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Characterizing how entanglement grows with time in a many-body system, for example, after a quantum
quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random
unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a
random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also
provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D,
we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-
Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like
ðtimeÞ1=3 and are spatially correlated over a distance ∝ ðtimeÞ2=3. We derive KPZ universal behavior in three
complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing
surface, (ii) a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a
hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality
in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time
dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple
coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, evenwithout noise,
in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D
entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-
studied problem of pinning of a membrane or domain wall by disorder.
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I. INTRODUCTION

The language of quantum entanglement ties together
condensed matter physics, quantum information, and high-
energy theory. The von Neumann entanglement entropy is
known to encode universal properties of quantum ground
states and has led to new perpectives on the AdS=CFT
correspondence. But the dynamics of the entanglement are
far less understood. The entanglement entropy is a highly
nonlocal quantity, with very different dynamics to energy
or charge or other local densities. Traditional many-body
tools therefore do not provide much intuition about how
entanglement spreads with time, for example, after a
quantum quench (a sudden change to the Hamiltonian).
We need to develop simple heuristic pictures, and simple
long-wavelength descriptions, for entanglement dynamics.
If a many-body system is initialized in a state with

low entanglement, the dynamics will typically generate
entanglement between increasingly distant regions as time

goes on. This irreversible growth of entanglement—
quantified by the growth of the von Neumman entropy—
is important for several reasons. It is an essential part
of thermalization, and as a result has been addressed in
diverse contexts ranging from conformal field theory
[1–4] and holography [5–12] to integrable [13–19], non-
integrable [20–23], and strongly disordered spin chains
[24–30]. Entanglement growth is also of practical impor-
tance as the crucial obstacle to simulating quantum
dynamics numerically, for example, using matrix product
states or the density matrix renormalization group [31].
The entanglement entropy, and even its time dependence,
is also beginning to be experimentally measurable in
cold atom systems [32–34]. In a very different context,
black holes have motivated studies of how fast quantum
systems can scramble information by dynamically gen-
erating entanglement [35–38]. Simple quantum circuits—
quantum evolutions in discrete time—serve as useful toy
models for entanglement growth and scrambling [39–43].
For integrable 1D systems and rational CFTs, there is an

appealing heuristic picture for entanglement growth fol-
lowing a quench in terms of spreading quasiparticles [1,3].
However, this picture does not apply to general interacting
systems [3,4,10,44].
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In this paper, we propose new heuristic pictures for
entanglement growth in generic, nonintegrable systems, both
in 1D and in higher dimensions. We arrive at these pictures
by studying “minimally structured” models for quantum
dynamics: dynamics that are spatially local, and unitary, but
random both in time and space (“noisy”). Concretely, we
focus on quantum circuit dynamics with randomly chosen
quantum gates. Entanglement growth in these systems
exhibits a remarkable universal structure in its own right,
related to paradigmatic problems in classical statistical
mechanics. But in addition, random circuits provide a
theoretical laboratory that allows us to derive scaling pictures
for entanglement growth and the so-called “entanglement
tsunami” [8], which, we conjecture, generalize to quenches
in many-body systems without noise. For example, we
propose a simple “minimal membrane” picture that can be
used to derive scaling forms for the growth of the entangle-
ment. We also argue that generically there is a well-defined
“entanglement speed” vE, but this is generically smaller than
the “butterfly speed” vB governing operator growth, and we
give a physical explanation for this phenomenon.
We show that noisy entanglement growth allows a long-

wavelength descriptionwith an emergent universal structure.
Physically, the class of noisy dynamics includes closed,
many-body systems whose Hamiltonian HðtÞ contains
fluctuating noise terms, and also quantum circuits in which
qubits are acted on by randomly chosen unitary gates. In this
setting, we pin down both the leading-order deterministic
behavior of the entanglement and the subleading fluctuations
associated with noise. We argue that fluctuations and spatial
correlations in the entanglement entropy are characterized
by universal scaling exponents, expected to be independent
of the details of the microscopic model.
For noisy systems in one spatial dimension, we argue that

the critical exponents for entanglement growth are those of
the Kardar-Parisi-Zhang (KPZ) equation, originally intro-
duced to describe the stochastic growth of a surfacewith time
t [45]. In the simplest setting, we find that the height of this
surface at a point x in space is simply the von Neumann
entanglement entropySðx; tÞ for a bipartitionwhich splits the
system in two at x. The average entanglement grows linearly
in time, while fluctuations are characterized by nontrivial
exponents. We support this identification with analytical
arguments and numerical results for discrete time quantum
evolution (unitary circuits).
A remarkable feature of the KPZ universality class is that

it also embraces two classical problems that at first sight are
very different from surface growth [45,46]. These connec-
tions lead us to powerful heuristic pictures for entanglement
growth, in both 1D and higher dimensions. The KPZ
universality class embraces the statistical mechanics of a
directed polymer in a disordered potential landscape [47] and
1D hydrodynamics with noise (the noisy Burgers equation
[48]). These problems, together with surface growth, are
sometimes known as the “KPZ triumvirate” [49]. They are

summarized in Fig. 1. We show that entanglement growth
can usefully be related to all three of the classical problems in
in Fig. 1.
In the quantum setting, the directed polymer is related to

the “minimal cut,” a curve in space-time that bisects the
unitary circuit representing the time evolution. This picture
is more general than the surface growth picture, as it allows
one to consider the entropy for any bipartition of the system.
It also allows us to generalize from 1D to higher dimensions.
The picture is reminiscent of the Ryu-Takayanagi prescrip-
tion for calculating the entanglement entropy of conformal
field theories in the AdS=CFT correspondence, which
makes use of a minimal surface in the bulk space [50],
and analogous results for certain tensor network states
[51–53]. Here, however, the cut lives in space-time rather
than in space, and in a noisy system its shape is random
rather than deterministic. (For a different use of the idea of a
minimal cut in space-time, see Ref. [10].) In dþ 1 space-
time dimensions the minimal cut becomes a d-dimensional
membrane pinned by disorder. This picture allows us to
obtain approximate critical exponents for noisy entangle-
ment growth in any number of dimensions.
This picture also leads us to a conjecture for entangle-

ment growth in systems without noise, both in 1D and
higher dimensions, as we discuss below. According to this
conjecture, the calculation of the entanglement in higher
dimensions reduces to a deterministic elastic problem for
the minimal membrane in space-time. In 1D, it results in
particularly simple universal scaling functions, which agree
with scaling forms in holographic 1þ 1D CFTs [8,10,44],
and which we suggest are universal for generic, non-
integrable, translationally invariant 1D systems.
The third member of the triumvirate in Fig. 1 is a noisy

hydrodynamic equation describing the diffusion of inter-
acting (classical) particles in 1D. We show that this can be
related to the spreading of quantum operators under the
unitary evolution, giving a detailed treatment of the special
case of stabilizer circuits. Note that while the minimal cut

KPZ universality class

Classical
surface growth

Stochastic
particle dynamics

Directed polymer in
random medium

Growth of 
entanglement

Hydrodynamics
of operator spreadingthrough circuit

FIG. 1. The KPZ “triumvirate” is made up of three very
different problems in classical statistical mechanics which all
map to the KPZ universality class. As we discuss, each of them
can be usefully related to entanglement in 1þ 1D.
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picture generalizes to higher dimensions, the KPZ and
hydrodynamic pictures are special to 1D.

A. Organization of the paper

We propose that noisy dynamics are a useful toy model
for quantum quenches in generic (nonintegrable, noncon-
formally–invariant) systems, even without noise. The logic
of our approach is to pin down the universal behavior of
noisy systems (Secs. II–VI), to establish simple heuristics
capturing this behavior (Secs. III and IV), and then to
extend these heuristic pictures to dynamics without noise
(Secs. V and VIII).
The detailed physics of the entanglement fluctuations

(including KPZ exponents) certainly relies on noise.
However, the coarser features of the dynamics are in fact
deterministic. These include the leading-order time depend-
ence of the entanglement entropy and mutual information
when the length and time scales are large. We conjecture
that this leading-order behavior, as captured by the directed
polymer and hydrodynamic pictures, carries over to
Hamiltonian dynamics without noise. On the basis of this
we address (Sec. V) features of entanglement growth that
have previously been unclear. We argue that in generic 1D
systems the entanglement growth rate can be interpreted as
a well-defined speed vE, but that this speed is generically
smaller than another characteristic speed, which is the
speed vB at which quantum operators spread out under the
dynamics (the butterfly speed). Section V also addresses
universal scaling forms for the entanglement entropy in 1D.
In Sec. VIII, we discuss the geometry dependence of the
dynamical entanglement in higher-dimensional systems:
we argue that there is again a scaling picture in terms of a
minimal surface, but that more nonuniversal parameters
enter into the time dependence than in 1+1D.

II. SURFACE GROWTH IN 1D

We begin by studying entanglement growth under
random unitary dynamics in one dimension. After sum-
marizing the KPZ universal behavior, we derive this
behavior analytically in a solvable model, using a mapping
to a classical surface growth problem. In the following
sections we provide alternative derivations of this universal
behavior by relating the minimal cut bound on the
entanglement to the classical problem of a directed polymer
in a random environment, and by relating the spreading of
quantum operators to a 1D hydrodynamics problem.
Consider a chain of quantum spins with local Hilbert

space dimension q (for example, spin-1=2’s with q ¼ 2).
We take open boundary conditions and label the bonds of
the lattice by x ¼ 1;…; L. We consider only unitary
dynamics, so the full density matrix ρ ¼ jΨihΨj represents
a pure state. For now we consider the entanglement across a
single cut at position x; we generalize to other geometries
later in the paper. The reduced density matrix ρx is defined

by splitting the chain into two halves at x and tracing out
the left-hand side (Fig. 2). The nth Rényi entropy for a cut
at x is defined as

SnðxÞ ¼
1

1 − n
log ðTrρnxÞ: ð1Þ

Logarithms are taken base q. In the limit n → 1, the Rényi
entropy becomes the von Neumann entropy:

SvNðxÞ ¼ −Trρx log ρx: ð2Þ

A basic constraint on the von Neumann entropy is that
neighboring bonds can differ by at most one (this follows
from subadditivity of the von Neumann entropy):

jSvNðxþ 1Þ − SvNðxÞj ≤ 1: ð3Þ

In this section, we focus on the growth of the bipartite
entropies Sðx; tÞ with time, starting from a state with low
entanglement. [Here Sðx; tÞ, without a subscript, can denote
any of the Rényi entropies with n > 0.] For simplicity, we
take the initial state to be a product state, but we expect the
same long-time behavior for any initial state with area-law
entanglement. (The setup with area-law entanglement in
the initial state is analogous to a quantum quench that starts
in the ground state of a noncritical Hamiltonian. We briefly
consider initial states with non-area-law entanglement in
Sec. IX.) We argue that for noisy unitary dynamics, the
universal properties of Sðx; tÞ are those of the Kardar-
Parisi-Zhang equation:

∂S
∂t ¼ ν∂2

xS −
λ

2
ð∂xSÞ2 þ ηðx; tÞ þ c: ð4Þ

This equation was introduced to describe the stochastic
growth of a 1D surface or interface with height profile SðxÞ
[45]. It captures an important universality class which has
found a wealth of applications in classical nonequilibrium
physics, and its scaling properties have been verified
in high-precision experiments [54,55]. The constant c in
Eq. (4) contributes to the positive average growth rate,
while ηðx; tÞ is noise which is uncorrelated in space and
time. The ν term describes diffusive smoothing of sharp
features. The nonlinear term, with coefficient λ, describes

FIG. 2. Spin chain with open boundary conditions. SðxÞ
denotes the entanglement entropy (von Neumann or Rényi
depending on context) between the part of the chain to the left
of bond x, indicated by the box, and the part to the right of bond x.
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how the average growth rate depends on the slope; the
negative sign is natural here, as we discuss in Sec. II A 3
[and implies that B in Eq. (6) below is positive].
KPZ scaling is characterized by an exponent β governing

the size of fluctuations in the interface height, an exponent
α governing spatial correlations, and a dynamical exponent
z determining the rate of growth of the correlation length
(z ¼ α=β by a scaling relation). These are known exactly
[45]:

β ¼ 1=3; α ¼ 1=2; z ¼ 3=2: ð5Þ

In our context the height of the surface is the bipartite
entanglement Sðx; tÞ. This is a random quantity that
depends on the realization of the noise in the quantum
dynamics. The mean height (entanglement) grows linearly
in time, with a universal subleading correction:

hðx; tÞ ≡ hSðx; tÞi ¼ vEtþ Btβ: ð6Þ

Angle brackets denote an average over noise. The linearity
of the leading t dependence is expected from rigorous
bounds for various 1þ 1D random circuits [39–41]. Linear
growth is also generic for quenches in translationally
invariant 1D systems [3,21]. The fluctuations grow as

wðx; tÞ ≡ ⟪Sðx; tÞ2⟫1=2 ¼ Ctβ: ð7Þ

We refer to w as the width of the surface. The ratio C=B is
universal (the constants vE and B are not). The KPZ
fluctuations are non-Gaussian: remarkably, their universal
probability distribution has been determined analytically
[56–66].
The correlation length governing spatial correlations in

the fluctuations grows with time as

ξðtÞ ∼ t1=z; ð8Þ

and the equal time correlation function has the scaling form

GðrÞ ≡ h½Sðx; tÞ − Sðxþ r; tÞ�2i1=2 ¼ rαg(r=ξðtÞ): ð9Þ

On length scales 1 ≪ r ≪ ξðtÞ, the surface profile SðxÞ
resembles the trace of a 1D random walk: this is consistent
with the exponent α ¼ 1=2. On scales r ≫ ξðtÞ, the fluctua-
tions in Sðx; tÞ and Sðxþ r; tÞ are essentially uncorrelated.
At short times the entanglement growth is affected by

initial conditions, while on very long time scales, of the
order of the system size, the entanglement saturates.
Equations (6)–(9) apply prior to this saturation. In a finite
system the asymptotic hSðxÞi profile is that of a pyramid,
with a maximum at height x ¼ L=2, whose height is L=2,
minus anOð1Þ correction [67,68]. This profile is reached at
a time

tsaturation ≃ L
2vE

; ð10Þ

with bonds closer to the boundary saturating sooner (Secs. III
and V). Saturation is also captured in the surface growth
description, once we note that there are Dirichlet boundary
conditions on the entropy: Sð0; tÞ ¼ SðLþ 1; tÞ ¼ 0.
Note that the scaling described in Eqs. (6) and (8) implies

the existence of two distinct diverging length scales during
entanglement growth. The fact that hSðx; tÞi is of order t
implies that spins are entangled over distances of order t.
In fact, we show in Sec. V that vEt is a sharply defined
length scale. But prior to saturation, the relevant length
scale for spatial variations in Sðx; tÞ is parametrically
smaller than vEt; namely, ξðtÞ ∼ t2=3.
Before deriving KPZ for entanglement, let us briefly

consider the status of this equation. At first sight, we might
try to justify this description of Sðx; tÞ simply on grounds of
symmetry and coarse graining. If we were describing
classical surface growth, we would appeal to translational
symmetry in the growth direction (S → Sþ const) in order
to restrict the allowed terms, and would note that the right-
hand side includes the lowest-order terms in ∂x and ∂xS.
But for entanglement we cannot rely on this simple
reasoning. First, the transformation S → Sþ const is not
a symmetry (or even a well-defined transformation) of the
quantum system. More importantly, it is not clear a priori
that we can write a stochastic differential equation for
Sðx; tÞ alone, since the full quantum state contains vastly
more information than Sðx; tÞ. Despite these differences
from simple surface growth, we show below that the
above equation does capture the universal aspects of the
entanglement dynamics.
In the next section, we exhibit a solvable quantum model

that maps to a classical surface growth problem that is
manifestly in the KPZ universality class. Then in the two
following sections, we give heuristic arguments for more
general systems by making connections with the other
members of the KPZ triumvirate. Together with the results
for the solvable model, these arguments suggest that KPZ
exponents should be generic for entanglement growth in
any quantum system whose dynamics involves time-
dependent randomness. In Sec. VI, we perform numerical
checks on KPZ universality for quantum dynamics in
discrete time.

A. Solvable 1D model

We now focus on a specific quantum circuit model for the
dynamics of a spin chain with strong noise. We take random
unitaries to act on pairs of adjacent spins (i.e., on bonds) at
random locations and at random times, as illustrated in Fig. 3.
For simplicity, we discretize time and apply one unitary per
time step. (Dynamics in continuous time, with unitaries
applied to the links at a fixed rate in a Poissonian fashion, are
equivalent.) We choose the initial state to be a product state,
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with SnðxÞ ¼ 0 for all n and x. We choose the unitaries from
the uniform (Haar) probability distribution on the unitary
group for a pair of spins, Uðq2Þ. Thismodel is solvable in the
limit of large local Hilbert space dimension q.

1. Dynamics of Hartley entropy

A useful starting point is to consider the n → 0 limit of
the Rényi entropy, S0. This is known as the Hartley entropy,
and quantifies (the logarithm of) the number of nonzero
eigenvalues of the reduced density matrix. Equivalently, the
Hartley entropy determines the minimal necessary value of
the local bond dimension in an exact matrix product
representation [31,69] of the state:

S0ðxÞ ¼ logðbond dimension at xÞ: ð11Þ

Like the von Neumann entropy, the Hartley entropy of
neighboring bonds can differ by at most one:

jS0ðxþ 1Þ − S0ðxÞj ≤ 1: ð12Þ

Recall that logarithms are base q. For the present, we keep
q finite.
For the random dynamics we describe above (Sec. II A),

the Hartley entropy obeys an extremely simple dynamical
rule. In a given time step, a unitary is applied at a random
bond, say, at x. Applying this unitary may change the
Hartley entropy across the bond x; the entropy remains
unchanged for all other bonds. The rule for the change in
S0ðxÞ is that, with probability one, it increases to the
maximal value allowed by the general constraint Eq. (12):

S0ðx; tþ 1Þ ¼ minfS0ðx − 1; tÞ; S0ðxþ 1; tÞg þ 1: ð13Þ

This “maximal growth” of S0 occurs with probability one
when all unitaries are chosen randomly. Fine-tuned unitaries
(e.g., the identity)may give a smaller value, but these choices
are measure zero with respect to the Haar distribution.
We present a rigorous proof of Eq. (13) in Appendix A.

The appendix also gives a heuristic parameter-counting
argument that suggests the same result, but as we explain,
the more rigorous argument is necessary as the heuristic
argument can be misleading. We note that Ref. [70]
observed that the growth in bond dimension, when a
unitary is applied to a matrix product state, is upper
bounded by the right-hand side of Eq. (13) and used this
to obtain an upper bound on bond dimension growth during
a quantum computation.

For the random dynamics we are considering, the dynami-
cal rule in Eq. (13) leads to a simple but nontrivial stochastic
process. Before discussing its properties, we use Eq. (13) as a
starting point to show that, in the limit of large Hilbert space
dimension, the von Neumann entropy (and in fact all the
higher Rényi entropies) obeys the same dynamical rule. This
requires an explicit calculation in the limit q → ∞. The von
Neumann entropy is of more interest than S0, since the latter
behaves pathologically in many circumstances. [This is
because it simply counts up all the (nonzero) eigenvalues
in the spectrum of ρx, regardless of how small they are. For
example, Hamiltonian dynamics in continuous time—as
opposed to unitary circuits like the above—will generally
give an infinite growth rate for S0, in contrast to the finite
growth rate for SvN and the higher Rényi entropies.]

2. Limit of large Hilbert space dimension

The present quantum circuit dynamics lead to a solvable
model in the limit of large local Hilbert space dimension,
q → ∞. In this limit, all the Rényi entropies obey the
dynamical rule in Eq. (13).
To show this, we consider the reduced density matrix for

a cut at x, where x is the bond to which we are applying the
unitary in a given time step. We may write ρxðtþ 1Þ in
terms of ρx−1ðtÞ and the applied unitary matrix. Averaging
Trρ2x over the choice of this unitary, we then obtain:

hTrρxðtþ 1Þ2iHaar ¼
q

q2 þ 1
½Trρx−1ðtÞ2 þ Trρxþ1ðtÞ2�:

See Appendix B for details. In terms of the second Rényi
entropy S2, this is

hq−S2ðx;tþ1ÞiHaar ¼
q−S2ðx−1;tÞ−1 þ q−S2ðxþ1;tÞ−1

1þ 1=q2
: ð14Þ

The general constraint S2 ≤ S0 allows us to write

S2ðx; tÞ ¼ S0ðx; tÞ − Δðx; tÞ; ð15Þ
with Δ ≥ 0. We now use Eqs. (13) and (14) to show that Δ
is infinitesimal at large q. Rewriting Eq. (14) in terms of Δ,
and substituting Eq. (13), immediately shows

hqΔðx;tþ1ÞiHaar < qΔðx−1;tÞ þ qΔðxþ1;tÞ: ð16Þ
For a simple bound (for a large system, this bound on
hqΔmaxi is far from the tightest possible since we have not
exploited the large size of the system), define ΔmaxðtÞ to
be the maximal value of Δðx; tÞ in the entire system.
The equation above implies

hqΔmaxðtþ1ÞiHaar < 2qΔmaxðtÞ: ð17Þ
We may iterate this by averaging over successively earlier
unitaries:

time step
U

FIG. 3. Dynamical update in the solvable model. Application of
a random unitary U to a randomly chosen pair of adjacent spins.
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heðln qÞΔmaxðtÞiHaar < 2t: ð18Þ
This shows that as q → ∞ at fixed time t, the probability
distribution for Δ concentrates on Δ ¼ 0, so that S2 and S0
become equal.
This implies that the entanglement spectrum is flat,

so, in fact, all the Rényi entropies obey Eq. (13) for the
application of a unitary across bond x.

3. Properties of the solvable model

The dynamical rule we arrive at for the bipartite von
Neumann and Rényi entropies at large q,

Sðx; tþ 1Þ ¼ minfSðx − 1; tÞ; Sðxþ 1; tÞg þ 1; ð19Þ
defines a stochastic surface growth model in which Sðx; tÞ
is always an integer-valued height profile (Fig. 4). The
remaining randomness is in the choice of which bond is
updated in a given time step. At each time step, a bond x is
chosen at random, and the height SðxÞ is increased to the
maximal value allowed by the neighbors. Figure 5 gives
examples of local configurations before and after the
central bond is updated.
This model is almost identical to standard models for

surface growth [71,72]. It is in theKPZuniversality class (it is
straightforward to simulate the model and confirm the
expectedKPZ exponents), and some nonuniversal properties
can also be determined exactly (see below). Note that the
boundary conditions S ¼ 0 on the right and the left, and the
restriction jSðxþ 1Þ − SðxÞj ≤ 1, imply that the entangle-
ment eventually saturates in the expected pyramid profile.
When we move to the continuum (KPZ) description of

the interface [Eq. (4)], the nonlinear λ term appears with a

negative sign, meaning that entanglement growth is slower
when the coarse-grained surface has a nonzero slope. This
is natural given the microscopic dynamics: if the slope is
maximal in some region, local dynamics cannot increase
the entropy there.

4. Entanglement speed in the solvable model

In the present model the difference in height between
two adjacent bonds is either ΔS ¼ �1 or ΔS ¼ 0. At early
stages of the evolution both possibilities occur. However,
one may argue that the “flat points,” where ΔS ¼ 0,
become rarer and rarer at late times. [Flat points can
disappear by “pair annihilation” (Fig. 5, top left), and
can diffuse left or right (Fig. 5, top right), but cannot be
created. As a result, their density decreases with time.]
At late times the model therefore becomes equivalent to the
well-known “single step” surface growth model [71], in
whichΔS ¼ �1 only. An appealing feature of this model is
that, for a certain choice of boundary conditions (BCs), the
late-time probability distribution of the growing interface
can be determined exactly [71]. [The solvable case corre-
sponds to choosing periodic BCs in the classical problem.
(These BCs are useful for understanding the classical
model, but they do not have an interpretation in terms of
entanglement.) In this setting, the mean height grows
indefinitely, but the probability distribution for the height
fluctuations reaches a well-defined steady state.] This
shows that on scales smaller than the correlation length
(and prior to saturation), the interface looks like a 1D
random walk with uncorrelated ΔS ¼ �1 steps. This
confirms the expected KPZ exponent α ¼ 1=2. It also
allows the mean growth rate of the surface to be calculated
[71]: the mean height increase in a given time step can be
calculated by averaging over the four possible initial
configurations for a bond and its two neighbors. After
rescaling time so that one unit of time corresponds to an
average of one unitary per bond, this gives an entanglement
growth rate [Eq. (6)] of

vE ¼ 1=2: ð20Þ
As we discuss below (Secs. IV and V), one can also

associate a speed vB with the growth of quantum operators
under the random dynamics; in the present large-q model,
this speed is (The result vB ¼ 1 arises because in the large-
q limit, the growth of a typical operator is limited only by
the structure of the circuit. In Ref. [73], we give explicit
derivations of vB in random circuits for arbitrary q.)

vB ¼ 1: ð21Þ
It is interesting to note that here vE < vB, contrary to 1D
CFTs (where vE ¼ vB [1]) and contrary to previous con-
jectures about generic systems [23]. In Sec. IV, we give an
appealing intuitive picture for why vE can be smaller than vB
for the case of Clifford circuits.

