. A circle
of radius jkj ¼ k0 defines the set of propagating electromagnetic
modes in vacuum in the ŷ-ẑ plane at the atomic frequency.
Collective spin waves outside of this circle will be guided, with
a decay rate Γk ¼ 0. For k0 > kmax ¼ ffiffiffi

2
p

π=d (or equivalently,
d=λ0 > 1=

ffiffiffi
2

p
) all collective eigenstates lie inside of the circle.

(c),(d) Collective decay rates for the infinite square lattice for
parallel and transverse atomic linear polarization, respectively.
The lattice constant is set to d=λ0 ¼ 0.2. For transverse polariza-
tion, Γk also vanishes for k ∼ ð0; 0Þ, provided that d=λ0 < 1.
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For concreteness, the eigenstates are ordered in increasing
decay rate, such that ξ ¼ 1 represents the most subradiant
state and ξ ¼ N the most radiant one. To start under-
standing the properties of this system, we fix the atomic
number N ¼ 50 and change the lattice constant d. For each
value of d, we diagonalize Heff , and obtain the N different
values for the decay rates and frequency shifts associated
with each of the collective modes. Figure 3(a) shows the
resulting single-excitation decay rates Γξ for each collective
mode, normalized by the free-space single-atom emission
rate Γ0, in the case of atomic polarization parallel to the
chain. In this plot, a vertical cut at a fixed value of d=λ0
contains the N different values of Γξ. As expected, for large
interparticle distances, the collective decay rates tend to the
spontaneous emission rate of a single atom. As the distance
decreases, they are periodically modulated, showing for
d=λ0 < 1=2 a qualitatively distinct behavior. In this region,
the decay rates of some of the modes are dramatically
suppressed (Γξ=Γ0 ≪ 1), in accordance with the condition
for the emergence of modes with zero decay rate derived in
the infinite lattice case.
The subradiant modes in the finite chain are closely

related to those derived in the infinite chain. First, having
established that subradiant states in the infinite chain
correspond to guided modes, the nonzero decay rates in

the finite chain can be interpreted as emerging from
scattering of these guided modes from the ends of the
system. This can be seen in Fig. 3(b), where we plot the
field intensity in the plane x ¼ 5d generated by the most
subradiant state when the atomic polarization is parallel to
the chain (we choose a distance x offset from the x ¼ 0
plane containing the atomic chain in order to avoid seeing
the divergent near fields associated with each atom).
Clearly, this figure shows that the field vanishes when
moving away from the chain transversally, while it is very
intense at the tips of the chain, where the spin wave scatters
into an outgoing photon. The field intensity is computed
from Eq. (2), by taking hψ1jÊ−ðrÞÊþðrÞjψ1i. As the input
field is vacuum, the intensity only involves calculating
two-body correlations σ̂iegσ̂

j
ge of the eigenstate.

While the wave vector kz is strictly a good index for the
modes only in the case of the infinite chain, in practice one
can also unambiguously associate a distinct, dominant
wave vector k with each of the modes ξ in the finite case.
Specifically, the discrete Fourier transform of the coeffi-
cients that define each mode is peaked around a different
value kξ, which can be used to label the state. In particular,
let us consider a general single-excitation state, which can
be written as jψξi ¼

P
jc

j
ξjeji, where jeji≡ σ̂jegjgi⊗N is

defined as the state where atom j is excited while all others

(a)

(b) (d)

(c)

arb. units

FIG. 3. Single-excitation collective modes in a finite 1D chain of two-level atoms with polarization along the chain. (a) Decay rates of
the N modes at different lattice constants d=λ0 for a finite chain of N ¼ 50 atoms. Subradiant modes arise only if d=λ0 ≤ 1=2. Avertical
cut at the fixed value of d=λ0 ¼ 0.2 corresponds to the blue circles depicted in Fig. 1(c). (b) Field intensity (arb. units) in the ŷ-ẑ plane
(x ¼ 5dÞ created by the most subradiant mode in a chain of N ¼ 50 atoms. The field is largely evanescent transverse to the bulk of the
chain, while most of the energy is radiated out through scattering at the ends of the chain. White circles denote atomic positions.
(c) Scaling with atom number of decay rates for the three most subradiant modes. A fit for largeN yields Γ ∼ N−3. (d) Scaling with mode
index ξ of decay rates at fixed N ¼ 50. Here, ξ is used to label the magnitude of the decay rates in increasing order (ξ ¼ 1 is the most
subradiant state, while ξ ¼ N has the largest decay rate). A fit for small ξ yields Γ ∼ ξ2. Open and solid symbols denote the results
obtained by exact diagonalization and from the ansatz of Eq. (11), respectively. The black dashed line corresponds to the eigenstate
whose dominant wave vector k crosses the light line (k ¼ k0). (b)–(d) are for d=λ0 ¼ 0.3.
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are in their ground states. Then, we define the discrete
Fourier transform of the associated coefficients ~ckξ≡
N−1=2P

je
ikjdcjξ, for discrete values of k ¼ 2πm=Nd

(1 ≤ m ≤ N). For each value of ξ, the function ~ckξ
shows a well-defined peak at a distinct value of k ¼ kξ.
In Figs. 1(b) and 1(c) (circles), we plot the decay rates Γξ

and energy shifts Jξ of each mode as indexed by the
dominant wave vector, for N ¼ 50 atoms and both trans-
verse and parallel polarizations, overlaid with the infinite
lattice result. There is good agreement between them. For the
decay rates of the finite chain, the points also correspond to
those along a vertical cut in Fig. 3(a), at the fixed value
of d=λ0 ¼ 0.2.
The exact behavior of Γξ depends on the microscopic

details, such as the polarization of the atoms. For instance,
for two-level atoms, the smallest decay rate decreases
monotonically as d=λ0 → 0, while for transverse polariza-
tion it oscillates. Regardless of these details, however, the
scaling with N of the few lowest decay rates seems to
show a universal behavior, going like Γξ=Γ0 ∼ ξ2=N3.
In Fig. 3(c), we show the 1=N3 scaling for the three lowest
eigenstates as a function of N, while in Fig. 3(d) we show
the ξ2 scaling for fixed N ¼ 20. The scaling with ξ is
satisfied for all Γξ=Γ0 ≪ 1. For transverse polarization,
there is a particular value of lattice constant (that tends to
d=λ0 ∼ 0.25 as the atom number increases), for which
the decay rates do not follow exactly the scaling with ξ.
We believe that this is related to the fact that for transverse
polarization and d=λ0 ¼ 0.25, the band structure becomes
flat at the edge of the Brillouin zone. Nevertheless, and as
we discuss in Appendix B, the scaling Γξ ∼ ξ2=N3 seems to
appear rather generically for finite-size, one-dimensional
photonic crystal structures.
Ansatz for single-excitation collective modes.— If the

chain is finite, the single-excitation collective modes are not
spin waves with pure wave vector kz, and contrary to the
infinite lattice case, they are not orthonormal in general.
Nevertheless, as discussed earlier, the eigenstates can be
characterized by a dominant wave vector k that connects
well with the infinite case. Furthermore, we find that the
states far from the light line (including the most subradiant
modes as well as those where k ∼ 0) are almost orthonor-
mal, and display a relatively simple spatial structure. This
motivates us to find an orthonormal set of functions that
approximates well these modes. For an even number of
sites N, the wave-function coefficients cjξ of the exact
collective modes are close to the orthonormal set of
functions defined by wave vector kn:

cjans;kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðN þ 1Þ

p
cosðknxjÞ if n odd

cjans;kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðN þ 1Þ

p
sinðknxjÞ if n even: ð11Þ

Here, knd ¼ πn=ðN þ 1Þ, n ¼ 1; 2;…; N, and the atomic
positions xj ¼ jd − x0 (1 ≤ j ≤ N) and x0 ¼ ðN þ 1Þd=2.

Figures 4(a)–4(c) show the exact coefficients cjξ for the
most subradiant state (ξ ¼ 1), a state with dominant wave
vector near the light line, and the most radiant state (ξ ¼ N),
for N ¼ 20 atoms, together with the corresponding ansatz
coefficients. The error between the exact wave function
and ansatz can be quantified by considering the mismatch
in overlap between the two states, ε ¼ 1 − jhψansjψξij2.
In Fig. 4(d), this is plotted as a function of the wave number
k associated to each of the modes. Generally, the error is
negligible, except for states close to the light line. In Fig. 4(e),
we show that for the most subradiant state this error vanishes
with chain length N as ε ∼ N−2.
Moreover, this ansatz not only approaches the spatial

pattern of the wave function, but its decay rate, defined as
Γans ¼ −ð2=ℏÞImhψ ansjHeff jψ ansi, captures the same scaling
with the index ξ and N: Γans ∝ ξ2=N3. The overall propor-
tionality constant varies depending on the microscopic
details (such as the polarization or the value of d=λ0).
For instance, for d=λ0 ¼ 0.3, Γans=Γξ¼1 ≈ 3=2 (parallel
polarization) and Γans=Γξ¼1 ≈ 8 (transverse polarization).
The comparison between Γξ and Γans is shown in Figs. 3(c)
and 3(d) (solid circles correspond to the ansatz).

(a)

(d)

(e)

(b)

(c)

FIG. 4. Comparison between ansatz of Eq. (11) and exact
single-excitation eigenstates in an atomic 1D chain. Here, we
identify a selected number of modes based upon their dominant
wave vector k, and compare the spatial wave-function coefficients
cj with an ansatz built from the same wave vector: (a) kd ¼ πN=
ðN þ 1Þ (most subradiant state), (b) k ∼ k0 (close to light line),
and (c) kd ¼ π=ðN þ 1Þ (most radiant state), for parallel atomic
polarization. Blue and red circles denote the coefficients of the
exact state and ansatz, respectively, while the dashed red line
indicates the function cosðknzÞ or sinðknzÞ associated with each
mode. (d) Error in overlap ε between exact state and ansatz as a
function of k, for parallel (blue) and transverse (black) atomic
polarization. The error decreases far from the light line (denoted
by black dashed line). (e) Scaling of ε with particle number N for
the most subradiant state. The lattice constant is set to d=λ0 ¼ 0.3
and [except in (e)] N ¼ 20.
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2. 2D square array

The previous results are not specific to the one-
dimensional chain and can be extended to other lattice
geometries. As an example, let us consider a finite square
array of N × N atoms spanning the ŷ-ẑ plane. Just like in
the linear chain, we can diagonalize the block Hamiltonian
with a single excitation and find the decay rates associated
with the N2 collective modes. We can also define an ansatz

wave function with coefficients cjans;k ∝ c
jy
ans;ky

cjzans;kz , where

cjans;k are the coefficients for the one-dimensional ansatz
Eq. (11). We can then associate with each of the collective
modes a pair of values ðky; kzÞ, which lies within the first
Brillouin zone, and for which the corresponding ansatz
produces the highest overlap with the exact state.
In Fig. 5, we plot the decay rates as a function of ðky; kzÞ

after diagonalizing the Hamiltonian for an array of 50 × 50
atoms, for different values of d=λ0 ¼ f1; 0.55; 0.3g.
Figures 5(a)–5(c) depict the case of polarization parallel
to the array, and show the emergence of subradiant states
(corresponding to wave vectors beyond the light line) for
d=λ0 < 1=

ffiffiffi
2

p
. As it can be seen in this figure, the most

subradiant modes correspond to those at the edges of the
Brillouin zone; i.e., ðjkyj; jkzjÞ ∼ ðπ=d; π=dÞ. The wave-
function amplitude of this mode is a generalization of the
one shown in Fig. 4(a) for the 1D chain, where now the
alternating plus and minus sign in the amplitude exhibits a
checkerboard pattern. Figures 5(d)–5(f) depict the decay
rates for the case of transverse polarization. Here, one sees a

set of subradiant states emerges beyond the light line for
d=λ0 < 1=

ffiffiffi
2

p
as before, and also a set of subradiant modes

around ðkx; kyÞ ¼ ð0; 0Þ for d=λ0 < 1, in agreement with
the infinite lattice analysis.
While we can expect that in general the decay rate of

the most subradiant modes will be suppressed with the
system size, the scaling is more complex than for the linear
chain. Nevertheless, we numerically verify that for collec-
tive modes at the edge of the Brillouin zone, and if d=λ0
is small enough, the decay rate will scale as Γ ∼ N−α.
In particular, we find that for ðky; kzÞ ¼ ðπ=d; π=dÞ (most
subradiant state), α ¼ 6 for d=λ0 < 1=2 and α ¼ 3 for
1=2 ≤ d=λ0 < 1=

ffiffiffi
2

p
, while for ðky; kzÞ ¼ ðπ=d; 0Þ, α ¼ 3

for d=λ0 < 1=2. For ranges of d=λ0 not included above, the
decay rates are not suppressed with increasing system size,
since in that case the wave vector ðkx; kyÞ of the two states
lies within the light line. These scalings are shown for the
two states in Fig. 5(g).

3. 3D cubic array

While the extension from 1D chains to 2D arrays is
conceptually straightforward, it appears that three-
dimensional lattices are governed by different physics.
In particular, in infinite 1D and 2D arrays, Bloch modes
diagonalize the system, and subradiant modes can be
characterized as “guided” as the associated electromagnetic
fields are evanescent in the spatial directions transverse to
the array. In contrast, while Bloch modes still diagonalize

(a) (b) (c)

(g)

(d) (e) (f)

FIG. 5. Single-excitation collective modes in 2D square array of 50 × 50 two-level atoms. Collective decay rates as a function of
predominant wave vector (ky, kz) associated with the mode, for different values of d=λ0: (a)–(c) are for parallel atomic polarization along
ŷ axis; (d)–(f) are for transverse polarization. Subradiant and guided modes arise outside the circle defined by the light line (jkj ¼ k0), if
d=λ0 < 1=

ffiffiffi
2

p
. For d=λ0 < 1 and transverse atomic polarization, a different class of subradiant states emerges at k ¼ ð0; 0Þ. (g) Scaling

of decay rates with N (N2 being the number of atoms) for two particular modes ðky; kzÞ ¼ ðπ=d; 0Þ (top) and ðky; kzÞ ¼ ðπ=d; π=dÞ
(bottom). Different colors are for different values of d=λ0 ¼ 0.25, 0.3, 0.4, 0.5, 0.6, 1=

ffiffiffi
2

p
(blue, green, red, cyan, purple, and brown,

respectively). The dashed lines are guides to the eye for N−3 and N−6 scalings.
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the system in 3D, the associated fields are necessarily
extended over space in all directions. Thus, for a finite-size
system, it does not appear that subradiant states can be
identified based on the infinite-system results, as is possible
in 1D and 2D.
Nonetheless, for completeness, we can still numerically

investigate the decay rates for a single excitation in a 3D
finite-size lattice. In Fig. 6, we plot the decay rates Γξ for
the N ¼ 103 eigenstates associated with a 10 × 10 × 10
lattice of two-level atoms, in the case that the polarization
of the transition is aligned with one of the cubic axes. It
can be seen that while decay rates are still most promi-
nently suppressed for lattice constants d ≪ λ0, the effect of
subradiance can survive even for lattice constants d > λ0.
It would be interesting to further explore the nature of
subradiance in 3D systems in future work, and identify
conceptual similarities it has to arrays in lower dimensions,
if any.