FIG. 5. Entanglement growth in the large-q model. Effect of
applying a random unitary to the central bond, for four choices of
the initial local entropy configuration of three adjacent bonds.

FIG. 4. Surface growth model for entanglement Sðx; tÞ across a
cut at x, in the large-q limit. Applying a unitary to bond x can
increase the height of the surface locally [Eq. (19)], correspond-
ing to dropping a “block” of height ΔS ¼ 1 or ΔS ¼ 2.
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Themapping to surface growth gives us a clean derivation
of universal entanglement dynamics in a solvable model.
However, this surface growth picture is restricted to the
entropy for a single cut (as opposed to the entropy of a region
with multiple end points) and to one dimension. It will be
useful to find a more general language which extends the
above results. To do this, we nowmake a connectionwith the
secondmember of theKPZ triumvirate (Fig. 2), the statistical
mechanics of a polymer in a random environment.

III. DIRECTED POLYMERS AND MINIMAL CUT

In this section, we relate the dynamics of Sðx; tÞ to the
geometry of a minimal cut through the quantum circuit
which prepares the state (Fig. 6). This provides an alternative
perspective on the exact result Eq. (19) for the solvable
model, and also a useful heuristic picture for noisy quantum
dynamics in general. This line of thinking reproduces KPZ
behavior in 1D. Importantly, it also allows us to generalize to
higher dimensions and to more complex geometries.
Our starting point is the minimal cut bound for tensor

networks. This very general bound has been related to the
Ryu-Takayanagi formula for entanglement in holographic
conformal field theories [50–53,74], and has also been
applied to unitary networks as a heuristic picture for
entanglement growth [10].
Consider again a random quantumcircuit in 1þ 1D, and a

curve like that in Fig. 6, which bisects the circuit and divides
the physical degrees of freedom into two at position x. Any
such curve gives an upper bound on the entanglement: all the
Rényi entropies satisfy SðxÞ ≤ Scut, where Scut is the number
of “legs” that the curve passes through. (This relies only on
linear algebra: the rank of the reduced density matrix ρx is at
most qScut .) [The cut divides the tensor network into two parts
connected by Scut bonds. One part contains the physical
legs for subsystemA and the other part contains those for the
complement. Regarding the two parts of the circuit as

composite tensors L and R gives a representation of the

state as jψðtÞi ¼ PqScut
i¼1

P
a;b L

i
aRi

bjaiAjbiĀ, where jaiA and
jbiĀ are basis states inA and Ā, respectively. This implies that
the Schmidt rank for a bipartition intoA and Ā is at most qScut ,
so that S0, which is the logarithm of the Schmidt rank, is at
most Scut. In turn, Sn ≤ S0 for any n ≥ 0.]
The best bound of this type is given by the minimal cut,

which passes through the smallest number of legs.We denote
the corresponding estimate for the entropy Smin−cutðxÞ. If the
geometry of the circuit is random, Smin−cutðxÞ and the
corresponding curve are also random. Finding Smin−cutðxÞ
amounts to an optimization problem in a classical disordered
system.
In the solvable large-q model, Smin−cutðxÞ in fact gives

the von Neumann entropy exactly. This follows straight-
forwardly from the results of the previous section (see
below). In a typical microscopic model, on the other hand,
Smin−cut is only a bound on the true entropy. Nevertheless,
we conjecture that the following picture based on the
minimal cut is generally valid as a coarse-grained picture:
i.e., that it correctly captures the universal properties of the
entanglement dynamics in noisy systems. This conjecture is
equivalent to the applicability of the KPZ description to
generic noisy systems; further evidence for the latter is in
Secs. IV and VI.
The problem of finding theminimal curve is a version of a

well-studied problem in classical statistical mechanics,
known as the directed polymer in a random environment
(DPRE) [47,75]. Here, the “polymer” is the curve which
bisects the circuit, and its energyEðxÞ is equal to ScutðxÞ, the
number of legs it bisects. The spatial coordinate of the
polymer’s upper end point is fixed at x, while the lower end
point is free. Finding Smin−cutðxÞ is equivalent to finding the
minimal value of the polymer’s energy. This corresponds to
the polymer problem at zero temperature; however, the
universal behavior of the DPRE is the same at zero and at
nonzero temperature. (For any finite temperature, the DPRE
flows under renormalization to a zero-temperature fixed
point at which temperature is an irrelevant perturbation.)
DPRE models with short-range-correlated disorder are

in the same universality class as the KPZ equation [45].
Let Eðx; tÞ be the minimal energy of the polymer in a
sample of height t. We may increase t by adding an
additional layer to the top of the sample. Eðx; tþ δtÞ can
then be expressed recursively in terms of Eðy; tÞ for the
various possible values of y. In the continuum limit, this
leads to an equation for Eðx; tÞ which is precisely the KPZ
equation (see Refs. [45,76] for more details of the mapping
between DPRE and KPZ). The KPZ exponents we give in
Sec. II may therefore be applied to the energy of the
polymer. The exponent z ¼ 3=2 also determines the length
scale for transverse fluctuations of the polymer on large
length and time scales:

Δx ∼ ðΔtÞ2=3: ð22Þ

FIG. 6. Any cut through the unitary circuit that separates the
legs to the left and right of x (on the top boundary) gives an upper
bound on Sðx; tÞ. The best such bound is given by the minimal cut
(note that the cut shown here is not the minimal one). Finding the
minimal cut in a random network is akin to finding the lowest-
energy state of a polymer in a random potential landscape.
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Since in our case the minimal E is simply Smin−cut, we
find that the latter executes KPZ growth. In light of the
previous section, this is not surprising. In fact, in our
solvable model, Smin−cut is exactly equal to the true entan-
glement entropy (in the large-q limit). This follows from the
fact that the recursive construction of Eðx; tÞ described
above (on the lattice, rather than in the continuum) precisely
matches the large-q dynamics of Eq. (19). Examples of
nonunitary tensor networks in which the minimal cut bound
becomes exact are also known [52], including a large-bond-
dimension limit similar to that we discuss here [53].
The utility of the DPRE picture is that it is far more

generalizable than the surface growth picture, which is
restricted to the entropy across a single cut in 1D. As we
note above, the value of Smin−cut in a given microscopic
model is typically not equal to any of the physical entropies
Sn with n > 0. Nevertheless, we conjecture that the DPRE
and KPZ pictures are valid universal descriptions for all
noisy models, so long as they are not fine-tuned or nonlocal.
This includes noisy Hamiltonian dynamics in continuous
time (we discuss this case further in Sec. IX). If we restrict to
the leading-order deterministic behavior, we can also make
conjectures about Hamiltonian systems without noise.

A. Scaling form for entanglement saturation

At leading order in time, the growth of the height Sðx; tÞ
is deterministic: fluctuations are a subleading effect when t
is large. Similarly, Eq. (22) shows that the coarse-grained
minimal cut is essentially vertical (prior to saturation of the
entropy): the length scale for its transverse fluctuations is
negligible in comparison with t. These pictures therefore
have well-defined and simple deterministic limits. They
lead directly to deterministic scaling forms for the leading-
order behavior of the entanglement, which we discuss in
more detail in Sec. V. Here, we consider the simplest case,
the saturation of the entanglement entropy Sðx; tÞ across a
single cut (or for a single interval). We reproduce a simple
scaling function known from other contexts [8,10,21].
The definition of the entanglement growth rate implies

that the energy E of such a vertical cut is vEt to leading
order. The entanglement in a finite system grows at this rate
until time tsaturation ¼ x=vE, when it reaches its saturation
value S ¼ x. (Here, we are neglecting subleading terms and
assuming x < L − x.) After this time a vertical cut is no
longer favorable: instead, the minimal cut exits the circuit
via the left-hand side. Its shape is no longer unique, but it
can be taken to be horizontal, and it has energy E ¼ x.
This picture corresponds to a simple scaling form (again,
neglecting subleading terms):

Sðx; tÞ ¼ vEtfðx=vEtÞ; ð23Þ
with

fðuÞ ¼
�
u for u < 1

1 for u ≥ 1.
ð24Þ

For a finite interval of length l in an infinite system there is
a crossover between a configuration with two vertical cuts
and one with a single horizontal cut, giving instead SðtÞ ¼
2vEtfðl=2vEtÞ.
These scaling forms are our first confirmation that vE is

really a speed, as well as a growth rate for the entanglement.
We give an independent derivation of this fact for Clifford
circuits in the following section, and test the above scaling
form numerically in Sec. VI B. We discuss the interpreta-
tion of vE further in Sec. V.
Note that fluctuations have dropped out of Eq. (23) as a

result of considering only the leading-order behavior of
Sðx; tÞ. These scaling forms agree with the results for
holographic CFTs [8] and with a heuristic application of
the minimal cut formula to a regular tensor network [10].
Here, we see them emerging from a simple and well-defined
coarse-grained picture, suggesting that they are universal for
all generic 1D systems, including, for example, translation-
ally invariant but nonintegrable spin chains. [Reference [77]
includes numerical tests of scaling forms derived from the
directed polymer picture in deterministic systems, including
extensions to inhomogeneous systems (a chain with a weak
link).] It is also worth noting that Eq. (24) is capable of
distinguishing generic systems from (nonrelativistic) inte-
grable systems. In the latter case the quasiparticle picture
applies and yields different profiles for SðtÞ [3,19]. For
relativistic systems in which the quasiparticle picture holds
(rational CFTs), all quasiparticles travel at the same speed,
and as a result Eq. (24) does apply [1,3] (however, the
entanglement of more complex regions will differ between
the quasiparticle picture, on the one hand, and the results
from holographic systems and the minimal cut picture, on
the other hand [3,4,44]).
In Secs. V and VIII we propose that the above picture in

terms of a coarse-grained minimal cut is the simplest way
to understand the basic features of the entanglement
tsunami for generic many-body systems (with or without
noise) in both 1D and higher dimensions.

IV. HYDRODYNAMICS OF OPERATOR
SPREADING

Analternativeway to think about the quantumdynamics is
in terms of the evolution of local operatorsOi. For example, a
Pauli operator initially acting on a single spin (e.g.,Oi ≡ Yi;
we denote the Paulimatrices byX,Y,Z)will evolvewith time
into an operator OiðtÞ which acts on many spins. Operators
typically grow ballistically [38], in the sense that the number
of spins in the support ofOiðtÞ grows linearly with t. In this
section, we relate the growth of the bipartite entanglement to
the spreading of operators. We focus on the special case of
unitary evolution with Clifford circuits (defined below), but
we expect the basic outcomes to hold for more general
unitary dynamics. We find that the entanglement growth rate
is not given by the rate atwhich a single operator grows, but is
instead determined by collective dynamics involving many
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operators. Remarkably, in 1D these collective dynamics have
a long wavelength hydrodynamic description.
This hydrodynamic description turns out to be the noisy

Burgers equation, which is related to the KPZ equation by a
simple change of variable and is the final member of theKPZ
triumvirate shown in Fig. 1. In the present case the hydro-
dynamic mode is the density of certain fictitious “particles,”
shown in blue in Fig. 7. The quantum state is defined by a set
of operators (Sec. IVA) which spread out over time, and the
particles are markers which show how far these operators
have spread. We derive their coarse-grained dynamics in
Sec. IV B after introducing the necessary operator language.
In generic many-body systems (with local interactions)

this process of operator growth is characterized by a speed
known as the butterfly speed vB. This speed defines an
effective light cone within which the commutator between
the spreading operator OðtÞ and a typical local operator
is appreciable. The quantity vB is a characteristic speed for
the spreading of quantum information in a given model, and
can be extracted from appropriate correlation functions. In
deterministic systems (time-independent evolution) vB can
depend on temperature, and typically does not saturate the
well-known Lieb-Robinson bound [78,79]. Generic noisy
systems equilibrate to infinite temperature, so in the present
models there is no notion of temperature dependence—vB
is a constant defined entirely by the dynamics.
The scaling forms we discuss in the previous section

show that in 1D there is a well-defined speed vE associated
with entanglement spreading. The following picture gives a
physical interpretation of this speed, in terms of a certain set
of growing operators. However, it also shows that in general
the speed vE is smaller than the speed vB. This is perhaps
surprising: in 1D CFTs the two speeds are equal, and it
has been conjectured that they are equal in general [23].
(Note that we already encountered a solvable model with
vE ¼ vB=2 in Sec. II A.)

A. Stabilizer operators

It is convenient to use the language of “stabilizer”
operators to describe the entanglement dynamics. We
may define the initial state jΨ0i by specifying L stabilizers
under which it is invariant (in this section, we take the

number of sites to be L). These operators, denoted Oi
(i ¼ 1;…; L), satisfy

OijΨ0i ¼ jΨ0i: ð25Þ

For example, if the spins are initially polarized in the y
direction, we may take Oi ¼ Yi. At a later time, the above
equation still holds, with each stabilizer Oi replaced with
the time-evolved stabilizer OiðtÞ ¼ UðtÞOiU†ðtÞ, where
UðtÞ is the unitary operator that evolves the initial state to
the state at time t. [Note that OiðtÞ is not the standard
Heisenberg picture operator, which would have U and U†

in the other order.]
In the following, we focus on evolution of the initial state

with unitary gates in theClifford group [80]. Such gates have
recently been used in toymodels for many-body localization
[29]. Entanglement generation in non-random Clifford
circuits has also been studied [43]. The defining feature of
Clifford unitaries is that they have a simple action on Pauli
operators: single-spin Pauli operators aremapped toproducts
of Pauli operators.
Any product of Pauli matrices can be written as a product

of X and Z matrices, so to follow the dynamics of a given
stabilizer OiðtÞ, we need only keep track of which Xi
and Zi operators appear in this product. Furthermore, the
overall sign of the stabilizer OiðtÞ does not affect the
entanglement properties of a system undergoing Clifford
evolution, so we do not keep track of it. By writingOiðtÞ as

OiðtÞ ∝ Xv1x
1 Zv1z

1 …XvLx
L ZvLz

L ; ð26Þ

we may specify any stabilizer by a binary vector v⃗ with 2L
components:

v⃗ ¼ ðv1x; v2x;…; vLx; vLzÞ: ð27Þ

For example, the first component of the vector v1 ¼ 1 if X1

appears in the product, and v1 ¼ 0 otherwise. The binary
vector corresponding to a stabilizer Oi ¼ Yi is

v⃗ ≡ ð0;…; 0; 1; 1; 0;…; 0Þ; ð28Þ

where the locations of the nonzero elements correspond to
Xi and Zi.
We consider the dynamics in two stages. First, we

consider the evolution of a single operator. Then, we
generalize this to understand the dynamics of the state.
How does a single stabilizer OiðtÞ evolve? Applying a

one- or two-site Clifford unitary to OiðtÞ corresponds to
applying simple local updates to the string v⃗. Although the
precise details of these updates are not crucial, we now give
some explicit examples of gates that we encounter again in
the numerical simulations.

FIG. 7. Spreading of stabilizer operators defining the quantum
state (Sec. IV). Each blue particle marks the right end point of
some stabilizer (the rightmost spin on which it acts). Blue
particles hop predominantly to the right. Whenever a particle
enters the right-hand region (A) the entanglement SA increases by
one bit. The particle density is described by the noisy Burgers
equation, which maps to KPZ. A “hole” (empty circle) marks the
left-hand end point of some stabilizer.
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As single-site examples, consider the Hadamard and
phase gates. The Hadamard is a rotation on the Bloch
sphere [the rotation is by π around the (1,0,1) axis] that
exchanges the X and Z axes,

RH ¼ 1ffiffiffi
2

p ðX þ ZÞ; ð29Þ

so applying a Hadamard to site i updates the string by
vix ↔ viz. The phase gate is a rotation around the Z axis
which maps Xi to Yi ¼ iXiZi:

RP ¼
ffiffiffiffi
Z

p
: ð30Þ

This means that an additional Zi is generated whenever Xi
is present in the string, or equivalently viz → viz þ vix
ðmod 2Þ. For a two-site example, consider the left and right
controlled- NOT (CNOT) gates acting on the leftmost spins
in the chain. In the Z basis, the action of these operators is
to flip the “target” spin if and only if the “control: spin is
down:

CNOTðLÞ ¼ 1

2
½ð1þ Z1Þ þ ð1 − Z1ÞX2�;

CNOTðRÞ ¼ 1

2
½ð1þ Z2Þ þ ð1 − Z2ÞX1�: ð31Þ

Conjugating the Pauli matrices by CNOTðLÞ yields:

X1 → X1X2; Z1 → Z1; X2 → X2; Z2 → Z1Z2:

We see that the operator X2 is added to the string if X1 is
present (and similarly for Z1 and Z2). Applying CNOTðLÞ
therefore updates v⃗ by

v2x → v2x þ v1x ðmod 2Þ; v1z → v1z þ v2z ðmod 2Þ:

CNOTðRÞ acts similarly with the roles of the spins reversed.
It is simple to argue that random application of such

operations causes the region of space in which v⃗ is nonzero
to grow ballistically. This corresponds to the operator
spreading itself over a region of average size 2vBt, where
vB is the operator spreading (butterfly) velocity for this
system [79]. (For the present system, this velocity is also
the analogue of the Lieb-Robinson velocity.) The value of
vB depends on the precise choice of dynamics, but it is the
same for all initial operators so long as the dynamics (the
probability distribution on gates) is not fine-tuned. Further,
one may argue that the interior of the region where the
string v⃗ is nonzero is “structureless.” Within the interior, v⃗
rapidly “equilibrates” to become a completely random
binary string. [Consider the late-time dynamics of an
operator, or equivalently its string v⃗, in an L-site system.
Random application of Clifford gates gives random dynam-
ics to v⃗. It is easy to see that the flat probability distribution

on v⃗ is invariant under the dynamics, regardless of the
probabilities with which the gates are applied. By standard
properties of Markov processes, this is the unique asymp-
totic distribution to which the system tends, so long as the
choice of Clifford gates is not fine-tuned to make the
process nonergodic. (If the gate set includes each gate and
its inverse with the same probability, detailed balance is
also obeyed, but this is not necessary.) We expect v⃗ to
equilibrate locally to this structureless state on anOð1Þ time
scale, and similarly for the internal structure of operators
smaller than L.]
Now consider the dynamics of a quantum state. Once the

sign information in Eq. (26) is dropped, the relevant
information in the state jΨðtÞi is contained in binary
vectors v⃗1;…; v⃗L corresponding to the L stabilizers. We
may package this information in a 2L × L matrix:

ΨðtÞ ¼ ðv⃗1⊤;…; v⃗L⊤Þ: ð32Þ

Each column corresponds to a stabilizer, and each row to a
spin operator Xi or Zi. The dynamical updates correspond
to row operations (with arithmetic modulo two) on this
matrix. For example, a Hadamard gate exchanges the rows
corresponding to Xi and Zi.
A crucial point is that there is a large gauge freedom in

this definition of the state. This gauge freedom arises
because we can redefine stabilizers by multiplying them
together. For example, if a state is stabilized by fX1; Z2g,
then it is also stabilized by fX1Z2; Z2g, and vice versa. This
freedom to redefine the stabilizers corresponds to the
freedom to make column operations on Ψ, or equivalently
the freedom to add the vectors v⃗i modulo two. Note that by
making such a “gauge transformation” we may be able to
reduce the size of one of the stabilizers, giving a more
compact representation of the state.
The final fact we need is an expression for the entropy

SAðtÞ of a region A in terms of the stabilizers. Heuristically,
this is given by the number of stabilizers that have spread
into region A from outside. More precisely, define IA as the
number of stabilizers that are independent when restricted
to region A [81]. (Independence of the stabilizers corre-
sponds to linear independence of the vectors v⃗i, with
arithmetic modulo two, once they are truncated to region
A.) The entropy is equal to [82,83]

SAðtÞ ¼ IA − jAj; ð33Þ

where jAj is the number of sites in A. See Appendix C for a
simple derivation of Eq. (33). For Clifford dynamics all
Rényi entropies are equal, so we omit the Rényi index on S.
The maximal value of IA is 2jAj, so SA is bounded by jAj as
expected.
This formula has a simple interpretation. In the initial

product state we may take one stabilizer to be localized at
each site, so IA ¼ jAj and the entanglement is zero. As time
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goes on, stabilizers that were initially localized outside of A
grow and enter A. Each time a new independent operator
appears in A, the entanglement SAðtÞ increases by one bit.
The linear independence requirement in the definition of IA
is crucial, as it leads to effective interactions between the
stabilizers, which we discuss in the following section.
From now on, we take A to consist of the spins to the

right of the bond x, and revert to the notation SA ¼ Sx used
in the rest of the text for the entanglement across a cut at x.

B. Coarse-grained operator dynamics

Each stabilizer OiðtÞ (labeled i ¼ 1;…; L) has a left and
a right end point li and ri, marking the extremal spins
included in the stabilizer. We view li and ri as the positions
of two fictitious particles of type l and r, represented in
white and blue, respectively, in Figs. 7 and 8. There are L of
each type of particle in total.
In the initial product state, Oið0Þ is a single Pauli

operator on site i, say, Yi. This means that each site has
one l particle and one r particle (since li ¼ ri ¼ i), as
shown in Fig. 8 (left). As time increases, the r particles will
typically move to the right and the l particles to the left.
The nature of this motion depends on how we define the

stabilizers. At first sight, the obvious choice is to define
OiðtÞ as the unitary time evolution of the initial stabilizer,
OiðtÞ ¼ UðtÞYiU†ðtÞ. But in fact, it is useful to exploit the
gauge freedom in the choice of stabilizers to impose a
different “canonical” form. One result of this is that the
stabilizers effectively grow more slowly than the butterfly
velocity vB (discussed in the previous section) for the
spreading of an operator considered in isolation.
Let ρlðiÞ and ρrðiÞ be the number of particles of each

type at site i. The constraint that we impose is

ρlðiÞ þ ρrðiÞ ¼ 2: ð34Þ
To see that we can impose this constraint, consider the
situation ρlðiÞ ¼ 3, so that there are three stabilizers that
start at i. The initial element of each string can be either X,
Y, or Z. If ρlðiÞ ¼ 3, it is impossible for all three initial
elements to be independent. We can then redefine one of
the stabilizers, by multiplying it by one or both of the
others, in such a way that its length decreases by one. (By
choosing the longer stabilizer we avoid adding length at the
right-hand side.) Making reductions of this kind wherever
possible guarantees that ρlðiÞ ≤ 2, and also that if ρl ¼ 2,
the initial elements of the two stabilizers are distinct.
(And similarly for ρr.) With this convention it also follows
that ρlðiÞ þ ρrðiÞ ≤ 2: otherwise, the operators involved
could not commute, which they must (the initial stabilizers

commute, and this is preserved by the unitary dynamics
and the redefinitions of the stabilizers). [Consider the case
where ρrðiÞ ¼ 1: for example, let the corresponding sta-
bilizer read O ¼ …Xi. Any stabilizer contributing to ρlðiÞ
must be of the form Xi… in order to commute with O. By
the rule imposed in the text, this means that ρlðiÞ ≤ 1.]
Since there are a total of 2L particles which all have to live
somewhere, we have Eq. (34).
With this convention, the dynamics of the bipartite

entropy SðxÞ is simply related to the hopping dynamics
of the particles. By Eq. (34) it suffices to consider only the r
particles: an l particle is just an r “hole.” We write the
density ρr of r particles as ρ. See Fig. 7 for a typical
configuration in a subregion of the system.
The utility of the canonical form Eq. (34) is that the

independence requirement becomes trivial. One can easily
check that all the operators that have spread into A (the
region to the right of x) are independent. (Consider the
stabilizers that act in region A, i.e., the stabilizers with
ri > x. We may argue by contradiction that they remain
independent after truncation to subsystem A. If not, this
means there is some product of the truncated stabilizers that
equals one. Let the rightmost spin appearing in any of these
stabilizers be j. But by our convention for “clipping” the
stabilizers, it is impossible for the Pauli matrices acting on
spin j to cancel out when they are multiplied together.
Therefore, the operators must, in fact, be independent.)
Therefore, to find SðxÞ we need only count the number
of r particles to the right of the cut and subtract the number
of sites:

SðxÞ ¼
X
i>x

ðρi − 1Þ: ð35Þ

To reiterate, the entanglement increases by one every time
an r particle drifts rightward across bond x (and decreases
by one if it drifts across in the other direction).
Now consider the dynamics of the particles.