4. Atoms in a ring configuration

The result that we find for 1D linear chains, indicating
that subradiant modes are guided and that radiation leakage
is primarily from the system ends, motivates us to study the
decay rates when the atoms form a closed configuration,
since this might lead to a stronger suppression in the decay.
In particular, we consider now that the atoms are sitting on a
circular ring separated by an equal distance d (see sketch in
Fig. 7) and with linear polarization transverse to the plane
of the ring.
In Fig. 7, for a distance of d=λ0 ¼ 0.3, we numerically

diagonalize the single-excitation block Hamiltonian and
plot the decay rate Γξ¼1 of the most subradiant state versus
atom number N. It can be seen that an exponential
suppression emerges, Γξ¼1 ∼ expð−NÞ. For the chosen

parameters, the minimum decay rate for a ring drops below
that of an open chain for N ≳ 20 atoms. The subradiant
modes of the ring can be interpreted as “whispering gallery
modes,” which weakly radiate into free space only via the
finite radius of curvature. The exponential suppression with
ring radius is analogous to the scaling of radiation losses in
a conventional whispering gallery resonator [68].

5. Localized resonance in an atomic chain

Here, we also show how to achieve a spatially confined
mode in a linear 1D chain of atoms, which also exhibits an
exponential suppression of decay rate with atom number.
This can be achieved by introducing a smooth, local
variation in the lattice constant, in analogy to the principles
that govern the design of a conventional photonic crystal
cavity [67].
To illustrate this, we consider the geometry schematically

depicted in Fig. 8(a). The atomic chain along ẑ has been
divided into three regions: in the left and right regions, the
lattice constant d is uniform and equal to dmax, while in the
middle, it changes slowly (from dmax to dmin ¼ 0.75dmax)
following the red line and creating a defect. The lattice
constant in the middle is chosen to follow a sinusoidal
variation, dðziÞ¼ dmaxþðdmin−dmaxÞsin2ð3πzi=NÞ, where
zi (i ¼ N=3;…; 2N=3) denotes the atom position. In the
same figure, the band structures for an infinite lattice with
constant dmax ¼ 0.4λ0 and dmin ¼ 0.3λ0 are plotted for the
case of atomic polarization parallel to the chain. It can be seen
that the smaller lattice constant dmin supports propagating
modes over a range of frequencies (pink shaded region) that
lies within the band gap of lattice dmax. Thus, for the system

FIG. 6. Decay rates of the N3 modes at different lattice
constants d=λ0 for a cubic lattice of 10 × 10 × 10 atoms with
linear polarization along one of the lattice axes. The dashed red
line corresponds to the particular value of d=λ0 ¼

ffiffiffi
3

p
=2, where

the light line touches the edge of the first Brillouin zone in 3D.
In 3D, subradiant states can exist even beyond this value.

FIG. 7. Decay rate of the most subradiant mode as a function of
atom number N in a circular ring of two-level atoms (black
circles). Two consecutive atoms are separated a distance d as
shown in the sketch (here, d=λ0 ¼ 0.3), and the atomic polari-
zation is transverse to the plane defined by the ring. For this
geometry, there is an exponential suppression of the most
subradiant decay rate with N. For comparison, the decay rate
of the most subradiant mode of a linear chain with lattice constant
d is shown (blue circles), with only polynomial suppression
with N.
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with slowly varying lattice constant, a set of localized
resonances can appear in themiddle region, with frequencies
situated in the gap of lattice dmax, and unable to propagate
into the left and right regions.
The atomic excited state population associated with the

fundamental localized mode (i.e., the mode with no nodes
in the population) is illustrated in Fig. 8(b), for a repre-
sentative case of N ¼ 90 atoms. For a smooth variation in
the lattice constant (here, occurring over a region of size
N=3), one expects that the fundamental mode will have a
Fourier transform with an exponentially small weight of
wave vectors lying within the light line. Likewise, the
leakage of this mode through the left and right regions to
the ends of the chain will be exponentially suppressed,
leading to an overall exponential suppression in decay rate
with increasing atom number N. The numerically calcu-
lated decay rate of this mode is plotted in Fig. 8(c) as a
function of N, and clearly confirms the expected behavior.

C. Multiexcitation modes

We now turn to the problem of multiple excitations
stored in an atomic 1D lattice. As in the previous section,
we consider that the atoms are linearly polarized along
the chain axis. However, similar results are found for the
transverse polarization case. First, we note that if the
Hamiltonian of Eq. (5) were composed of bosonic particles
instead of spins (i.e., σ̂ge, σ̂eg → a, a†), the multiple
excitation case would be trivial. In particular, the resulting
Hamiltonian would be quadratic in the creation and
annihilation operators, and a Fock state of n excitations
in a given mode would simply have a decay rate n times
that of a single excitation. The fact that we are dealing with
spins, where a single spin cannot be excited twice
(σ̂2eg ¼ 0), leads to highly nontrivial properties of multiply
excited states. In this section, we analyze in detail the

spatial properties and scaling of decay rates of multi-
excitation subradiant states. While we do not explicitly
utilize these states in later sections, these findings might
help to provide some initial insight into how many-body
physics can be encoded into subradiant manifolds.
Let us first consider the two-excitation manifold. A

general state within this manifold can be written as jψ ð2Þi ¼P
i<jc

ijjeieji, where now jeieji ¼ σ̂iegσ̂
j
egjgi⊗N corre-

sponds to the state with atoms i and j excited while the
rest remain in the ground state. Although it is necessary
only to specify cij for i < j to define the wave function, in
the following plots and for visual appeal we also assign
values to cij for j < i, by simply defining cij ¼ cji.
To illustrate that the spin system behaves differently than
a bosonic system, we begin by considering the two-
excitation state formed by occupying the same single-
excitation mode twice. In particular, we construct the

two-excitation state given by jψ ð2Þ
b i ∝ ðS†ξ¼1Þ2jgi⊗N (prop-

erly normalized). Here, S†ξ¼1 ¼ N−1=2P
jc

j
ξ¼1σ̂

j
eg is the

collective operator that creates the most subradiant single
excitation in a chain of N atoms, when applied to the
ground state. In Fig. 9(a), we plot the corresponding
probability density jcijb j2 for the case N ¼ 50. The two-
excitation wave function appears relatively smooth, except
for a sharp cut ciib ¼ 0 along the diagonal, owing to the fact
that a single spin cannot be excited twice. As a result of
this feature, the Fourier transform of this state is relatively
broad, and, in particular, contains many components that lie
within the light line and can subsequently radiate. Its decay

rate, defined as Γð2Þ
b ¼ −ð2=ℏÞImhψ ð2Þ

b jHeff jψ ð2Þ
b i, is sup-

pressed only with the length of the chain as Γð2Þ
b ∼ N−1, in

stark contrast to the single-excitation case. This scaling is
shown in Fig. 9(d) (orange circles).

(a)

(b) (c)

FIG. 8. Cavity in an atomic chain with slowly varying lattice constant. The chain along ẑ is divided into three regions: in the left and
right regions, the lattice constant d is uniform and equal to dmax, while in the middle it changes slowly (from dmax to dmin ¼ 0.75dmax).
(a) Dispersion relation for two infinite lattices with constant dmax (cyan) and dmin (dark blue) versus wave vector along the chain (in units
of the corresponding lattice constant). The light line is indicated by the vertical dashed lines with the same color. A bandwidth of
frequencies (shaded pink) emerges wherein propagating modes exist for lattice constant dmin, but not for dmax. This allows localized
resonances to form within the nonuniform chain. An illustration of the chain is shown (top), where the red line represents how the lattice
separation changes along the chain. (b) Excited-state population versus atom position corresponding to the fundamental mode in the
cavity, illustrated for N ¼ 90 atoms. (c) Decay rate of the fundamental mode versus atom number, showing an exponential suppression.
We choose dmax=λ0 ¼ 0.4 and atomic polarization along the chain axis.
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Numerically, we now exactly diagonalize theHamiltonian
in the two-excitation manifold, and identify the most sub-
radiant state. The scaling of its decay ratewithN is plotted in
Fig. 9(d) (blue open circles), and is seen to preserve the
scaling Γ ∼ N−3 present in the single-excitation manifold.
The probability density jcijξ¼1j2 for the case of N ¼ 50 is

plotted in Fig. 9(b). The wave function appears distinctly
different from than that of Fig. 9(a), and in particular, it
appears that the two excitations are smoothly repelled from
one another.
From the previous considerations, it is apparent that the

most subradiant states should simultaneously satisfy that
they are composed predominantly of wave vectors beyond
the light line, and that the excitations are smoothly repelled
from one another in order to avoid sharp kinks in the
wave function. This inspires us to try an antisymmetric
(or fermionized) ansatz jψ ð2Þ

ansi for the wave function of the
form cijans;k1k2 ∝ cians;k1c

j
ans;k2

− cians;k2c
j
ans;k1

(properly nor-
malized). Here, cians;kn denote the coefficients of the
single-excitation orthonormal ansatz Eq. (11) associated
with the wave vector kn. Such an ansatz naturally constructs
a state that incorporates “Pauli exclusion” and a smooth
separation of excitations in space. Taking k1d ¼ πN=
ðN þ 1Þ and k2d ¼ πðN − 1Þ=ðN þ 1Þ, i.e., building a
two-excitation state from the two most subradiant single-
excitation states, yields a wave function cijans that agrees
well with the exact one, as seen in Fig. 9(c), where the
probability density is plotted. Moreover, the decay rate
associated with this state scales again with the particle

number as Γð2Þ
ans ∼ N−3, as is shown in Fig. 9(d) (blue solid

circles).
We can then associate with each of the exact two-

excitation collective states a pair of quasimomentum
values fk1; k2g for which the wave-function overlap with
the ansatz is maximum. The exact decay rates as a function
of these values are plotted in Fig. 9(e). This figure shows
that when both k1, k2 > k0, the decay rates are strongly
suppressed, and we can identify this region as the one
containing the subradiant states. In fact, the sum of decay
rates of the single-excitation modes used to construct the

ansatz, i.e., Γð2Þ
sum ¼ Γans;k1 þ Γans;k2 , is not far from the exact

value. This is quantified by the relative error δΓ≡ jΓð2Þ −
Γð2Þ
sumj=Γð2Þ and is plotted in Fig. 9(f). For completeness, we

also show in Fig. 9(g) the error in overlap between each
two-excitation eigenstate and the best-matched ansatz

state, ε ¼ 1 − jhψ jψ ð2Þ
ansij2. This error is very small in the

subradiant region.
In the more general case of n excitations, the most

subradiant mode and its decay rate ΓðnÞ
ξ¼1 can be found as in

the previous cases by exactly diagonalizing the correspond-
ing block Hamiltonian. For a low density of excitations, the
scaling of the decay rate with the chain length is still as in

the single- and two-excitation manifolds, i.e., ΓðnÞ
ξ¼1 ∼ N−3,

as shown in Fig. 10(a) (open blue symbols). For compari-
son, we also show in the same figure (orange symbols) the
decay rate of the state with n excitations in the most

subradiant mode, i.e., jψ ðnÞ
b i ∝ ðS†ξ¼1Þnjgi⊗N , which scales

as in the two-excitation case, ΓðnÞ
b ∼ N−1.

(a)

(d)

(e) (f)

(b) (c)

(g)

FIG. 9. Two-excitation collective modes in a 1D chain of two-
level atoms with polarization parallel to the chain. Probability
jcijj2 of atoms i and j to be excited (with cii ¼ 0) for (a) state
resulting from occupying the most subradiant single-excitation
mode twice, i.e., ðS†ξ¼1Þ2jgi⊗N , (b) most subradiant mode cijξ¼1

(obtained by exact diagonalization), (c) fermionic ansatz cijans. The
two axes denote the excited atoms position (i and j). (d) Scaling
of the collective decay Γð2Þ with atom number corresponding to
the states (a) (orange circles), (b) (blue open circles), and (c) (blue
solid circles). The lines are polynomial fits (to the last five
points), close to ∼1=N (a) and ∼1=N3 (b),(c). (e) Decay rates as a
function of the associated pair of quasimomentum values ðk1; k2Þ
of the two excitations (by construction k1 ≠ k2). Subradiant states
arise when both k1; k2 > k0, where k0 corresponds to the light

line (dotted lines). (f) Relative error δΓ=Γð2Þ ¼ jΓð2Þ
sum − Γð2Þj=Γð2Þ

between the numerically exact decay rate and the decay rate

estimated from the sum of single-excitation decay rates Γð2Þ
sum.

(g) Error in overlap between exact and antisymmetrized ansatz.
In all plots N is fixed to 50 atoms [except (d)] and d=λ0 ¼ 0.3.
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One can also numerically evaluate the error ε in overlap
between the most subradiant state and an ansatz state,

jψ ðnÞ
ansi ¼

P
i1<i2<���<iN c

i1i2…iN
ans;k1k2…kN

. Here, the wave-function

amplitudes ci1i2…iN
ans;k1k2…kN

are generalized from the two-
excitation case, and constructed from the Slater determinant
of n single-excitation wave-function ansatz coefficients
cinans;kn . For the most subradiant mode, these correspond to
the n most subradiant single-excitation modes, and in
the large atom number limit, the error is found to scale
like ε ∼ N−2.

If the ansatz holds, then for n excitations one expects that
the decay rate for the most subradiant state scales like

ΓðnÞ
ξ¼1=Γ0 ∼

P
n
m¼1m

2=N3 ∼ ðn=NÞ3. In Fig. 10(b), we com-
pare this predicted scaling with numerically calculated

values of ΓðnÞ
ξ¼1, and find qualitatively good agreement for

low-excitation density n=N ≪ 1. We note that the predic-
tion of the ansatz also seems physically reasonable in that
it can be extended to the thermodynamic limit, as it predicts
a decay rate that depends only on the density n=N of
excitations.