Microscopically, a dynamical time step involves (1) appli-
cation of a unitary gate and (2) potentially a “clipping” of
stabilizers to enforce the canonical form. Effectively, the
particles perform biased diffusion, with the restriction that
more than two particles cannot share a site:

ρ ≤ 2: ð36Þ

This constraint leads to “traffic jam” phenomena familiar
from the so-called asymmetric exclusion process [84], and
to the same continuum description. Our essential approxi-
mation is to neglect the detailed internal structure of the
stabilizers and to treat the dynamics of the end points as
effectively Markovian. We expect this to be valid at long
length and time scales for the reason we mention in the
previous section: the internal structure of the operators is
essentially featureless and characterized by finite time
scales.

FIG. 8. Left: The initial product state represented in terms of the
fictitious particles. Right: A state with maximal SðxÞ.
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We now move to a continuum description. The coarse-
grained density obeys a continuity equation:

∂tρ ¼ −∂xJ; ð37Þ
with J the particle current. Further, there is a symmetry
under spatial reflections, which exchange left and right end
points (ρl ↔ ρr). Writing

ρ ¼ 1þ Δρ; ð38Þ
where Δρ is the deviation from the mean density, the
reflection symmetry is

x → −x; Δρ → −Δρ: ð39Þ
To obtain a long wavelength description, we write the
current as a power series in Δρ and ∂x. Keeping the lowest-
order terms that respect the symmetry,

J ¼ c − ν∂xΔρ −
λ

2
ðΔρÞ2 þ η: ð40Þ

These terms have a transparent physical meaning. The drift
constant c > 0 reflects the fact that the average motion is to
the right (i.e., operators grow over time). The ν term is
simple diffusion. The noise η reflects the randomness in the
dynamics. Most importantly, the nonlinear λ term is the
effect of the constraint Eq. (34). It reflects the fact that
the current is maximal when the density is close to one. The
current evidently vanishes when ρ ¼ 0, since there are no
particles, but also when ρ ¼ 2 (the particles cannot move if
the density is everywhere maximal). Therefore, we
expect λ > 0.
From the above formulas, the density obeys

∂tρ ¼ ν∂2
xρþ

λ

2
∂xðρ − 1Þ2 − ∂xη; ð41Þ

known as the noisy Burgers equation [84]. The entangle-
ment S ¼ R

xðρ − 1Þ obeys ∂tS ¼ J, leading to the KPZ
equation:

∂tS ¼ cþ ν∂2
xS −

λ

2
ð∂xSÞ2 þ η: ð42Þ

The sign of λ is in agreement with that obtained from the
surface growth picture in Sec. II and from the directed
polymer picture in Sec. III. While we focus here on
dynamics of a restricted type (Clifford), this derivation
of KPZ for entanglement provides independent support for
the arguments in the previous sections.
In the language of the particles, the initial state corre-

sponds to uniform density ρ ¼ 1. Saturation of the entan-
glement corresponds (neglecting fluctuations) to all of the r
particles accumulating on the right-hand side and all of the l
particles on the left (Fig. 8), i.e., to a step function density.
As an aside, it is interesting to consider fluctuations in

SðxÞ at late times, i.e., long after the saturation of hSðxÞi.

Let us revert to our previous notation, where the system has
Lþ 1 sites and bonds are labeled x ¼ 1;…; L. Without
loss of generality we take x ≤ L=2. When fluctuations are
neglected, the region to the left of x is empty of r particles,
and the entropy is maximal, SmaxðxÞ ¼ x. Fluctuations will
reduce the average. But in order for SðxÞ to fluctuate
downward, a blue r particle must diffuse leftward from the
right half of the system in order to enter the region to the
left of x, as in Fig. 9. This is a fluctuation by a distance
∼ðL=2 − xÞ. Such fluctuations are exponentially rare
events, because they fight against the net rightward drift
for the r particles. Thus, when L=2 − x is large, we expect

Smax − hSðxÞi ∼ e−αðL=2−xÞ: ð43Þ

Our coarse-grained picture does not determine the numeri-
cal constants.
The detailed nature of these exponentially small correc-

tions will differ between Clifford circuits and more general
unitary circuits. (For example, in the Clifford case Sn is
independent of n, while in general the corrections will
depend on n [68].) Nevertheless, the functional form above
agrees with the late-time result for generic gate sets, which
is simply the mean entanglement in a fully randomized pure
state [67,68]:

Smax − hSðxÞi≃ 2jAj−jĀj

2 ln 2
¼ 4−ðL=2−xÞ

4 ln 2
: ð44Þ

jAj ¼ x and jĀj ¼ L − xþ 1 are the numbers of sites in A
and its complement. For (generic) Clifford dynamics, the
probability distribution of the entanglement at asymptoti-
cally late times will be that of a random stabilizer state. This
has been calculated in Ref. [85].

V. ENTANGLEMENT TSUNAMI: SPEEDS
AND SCALING FORMS

It is not a priori obvious that the rate vE governing
entanglement growth can be viewed as a speed in generic
systems (see Ref. [79] for a recent discussion), although
this is known to be the case in holographic CFTs [8]. Our
results in the directed polymer picture and in the operator
spreading picture suggest that vE is indeed a well-defined
speed in generic systems. (We see in the previous section
that there is a simple visual interpretation of this speed in

x

FIG. 9. Fluctuations at late times, after saturation of hSðxÞi, in
the Clifford case. When x ≪ L=2 it requires a rare fluctuation
(fighting against the net drift) to remove a particle from region A,
leading to an exponentially small SmaxðxÞ − hSðxÞi.
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the stabilizer formalism.) However, this speed is in general
smaller than the speed vB which governs the spreading of
an operator considered in isolation: “thermalization is
slower than operator spreading.”
In the stabilizer context the difference between vE and vB

arises because in enforcing Eq. (34) we “clip” the stabi-
lizers, reducing their rate of growth. We believe the
phenomenon of vE being smaller than vB to be general
(see also the result in Sec. II A 4) and relevant also to non-
noisy dynamics. This picture is contrary to that of. e.g.,
Ref. [23], where the operator spreading velocity is assumed
to determine the entanglement growth rate. In the presence
of noise, one may also argue that a picture of independently
spreading operators underestimates the exponent governing
the growth of fluctuations. [Considering the unitary evo-
lution of a single operator in isolation, its right end point
executes a biased random walk, traveling an average
distance vBt with fluctuations Oðt1=2Þ. If we were to
neglect the independence requirement in Eq. (33), then
the entanglement would be estimated (incorrectly) as the
number of independently spreading operators which have
reached A. The mean of this quantity is vBt and the
fluctuations are of order t1=4. This is related to the differ-
ence between the KPZ universality class of surface growth,
which is generic, and the Edwards-Wilkinson universality
class, which applies when the strength of interactions is
fine-tuned to zero [45].]
The language of a tsunami is often used in discussing

entanglement spreading, so it is nice to see that–at least in
1D–entanglement spreading can be related to a hydro-
dynamic problem. (The motivation for the tsunami termi-
nology is the idea that for a region A, the entanglement SA
is dominated by a subregion close to the boundary which
grows ballistically, like the advancing front of a tsunami.)
In higher dimensions the boundary of an operator has a
more complicated geometry, so the hydrodynamic corre-
spondence we describe above does not generalize.
In order to understand the entanglement tsunami better,

we now return briefly to the directed–polymer–in–a–
random–medium picture developed for noisy systems in
Sec. III.

A. Scaling forms for the entanglement tsunami

When all length and time scales are large, fluctuations in
the entanglement are subleading. Neglecting them is equiv-
alent to saying that the coarse-grained minimal cut (prior to
saturation) is a straight vertical line. This deterministic
picture generalizes to the entanglement or mutual informa-
tion of arbitrary regions, and also to higher dimensions
(Sec. VIII).We conjecture that these pictures are valid for the
long-time behavior of entanglement quite generally. The
setup relevant to us in the non-noisy case is a quench, in
which the initial state is a ground state of one Hamiltonian,
and a different Hamiltonian is used for the evolution.

In the 1D case, the deterministic scaling form for the
entanglement (of an arbitrary region) which results from the
leading-order directed polymer picture is rather simple, and
is not new—it agrees with holographic results [8,44], and
as noted in Ref. [10], can also be obtained from a more
microscopic minimal cut picture in which the geometry of
the minimal cut is highly nonunique. We propose that
coarse graining fixes the geometry of the minimal cut. The
derivation of these scaling forms from a simple coarse-
grained picture suggests that they are universal in non-
integrable, translationally invariant systems. (These scaling
forms are generally not the same as those obtained from the
quasiparticle picture for rational CFTs [3,4].) Our deriva-
tion also opens the door to generalizations to higher
dimensions (Sec. VIII B) and to 1D systems with quenched
disorder [77].
We now consider some examples of the scaling of the

mutual information. This will help clarify the operational
meaning of the speed vE.
To calculate the entanglement SA of a region A, we must

take a cut, or multiple cuts, with end points on the boundary
points of A at the top of the space-time slice. These cuts can
either be vertical, in which case they cost an energy’vEt
(to use the language of Sec. III), or they can connect two end
points, in which case we take them to be horizontal and to
have an energy equal to their length. The entanglement SAðtÞ
is given by minimizing the energy of the cut configuration.
It is a continuous piecewise linear function, with slope
discontinuities when the geometry of the minimal cut
configuration changes. To generalize the conjecture to
systems without noise, we must allow for the fact that the
asymptotic value of the entanglement depends on the energy
density of the initial state. We therefore replace the entan-
glement S in the formulas with S=seq, where seq is the
equilibrium entropy density corresponding to the initial
energy density [2,8]. This ensures that the entanglement
entropy of an l-sized region matches the equilibrium thermal
entropy when vEt ≫ l=2, as required for thermalization.
Heuristically, seq defines the density of “active” degrees of
freedom at a given temperature [79].
To clarify the meaning of vE, consider the mutual

information between two semi-infinite regions that are
separated by a distance l (Fig. 10). With the labeling of
the regions as in the figure, this is given by

IAC ¼ SA þ SC − SA∪C ¼ SA þ SC − SB: ð45Þ

FIG. 10. Infinite chain with regions A, B, C marked. B is of
length l while A and C are semi-infinite. The mutual information
between A and C is nonzero so long as l < 2vEt: correlations
exist over distances up to 2vEt, not vEt.
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We have SA ¼ SC ¼ vEt for all times, since the appropriate
minimal cuts are vertical. If l > 2vEt, SB is given by two
vertical cuts, so IAC vanishes. When l < 2vEt, SB is instead
dominated by a horizontal cut, so that IAC ¼ 2vEt − l.
The entanglement tsunami is sometimes taken to mean

that at time t, a “boundary layer” of width vEt inside a given
region is entangled with the exterior. If this region were
maximally entangled with the exterior, this would repro-
duce the correct value of the entanglement across a cut
(S ¼ vEt). However, this picture is not correct: the result for
the mutual information shows that correlations exist over
distances up to 2vEt, not vEt. So although vE is a speed, it
should not be thought of as the speed at which the boundary
of the entangled region moves.
Although the rule for calculating the entanglement is

almost trivial, the consequences are not always intuitively
obvious. First consider the case where the regions A and C
above are finite rather than infinite (and embedded in an
infinite chain); see Fig. 11. When the length d of the regions
A and C exceeds their separation l, the time dependence of
themutual information is as shown in Fig. 11. [The sequence
of minimal cut configurations required for calculating SB
in this case is (a), (b), (c) shown inFig. 12.]By contrast, when
the separation l exceeds the length d, the mutual information
is always zero (or more precisely, exponentially small).