IV. ATOMS COUPLED TO A NANOFIBER:
SELECTIVELY RADIANT STATES

In the previous section, we elucidate the nature of
subradiant states in atomic arrays, whose long-lived nature
arises from weak coupling to all propagating electromag-
netic modes. Subradiant manifolds themselves might be
useful for many purposes, for example, to accumulate
interactions without dissipation in order to realize strongly
correlated states. However, to realize an efficient atom-light
interface, one would instead prefer to utilize a set of atomic
states that strongly radiate into a desired electromagnetic
mode (or set of modes) through constructive interference,
while destructive interference simultaneously suppresses
the emission rate into all undesired modes. We term states
that satisfy this property to be “selectively radiant,” as the
overall emission rate might not be small, but the branching
ratio into desired versus undesired channels could be
extremely high. It should be noted that such a definition
of selectively radiant is somewhat arbitrary—for example,
even a single isolated atom emitting into a dipole radiation
pattern is selectively radiant, if the preferred optical mode is
defined to be the dipole pattern itself. In practice, however,
the collection efficiency of a dipole pattern with realistic
optics is quite small [69–74], and a functionally useful
definition should involve a mode (e.g., focused Gaussian
beam or guided mode of a dielectric structure) that is
generally accepted to be efficient to match to.
Here, we show that one natural way to realize and utilize

selectively radiant states is to couple one-dimensional
atomic chains to the guided modes of an optical nano-
structure (such as an nanofiber). Qualitatively, for suffi-
ciently small lattice constants d < λ0=2, a set of spin-wave
excitations with associated wave vector jkzj > k0 emerges,
which inefficiently radiates into free space as the wave
vector lies beyond the light line. However, as an optical
mode guided by a high-index dielectric itself has a wave
vector jkzj > k0, we show that it is possible that a set of
spin-wave excitations simultaneously experiences an
enhanced emission rate into the guided modes while being
subradiant to free space. We provide an explicit construc-
tion of a protocol where selectively radiant states are
exploited, involving a quantum memory or photon storage.
We find in particular that these states enable an exponential

(a)

(b)

FIG. 10. Multiexcitation states in a 1D chain of two-level atoms
with polarization parallel to the chain. (a) Scaling of the decay
rate ΓðnÞ

ξ¼1=Γ0 of the most subradiant n-excitation state with the
atom number N (blue open symbols). For comparison, the decay
rates of the Fock state constructed with n excitations in the most

subradiant single-excitation mode ΓðnÞ
b (orange solid symbols)

and for the fermionic ansatz ΓðnÞ
ans (blue solid symbols) are shown

(n ¼ 2, 3, 4 are denoted by circles, squares, and diamonds,

respectively). The lines are polynomial fits close to ΓðnÞ
ξ¼1 ∼ N−3

and ΓðnÞ
b ∼ N−1, respectively. The sketches on top of the atomic

chain represent the two-excitation density profile. (b) Scaling of

the decay rate ΓðnÞ
ξ¼1=Γ0 of the most subradiant state with the

excitation density n=N. The dashed line corresponds to the
predicted scaling ∼ðn=NÞ3 valid at low-excitation density
(n=N ≪ 1). Blue, red, and black are for N ¼ 10, N ¼ 15, and
N ¼ 20, respectively. All plots are for d=λ0 ¼ 0.3 and atomic
polarization parallel to the chain.
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improvement in the error probability versus atom number,
over previously known bounds.
This section is organized as follows. Section IV A

describes the nanofiber and provides the Hamiltonian that
governs the interactions between the atoms located in the
vicinity of the nanostructure. We introduce the “collective
emission” model, which accounts for atom-atom inter-
actions through both the guided and nonguided modes of
the fiber. We also present the “independent emission”
model, in which atoms interact through the guided modes
but coupling via free-space modes is neglected. This thus
represents the “standard model” of atom-light interactions
specifically applied to nanofibers. In particular, it repro-
duces previously accepted bounds for fidelities of photon
storage, against which the “collective emission” model can
be compared. Section IV B describes linear optical proc-
esses (i.e., single-photon transmission and reflection) for
two-level atoms coupled to the fiber. We show how the
conventional figure of merit, the optical depth, is not
sufficient to characterize optical transport through the array
when the collective emission into nonguided modes is
taken into account. In Sec. IV C, we study how selective
radiance influences electromagnetically induced transpar-
ency (EIT) [3,34,75–77], a phenomenon that is commonly
used in photon storage protocols. In particular, we show
that the bandwidth-delay product, which quantifies the
number of photons that can be stored in the atomic
medium, scales linearly with the number of atoms. The
linear scaling is characteristic of ideal, nonlossy systems,
and is in contrast to the independent emission model, which
predicts a scaling that goes with the square root of the
optical depth. In this section, we also provide the first
glimpse of improvement in photon storage beyond tradi-
tional bounds. Finally, in Sec. IV D, we demonstrate how to
achieve an exponential suppression with the atom number
on the infidelity of a quantum memory.

A. Description of the nanofiber

The possibility of enhancing atom-light interactions
through selective radiance should exist for any nanophotonic
structure where atoms can be periodically trapped, including
in nanofibers [29,30,32,33] and 1D and 2D photonic crystal
waveguides [47,78–80]. For complicated structures, how-
ever, the Green’s function cannot be obtained analytically.
Furthermore, while the Green’s function can be calculated
numerically [81], to do so with sufficient accuracy appears
quite challenging (in particular, it must be calculated with
enough accuracy so that diagonalization correctly captures
subradiant emission rates that scale like large inverse powers
of N). Motivated by this observation, here we focus on a
special geometry where the Green’s function can be exactly
obtained, which consists of a chain of atoms coupled to
guided modes of an infinite, cylindrical nanofiber.
We consider that the chain of atoms lies parallel to the

axis of a dielectric nanofiber oriented along ẑ, with radius r

and relative permittivity ϵ (or corresponding refractive
index nfiber ¼

ffiffiffi
ϵ

p
). As we show in Fig. 11, the distance

between the atoms and the center of the nanofiber is ρa, and
the orientation of their dipole transition is directed along ρ̂,
perpendicular to the axis of the nanofiber (i.e., ℘̂ ¼ ρ̂). The
Green’s function for such a nanofiber can be found
analytically [82–88]. In particular, we follow the work
of Klimov and Ducloy [89]. In the following, we provide
a qualitative description of the derivation, while details
are given in Appendix C. The first step in the derivation
is to separate the Green’s function into two terms, i.e.,
Gðri; rj;ω0Þ ¼ G0ðri; rj;ω0Þ þGscðri; rj;ω0Þ. Here,G0 is
the already-known vacuum Green’s function given by
Eq. (6), which corresponds to the field emitted by a dipole
in free space, and Gsc is a general solution to the sourceless
wave equation, which will physically correspond to the
(thus far unknown) field scattered by the nanofiber.
Exploiting the cylindrical symmetry of the problem, one
can employ separation of variables and expand the vacuum
and scattered Green’s functions using a set of functions
fm;k∥ðρÞeik∥zþimϕ. Here, k∥ is the longitudinal wave vector
and m denotes angular momentum. The coefficients in the
expansion of Gsc associated with each value of k∥ and m
inside and outside the fiber are a priori unknown, but can
be solved for through equations that enforce electromag-
netic field continuity relations at the surface of the fiber.
The fiber supports a set of guided modes, i.e., electro-

magnetic modes that propagate along the nanostructure and
are confined in the transversal direction. These modes are
denoted by their angular momentumm, and their associated
wave vectors kmðω0Þ always satisfy jkmðω0Þj > ω0=c, as

FIG. 11. Schematic of the setup under consideration: N two-
level atoms are located in the vicinity of a dielectric nanofiber of
dielectric constant ϵ and radius r, at a distance ρa from the center
of the fiber, and at a constant distance d from each other. For the
calculations in this paper, we take k0r ¼ 1.2, ρa ¼ 1.5r, and
ϵ ¼ 4. The atoms interact with each other not only through the
guided mode, but also through nonguided photons. The single-
atom emission rates into the fiber and into free space are Γ1D and
Γ0, respectively.
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the guiding mechanism is by total internal reflection [here,
we drop the “∥” subscript associated with the guided mode
wave vector kmðω0Þ, for notational simplicity]. In other
words, these modes are evanescent, and their dispersion
relations are situated beyond the light line. The number of
guided modes is determined by the fiber radius and
dielectric constant. We restrict ourselves to a single-mode
fiber (with m ¼ �1), which occurs for a sufficiently
small fiber radius. Instead of working with G0 and Gsc,
for our purposes it is convenient to isolate the guided
mode contribution and separate the Green’s function
Gðri; rj;ω0Þ ¼ G1Dðri; rj;ω0Þ þG0ðri; rj;ω0Þ into two
terms: one that characterizes the excitation of the
guided mode of the fiber, G1Dðri; rj;ω0Þ, and another
that describes the nonguided electromagnetic modes,
G0ðri; rj;ω0Þ. In particular, the guided Green’s function
takes the form G1Dðri; rj;ω0Þ ¼ gðρaÞeik1Djzi−zjj, where
gðρaÞ is a tensor that only depends on the radial and
azimuthal position of the atoms (assumed to be identical),
and k1D ¼ jk�1ðω0Þj.
The dynamics of the atoms is governed by the non-

Hermitian Hamiltonian Heff of Eq. (5), which can be
similarly split, i.e., Heff ¼ H1D þH0. From the form of
G1D given above, it follows that

H1D ¼ −i
ℏΓ1D

2

XN
i;j¼1

eik1Djzi−zjjσ̂iegσ̂
j
ge; ð12Þ

where Γ1D ¼ ð2μ0ω2
0j℘j2=ℏÞImG1D

ρρ ðri; ri;ω0Þ is the spon-
taneous emission rate of a single atom into the fiber guided
mode. The plane-wave dependence reflects the fact that the
guided photon propagates without diffraction between two
atoms and thus produces an infinite-range interaction.
The nonguided term,

H0 ¼ −
3πℏΓ0

k0

XN
i;j¼1

G0
ρρðri; rj;ω0Þσ̂iegσ̂jge; ð13Þ

accounts for the interaction through the remaining nonguided
electromagnetic modes. Already for just a single atom, the
self-term of the nonguided Green’s function G0

ρρðri; ri;ω0Þ
gives rise to both a frequency shift and a decay rate that
we denote as J0 − iΓ0=2 ¼ −ðμ0ω2

0j℘j2=ℏÞG0
ρρðri; ri;ω0Þ.

This self-term reflects the fact that the modification of
electromagnetic modes by the nanofiber causes a single
atom to have a resonance frequency ω0 þ J0 shifted from its
vacuum value, and a decay rate into radiative modes Γ0
different than Γ0. For many atoms, the above Hamiltonian
accounts for collective emission into nonguided modes, as it
takes into account atom-atom interactions that are not
mediated by the guided mode. Unlike G1D, G0 does not
admit a simple form, and in what follows, it is evaluated
numerically using the prescription detailed in Appendix C.

Throughout this paper,we refer to the dynamics generated by
H1D þH0 as the “collective emission” model.
Whether in free space or a nanofiber (or other guided

structures), exact collective effects involving modes that are
not directly of interest (such as those captured by H0) are
typically difficult to treat in the context of applications of
atomic ensembles. It is usually heuristically argued that
photon-mediated interactions through these modes are not
relevant, particularly for disordered or dilute atomic gases,
and the “standard” model within quantum optics is to
ignore such terms [1,37,51,87]. Specifically, the terms of
G0ðri; rj;ω0Þ involving two different atoms (ri ≠ rj) are
assumed to be zero, and the Hamiltonian accounting for
emission into nonguided modes reduces to

H0
indep ¼ ℏðJ0 − iΓ0=2Þ

XN
j¼1

σ̂jee: ð14Þ

In this approximation, the nonguided modes of the fiber
introduce a modified Lamb shift due to the presence of the
fiber surface and, more importantly, provide independent
baths for each atom to emit into, at a rate Γ0. We refer to the
dynamics generated by H1D þH0

indep as the “independent
emission” model.
Before proceeding further, we digress to clarify the

different usages of the terms super- and subradiance in
literature. Within the independent emission model, the
concept of superradiance and subradiance has also been
discussed, sinceH1D alone yields a set of collective atomic
states that radiate strongly or weakly into the waveguide
[48,51,90]. Similar effects have also been pointed out in
cavities (with collective states emitting strongly or weakly
into the cavity mode) [91–93]. Protocols for photon
generation and storage and other quantum information
tasks have been built around the manipulation of these
states [51,94]. However, as these models still assume
independent emission into free space, these protocols do
not surpass conventional error bounds.
Throughout this paper, the nanofiber radius is taken to be

k0r ¼ 1.2, the distance between the atoms and the center of
the nanofiber is ρa ¼ 1.5r, and the dielectric constant of the
fiber is ϵ ¼ 4 (as that of silicon nitride). As an illustration,
for the D1 line of cesium (of resonance frequency
ω0 ¼ 2π × 335.1 THz), the radius of the fiber would be
r≃ 170 nm, and the distance between the atoms and the
fiber surface would be approximately 85 nm. The wave
vector of the photonic guided mode is found to be
k1D ≃ 1.3k0, larger than any wave vector within the light
line, as the guided mode is confined. The single-atom decay
rates are calculated to be Γ1D ≃ 0.4Γ0 to the guided mode,
and Γ0 ≃ 1.3Γ0 to the nonguided modes. The modified
Lamb shift due to the fiber is J0 ≃ −0.5Γ0.
In the following sections, we utilize the formalism we

introduce above to identify novel phenomena that emerge
when collective emission is exactly accounted for,
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which cannot be predicted from the independent emission
approximation, and will show how collective emission
enables exponential improvement in performance for
quantum memories of light.

B. Linear optics for two-level atoms

We begin by studying the transmission and reflection
properties of a chain of atoms coupled to the fiber
within the independent emission model. The effective
Hamiltonian that describes the atomic dynamics under a
coherent-state guided-mode probe field of frequency ωp
reads Htot¼HdriveþH0

indepþH1D. The Hamiltonians H1D

and H0
indep are defined in Eqs. (12) and (14), respectively,

and the driving term is given by

Hdrive ¼ −ℏΔ
XN
i¼1

σ̂iee − ℏ
XN
i¼1

ðΩeik1Dzi σ̂ieg þ H:c:Þ: ð15Þ

In the above expression, Δ ¼ ωp − ω0 is the detuning
between the probe field frequency and the atomic reso-
nance frequency. We also define the Rabi frequency of the
guided-mode probe field as Ω ¼ ℘� ·Eþ

p ðρaÞ=ℏ, where
Eþ

p ðrÞ≡ hÊþ
p ðρaÞi is the amplitude of a coherent probe

field that implicitly contains the radial position ρa of the
atoms. For the remainder of this section, we consider that
the probe field is weak and does not saturate the atoms.
Therefore, all the calculations can be performed in the
single-excitation manifold, the realm of classical linear
optics.
In the single-excitation subspace, the wave function

of the atomic ensemble is written as the super-
position jψðtÞi¼cgðtÞjgi⊗NþPN

j¼1c
j
eðtÞjeji, where jeji ¼

σ̂jegjgi⊗N . In the low-saturation regime, with cg ≃ 1, the
evolution equations for the amplitude of the jei states are
found to be

_cjeðtÞ ¼ i
�
Δ − J0 þ i

Γ0

2

�
cjeðtÞ þ iΩeik1Dzj

−
Γ1D

2

XN
i¼1

eik1Djzi−zjjcieðtÞ: ð16Þ

The generalized input-output expression of Eq. (2) allows
us to calculate the guided-mode field at any point of the
fiber, which reads

ÊþðrÞ ¼ Êþ
p ðrÞ þ μ0ω

2
0

XN
j¼1

G1Dðr; rj;ω0Þ ·℘σ̂jge: ð17Þ

It is important to notice that the Green’s function appearing
in the field equation is not the total one, but just that of
the guided mode, as it describes the propagation of the
photonic guided field along the nanostructure. Because of
the cylindrical symmetry of the fiber, the guided modes
with angular momenta m ¼ �1 are degenerate. One can

alternatively take superpositions of these to obtain quasi-
linearly polarizedH and V modes [86,87]. The polarization
basis of the fiber can always be set so that theH mode at the
atomic positions has polarization components along the ρ̂
and ẑ directions. We consider the case where the probe field
is H polarized, in which case the atoms scatter solely back
into H, and the V-polarized mode decouples from the
problem.
We can thus project the input-output equation into 1D

equations for the H modes, and further separate the
guided fields into left- and right-propagating components.
The resulting equations are given by

Êþ
1D;RðzÞ ¼ Êþ

in;RðzÞ þΩeik1Dz

þ i
Γ1D

2

XN
j¼1

eik1Dðz−zjÞΘðz − zjÞσ̂jge; ð18aÞ

Êþ
1D;LðzÞ ¼ Êþ

in;LðzÞ

þ i
Γ1D

2

XN
j¼1

eik1Dðzj−zÞΘðzj − zÞσ̂jge; ð18bÞ

where Êþ
in;RðLÞðzÞ are the right- (left-)going vacuum fluc-

tuation fields and Θ is the Heaviside function. The vacuum
fluctuations do not contribute to any of our observables of
interest. For convenience, we rescale the fields so that the
atomic parameters Ω and Γ1D directly appear.
In the quasistatic limit (_cje ¼ 0), the solutions of Eq. (16)

for the jei-state amplitudes are directly proportional to the
probe field Rabi frequency Ω. Together with Eqs. (18a)
and (18b), this allows us to find the reflection and trans-
mission coefficients for the guided field. For example,
the transmittance is found by evaluating T ¼ hψ jÊ−

1D;RðzÞ
Êþ
1D;RðzÞjψi=Ω2, where z is a position immediately after the

right end of the atomic chain, and Ê−
1D;RðzÞ is the Hermitian

conjugate of Êþ
1D;RðzÞ. A similar expression can be found

for the reflectance R. One can also calculate the loss
probability due to scattering into free space, which is given
by κ ¼ 1 − T − R.
We choose the distance between the atoms to be

d ¼ λ1D=4, with λ1D ¼ 2π=k1D being the guided-mode
wavelength. Any other separation except for the so-called
mirror configuration, i.e., d ¼ λ1D=2 or integer multiples
thereof [51], would display qualitatively similar optical
properties. In Appendix D, we analyze the linear optics of
such a special configuration, which has been theoretically
known and experimentally observed to become a very
reflective mirror [51,95,96], around which powerful pro-
tocols for quantum information processing can be built
[51,94,97]. In the mirror configuration and within the
independent emission model, there is only one atomic
collective state that couples to the guided mode of the fiber,
decaying superradiantly into it at a rate NΓ1D.
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In contrast, for any other separation, every atomic
collective state is excited by the probe field and contributes
to light transmission and reflection. Therefore, the behavior
of the atoms cannot be attributed to a single “superatom” of
enhanced decay rate, and the transmission spectrum—
depicted by the red line of Fig. 12(a)—differs significantly
from a Lorentzian [48]. For large enough number of atoms,
and for low single-atom coupling efficiency into the
waveguide (Γ1D ≲ Γ0), the transmittance approximately
follows the expression

T indep ≃ exp

�
−D

1þ 4ðΔ − J0Þ2=Γ02

�
; ð19Þ

in accordance with the result obtained for a free-space
atomic gas [48]. On resonance (when Δ − J0 ¼ 0), the
figure of merit that determines how much light is trans-
mitted is the optical depth, D ¼ 2NΓ1D=Γ0. For a chain of
N ¼ 20 atoms, the expression of Eq. (19) nicely reproduces
the transmittance spectrum shown in Fig. 12(a). The
corresponding reflectance spectrum is displayed by the
red curve of Fig. 12(b), which shows a very small bump, as
the distance d ¼ λ1D=4minimizes reflection due to destruc-
tive interference [49]. As both transmission and reflection
are very small close to resonance, the dominant process is
photon loss due to atom-mediated scattering into free
space. The loss probability κ is shown in Fig. 12(c).
If the atoms are closely packed, the above calculations

are no longer valid due to the atomic interactions mediated
by nonguided modes. Nevertheless, the previous tech-
niques can be straightforwardly modified to calculate
the new transmission and reflection coefficients. Within
the collective emission model, the atoms evolve under the
HamiltonianHtot ¼ Hdrive þH0 þH1D, whereH0 replaces
H0

indep. In the low-saturation limit, the evolution equations
for the jei-state amplitudes now read

_cjeðtÞ ¼ iΔcjeðtÞ − Γ1D

2

XN
i¼1

eik1Djzi−zjjcieðtÞ

þ iΩeik1Dzj þ i
3πΓ0

k0

XN
i¼1

G0
ρρðri; rj;ωpÞcieðtÞ: ð20Þ

Once again, we evaluate Eqs. (18a) and (18b) using the
steady-state solution for the atomic wave function, in
order to reconstruct the electromagnetic field along the
nanofiber. We overlay our results for the transmission,
reflection, and loss probability spectra in Figs. 12(a)–12(c).
The transmittance spectrum displays many sharp peaks that
are not observed within the independent emission model,
similar to what was found in Ref. [25]. These peaks
correspond to the interference between different collective
atomic modes, whose response can be observed due to the
diminished photon loss. Close to resonance, reflectance is
significantly larger than that obtained within the indepen-
dent emission model. As a matter of fact, accounting for
cooperative emission into nonguided modes lowers sig-
nificantly the probability κ of photon scattering into free
space, as can be observed in Fig. 12(c). However, this
decrease in loss is not uniform for all detunings, and
close to resonance this spectrum also showcases sharp
peaks. Globally, the behavior is much more complex
than that of a “standard” atomic ensemble, such as given
by Eq. (19).
One interesting question is how the loss scales with the

number of atoms. We find that, far from resonance,
κ=κindep ∼ N−1, where κindep is the photon loss probability
when the collective emission into nonguided modes is
neglected. However, in Sec. III, we find that for a chain
of atoms in free space, the decay rate of the most
subradiant mode scales as N−3. Taken together,
Figs. 12(a)–12(c) suggest a simple reason for this
apparent discrepancy. Based on previous arguments of
Sec. III A, both the infinite atomic chain and the fiber
have sets of perfectly guided modes, which experience
zero radiation into free space. However, the dispersion
relation of the effective medium formed by the fiber and
the atomic chain is different from that of the bare fiber
alone (i.e., for a given guided-mode frequency, there is a
different wave vector). This impedance mismatch leads to
large scattering loss at the interface between the two
different systems (bare fiber versus fiber with atoms), in
close analogy to what occurs between different conven-
tional waveguides [98,99].

(a) (b) (c)

FIG. 12. Linear optics for a chain of N ¼ 20 atoms coupled to a nanofiber, for d ¼ λ1D=4 (k1Dd ¼ π=2). (a) Transmittance,
(b) reflectance, and (c) loss probability as a function of the atom-probe detuning. The blue curves are obtained by including the
collective emission into free space [see Eq. (13)], and the red lines are produced within the “independent emission” model, where it is
assumed that free-space emission is a single-atom effect [see Eq. (14)]. The parameters characterizing the nanofiber are given in Fig. 11.

A. ASENJO-GARCIA et al. PHYS. REV. X 7, 031024 (2017)

031024-18



C. Electromagnetically induced transparency

Having posited that scattering at the interface between
the bare fiber and the atomic chain dominates the losses
observed in the two-level case, we now attempt to reduce
these losses by better matching the dispersion relations of
the two regions, using three-level atoms under conditions of
electromagnetically induced transparency [3,34,75,77].
The system under consideration is illustrated in Fig. 13.

In addition to the jgi to jei transition studied earlier, a third
metastable level jsi (of frequency ωs) is added. We assume
that the jei to jsi transition does not couple to the optical
fiber (e.g., due to its dipole matrix element being orthogo-
nal to the guided-mode polarization), but can be addressed
by an external classical control field of Rabi frequency Ωc
that propagates through free space. Through a two-photon
interference effect mediated by the control field, a near-
resonant guided photon interacting with an atom originally
in state jgi can be coherently mapped to state jsi, with
minimal excitation of state jei. The lack of population in jei
and associated photon scattering causes the otherwise
optically opaque medium to become transparent, and thus
EIT nominally preserves the effective refractive index of
the guided mode.
Again, we consider the case where atoms are separated

by a distance d ¼ λ1D=4 (k1Dd ¼ π=2), to guarantee
minimal reflection. Any other distance of the form d ¼
nλ1D=4 (with n being odd) also strongly suppresses
reflection and should suffice, as long as d fulfills the
subradiance condition. In particular, as atoms nominally do
not alter the effective index under EIT, the guided wave
vector k1D itself should lie outside the light line. Without
atoms this is clearly always true, as the fiber mode is
guided. With atoms, however, one must ensure that k1D
lies outside the light line when folded back into the first
Brillouin zone. If we set the distance between the atoms to

be such that k1Dd ¼ π=2, then k1D lies within the first
Brillouin zone and automatically satisfies this constraint,
k0 < k1D ≤ π=d. However, if k1Dd ¼ 3π=2, the condition
on the guided-mode wave vector, k1D > 3k0, becomes
much more stringent. In fact, for the radius and dielectric
constant of the fiber we consider here, the subradiance
condition is not met for d ¼ 3λ1D=4.
We begin by solving for the characteristics of EIT

under the independent emission model, which we find to
reproduce previously derived and well-known results in
free-space atomic ensembles. In particular, we consider
the system evolving under the effective HamiltonianHtot ¼
H1D þH0

indep þHdrive þHc. The Hamiltonians H1D,
H0

indep, and Hdrive are defined in Eqs. (12), (14), and
(15), respectively. Hc captures the interaction of the atoms
with the control field, and is given by

Hc ¼ −ℏ
XN
i¼1

Δsσ̂
i
ss − ℏ

XN
i¼1

ΩcðziÞðσ̂ies þ σ̂iseÞ; ð21Þ

where Δs ¼ ωp þ ωc − ωs is the two-photon detuning.
We take the control field Rabi frequency Ωc to be real,
and allow for a possible spatial dependence. We also
assume that jei has a negligible decay rate into jsi, as in
the case of a dipole-forbidden transition or ladder system.
For EIT within the independent emission model, this
assumption is not necessary, as the emission rate from
jei to jsi can be incorporated into Γ0 and simply leads to a
moderate decrease of optical depth D. Such a condition,
however, becomes important when considering the collec-
tive emission case (see a more detailed discussion about
multilevel structure in Sec. V).
Within the single-excitation manifold, the wave

function of the atomic ensemble is jψðtÞi ¼ cgðtÞjgi⊗NþP
N
j¼1 c

j
eðtÞjeji þ

P
N
j¼1 c

j
sðtÞjsji, with jsji ¼ σ̂jsgjgi⊗N .