[For a simpler example of exponentially small values of
the mutual information, consider hIACi at infinite times in a
finite system. If the system contains L qubits and A∪C
contains N qubits, the mutual information is exponentially
small whenever N < L=2, and given by Eq. (44) as
hIACi ∼ ð2 ln 2Þ−12−ðL−2NÞ.] [The sequence of cuts for SB
in this case is simply (a), (c)].
Finally, consider the effect of a boundary. Take a semi-

infinite chain with regions A, B, C adjacent to the boundary
as in Fig. 13 (C is semi-infinite). Consider the mutual
information between B and C, IBC ¼ SB þ SC − SA. We
must distinguish the case lA < lB=2 from the case
lA > lB=2. (In the former case, the first event is that the
minimal cut at the boundary of A goes from being vertical
to being horizontal; in the latter, the first event is that the
two vertical cuts at the boundary of B are replaced by a
horizontal one.) The resulting expressions for IBC are
plotted in Fig. 13.

VI. NUMERICAL EVIDENCE
FOR KPZ GROWTH

We now give numerical evidence that noisy entangle-
ment growth in 1D is in the KPZ universality class. We
study the time evolution of spin-1=2 chains with open
boundary conditions, taking the initial state to be a pro-
duct state with all spins pointing in the same direction
(either the positive y or z direction) and keeping track of the
entanglement entropy across each bond during the evolu-
tion. The discrete time evolution is a circuit of one- and
two-site unitaries. Figure 14 shows the structure of a single
time step: two layers of two-site unitaries are applied, one
layer on odd and one on even bonds, together with single-
site unitaries. Each unitary is chosen independently and
randomly (from a certain set specified below). We use the
symbol R to denote a generic single-site unitary and U to
denote a two-site unitary.
We consider three kinds of dynamics, distinguished by

the choice of unitaries. To begin with, we study “Clifford
evolution” in which the unitaries are restricted to the set of

FIG. 11. Bottom: Infinite chain with finite regions A and C each
of length d, separated by distance l. Top: The mutual information
between A and C in the case d > l. In the opposite regime the
mutual information vanishes.

FIG. 12. Sequence of minimal cut configurations (red lines)
determining the entropy of region B in Fig. 11. (a) gives way to
(b) when 2vEt ¼ l and (b) gives way to (c) when 2vEtþ l ¼ 2d.

FIG. 13. Bottom: Semi-infinite chain with regions A, B (length
lA and lB, respectively), and C adjacent to the boundary. Top: The
mutual information between B and C for this geometry, for the
two regimes indicated.

NAHUM, RUHMAN, VIJAY, and HAAH PHYS. REV. X 7, 031016 (2017)

031016-14



so-called Clifford gates (Sec. IV). Clifford evolution can be
simulated efficiently (in polynomial time) using the stabi-
lizer representation we discuss in Sec. IV. This allows us to
access very long times and to pin down KPZ exponents
accurately. Next, we study more general dynamics for
which polynomial-time classical simulation is impossible,
giving evidence that KPZ behavior holds more generally.
The two types of non-Clifford dynamics we study here are
referred to as the phase evolution and the universal
evolution: we give details below. For these dynamics we
use a matrix product representation of the state imple-
mented via ITensor [86].
The fingerprints of KPZ behavior that we search for are

the two independent critical exponents β and α (Sec. II). We
extract β both from the fluctuations in the von Neumann
entropy and from the corrections to the mean value
[Eqs. (6) and (7)], and we extract α from the spatial
correlations in the entanglement at distances shorter than
the correlation length ξðtÞ [Eq. (9)]. For Clifford circuits,
we also touch on the entanglement probability distribution.

A. Clifford evolution

Clifford circuits, or “stabilizer circuits,” are a special
class of quantum circuits that play an important role in
quantum information theory. As shown by Gottesman and
Knill, they can be simulated efficiently, even when the
entanglement entropy grows rapidly, by representing the
quantum state in terms of stabilizers [87]: see Sec. IV.
The time evolution operator for a Clifford circuit belongs

to the Clifford group, a subgroup of the unitary group on
the full Hilbert space. This group may be generated by a
small set of local Clifford gates: the two-site controlled
NOT gates [Eq. (31)] and the single-site Hadamard and
phase gates RH and RP [Eqs. (29) and (30)]. For circuits
built from these gates, time evolving the state on L spins up
to a time t takes a computational time of order Lt, and
measuring the entanglement across a given bond in the final
state takes a time of order L3 at most. This is in sharp
contrast to the exponential scaling that is inevitable for
more general circuits.

In all our simulations, each two-site unitary U in the
circuit is chosen with equal probability from three pos-
sibilities: the two types of CNOT gate [Eq. (31)] and the
identity matrix:

U ∈ f1;CNOTðLÞ;CNOTðRÞg: ð46Þ

In this section, we discuss the simplest Clifford dynamics,
which includes only these gates, and no one-site unitaries
(R ¼ 1). When the initial state is polarized in the y–
direction, this set of gates is sufficient to give nontrivial
entanglement evolution, with universal properties that turn
out to be the same as those for more generic gate sets. We
also study the “full” Clifford dynamics in which all the
Clifford generators are used, choosing the single-site
unitaries randomly from the three options

R ∈ f1; RH; RPg: ð47Þ

Results for this case are similar and are given in
Appendix. D.
To begin with, Fig. 15 shows the evolution of the

bipartite von Neumann entropy SðxÞ (in units of log 2)
for a single realization of the noise (i.e., a particular random
circuit) in a system of L ¼ 459 sites. The curves show
successively later times. Note that the entropy saturates
more rapidly closer to the boundary, because the maximum
entanglement across a bond is proportional to its distance
from the boundary. At very late times Sðx; tÞ saturates to a
pyramidlike profile representing close-to-maximal entan-
glement. Our interest is in the stochastic growth prior to
saturation, which we show is KPZ–like. All observables in

FIG. 14. Schematic structure of a layer in the quantum circuits
used for simulations.

FIG. 15. The von Neumann entropy Sðx; tÞ for a system of
length L ¼ 459, as a function of x, for several successive times
(t ¼ 340, 690, 1024, 1365, 1707, 2048, and 4096), in the Clifford
evolution. This shows that the state evolves from a product state
to a near-maximally-entangled one. Prior to saturation the
entanglement displays KPZ-like stochastic growth. Sðx; tÞ is in
units of log 2.
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the following are measured far from the boundary, in order
to avoid finite-size effects associated with saturation.
Figure 16 shows successive snapshots for a subregion of

a larger system of L ¼ 1025 bonds (times t ¼ 170, 340,
512, 682, from bottom to top). The maximal slope that can
appear is 1, in accord with Eq. (3). Note the gradual
roughening of the surface and the growing correlation
length.
Figure 17 shows the height and width of the growing

surface,

hðtÞ ¼ hSvNðx; tÞi; wðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⟪S2vNðx; tÞ⟫

q
; ð48Þ

for very long times. These quantities are averaged over at
least 105 realizations. In each realization only the entan-
glement across the center bond is used (therefore all data
points are uncorrelated) and the system size is L ¼ at,
where a is chosen to avoid finite-size effects (see Sec VI B).
We obtain estimates βh and βw of the exponent β by fitting
the data to the expected forms [cf. Eqs. (6) and (7)]:

hðtÞ ¼ vEtþ Btβh ; wðtÞ ¼ Ctβw þDtη: ð49Þ

Here, η (with η < βw) captures subleading corrections.
We find

βh ¼ 0.33� 0.01; βw ¼ 0.32� 0.02: ð50Þ

Both estimates of β are in excellent agreement with the
KPZ value β ¼ 1=3. The solid lines in Fig. 17 show the fits
(the fit parameters are in Table I). The dashed lines show
the slopes corresponding to the expected asymptotic power
laws, hðtÞ ∼ t and wðtÞ ∼ t1=3.
The analysis in Sec. IV implies that vE is a well-defined

velocity, and vEt is a sharply defined length scale character-
izing the range of entanglement in the state. We may
confirm this by measuring this length scale directly; see the
section below.
Note the small valueof the subleading exponent ηobtained

from the fit. This implies that finite time corrections are

FIG. 16. The von Neumann entropy Sðx; tÞ in units of log 2, far
from the boundaries, in a system of length L ¼ 1025 at various
times (from bottom to top t ¼ 170, 340, 512, and 682) evolved
with the Clifford evolution scheme. ξ schematically shows the
typical correlation length Eq. (8), which grows in time like t1=z.

FIG. 17. Top: Growth of the mean entanglement with time for
the Clifford evolution with only CNOT gates (in units of log 2).
The solid red curve is a fit using Eq. (49). The exponent β is found
to be β ¼ 0.33� 0.01, in agreement with the KPZ prediction
β ¼ 1=3. Dashed line shows asymptotic linear behavior. Bottom:
Growth in the fluctuations in the entanglement with time. The
dashed line shows the expected asymptotic behavior, wðtÞ ∼ tβ,
with β ¼ 1=3. The fit includes a subleading correction: Eq. (49),
with β ¼ 0.32� 0.02. Error bars denote the 1σ uncertainty.

TABLE I. Summary of all fitting parameters to Eq. (49) used in this section. The errors set the estimated 2σ uncertainty.

Evolution type vE βh B βw C η D

Clifford 0.1006� 0.0001 0.33� 0.01 0.66� 0.04 0.32� 0.02 0.28� 0.05 0.08� 0.1 0.16� 0.04
Phase 0.133� 0.03 � � � 0.54� 0.04 � � � 0.223� 0.004 � � � 0.168� 0.03
Universal 0.202� 0.001 � � � 0.09� 0.005 � � � 0.14� 0.003 � � � 0.36� 0.01
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reduced if we plot the numerical derivative dw=d log t rather
thanw itself (both quantities scale as t1=3 at long times). This
is done in Fig. 18. The data fitwell to the t1=3 laweven at short
times. This will be useful for the more general dynamics
where long times are not available.
To complete the check of the two independent KPZ

exponents, Fig. 19 shows the spatial correlator GðrÞ
defined in Eq. (9), as a function of separation r, for three
successive times. For small r, the correlation grows like a
rα with α≃ 1=2, in agreement with the KPZ prediction for
this exponent. For distances r ≫ ξðtÞ, the correlator satu-
rates to a value proportional to wðtÞ. The figure gives an
idea of the size of the correlation length ξðtÞ for these times.
Finally, recent advances in KPZ theory have yielded an

analytical expression for the full probability distribution of
the KPZ height field [56–66]. In Appendix F we show that
this analytical result compares well with Clifford numerics,

providing further support for KPZ universality in this
system.

B. Numerics on speeds and scaling forms

We argue in Sec. V that in addition to determining the
entanglement growth rate, vE can also be viewed as a speed.
This is the speed of the fictitious particles in Sec. IV.
Operationally, the simplest manifestation of this speed is in
the saturation behavior of the entanglement. The analytical
arguments imply that to leading order (at large t and l) the
entanglement across a cut at position l (l ≤ L=2) has the
simple scaling form given above in Eq. (24):

SA ¼ vEtfðl=vEtÞ; fðuÞ ¼
�
u for u < 1

1 for u ≥ 1.
ð51Þ

This gives simply SA ¼ vEt for t < l=vE, and SA ¼ l for
t > l=vE. This means that there is no influence of the
boundary at times t < l=vE. (See also the numerical results
in Refs. [39,40], indicating sharp saturation in circuits
where interactions between any pair of spins are allowed.)
In Fig. 20, we test this result numerically for the Clifford

evolution. We set l ¼ L=2 and plot

SðL=2; tÞ
vEt

vs
L=2
vEt

ð52Þ

as a function of L, for several values of the time (t ¼ 29, 210,
211, and 212). Here, vE ¼ 0.1 is taken from the fits to Fig. 17.
According to Eq. (51), this plot should converge for large t to
a plot of fðuÞ against u. The results are in excellent
agreement with the scaling form, confirming, for the case
of Clifford circuits, that vE is a meaningful velocity.
It is also interesting to compare the entanglement velocity

vE with the butterfly velocity vB. We obtain vB from the
average spatial extent W of a growing Pauli string (see
Sec. IVA) under the unitary Clifford dynamics at time t, as
vB ¼ W=2t. Remarkably, we find that vE ¼ vB=2 within

FIG. 18. The logarithmic derivative of the width dw=d log t
versus time for the Clifford evolution. The universal behavior
with exponent t1=3 is observed at shorter time scales compared
with Fig. 17.