For a uniform control field [ΩcðziÞ≡Ωc] and in the
low-saturation limit [cgðtÞ≃ 1], the equations for the
evolution of the amplitudes of the jei and jsi states read

_cieðtÞ ¼ i

�
Δ − J0 þ i

Γ0

2

�
cieðtÞ þ iΩeik1Dzi

þ iΩccisðtÞ −
Γ1D

2

XN
j¼1

eik1Djzi−zjjcjeðtÞ; ð22aÞ

_cisðtÞ ¼ iΔscisðtÞ þ iΩccieðtÞ: ð22bÞ
We solve these equations in the steady state and readily find
cis ¼ −ðΩc=ΔsÞcie, and�

Δ − J0 −
Ω2

c

Δ − J0
þ i

Γ0

2

�
cie þ Ωieik1Dzi

þ i
Γ1D

2

XN
j¼1

eik1Djzi−zjjcje ¼ 0: ð23Þ

FIG. 13. Electromagnetically induced transparency scheme.
The jgi to jei transition is coupled to the guided mode, and
the jsi to jei transition is driven by an external, classical control
field of Rabi frequency Ωc. The distance between the atoms is a
quarter of the guided-mode wavelength, d ¼ λ1D=4.
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Here, we choose Δs ¼ Δ − J0, which assures total trans-
parency when the probe field is resonant with the (shifted)
jei − jgi transition (Δ − J0 ¼ 0). Having found the steady-
state solution of the spin-wave function, it is now possible
to calculate the transmitted guided-mode field by means of
the input-output expression of Eq. (17) and, therefore, the
transmission coefficient of the array under EIT, tEIT.
The transmission coefficient gives us enough informa-

tion to calculate two key quantities that describe the
EIT medium: the group velocity of the polariton and the
bandwidth-delay product, a parameter that quantifies
how many spatially separate photons can be stored in
the atomic ensemble [100]. After propagating along the
atomic chain, the guided-mode field acquires a phase
tEIT ≡ eikeffNd, where keff is a complex effective wave
vector that encodes both light absorption and dispersion.
Up to second order in the atom-probe detuning, the
effective wave vector reads [48,100]

keff ¼ k1D þ Γ1D

2dΩ2
c
ðΔ − J0Þ

þ i
Γ1DðΓ0 þ ηΓ1D=2NÞ

4dΩ4
c

ðΔ − J0Þ2; ð24Þ

where η ¼ 0 (1) for an even (odd) number of atoms. It can
be seen that when Δ ¼ J0, the effective wave vector
perfectly matches that of the bare fiber, keff ¼ k1D, as
originally desired. From the above expression, the group
velocity at the center of the transparency window is found
to be vg ¼ ð∂keff=∂ΔÞ−1 ¼ 2Ω2

cd=Γ1D. The delay time,
i.e., the time it takes for this slow polariton to traverse the
medium, is τ ¼ Nd=vg ¼ NΓ1D=2Ω2

c. The bandwidth of
the transparency window, which dictates how spectrally
narrow a photon has to be to propagate with high trans-
parency, is defined as

ΔEIT ¼ 2δ ¼ 2Ω2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=NΓ1DðΓ0 þ ηΓ1D=2NÞ

p
; ð25Þ

where δ is the detuning for which jtEITj2 ¼ 1=e.
Therefore, the bandwidth-delay product, P ¼ τΔEIT ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NΓ1D=ðΓ0 þ ηΓ1D=2NÞp ≃ ffiffiffiffi

D
p

, scales with the square
root of the optical depth D ¼ 2NΓ1D=Γ0, for realistic
values of Γ0. This is the same scaling that is predicted
in free-space atomic ensembles, when atoms are assumed
to emit independently [3,34]. In contrast, for some
idealized system without loss (i.e., Γ0 ¼ 0), the band-
width-delay product scales simply with the number of
atoms, P ∼ N [100,101]. This result does not follow from
the perturbative expansion of Eq. (24). Rather, one can
perform an exact calculation of the optical band structure
and the bandwidth,ΔEIT ∼Ω2

c=Γ1D, all of which is usable in
the absence of loss [100].
Figure 14(a) depicts a representative transmittance

spectrum for a chain of N ¼ 20 atoms (red curve).
For Δ − J0 ¼ 0, i.e., when the probe field is in resonance
with the (shifted) jei − jgi transition, the transmittance is
perfect. However, total transparency is only exactly
achieved at this precise frequency, decreasing with the
detuning from resonance. The medium can be considered
roughly transparent within a small window of bandwidth
∼ΔEIT, for which the transmittance T > 1=e. The scaling of
the bandwidth-delay product with the number of atoms is
shown in Fig. 14(b). The numerical results (red dots) are
obtained by solving Eq. (23), then calculating the trans-
mission as a function of the atom-probe detuning, and
finally numerically finding the values of Δ where the
transmittance drops to 1=e. The calculations follow per-
fectly the simple scaling P ¼ ffiffiffiffi

D
p

derived above (continu-
ous red line). We should note that the usual definition of
D—in terms of exponential reduction of transmittance on
resonance—does not apply any more to EIT. However, we
maintain the definition D ¼ 2NΓ1D=Γ0, as it represents a
physical resource.
As the final step in our summary, we turn our attention

to the problem of the efficiency of an EIT-based quantum

(a) (b) (c)

FIG. 14. Electromagnetically induced transparency and photon storage efficiency, within the independent emission (red) and
collective emission (blue) models. (a) Transmittance spectrum for a chain of N ¼ 20 atoms. The control field Rabi frequency is set to
Ωc ¼ Γ0, while other system parameters can be found in the main text. (b) Scaling of the bandwidth-delay product with the number of
atoms N. The circles represent the numerical calculation. The red line shows the theoretically predicted answer within the independent
emission model,P ¼ ffiffiffiffi

D
p ≃ 0.76

ffiffiffiffi
N

p
, and the blue curve represents the best fit of the numerical data to a linear scaling, P ≃ 0.30N. The

control field intensity is the same as in (a). (c) Infidelity in the retrieval of the spin excitation given by Eq. (26). The circles show the
numerics. The red line represents the expected scaling derived in Ref. [38], within the independent emission model, ε ¼ 5.8=D≃ 10=N,
and the blue line is the best fit of the numerical results to a ∝ N−2 scaling, and shows ε≃ 26=N2 (the range for the fit is N ∈ ½30; 200�).
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memory. Qualitatively, the large bandwidth-delay prod-
uct associated with an optically dense ensemble enables
an incident pulse to become spatially compressed and
localized completely within the ensemble, while propa-
gating with a reduced group velocity vg ≪ c. The slow
group velocity is associated with the photon mixing
strongly with a collective spin excitation σ̂sg, to form a
“dark-state” polariton. Once the pulse is completely
inside, the pump field can be adiabatically decreased
to zero (Ωc ¼ 0), in which case vg → 0 and the pulse
becomes stored, while simultaneously the polariton
becomes a pure spin excitation [3,34]. This process of
photon mapping can be reversed by ramping up the
control field intensity at a later time, which allows for
an “on-demand” retrieval of the stored photon. Gorshkov
and co-workers demonstrated that, due to time-reversal
symmetry, the optimal efficiency of photon storage is
identical to that of photon retrieval [37]. Therefore, our
discussion focuses on the latter. Neglecting collective
emission into nonguided modes, Gorshkov et al. pre-
dicted that any smooth spin-wave fitting inside the atomic
medium should be retrieved with error ε ∼ 1=D [37,38].
The reason for such scaling is that the optical depth sets
the branching ratio between emitting the photon into the
desired channel (the guided mode of the fiber) and into
the undesired reservoir (free space).
In order to demonstrate that our calculations match the

previously known results, we initialize a single-excitation
spin wave of the form

jψðt ¼ 0Þi ¼ N
XN
j¼1

jeik1Dzj jsji; ð26Þ

where N is a normalization constant, and the phase eik1Dzj
guarantees retrieval of this excitation as a photon in the right-
propagating guided mode, Eq. (18a). This peculiar-shaped
spin wave (in particular, the relative population of atom j
grows like j2) presents a balance between the pulse being
sufficiently smooth (such that its wave vector components fit
within the transparency window) and the majority of the
pulse sitting at the forward end of the medium, such that it
does not accumulate propagation losses over a large distance.
In the limit of large optical depth, such a polariton is predicted
to be of the optimal shape to yield maximal retrieval
efficiency (in particular, ε≃ 5.8=D [38]). At t ¼ 0, we
switch on the control field and let the atomic wave function
evolve under the effective Hamiltonian H1D þH0

indep þHc

until no excitation is left in the atomic chain (having been
emitted into the waveguide or free space). We calculate the
infidelity in the photon retrieval in two different manners,
which yield identical results. The first method consists in
integrating over time the radiative emission into nonguided
photonic modes. The error is thus ε ¼ R∞0 dtκ0indepðtÞ, where
κ0indepðtÞ ¼ −ð2=ℏÞImhH0

indepi ¼ Γ0hPN
j¼1 σ̂

j
eei. The second

way to calculate the infidelity is to realize that a successful
retrieval occurs whenever the photon is emitted to the guided
mode of the fiber. Then, the error is ε ¼ 1 −

R∞
0 dtκ1DðtÞ,

where the time-dependent decay rate into the guided
mode is κ1DðtÞ ¼ −ð2=ℏÞImhH1Di. Technically, the effi-
ciency should be calculated accounting for only emission
into the preferred (right-going) direction of the fiber,
using Eq. (18a). We check that this gives nearly an identical
answer, as emission in the left-going direction is negligible.
The scaling of the retrieval infidelity with the number of
atoms is shown by red circles in Fig. 14(c). The numerical
results agree very well with the expected scaling (ε≃ 5.8=D
[38], red line) for large number of atoms [102]. In principle,
the shape of the outgoing photon can be further tailored via a
time-dependent control field, but we do not treat that
case here.
Now that we have reviewed the basic parameters

characterizing an EIT medium as well as the fidelity
of a quantum memory, we analyze how collective
emission into nonguided modes modifies the relevant
figures of merit. In this case, the system evolves under
the effective Hamiltonian Htot ¼ H1D þH0 þHdriveþ
Hc, where now collective emission is taken into account
through the H0 term (instead of the previous H0

indep).
Before proceeding to the calculation of the optical
properties, we discuss the decay rates of the eigenstates
of the system without guided-mode driving, i.e., of
H1D þH0 þHc. Because of the presence of the s states,
the number of eigenstates in the single-excitation sub-
space is 2N. If the population of the s states of a given
eigenstate is larger than that of the e states, we say that
this eigenstate belongs to the “s branch,” and vice versa.
For any finite control field, there is mixing between the e
and s branches, meaning that the eigenstates do not
purely consist of jei or jsi states.
In Fig. 15(a), we show the guided [Γ1DðkzÞ ¼ −ð2=ℏÞ

ImhH1Di] and nonguided [Γ0ðkzÞ ¼ −ð2=ℏÞImhH0i] decay
rates of the numerically calculated eigenstates that belong
to the s branch, for a fixed number of atoms N ¼ 200.
As in Sec. III A, we perform a finite Fourier transform to
associate an effective wave vector kz to each of the atomic
spin eigenstates. As expected, the nonguided decay rates
are negligible when the dominant wave vector kz lies
beyond the light line. On the contrary, the guided decay
rates peak strongly outside the light line, at kz ¼ �k1D.
It can also be seen that these same states experience a
decay rate into free space of Γ0ðkzÞ=Γ0 ≪ 1, and are thus
the “selectively radiant” states that we previously antici-
pated. Some of the eigenstates with jkzj < k0 have a
nonzero Γ1DðkzÞ decay rate into the guided mode. This
occurs because the eigenstates are not purely Bloch waves
with a perfectly determined kz, but instead can have some
finite contributions from all kz. As a technical note, we
remark that only when the chain of atoms is infinite can
H1D andH0 be simultaneously diagonalized. For any finite
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number of atoms, the eigenstates of H1D þH0 þHc are
not simultaneously eigenstates of its guided and non-
guided parts.
One can also consider the behavior of the selectively

radiant states, as a function of atom number. In particular,
of interest is the maximum possible branching ratio
Γ1DðkzÞ=Γ0ðkzÞ of all the eigenstates, as a function of N.
We plot this quantity in Fig. 15(b), where we find an
approximate scaling of max fΓ1DðkzÞ=Γ0ðkzÞg ∝ N2. We
find that this scaling is in fact independent of the magnitude
of the control field, and is in contrast to the ∼N scaling in
the case of the independent emission model. We later show
that this same scaling manifests itself in the photon storage
or retrieval error probabilities.
Let us now calculate EIT transmittance spectra. Under

the same conditions as before (low saturation, uniform
control field), the evolution equations for the state ampli-
tudes are found to be

_cieðtÞ ¼ iΔcieðtÞ þ iΩieik1Dzi −
Γ1D

2

XN
j¼1

eik1Djzi−zjjcjeðtÞ

þ iΩccisðtÞ þ i
3πΓ0

k0

XN
j¼1

G0
ρρðri; rj;ωpÞcjeðtÞ;

ð27aÞ

_cisðtÞ ¼ iΔscisðtÞ þ iΩccieðtÞ: ð27bÞ

While analytical approximations are not as readily obtained,
the numerical procedures follow exactly as presented for the
case of independent emission. The blue curve in Fig. 14(a)
shows how the transmittance spectrum is modified by
selective radiance. The first noticeable consequence of
collective suppression of the emission into nonguided
modes is that the transparency window becomes wider, as
expected if the loss becomes smaller. This is further con-
firmed in Fig. 14(b), which displays a linear scaling of the
bandwidth-delay product with the atom number, in contrast
to the conventional square-root dependence. As we men-
tioned above, such a scaling is characteristic of a system
without losses [101]. This scaling, along with the conclusion
in Sec. III that suppression of emission into free space can
occur for low densities of excitations, suggests that it might
bepossible to store a number of photons in an atomicmedium
that scales linearly with atom number (in contrast to the
∼
ffiffiffiffi
D

p
scaling within the independent emission model).

Finally, Fig. 14(c) shows the improvement in the
infidelity of retrieval of the spin wave given by Eq. (26).
The error is now calculated including collective emission as
ε ¼ R∞0 dtκ0ðtÞ, where

κ0ðtÞ ¼ −
2

ℏ
ImhH0i: ð28Þ

Again, this error matches the one calculated by taking into
account the component of the photon that is released into
the guided mode, i.e., ε ¼ 1 −

R
∞
0 dtκ1DðtÞ, with κ1DðtÞ ¼

−ð2=ℏÞImhH1Di. As before, we check that emission in the
left-going direction is negligible. We find that by exploiting
collective emission, the error decreases with atom number
like ε ∝ 1=N2. This result is consistent with the scaling of
branching ratios for the most selectively radiant eigenstates,
previously plotted in Fig. 15(b). Moreover, by varying
the radial positions of the atoms over a limited range,
thus modifying the ratio Γ1D=Γ0, we are able to separate the
contributions of the number of atoms and the optical depth to
the infidelity. We obtain ε≃ 15=ðNDÞ, where the numerical
prefactor is not necessarily universal, as it probably depends
on the fiber properties.
An interesting question is why the error of photon

storage improves “only” by a factor of N (from 1=N to
1=N2). In particular, given that single excitations in a free-
space chain can experience a suppression in the emission

(a)

(b)

FIG. 15. Selectively radiant states of the s branch. (a) Guided
[Γ1DðkzÞ, light blue] and nonguided [Γ0ðkzÞ, green] decay rates of
the single-excitation eigenstates of H1D þH0 þHc versus the
dominant wave vector kz of each eigenstate, for a chain of
N ¼ 200 atoms coupled to the fiber. The control field Rabi
frequency is Ωc ¼ 4Γ0, and the plot is restricted to eigenstates
that consist mostly of population in the s states (the s branch).
The gray shaded area represents the region within the light line,
the dashed lines show the guided-mode wave vector �k1D, and
the color lines are guides to the eye. (b) Scaling of the ratio
Γ1DðkzÞ=Γ0ðkzÞ with the number of atoms, at the wave vector kz,
where it is maximum. The dots are numerical results, and the
curve represents the best quadratic fit, maxfΓ1DðkzÞ=Γ0ðkzÞg≃
0.0053N2.
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rate of up to 1=N3, one might have expected a greater
suppression of errors of up to 1=N4 in photon storage. An
initial—but somewhat erroneous—guess would be to
attribute this “bad scaling” to an unfavorable spatial profile
of the initial spin wave. Perhaps surprisingly, although
EIT nominally matches the effective guided-mode indices
of the bare fiber and the composite system of fiber and
atomic chain, we show in the next section that the slight
impedance mismatch away from perfect resonance Δ ¼ J0
is still responsible for the majority of scattering losses
into free space. We thus present an improved impedance
matching scheme, which allows for exponential improve-
ment with N of the quantum memory fidelity.

D. Quantum memory with exponential fidelity

The importance of residual impedance mismatch can be
seen in a simple example, where one considers an initial
Gaussian spin-wave profile,

jψðt ¼ 0Þi ¼ N
XN
j¼1

eik1Dzje−ðzj−zcÞ2=2σ2 jsji; ð29Þ

and investigates the dynamics of the retrieval process more
carefully. In the above expression, N is a normalization
constant, zc ¼ ðN − 1Þd=2 is the center of the atom chain,
and σ ¼ ffiffiffiffi

N
p

d is the standard deviation of the Gaussian
spin wave. Figure 16(a) shows the evolution of the spin

excitation at different times τ, for a chain of N ¼ 200
atoms. Here, to aid in visualization, we define a rescaled
dimensionless time τ ∈ ½0; 1�, where τ represents the total
amount of atomic population that has decayed (i.e., at τ ¼ 1
the spin wave has fully decayed and the photon has been
completely released). We plot not only the population in
the jsi state through the ensemble, which essentially
matches the population of the dark-state polariton, but also
the excited-state population, which is ultimately respon-
sible for any emission into free space.
For a spatially uniform control field, and for a theory of

EIT within a uniform medium (i.e., where the atomic
density is treated as smooth rather than discrete points),
it can readily be shown [103] that the excited-state pop-
ulation is proportional to j∂zσ̂gsðzÞj2 (also see Appendix E),
a result that also agrees well with our numerical results.
This excited-state population is necessarily associated
with a pulse of finite extent or bandwidth, and in comple-
mentary ways reflects the fact that perfect transparency in
EIT occurs only at a single frequency, or that there are
nonadiabatic corrections to the formation of a dark-state
polariton. At certain times, such as at τ ¼ 0.07 or τ ¼ 0.9,
the excited-state spin wave has a large amplitude at the edge
of the atomic chain. Most of the error on retrieval occurs
at these times, as can be seen in Fig. 16(b), which shows
the instantaneous loss κ0ðτÞ. Here, κ0ðτÞ is rescaled as well,
so that its integral provides the total loss,

R
1
0 dτκ

0ðτÞ ¼ ε.

(a)

(b) (c)

(d)

FIG. 16. Retrieval of a Gaussian spin wave given by Eq. (29), under a spatially uniform control field of Rabi frequency Ωc ¼ 0.1Γ0,
and within the collective emission model. (a) Evolution of the population in the jsi states (upper plot) and jei states (lower plot) as a
function of position and at several selected points in time τ, for a chain ofN ¼ 200 atoms (in arb. units). The time is normalized such that
at τ ¼ 1 all the spin population has completely decayed. (b) Instantaneous rate of photon scattering into free space κ0ðτÞ. The solid line is
a numerical calculation based on Eq. (28), while the dashed line represents an estimate based on taking a Fourier decomposition of the
spin amplitude ceðzj; tÞ and weighting each component by a wave-vector-dependent decay rate. A large instantaneous scattering rate
occurs when a large excited-state population is found at the end of the system [for example, at times τ ¼ 0.07 and τ ¼ 0.9 in (a)].
(c) Excited-state population jceðkz; τÞj2 of the different wave vector components of the spin wave, for different evolution times
[corresponding to the snapshots in (a)]. Only the region inside the light line is shown. (d) Scaling of the retrieval loss with the atom
number N. The blue dots show the numerical calculation, whereas the blue line is the best fit to them and represents ε ¼ 4.1=N.
The infidelities for the initial spin wave of Eq. (26) within the independent and collective emission models are shown by the dashed and
dotted lines, respectively.
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A plausible cause of this behavior is the discontinuity of
the excited-state population at the system’s end, which is
associated with a large number of wave vector components
kz that lie within the light line and couple to free space. To
further confirm this intuition, we develop a model for the
time-dependent loss based on the Fourier decomposition of
the spatial profile of the excited-state amplitude. At every
time of the evolution, we calculate ceðkz; τÞ by doing a
finite Fourier transform of the excited-state amplitudes,
ceðzj; τÞ≡ cjeðτÞ. Then, we find the Fourier-based instan-

taneous loss as ~κ0ðτÞ ¼ ðd=2πÞ R k0−k0 dkzΓ0ðkzÞjceðkz; τÞj2,
where Γ0ðkzÞ is obtained from classifying the decay rates of
the eigenstates of H0 according to their dominant wave
vector. This calculation, represented by the dashed line in
Fig. 16(b), shows good agreement with the numerics.

Figure 16(c) depicts the components of jceðkzÞj2 inside
the light line for different times [corresponding to the
snapshots of Fig. 16(a)]. For initial times (purple curve), the
wave function has minimal population within the light line,
suggesting it propagates with little loss down the atomic
chain. The population drastically increases as the pulse hits
the end of the chain (brown curve). A large population of
wave vector components within the light line is correlated
with increased instantaneous loss and sharp features in the
profile of the excited-state population at the system edge.
Finally, Fig. 16(d) displays the scaling of the infidelity in
photon retrieval with the atom number. The scaling is poor
(ε ¼ 4.1=N), as large losses occur when the polariton hits
the ends of the atomic chain.
We now describe how to smoothly reduce the excited-

state population at the end of the chain, by introducing a
spatially dependent control field. Heuristically, the idea
is to increase the control field at the ends of the chain,
as shown in Fig. 17. As the EIT bandwidth is proportional
to the control field intensity [see Eq. (25)], the atomic
medium becomes more transparent at the edges, where the
excited-state population is reduced. One can develop an
effective continuum wave equation to predict the evolu-
tion of the populations in jsi and jei during the retrieval
process, in the presence of a spatially dependent control
field (see Appendix E) [103]. Similar to the case of a
uniform control field presented earlier, in principle the
scattering loss can then be estimated and minimized
from these populations. This optimization process seems
quite challenging in practice, however, as it depends on
the initial spin wave, the control field profile, and on the
integral of momentum components over the entire history
of evolution. We do not do such an optimization here, but
instead show that rather simple choices can already lead to
significant improvements over the infidelity scalings that
we find in the previous section.

FIG. 17. Schematic of the spatial profile of the control field
ΩcðzjÞ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=ðN þ 1 − jÞp

(green curve, arb. units) for a chain of
N ¼ 200 atoms. The initial spin wave, given by Eq. (29), is
overlaid in blue.

(a)

(b) (c)

(d)

FIG. 18. Same as Fig. 16, but for a spatially varying control field of the form ΩcðzjÞ ¼ 0.005
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=ðN þ 1 − jÞp

Γ0. In (a), the dotted
lines show the analytical model. In (d), the blue line is a guide to the eye, and follows ε ¼ 0.15e−N=23.
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For the initial spin wave of Eq. (29), Fig. 18(a) shows
the evolution of the e- and s-states populations of a
chain of N ¼ 200 atoms for the spatially dependent control

field ΩcðzjÞ ¼ Ωð0Þ
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=ðN þ 1 − jÞp

, which exhibits a
rapid increase at the right edge of the chain [see
Fig. 17]. Since the control field is switched on suddenly
in our simulations, its magnitude is taken to be very small

(Ωð0Þ
c ¼ 0.005Γ0) to minimize rapid, nonadiabatic accel-

erations of the spin wave that would artificially increase the
losses at initial times. Both the jei- and jsi-state popula-
tions exhibit smooth profiles at every time of the evolution,
and in particular, one sees that the excited-state population
smoothly vanishes at the edge of the system. The dashed
lines in the plots show the results from the analytical model
we develop in Appendix E, which agree well with the
numerics. Both the instantaneous loss and the amount of
spin-wave population lying within the light line are several
orders of magnitude smaller than in the case of a uniform
control field, as can be seen in Figs. 18(b) and 18(c),
respectively. Moreover, the excited-state population within
the light line does not significantly increase from its initial
values. Finally, Fig. 18(d) shows the exponential decrease
of the retrieval infidelity ε as a function of the atomnumberN
for this given profile.We anticipate that optimized initial spin
waves and control field profiles will result in a much steeper
exponential scaling. Nonetheless, we demonstrate that a
fairly trivial selection of those settings already exponentially
improves previously known bounds for photon storage.

V. PHYSICAL IMPLEMENTATIONS AND
POSSIBLE CHALLENGES

Having analyzed the physics of both subradiance and
selective radiance, we devote this section to discussing
suitable experimental platforms as well as the challenges
that might be encountered to observe this physics.

A. Physical implementations

To potentially observe the physics that we describe in
Sec. III requires atoms to be regularly trapped, forming an
ordered lattice. Moreover, among all the possible collective
atomic states, one should be able to access the subradiant
manifold. We start our discussion with possible physical
platforms. As we demonstrate, the minimal distance at
which subradiant states appear depends on the dimension-
ality of the atomic array (λ0 in 2D and λ0=2 in 1D).
Standard free-space optical lattices [104] can achieve lattice
constants of d ∼ λ0=2, and quantum gas microscopes [105]
are able to generate single 2D arrays. In such systems,
both bosonic [106] and fermionic [107] Mott insulator
phases—where the number of atoms per site can be limited
to one—have been realized.
Very recently, several experimental groups have built

almost defect-free 1D [108] and 2D [109,110] lattices in
an atom-by-atom manner using optical tweezer arrays.

While the interatomic distance achieved so far is still
larger than the free-space wavelength, due to the problem
of interference between the tweezers at close distances, it
could be possible that further improvements enable sub-
wavelength distances to be reached. It might also be
possible to employ a transition with a shorter wavelength
for the trapping scheme, and use another of longer wave-
length to explore subradiant phenomena. Finally, periodi-
cally patterned 1D or 2D dielectric structures can readily
yield subwavelength trapping potentials, with the perio-
dicity of the structure itself [79,111]. While cold atoms can
now routinely be trapped near dielectric structures
[29,47,80,112,113], the filling fractions remain quite low
and new approaches (such as integration with tweezer
arrays) must be developed to achieve near-perfect filling.
Overcoming the second requirement, that of exciting the

subradiant manifold efficiently, is not trivial. As subradiant
states are characterized by a wave vector that lies beyond
the light line, they do not naturally couple to a laser beam
that propagates through free space. There are several
options to overcome this hurdle. An already-suggested
possibility [18] is to map superradiant states, which are
easy to excite, to subradiant ones via magnetic field
gradients. Specifically, a laser can efficiently excite a spin
wave ∼

P
je

ikzzj jeji whose wave vector kz lies within the
light line. In the case that the excited state is magnetic-field
sensitive, a field gradient would then imprint a spatially
dependent phase shift jeji → eiðβtÞzj jeji in time, which then
could allow the wave vector kz → kz þ βt to be mapped
outside of the light line. In 1D chains in free space, one
might exploit the fact that the emission of subradiant states
occurs primarily from the ends, and in a pattern that can be
collected reasonably well with conventional optics. Note
that the question of efficient excitation does not come up
with selectively radiant states, as by definition they are well
coupled to a mode of interest.
Finally, we stress that the exploration of both subra-

diance and selective radiance is not restricted to atoms.
Molecules [114] and solid-state emitters should also exhibit
these properties, although they pose a different set of
challenges. The ability of deterministically placing quan-
tum dots [115–117], rare-earth ions [118,119], and color
centers [120] has significantly improved in the past years,
thus putting ordered arrays within reach. However, one of
the main appeals of atoms is that they are identical to each
other and that their decay is purely radiative. An open
question is how to translate these features into the domain
of solid-state emitters, as it would require high homo-
geneity among them as well as a large emission into the
zero-phonon line (minimizing nonradiative losses).

B. Atomic level structure

There are a number of potential imperfections that
could limit the observation of subradiance and selective
radiance, and the performance of protocols that exploit
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them. A number of these imperfections are conceptually
clear (if not necessarily straightforward to analyze), such as
disorder in atomic positions, classical and quantum motion,
dephasing, and imperfect site filling. A more thorough
investigation of these effects is left to future work.
Here, we discuss a more subtle issue, related to the

complications associated with multilevel atomic structure.
For most of this paper, we have assumed that atoms are
two-level systems, with a single ground state and excited
state. For atoms with hyperfine structure (and thus a ground-
state manifold), an effective two-level system is often
achieved by exploiting a cycling transition [121], where
an excited state of maximum angular momentum can only
decay back into a single ground state, also of maximum
angular momentum. Such a transition responds only to pure
circularly polarized light. In the case of multiple atoms, an
important issue is that light scattered from one atom does not
display circular polarization globally in space. Thus, for
example, the resulting dipole-dipole interactions can poten-
tially drive other atoms to excited states outside of the cycling
transition. This can be avoided in the specific case of a 1D
chain (where the rescattered field has the same polarization
along the axis of the chain), but not in general.
Another possibility to avoid the full complexity of

hyperfine structure is to use atoms without nuclear spin,
such as bosonic ytterbium or strontium [122,123]. In this
case, there is a single ground state but three excited states
with orthogonal dipole matrix elements (giving an isotropic
optical response to the atoms). Then, one can exploit the
fact that in 1D arrays, dipole-dipole interactions involving
different excited states decouple from each other, to
effectively yield two-level physics (similar to the case
of circular polarization described above). In 2D arrays,
the transitions involving a dipole matrix element out of the
plane decouple, while the two in-plane transitions can
hybridize, and calculating the band structure for an infinite
system involves diagonalizing a 2 × 2 matrix associated
with the Fourier transform of the in-plane components
of the Green’s function, ~G0;αβðkÞ, with fα; βg ¼ fy; zg.
This solution qualitatively maintains the same properties as
the two-level case analyzed in Sec. III [for example, see the
discussion surrounding Eq. (10)].
In the presence of hyperfine structure, and excluding

the special case of a 1D array described previously, the
complication with regard to subradiance can be under-
stood with the following simple example. Suppose that
atoms are initialized in a single ground state jgi, from
which a single-excitation spin wave of the form jψi ∼P

je
ikzj jeji is somehow generated. If the wave vector k is

beyond the light line, then as argued in Sec. III, collective
dissipative interactions [such as those encoded in the
σ̂iegσ̂

j
ge term of Eq. (3)] will suppress emission of an

excited state back into jgi through destructive interfer-
ence. However, dipole-dipole interactions will also
generally exist between that excited state and any other

ground state jsi connected by a dipole-allowed transition,
e.g., of the form σ̂iesσ̂

j
se. Since the initially prepared spin

wave jψi does not contain any population in jsi, there is
no interference that prevents decay via this channel, and
thus the spin wave would experience a decay rate into jsi
equal to that of a single, isolated atom excited to jei.
Interesting recent work suggests that it is possible to
encode subradiance in a more complex initial state beyond
the simple product state jgi⊗N [124], which would be
worth exploring further.
Within the context of the enhancement of EIT-based

storage protocols through collective emission, studied in
Sec. IV, this implies that the state jsi cannot be another state
in the ground-state manifold that is directly connected to jei
by a dipole-allowed transition. Various possibilities to
implement EITand retain the desired collective interference
effects include the use of a ladder scheme, with the state jsi
being a long-lived excited state (e.g., a Rydberg level), or to
use a state jsi in the ground-state manifold that is connected
only through a two-photon transition [125,126].