FIG. 19. Correlation function GðrÞ ¼ h½SðrÞ − Sð0Þ�2i1=2 at
time t ¼ 512, 1024, and 2048 for the Clifford evolution, showing
excellent agreement with the KPZ prediction GðrÞ ∼ rχ with
χ ¼ 1=2 in the regime r ≪ ξðtÞ.

FIG. 20. The entropy across the center of the chain (in units of
log 2) divided by vEt versus L=2vEt for various fixed values of t.
This plot converges nicely to the scaling form in Eq. (51).
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numerical precision for both the CNOT-only Clifford dynam-
ics and the “full” Clifford dynamics defined above. This is
shown inFig. 21,whereweplotW startingversus time for the
two protocols. The initial Pauli strings we consider in this
simulation are single-site Y operators. [The CNOT dynamics
is not ergodic on the space of Pauli strings (unlike the full
Clifford dynamics). Nevertheless, any operator grows in size
at the same rate vB.] We compareW with 4 times the average
entanglement entropy, 4SðtÞ. The two curves lie on top of
each other, consistent with vE=vB ¼ 1=2.
We also find the same ratio for vE=vB in the exactly

solvable large-q model (Sec. II A 2). However, it is possible
to construct non-fine-tuned random circuits, involving Haar-
randomunitaries at finiteq, inwhich the ratio is less than 1=2
[73], so this value is not universal. A natural question is
whether it is generic for random Clifford circuits.

C. Universal and phase evolution

The phase and universal dynamics take us outside the
Clifford realm, and cannot be simulated efficiently on a
classical computer (in polynomial time). We give evidence
that the correspondence with KPZ continues to hold in this
more generic situation. However, our results are not as
conclusive as in the Clifford evolution as we do not have
access to such long times.
The simulations are performed on spin-1=2 chains of

length L ¼ 500 bonds (501 spins) using the ITensor
package [86]. The two types of dynamics are defined as
follows. [The two-site unitaries are always chosen from the
set in Eq. (46); the initial state is taken polarized in the y
direction.]
Phase evolution.—Each single-site unitary is chosen

randomly and uniformly from the set of eightfold rotations
about the z axis in spin space: R ¼ exp ðπinσz=8Þ, with
n ∈ 1;…; 8.

Universal evolution.—This set of gates, unlike the
others, is “universal” in the quantum information sense
(any unitary acting on the full Hilbert space of the spin
chain can be approximated, arbitrarily closely, by a product
of gates from this set). The single-site gates include the
eightfold rotations mentioned above, together with the
Hadamard gate RH [. (29)]. RH is applied with probability
1=2 and the rotations with probability 1=16 each.
Figure 22 shows the height andwidth hðtÞ andwðtÞ for the

two protocols (averaged over 380 realizations for the phase
evolution and 200 realizations for the universal evolution,
and over bonds x with 20 < x < 480). The figure shows fits
to the forms in Eq. (49)with βh and βw fixed to the KPZ value
and η fixed to zero (fit parameters are in Table I). The fitswith
Eq. (49) are consistent with the data. It is not possible to
extract precise estimates for β from the slope of the log-log
plot ofwðtÞ, although for the phase evolution the slope at late
times is in reasonable agreement with the expected KPZ
value, shown by the dashed gray trend line.
For an alternative attack on β, we plot the numerical

derivative dwðtÞ=d ln t. Recall that in the Clifford case the
slope of this quantity (when plotted against time on a log-
log plot) has smaller finite-size corrections than the slope
for wðtÞ itself. The corresponding plot is shown in Fig. 23,
for times up to t ¼ 25 (averaging over more than 5000
realizations). The dashed gray lines are the t1=3 trend lines.
Results for both types of dynamics are in good agreement
with the expected slope β ¼ 1=3.
Next, we examine the spatial correlator Eq. (9) in Fig. 24.

For both types of dynamics, the behavior for r ≪ ξðtÞ

FIG. 21. The average size W of a growing Pauli string as a
function of time for two protocols, CNOT evolution (subscript
“CNOT”) and the full Clifford evolution (subscript “Cliff”). The
correspondence with the dashed lines, showing the average
entanglement entropy multiplied by four, is consistent with
vE ¼ vB=2. (Taken from a system of size L ¼ 1024.)

“ ”

“ ”

FIG. 22. Top: Growth of the mean entanglement as a function
of time for the universal and phase gate set fitted to Eq. (49), with
β set to 1=3. The dashed line shows the expected asymptotic
behavior for comparison. Error bars indicate 1 standard deviation
(1σ) uncertainty.
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agrees well with the KPZ exponent value α ¼ 1=2 at the
largest available time.
The very long times accessible in the Clifford simulation

allow us to establish KPZ exponents with high accuracy
there. For the more generic dynamical rules we cannot
reach the same level of precision, but, nevertheless, the
KPZ exponent values are compatible with the data.
Next, we briefly discuss a fine-tuned situation in which

entanglement dynamics are not KPZ-like: namely, when
the system is made up of free particles. Then, in Sec. VIII,
we move to higher dimensions.

VII. FREE FERMIONS ARE NONGENERIC

The growth of entanglement in systems of free particles
is highly nongeneric. In the presence of noise, the entan-
glement of a system of free particles on the lattice grows
only as S ∼

ffiffi
t

p
, in contrast to the behavior S ∼ t of generic

systems. The case of spatially homogeneous noise has been
discussed recently [88]. The basic point is the same when
the noise varies in space: the fact that the single-particle
wave functions spread diffusively in the presence of
noise implies that the entanglement cannot be larger than
Oð ffiffi

t
p Þ [88].
As a concrete example, consider a short-range hopping

Hamiltonian for free fermions,

HðtÞ ¼
X
ij

HijðtÞc†i cj; ð53Þ

with noisy matrix elements HijðtÞ. For simplicity, take the
initial state to consist of particles localized at sites i ∈ S for
some set S; for example, we could take S to consist of all
the even-numbered sites:

jΨð0i ¼
Y
i∈S

c†i j0i: ð54Þ

Under the evolution, each creation operator evolves into a
superposition of creation operators,

c†i →
X
j

ψ ðiÞðj; tÞc†j ; ð55Þ

where ψ ðiÞðj; tÞ is the solution of the time-dependent
Schrödinger equation for a particle initially localized at
i. In the absence of noise, ψ ðjÞ spreads ballistically, but in
the presence of noise. it spreads only diffusively. The fact
that each creation operator is spread out over only Oð ffiffi

t
p Þ

sites after a time t immediately implies that the mean
entanglement is at most of order

ffiffi
t

p
. (See also Ref. [88].)

Note, however, that this argument does not tell us how large
the fluctuations are. (Random unitary evolution of a single
wave packet is discussed in Ref. [89]. However, we must
consider the full many-body wave function, since the
formalism of Ref. [90] for the free-fermion density matrix
shows that the initially occupied orbitals do not simply
contribute additively to the entanglement.)
We have confirmed numerically that hSi ∝ ffiffi

t
p

for a
noisy 1D hopping model, using the formalism of Ref. [90]
to construct the reduced density matrix. This is much
slower than the linear-in-time growth of generic interacting
models. The

ffiffi
t

p
scaling should apply for free fermions in

any number of dimensions. In 1D it also applies to certain
noisy spin models via the Jordan-Wigner transformation:
for example, the transverse field XY model:

HðtÞ ¼
X
i

fJiðtÞ½σxi σxiþ1 þ σyi σ
y
iþ1� þ hiðtÞσzig: ð56Þ

FIG. 23. The logarithmic derivative of the width dw=d log t
versus time for the phase and universal evolution protocols. For
comparison, we plot the universal behavior with exponent t1=3 in
gray (dashed line). (The derivative is calculated using three data
points. Errors are estimated from maximal and minimal slopes
obtained within 1 standard deviation from the averaged data
points.)

FIG. 24. Correlation function GðrÞ ¼ h½SðrÞ − Sð0Þ�2i1=2 at
three values of the time for the phase (top) and universal (bottom)
gate sets, showing good agreement with the KPZ exponent value
α ¼ 1=2.
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However, any generic perturbation to the spin chain spoils
the free-fermion correspondence. We then expect the
generic KPZ behavior to reassert itself.

VIII. HIGHER DIMENSIONS

We discuss several ways of thinking about entanglement
growth in 1D. One of these, the directed polymer picture,
generalizes naturally to higher dimensions: the polymer is
simply replaced by a d-dimensional membrane embedded
in (dþ 1)-dimensional space-time. As in 1D, we think of
this membrane as a coarse-grained version of a minimal
cut bisecting a unitary circuit. The membrane is subject to
pinning by “disorder” in space-time arising from the
dynamical noise. See Fig. 25 for the two-dimensional case.
We can explore two kinds of questions using this picture.

First, we can examine universal properties that are specific to
the noisy scenario: as in 1D, fluctuations are governed by
universal exponents. Second, we can calculate leading-order
properties of SðtÞ that do not involve fluctuations and that
are, therefore, likely to be valid even in the absence of noise,
i.e., for dynamics with a time-independent Hamiltonian.
In higher dimensions the behavior of SðtÞ has nontrivial
dependence on the geometry of the region for which we
calculate the entanglement. We suggest the “minimal mem-
brane in space-time” as a simple and general heuristic for
such calculations. Below, we discuss the case of a spherical
region (Sec. VIII B) and contrast our results with an alter-
native simple conjecture. For other toy models for entangle-
ment spreading, see Refs. [10,23].
Denoting the region for which we wish to calculate the

entropy by A, and its boundary by ∂A, the membrane lives
in a space-time slice of temporal thickness t, and terminates
at ∂A on the upper boundary of this time slice; see Fig. 25.
For simple shapes and for times shorter than the saturation
time, the membrane also has a boundary on the lower slice,
as shown in Figs. 25 and 26. In this section, we focus on
entanglement growth prior to saturation.

A. Universal fluctuations of SðtÞ in noisy systems

Consider the entanglement SðtÞ for a region A whose
boundary ∂A has length or area j∂Aj. In the d ¼ 2 case,
shown in Fig. 25, j∂Aj is the length of the spatial boundary.
Neglecting fluctuations, the “world volume” of the minimal
membrane scales as j∂Aj × t. This gives the leading scaling
of the membrane’s energy and, hence, of the entanglement.
As in 1D, subleading terms encode universal data. We now
consider these terms.
The pinning of a membrane or domain wall by disorder

is well studied [47,91–94] (a brief summary is in
Appendix E). Translating standard results into the language
of the entanglement in a d-dimensional noisy quantum
system, we find that in both d ¼ 1 and d ¼ 2 there is a
unique dynamical phase with nontrivial critical exponents.
The same is true for continuum systems [more precisely, for
systems with continuous (statistical) spatial translational
symmetry] in d ¼ 3. However, if a lattice is present, two
stable phases (and thus a dynamical phase transition) are
possible in d ¼ 3; one with nontrivial exponents and one
with trivial ones. In the trivial phase, the membrane is
“smooth” and is pinned by the lattice. In the nontrivial
phases, the membrane is instead pinned by disorder in a
“rough” configuration. We discuss the nontrivial phases
(which are the only ones possible in d < 3 and for
continuum systems in d ¼ 3).
Generally, fluctuations have a weaker effect in higher

dimensions than in 1D. For simplicity, take a quantum
system which is infinite in one direction and of size L in the
other d − 1 directions, and consider the entanglement for a
cut perpendicular to the infinite direction. Since A and its
complement are both infinite, SðtÞ will grow indefinitely
for this geometry. However, there are two regimes, t≲ L
and t ≫ L (here, we drop a dimensionful prefactor). For
times t≲ L (see Appendix E for details):

hSðtÞi ¼ Ld−1ðvEtþ Btθþ1−d þ � � �Þ; ð57Þ

⟪SðtÞ2⟫1=2 ∝ Lðd−1Þ=2tθ−ðd−1Þ=2; ð58Þ
where the exponent θ is defined below. This reproduces the
1D result with θ ¼ β. Note that when d > 1, fluctuations

FIG. 25. Minimal membrane picture for the entanglement of
two regions in d ¼ 2.