VI. SUMMARY AND OUTLOOK

In summary, we show that subradiant states acquire an
elegant interpretation in 1D and 2D atomic arrays, in terms
of optically guided modes whose decay rate is limited only
by the system boundaries. We provide a first glimpse into
the nature of subradiance for multiple excitations, and
introduce a new concept of selective radiance that should
enable the construction of more efficient atom-light inter-
faces. As a concrete example, we construct a protocol for
quantum memories for light using selectively radiant states
in an optical nanofiber, whose infidelity decreases with
atom number at a rate exponentially better than previously
known bounds.
Even though memories are a very relevant quantum

technology, the improvement in their performance is just an
example of the bountiful possibilities spawned by sub-
radiance and selective radiance. We anticipate that exploit-
ing these phenomena could yield new error bounds and
protocols for many applications of interest, ranging from
nonlinear optics to metrology. At the same time, the nature
of subradiance for multiple excitations or internal states
could itself constitute a rich new many-body problem.
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APPENDIX A: ANALYTICAL EXPRESSIONS
FOR THE INFINITE LATTICE CASE

Here, we provide a formal derivation for the collective
frequency shifts and decay rates of an infinite 1D linear and
2D square lattice of two-level atoms. As we discuss in the
main text, in an infinite lattice the effective Hamiltonian
Heff has discrete translational invariance, and it can be
written as

Heff ¼ ℏ
X
k

ðJk − iΓk=2ÞS†kSk: ðA1Þ

Here, Sð†Þk ¼ N−1=2P
je

−ðþÞik·rj σ̂jgeðegÞ represents the anni-

hilation (creation) operator of one of the collective modes,
which in this case corresponds to an atomic spin wave
with momentum k (defined within the first Brillouin zone).
The quantities Jk and Γk are real and correspond to the
collective frequency shift and decay rate of the mode k,
calculated by taking the discrete Fourier transform of
Eq. (4); that is,

Jk ¼
X
ri−rj

eik·ðri−rjÞJji; ðA2aÞ

Γk ¼
X
ri−rj

eik·ðri−rjÞΓji: ðA2bÞ

1. Collective frequency shifts

Here, we evaluate the collective frequency shifts for
an infinite 1D chain of atoms along the ẑ direction.
The collective frequency shifts when the atoms are polar-
ized along or transversally to the chain (denoted by J∥kz and

J⊥kz , respectively) are given by

J∥kz
Γ0

¼ 3

2k30d
3
Re
X�∞

l¼�1

eik0djlj

jlj3 eikzdlð−1þ ik0djljÞ; ðA3aÞ

J⊥kz
Γ0

¼ 3

4k30d
3
Re
X�∞

l¼�1

eik0djlj

jlj3 eikzdlð1 − ik0djlj − k20d
2jlj2Þ:

ðA3bÞ
Using the representation of the polylogarithmic function
as an infinite sum: LisðzÞ ¼

P∞
l¼1 z

ll−s [for z ∈ C, and
Lis¼1ðzÞ ¼ − lnð1 − zÞ], the previous expressions reduce to
Eqs. (8a) and (8b) in the main text.

2. Collective decay rates

In order to compute the Fourier transform ~G0ðkÞ, it is
useful to express the free space Green’s tensor in terms of
the spherical wave function,

G0ðrÞ ¼ ðk201þ ∇ ⊗ ∇Þ eik0r

4πk20r
ðA4Þ

and make use of the spherical wave decomposition into
plane waves,

eik0r

r
¼ i

2π

Z
d2Q∥

1

Qx
eiQ∥·r∥eiQxjxj; ðA5Þ

with Qx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −Q2

∥

q
. Here, we choose the axis x̂ to be

perpendicular to the array, while the components r∥ are
parallel to a plane that contains the atomic chain (in 1D) or
the atomic array (in 2D). Then, the free-space Green’s
tensor can be expressed as

G0ðrÞ ¼
i

8π2k20

Z
d2Q∥

ðk201 − Q̄ ⊗ Q̄Þ
Qx

eiQ∥·r∥eiQxjxj;

ðA6Þ

where we define Q̄≡ ½QxsgnðxÞ; Qy;Qz�. For 1D and
2D lattice geometries, we can choose that the corre-
sponding line or plane of atoms sits at x ¼ 0. Then,
since we are only interested in evaluating G0 at the
atomic positions, we can set x → 0 in the above
expressions. Making use of the Dirac delta representa-
tion in D dimensions,

X
ri∈lattice

eiQ·ri ¼
�
2π

d

�
D X

g∈reciprocal
lattice

δðDÞðQ − gÞ; ðA7Þ

it is possible to express ~G0ðkÞ as a sum over reciprocal
lattice vectors g. For a 1D linear chain along ẑ,

~G0ðkÞ ¼
i

8π2
2π

k20d

X
g

Z
dQy

1

qx
½k201 − q ⊗ q�; ðA8Þ

where we define q≡ ½qxsgnðxÞ; Qy; kz þ gz�, with qx ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − ðkz þ gzÞ2 −Q2

y

q
. In the case of a 2D square

lattice in the ŷ-ẑ plane, this reads:

~G0ðkÞ ¼
i

8π2

�
2π

k0d

�
2X

g

1

qx
½k201 − q ⊗ q�; ðA9Þ

with q≡ ½qxsgnðxÞ; ky þ gy; kz þ gz� and qx ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − jkþ gj2

p
.
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Equations (10a) and (10b) are ill defined for the crossed
components xy and xz of ~G0ðkÞ. However, we note that
G0;xαðr⊥; x → 0Þ ¼ 0 (α ¼ y, z), since the electromagnetic
field emitted by a dipole is always parallel to the dipole itself,
at any point of its normal plane. Thus, also ~G0;xαðkÞ ¼ 0

(α ¼ y, z). The fact that this crossed termvanishes is relevant,
since it implies that the modes with transverse and in-plane
polarization will not be mixed when dealing with multilevel
atoms. This is true specifically for 1D and 2D lattices.
From Eqs. (A2b), (A8), and (A9), the collective decay

rates can be evaluated. We first note that for a wave vector
beyond the light line (i.e., jkj > k0), qx is purely imaginary
for any reciprocal lattice vector g. Thus, the imaginary part
of all diagonal tensor components vanishes, and the decay
rates are exactly zero. This mathematically demonstrates
that any state beyond the light line is necessarily subradiant.
In order to have states satisfying this condition, the
maximum magnitude of the wave vectors defined in the
first Brillouin zone must be larger than the one defining
the light line; i.e., kmax > k0. In a linear chain in 1D, one
has kmax ¼ π=d, and this sets the condition d=λ0 < 1=2
for the existence of these states. In a 2D square lattice, for
which the first Brillouin zone is a square, kmax ¼ ffiffiffi

2
p

π=d,
yielding instead the condition d=λ0 < 1=

ffiffiffi
2

p
.

For states with wave vector jkj ≤ k0, the only contri-
bution in the decay rate is from reciprocal lattice vectors
satisfying jkþ gj ≤ k0. In the 1D case we obtain, for
parallel and transverse polarization, and after performing
the integral in Eq. (A8):

Γ∥
kz

Γ0

¼ 3π

2k0d

X
gz

jkzþgz j≤k0

�
1 −

ðkz þ gzÞ2
k20

�
; ðA10aÞ

Γ⊥
kz

Γ0

¼ 3π

4k0d

X
gz

jkzþgz j≤k0

�
1þ ðkz þ gzÞ2

k20

�
: ðA10bÞ

For the 2D square lattice, one gets

Γ∥
k

Γ0

¼ 3π

k30d
2

X
g

jkþgj≤k0

k20 − jðkþ gÞ · ℘̂j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − jkþ gj2

p ; ðA11aÞ

Γ⊥
k

Γ0

¼ 3π

k30d
2

X
g

jkþgj≤k0

jkþ gj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − jkþ gj2

p : ðA11bÞ

APPENDIX B: TRANSFER MATRIX
FORMALISM

In Sec. III B, we find that a linear chain of N atoms has a
set of subradiant single-excitation modes, whose decay
rates scale like Γξ ∼ ξ2=N3. Here, ξ ¼ 1; 2; 3;… serves as
an index for the subradiant modes.

Here, we present a simple one-dimensional model of
light interacting with a periodic system of scatterers.
It is important to note that one cannot establish a
formal mapping from the original system to this one.
Heuristically, however, one might hope that the simple
model is sufficient to capture the salient features of a
generic pseudo-1D system. In particular, we find that
the simple model also produces a set of resonances, whose
decay rates scale like Γξ ∼ ξ2=N3.
One-dimensional scattering through several optical

elements (such as an array of scatterers) can be efficiently
described using the transfer matrix formalism [67,127].
This method takes advantage of the fact that in a one-
dimensional scattering model there are only two propa-
gation directions (left and right). The transfer matrix Msc
(see Fig. 19) relates the fields on one side (E−

R, E
−
L) and on

the other side (Eþ
R , E

þ
L ) of a point scatterer:

�
Eþ
R

Eþ
L

�
¼ Msc

�
E−
R

E−
L

�
: ðB1Þ

Propagation through a unit cell can also be described via a
transfer matrix, which itself is a product of transfer
matrices describing interaction with the point scatterer
(described by reflection and transmission coefficients r
and t), and the one-dimensional free-space propagation
at frequency ω ¼ ck over a distance d. That is, M ¼
Msc ·Mfree, with

Msc ¼
1

t

�
t2 − r2 r

−r 1

�
¼
�
1þ iζ iζ

−iζ 1 − iζ

�
; ðB2aÞ

Mfree ¼
�
eiωd=c 0

0 e−iωd=c

�
; ðB2bÞ

and ζ ¼ −ir=t. The relation of Msc to ζ is determined by
the additional constraint that 1þ r ¼ t, which states that
the field should be continuous on each side of the point
scatterer.
It is useful to decompose the matrix M as

M ¼ eiqdA ¼ cosðqdÞ1þ i sinðqdÞA; ðB3Þ

(a)
sc

(b)

FIG. 19. (a) The transfer matrix Msc relates the fields on one
side and the other of the scatterer. The coefficients of Msc are
determined by imposing continuity on the fields. (b) For a
periodic array of scatterers the total transfer matrix is simply
the product of matrices MN ¼ MN .
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with

A ¼
 

c=vg
ζ

sinðqdÞ e
−iωd=c

− ζ
sinðqdÞ e

iωd=c −c=vg

!
; ðB4Þ

since TrA ¼ 0 and A2 ¼ 1. Here, vg is the group velocity
for an infinite lattice, and it is given by Eq. (B7).
Dispersion relation.—The two eigenvalues that diago-

nalize the transfer matrix M are necessarily of the form
λ� ¼ e�iqd, since detM ¼ 1. As we see, �q corresponds

to the Bloch index or quasimomentum. Moreover, since
the trace of M is independent of the basis, one can
obtain the dispersion relation (the relationship between ω
and q):

1

2
TrM ¼ cosðqdÞ ¼ cosðωd=cÞ − ζ sinðωd=cÞ: ðB5Þ

Given the quasimomentum value jqj, there are two
possible solutions (or branches) that fulfill this relation.
In particular,

ωd
c

¼ cos−1
�
cosðqdÞ
1þ ζ2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ ζ2Þ½1 − ζ2= cos2ðqdÞ�

q ��
: ðB6Þ

Moreover, from Eq. (B5), the group velocity for an infinite
system can be derived:

vg ≡ dω
dq

¼ c sinðqdÞ
sinðωd=cÞ þ ζ cosðωd=cÞ : ðB7Þ

Group velocity close to the band edge.—At the band
edge of the Brillouin zone (q ¼ π=d), the dispersion
relation exhibits a band gap, with the lower (ω0−) and
upper (ω0þ) frequencies of the gap given by

ω0þd=c ¼ π; ðB8aÞ

ω0−d=c ¼ cos−1
�
ζ2 − 1

ζ2 þ 1

�
: ðB8bÞ

Near the band edge the dispersion relation can be
approximated by

ω ∼ ω0� ∓ c
2ζd

ðπ − qdÞ2; ðB9Þ

and the group velocity can be identified as vg ¼∓ cðπ − qdÞ=ζ.
Finite array: Transmission coefficient and resonances.—

In an ordered array of N point scatterers (separated by
the distance d), the total transfer matrix is simply the
product of matrices MN ¼ MN . Thus, the eigenvectors
of M are also eigenvectors of MN . Equation (B3) is
very useful to compute MN ¼ eiNqdA ¼ cosðNqdÞ1þ
i sin ðNqdÞA [95].
As any transfer matrix, MN can be written as

MN ¼ 1

tN

�
t2N − r2N rN
−rN 1

�
; ðB10Þ

where now tN and rN represent the reflection and trans-
mission coefficients throughout the whole array. Thus, one

can obtain the transmission and reflection coefficients from
the elements M22

N and M12
N :

t−1N ¼ cosðNqdÞ þ i sinðNqdÞðc=vgÞ; ðB11aÞ

rN ¼ iζ sinðNqdÞe−iωd=c
sinðqdÞ tN: ðB11bÞ

The previous expressions allow us to identify resonances
of the finite array. Indeed, for particular values of the Bloch
index, namely, qξd ¼ πðN − ξÞ=N (where ξ is an integer
number), the transmission coefficient tNðqξÞ → ð−1ÞN−ξ.
That is, the transmission probability through the array is
maximum and equal to one.
It is also interesting to analyze the physics close

to those resonances. As we discuss, the transmission
spectra exhibits peaks at each value qξ. Around each
peak ξ, it can readily be shown that the transmission
spectrum behaves approximately as a Lorentzian,
tN ≈ ð−1ÞðN−ξÞðiΓξ=2Þ=ðiΓξ=2 − δωξÞ, where δωξ denotes
the detuning from the resonance frequency of mode ξ and
Γξ its linewidth. For small values of ξ, one finds
approximately that

Γξ ∼
2ξ2π2c
ζ2N3d

: ðB12Þ

APPENDIX C: GREEN’S FUNCTION
OF A NANOFIBER

Here, we provide the expressions for the radial compo-
nents of the Green’s function of an infinite nanofiber of
radius r directed along ẑ, following Klimov and Ducloy
[89]. The total field produced by a dipole near a fiber can be
expressed in terms of a free field (solution in vacuum)
and a field rescattered by the fiber. To exploit separation
of variables, the free field can be written in cylindrical
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coordinates as an expansion in longitudinal wave vector k∥
and angular momentum eimϕ. The full Green’s function
Gðr; r0;ω0Þ is a rather complicated expression. Here, we
are interested in the case where all atoms sit at identical
distances from the fiber and a fixed azimuthal angle around
the cylinder. Since we only need the Green’s function at the
atomic positions themselves, we can construct a simplified
version of the scattering Green’s function, evaluated only at
the atomic positions zj:

Gρρðzj; zkÞ ¼
1

4πk20

X∞
m¼−∞

Z
∞

−∞
dk∥ ~Gmðk∥Þeik∥ðzj−zkÞ; ðC1Þ

where

~Gmðk∥Þ ¼
1

k2⊥
½ik∥k⊥∂xH

ð1Þ
m ðxÞamðk∥Þ

−
k0m
ρa

Hð1Þ
m ðxÞbmðk∥Þ�

x¼k⊥ρa
: ðC2Þ

In the above expression, ρa > r is the radial position of

the atoms (assumed to be identical), k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − k2∥

q
is

the perpendicular component of the wave vector outside the

fiber, and Hð1Þ
m is the Hankel function of the first kind.

The coefficients amðk∥Þ and bmðk∥Þ are found by matching
boundary conditions for the electromagnetic field at the
surface of the fiber, and can be taken from Eqs. (47)–(50) in
Ref. [89] (by choosing the value of the dipole moment
equal to unity).
In the following, we detail how to perform the integral in

Eq. (C1). We only need to do it for the case where zj > zk,
as Gρρðzj; zkÞ ¼ Gρρðzk; zjÞ, due to Lorentz reciprocity. In

the complex plane, the integrand ~Gmðk∥Þ has two branch
cuts (due to the square-root form of k⊥) and two poles, that
correspond to the guided mode of the fiber (for a small
enough nanofiber, all the guided modes with jmj ≠ 1 are
cut off). This guided mode, the so-called HE11 [83], does
not have a cutoff frequency and corresponds to them ¼ �1
pole. In particular, the variation in the position of the pole
with ω0 gives rise to the dispersion relation. In order to
avoid the poles when integrating along the real line, we
perform a contour integration and employ Cauchy’s theo-
rem. The contour that we choose is shown in Fig. 20. Based
on this image, we have I ¼ Ipole − Ir − Iþ − I− − Ic − Icc,
where I is given by Eq. (C1), and the other integrals
are performed along the contours of Fig. 20. After perform-
ing the integrals, we find that the total Green’s function can
be separated into guided G1D and nonguided G0 contribu-
tions as

G1D
ρρ ðzj; zkÞ ¼

eik1Dðzj−zkÞ

2πk20

I
Cpole

dk∥ ~G1ðk∥Þ; ðC3aÞ

G0
ρρðzj; zkÞ ¼ G0;ρρðzj; zkÞ

þ 1

4πk20

X∞
m¼−∞

�Z
k0

−k0
dk∥ ~Gmðk∥Þeik∥ðzj−zkÞ

þ 2

Z
∞

0

dγImf ~Gmð−k0 þ iγÞeið−k0þiγÞðzj−zkÞg

− 2Re
�Z

Ccc

dk∥ ~Gmðk∥Þeik∥ðzj−zkÞ
��

:

ðC3bÞ

In the above expressions, k1D is the wave vector of the
guidedmode,G0;ρρðzj; zkÞ is the vacuum’s Green’s function,
and Cpole and Ccc are the red and leftmost green contours in
Fig. 20, respectively. For the nonguidedGreen’s function, the
integral Ir produces both frequency shifts and decay,whereas
the integrals I�, Ic, Icc only contribute to the frequency
shifts. The integrals Ic þ Icc do not contribute for zj ≠ zk.
For the local Green’s function (i.e., zj ¼ zk), both Iþ þ I−
and Ic þ Icc are divergent individually, but the infinity is
canceled when they are added.

APPENDIX D: LINEAR OPTICS FOR
TWO-LEVEL ATOMS IN THE MIRROR

CONFIGURATION

Within the independent emission model, and when the
atoms are spaced at distances such that k1Dd ¼ nπ, with n
being an integer, only a single collective atomic mode
couples to the fiber. This case constitutes the so-called
“mirror configuration,” as it has been shown that the
ensemble behaves as a nearly perfect mirror with increasing
atom number N. As we show here, the resultant physics
when suppression of emission into nonguided modes is
accounted for becomes significantly more complicated.
In particular, while one can dramatically enhance the
reflectance of the atomic chain, we find that the atoms
no longer respond as a single mode, and that the impedance
mismatch between the atomic chain and the photonic
guided mode of the fiber is a major issue.
For atoms spaced by a distance k1Dd ¼ 2π, the guided

Hamiltonian of Eq. (12) simply reads

FIG. 20. Integration contour for Eq. (C1) depicting the pole and
branch cuts.
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H1D ¼ −i
ℏΓ1D

2

XN
i;j¼1

σ̂iegσ̂
j
ge: ðD1Þ

In the single-excitation manifold there is only one super-
radiant mode, with decay rate NΓ1D, while all the others are
completely dark (the same physics would be observed
for any other separations of the form k1Dd ¼ nπ). In this
configuration, the transmittance and reflectance coeffi-
cients can be found analytically, and read [51]

T indep ¼
Γ02 þ 4ðΔ − J0Þ2

ðNΓ1D þ Γ0Þ2 þ 4ðΔ − J0Þ2 ; ðD2aÞ

Rindep ¼
ðNΓ1DÞ2

ðNΓ1D þ Γ0Þ2 þ 4ðΔ − J0Þ2 ; ðD2bÞ

and the photon-loss probability is κindep ¼ 1 − T indep−
Rindep ¼ 2RindepΓ0=NΓ1D. The transmittance spectrum is
a Lorentzian whose linewidth NΓ1D þ Γ0 grows linearly
with number of atoms, for sufficiently large N. On
resonance (when Δ − J0 ¼ 0), the atomic chain becomes
a very good mirror, and the only relevant quantity that
determines how much light is reflected is the ratio
D ¼ 2NΓ1D=Γ0, which is in fact the optical depth of the
system. In particular, on resonance and in the limit of large
optical depth, the transmittance, reflectance, and loss
become T indep¼4=D2, Rindep¼1�4=D, and κindep¼ 4=D,
respectively.
For atoms at close distances from each other, the

independent emission model is not valid, and one cannot
find analytical expressions for the transmission and reflec-
tion coefficients. Figures 21(a)–21(c) show the transmis-
sion, reflection, and loss probability spectra of a chain of
N ¼ 20 atoms coupled to the nanofiber, for both the
independent emission model (red curves) and the collective
emission calculation (blue curves). The differences are
striking. For instance, close to resonance, the transmission
and the loss decrease about 4 orders of magnitude when

collective suppression into free space is taken into
consideration.
Repeating these calculations for chains with different

number of atoms, we extract the scalings of the minimum
transmittance and maximum reflectance within the collec-
tive emission model. In particular, we find T ∼ 1=N8 and
1 − R ∼ 1=N6. Moreover, at the detuning that minimizes
emission into free space, the loss scales as κ ∼ 1=N6. It thus
seems apparent that collective emission cannot be captured
by some trivial modification of the independent emission
model [e.g., one cannot simply replaceΓ0 by some Γ0

effðNÞ in
Eqs. (D2a) and (D2b)]. In other words, the atom-light
coupling can no longer be described by a single collective
atomic eigenstate, but has become instead a multimode
problem. This idea is further confirmed by a careful analysis
of the line shapes of Figs. 21(a)–21(c). Although hard to
appreciate in the figures, the transmittance and reflectance
spectra are not smooth Lorentzians due to interference
between different atomic eigenstates, all of which contribute
to the optical response of the chain.
Beyond the added complexity, there is another important

issue to notice: Fig. 21(c) shows that off-resonant losses are
still quite large. We find that far away from resonance, the
loss is independent of the atom number. Figure 21(d) sheds
light on the reasons for such behavior, as it compares the
excited-state profile at the detuningwhere the loss isminimal
[orange arrow and circles in Figs. 21(c) and 21(d), respec-
tively] and far off resonance, at Δ − J0 ¼ −20Γ0 [green
arrow and circles in Figs. 21(c) and 21(d), respectively].
At the detuning where the loss is minimal, the atoms at the
end of the chain are negligibly excited, and the atomic
population smoothly increases toward the middle of the
chain. In other words, the response of the atoms to the
incoming field appears “impedance matched,” in that
the smooth excitation profile reduces the amount of spin-
wave components that sit within the light line and couple to
free-space radiation. In contrast, far off resonance, the
prepared state mostly builds upon a single eigenstate with
a very uniform spatial profile. This further supports the
argument in the main text that the response of light at the

(a) (b) (c) (d)

FIG. 21. Linear optics for a chain of N ¼ 20 atoms coupled to a nanofiber, in the mirror configuration (k1Dd ¼ π). (a) Transmittance,
(b) reflectance, and (c) loss probability as a function of the atom-probe detuning, within the collective (blue curves) and independent
emission (red curves) models. (d) Spatial profile of the excited-state population (in arb. units) at two different detunings, as indicated
by the arrows in (c). The green circles have been rescaled for the sake of clarity. The parameters characterizing the nanofiber are
given in Fig. 11.
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interface between the atoms and the bare fiber plays an
important role in the observed scattering losses.

APPENDIX E: POLARITON MODEL

Here, we develop a model for the dynamics of the dark-
and bright-state polaritons where losses into free space are
completely neglected. We extend previous theory for EIT in
continuous atomic media [103], in order to study the effect
of spatially dependent control fields on the dynamics of
the bright polariton. Instead of focusing on the spin-model
equations only, and reconstructing fields using an input-
output equation, we return to explicitly keeping track of the
wave equation of the electric field as it propagates through
the fiber. Employing continuous atomic operators (denoted
by tildes), the equations of motion are

∂t ~σge ¼ −
Γ1D

2
~σge þ iΩc ~σgs þ i

ffiffiffiffiffiffiffiffiffiffi
cΓ1D

2

r
E; ðE1Þ

∂t ~σgs ¼ iΩc ~σge; ðE2Þ

ð∂t þ c∂zÞE ¼ in

ffiffiffiffiffiffiffiffiffiffi
cΓ1D

2

r
~σge: ðE3Þ

In the above equations, n ¼ 1=d is the smoothed-out linear
density associated with atoms spaced at distance d, and a
phase eik1Dz has been incorporated into the field and atomic
coherence operators to make them slowly varying in space.
All operators depend on z and t, andΩc ¼ ΩcðzÞ is taken to
be real. We now, respectively, define the dark- and bright-
state polaritons as

Ψ ¼ cos θE −
ffiffiffi
n

p
sin θ ~σgs; ðE4Þ

Φ ¼ sin θEþ ffiffiffi
n

p
cos θ ~σgs; ðE5Þ

where the mixing angle is given by tan θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cnΓ1D=2Ω2

c

p
.

In the adiabatic and slow-light (vg ≪ c) limits, the equa-
tions of motion for these polaritons are

½∂t þ vgðzÞ∂z�Ψðt; zÞ ¼ −
1

2
½Ψðt; zÞ −Φðt; zÞ�∂zvgðzÞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cvgðzÞ

q
∂zΦðt; zÞ; ðE6Þ

Φðt; zÞ ¼ 1

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cvgðzÞ

p ∂tΨðt; zÞ −
1

nc
∂tΦðt; zÞ: ðE7Þ

We consider that the bright-state polariton only perturba-
tively affects the dynamics of the dark-state polariton [128].
Therefore, as a first approximation, we can set Φðt; zÞ ¼ 0
and solve for Ψðt; zÞ. Then, the equation of motion of the
dark-state polariton reads

½∂t þ vgðzÞ∂z�Ψðt; zÞ ¼ −
1

2
½∂zvgðzÞ�Ψðt; zÞ: ðE8Þ

Plugging the above expression into Eq. (E7), we readily
find that the bright-state polariton follows

Φðt; zÞ ¼ −d

ffiffiffiffiffiffiffiffiffiffiffi
vgðzÞ
c

r
∂zΨðt; zÞ −

d

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cvgðzÞ

p Ψðz; tÞ∂zvgðzÞ:

ðE9Þ

The formal solution of the equation for the dark polariton
is Ψðt; zÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c=vgðzÞ
p

~f(t −
R
z
0 v

−1
g ðz0Þdz0), where ~f is a

function that fulfills the condition ~f( −
R
z
0 v

−1
g ðz0Þdz0) ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vgðzÞ=c
p

Ψð0; zÞ. In the slow-light limit, the dark-state
polariton is nearly a pure spin-wave excitation, and thus
corresponds to the spatial profile of the s-state spin wave at
t ¼ 0. In order to obtain ~f we need to perform an inversion.
How hard this function inversion is depends on the profile
of vgðzÞ and on the initial dark-state polariton shape.
Introducing this expression into the equation for the bright-
state polariton, we find

Φðt; zÞ ¼ −d∂z
~f

�
t −
Z

z

0

1

vgðz0Þ
dz0
�
: ðE10Þ
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