FIG. 26. Minimal membrane for a disk-shaped region in d ¼ 2.
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are suppressed with respect to the mean by a factor of
j∂Aj1=2: distant regions of the boundary give rise to
essentially independent fluctuations which add up incoher-
ently. In the opposite regime t ≫ L, the temporal dimen-
sion of the membrane is much larger than its spatial
dimensions, so there is a crossover to the 1D directed
polymer problem. However, the exponent of the higher-
dimensional problem appears in the universal L depend-
ence of the growth rate:

SðtÞ ¼ ðvLd−1 þ wLθ−1Þtþ � � � : ð59Þ
(The higher corrections will include the t1=3 term associated
with the 1D universality class.) Numerically, the exponent
is θ ¼ 0.84ð3Þ in d ¼ 2 and θ ¼ 1.45ð4Þ in d ¼ 3 [94]. The
subleading exponent in Eq. (57) is negative for d > 1, so
this correction may be hard to observe numerically.

B. Minimal membrane picture for dynamics
without noise

In higher dimensions we can ask how SðtÞ depends on
the geometry of region A when this geometry is nontrivial.
Interestingly, the membrane picture makes predictions
about this that do not involve the noise-induced fluctua-
tions, and that are likely also to be valid for Hamiltonian
dynamics without noise (with the replacement S → S=seq
we discuss in Sec. V).
As an instructive special case, take A to be a disk-shaped

region of radius R in d ¼ 2. (A ball in higher dimensions is
precisely analogous.) We assume continuous rotational
symmetry, at least on average. At short times, the leading
scaling of the entanglement is SðtÞ≃ 2πvERt, since the
world-sheet area of the membrane is approximately
2πR × t. However, there are corrections to this arising
from the curvature of ∂A.
We consider the limit of large t and large R with a fixed

ratio t=R. In this regime, the effects of fluctuations may be
neglected, and instead the energetics of the membrane are
determined by deterministic elastic effects. We write the
energy of the membrane as

E ¼
Z

d2SE; ð60Þ
where d2S is the membrane’s area element and E is its
“energy” density. We get SðtÞ by minimizing E with
appropriate boundary conditions.
Next, we Taylor expand E in terms of local properties

of the membrane. For a flat “vertical” membrane (i.e., with
normal perpendicular to the t axis), E ¼ vE. In general,
however, E depends on the angle φ by which the surface
locally deviates from verticality, as well as, for example, the
local curvatures κs and κt in the spatial and temporal
directions. Using rotational symmetry to parametrize the
membrane by the radius rðt0Þ,

d2SE¼vErdθdtð1þa_r2þbκ2t þcκ2sþc_r4þ���Þ: ð61Þ

However, this simplifies in the limit of interest. We first
send t; R → ∞ with t=R fixed. In this limit _rðt0Þ remains
finite, but the curvature terms become negligible (see, for
example, the explicit solution below), so we can write
E ¼ Eð_rÞ. Now we make the second approximation that
t=R is small, meaning that we can keep only the Oð_r2Þ
correction.
The boundary condition at the top of the space-time slice

is rðtÞ ¼ R. We consider times prior to saturation, so the
membrane also has a free boundary on t ¼ 0. In the
relevant limit, its energy is

E ¼ 2πvE

Z
t

0

dt0rðt0Þ½1þ a_rðt0Þ2 þ � � ��: ð62Þ

Minimal energy requires the boundary condition _rð0Þ ¼ 0.
When t=R is small, we may expand in 1=R. This gives
rðt0Þ≃ R − ðt2 − t02Þ=ð4aRÞ, as illustrated in Fig. 26. The
corresponding entropy is

SðtÞ ¼ 2πvERt

�
1 −

t2

12aR2
þ � � �

�
: ð63Þ

This calculation generalizes trivially to higher dimensions,
where the correction is of the same order. Corrections due
to fluctuations come in with negative powers of t, and are
negligible in the limit we are discussing.
Note that the first correction in the brackets in Eq. (63) is

of order ðt=RÞ2, and not of order t=R. This result differs
from what one might naively have expected if one guessed
that at time t an annulus of width ~v × t inside the disk is
entangled with the outside, where ~v is a tsunami velocity.
This picture gives an entropy proportional to the area of the
annulus,

SðtÞ∼? πR2 − πðR − ~vtÞ2 ¼ 2πR ~vt

�
1 −

~vt
R

�
; ð64Þ

leading to a negative correction of order t=R. The difference
between Eqs. (63) and (64) also indicates that a picture in
terms of independently spreading operators is misleading,
in agreement with what we find in 1D.
It is interesting to note that in the regime where t=R is of

order 1, the full _r dependence of Eð_rÞ plays a role. This
suggests that an infinite number of nonuniversal parameters
enter the expression for SðtÞ in this regime, and that there is
no general, universal scaling form for the entanglement of a
sphere in d > 1. However, we do expect saturation to
remain discontinuous, as in 1D [Eq. (24)], occurring via a
transition between an optimal membrane configuration that
reaches the bottom of the space-time slice and one (with
E ¼ πR2) that does not.

IX. OUTLOOK

Quantum quenches generate complex, highly entangled
states whose dynamics cannot usually be tracked explicitly.
For this reason, analytical approaches to quenches have
typically relied on additional structure in the quantum
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dynamics: for example, integrability, or absence of inter-
actions, or conformal invariance. This paper instead studies
dynamics that are as unstructured as possible. We propose
that noisy dynamics are a useful toy model for quantum
quenches in generic (nonintegrable, non-conformally-
invariant) systems.
Many of our results are, of course, specific to noisy

dynamics: in particular, the emergence of KPZ behavior at
long wavelengths in 1D, and the detailed pictures for
entanglement growth afforded by the “KPZ triumvirate.”
But we suggest that some of our heuristic pictures apply to
non-noisy entanglement growth as well (with the replace-
ment S → S=seq mentioned above). We propose a general
directed polymer picture or minimal membrane picture for
the scaling of the entanglement and mutual information
(Secs. V, VIII B) and we use the operator spreading picture
to clarify the meaning of the “entanglement velocity” and
its distinction from the operator spreading velocity
(Sec. V). “Thermalization is slower than operator spread-
ing” in generic 1D systems (i.e., in general ,vE is smaller
than vB): by contrast, this is not true in 1+1D CFTs [2], or
in certain toy models [23]. It would be interesting to make
more detailed comparisons with holographic models [8].
Many interesting questions remain. First, within the

realm of noisy systems, an analytical treatment for the
regime with weak noise would be desirable, i.e., for
dynamics of the form

HðtÞ ¼ H0 þ λH1ðtÞ; ð65Þ
where H0 is a time-independent many-body Hamiltonian,
H1ðtÞ represents noise, and λ is small. Our conjecture is that
KPZ exponents apply for any nonzerovalue of λ [unlessHðtÞ
is fine-tuned]—i.e., that there is no universal distinction
between continuous time dynamics and quantum circuits.
(Note that there is no distinction between these two cases at
the level of conservation laws: once noise is added, energy is
not conserved even in the continuous time case.) However,
our derivations and numerics correspond, roughly speaking,
to the large λ regime. Perhaps the opposite regime could be
addressed using a more explicit renormalization group (RG)
treatment, although it is not obvious how to set this up.
Such a RG treatment might also shed light on the nature of

the entanglement spectrum or, equivalently, the dependence
of SnðtÞ on the index n. While we believe that all the Rényi
entropies execute KPZ growth in the presence of noise, we
have not pinned down the n dependence of the various
constants. The solvable models suggest that the leading-
order behavior may be independent of n at large times. What
is the appropriate scaling form for the spectrum? Limited
time scales prevent us from addressing this numerically
(except for Clifford circuits, where all the Sn are trivially
equal). (The entanglement spectrum is one window on the
structure of the quantum states generated by the random
dynamics. We can also ask in what ways these states differ
from ground states of random Hamiltonians, when the
amount of entanglement is similar.)

As a more speculative question in the domain of
noisy dynamics, we may ask whether there exist time-
independent Hamiltonians that show KPZ entanglement
fluctuations, despite the absence of explicit noise, in some
dynamical regimes. We emphasize that this seems unlikely
on asymptotically long time scales for a generic system
(since local reduced density matrices and observables
will eventually thermalize), but it may hold on intermediate
time scales in certain systems in which some degrees of
freedom act effectively as chaotic classical variables and
provide effective noise.
In the text, we discuss only initial states with area-law

entanglement. A natural extension is to initial states with, for
example, submaximal volume-law entanglement. The natu-
ral expectation, say, in 1D, is that the directedpolymer picture
extends to this case if we glue the unitary circuit to a tensor
network representation of the initial state. Then the entropy
Sðx; tÞwould include a fluctuating part with KPZ exponents
together with a contribution from the initial state. Another
natural direction to explore is the role of conservedquantities.
Turning to higher dimensions, it would also be useful to

test the higher-dimensional membrane pictures of Sec. VIII,
perhaps exploiting Clifford circuits to reduce the numerical
difficulty of higher-dimensional dynamics.
There are also many further questions regarding deter-

ministic systems for which the tools we introduce here may
give insight. For example, the forthcoming Ref. [77] will
discuss entanglement growth in disordered or inhomo-
geneous spin chains from the point of view of surface
growth, while Ref. [73] will give results for the spreading of
quantum operators.
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APPENDIX A: GROWTH OF HARTLEY
ENTROPY S0 IN 1D

Consider a one-dimensional quantum spin chain of local
Hilbert space dimension q, prepared initially in a product
state, and apply a sequence of random unitaries that couple
two neighboring spins. The location of the local unitary at a
given time step is arbitrary. In the following we fix the
location of the unitary, but take it to be Haar random.
We prove that in this situation the Hartley entropy S0

generically (i.e., with probability 1) obeys

NAHUM, RUHMAN, VIJAY, and HAAH PHYS. REV. X 7, 031016 (2017)

031016-22



S0ðx; tþ 1Þ ¼ min½S0ðx − 1; tÞ; S0ðxþ 1; tÞ� þ 1; ðA1Þ

if a unitary is applied at the bond x. The logarithm is of
base q.
This formula can be interpreted in matrix-product-state

language. If dx is the minimal value of the local bond
dimension required for an exact matrix-product-state rep-
resentation of the state, then S0ðxÞ ¼ log dx. A heuristic
parameter-counting argument for the local bond dimension,
given in Appendix A 3, suggests Eq. (A1).
However, a more rigorous proof is necessary as such

heuristic arguments can fail. In particular, one might
naively conjecture a stronger statement: namely, that for
any state at time t, if the unitary at bond x is Haar random,
then Eq. (A1) is true with probability 1. This conjecture is
false; a counterexample is given in Appendix A 2. We now
give a proof of Eq. (A1).

1. Proof of Eq. (A1)

Our genericity proof consists of two parts. First, we show
that given locations of unitaries, there exist certain unitaries
such that at each time step Eq. (A1) is true. Second, we
show the negation of Eq. (A1),

S0ðx; tþ 1Þ < min½S0ðx − 1; tÞ; S0ðxþ 1; tÞ� þ 1; ðA2Þ
happens if and only if a system of polynomial equations in
the entries of the unitaries is satisfied. (The inequality “>”
never holds, as we note in the main text.) By the first part of
the proof, the zero locus of these polynomial equations
does not cover the entire set of unitaries. Therefore, it is
only a submanifold of strictly smaller dimension, which
implies it has measure zero.
For the first part, it is sufficient to consider only three

types of local unitaries: the identity I, the swap gate W,
and a unitary E with the property that it turns a pair of
unentangled polarized spins, j11i, into q−1=2

Pq
i¼1 jiii, a

maximally entangled state. Without loss of generality we
may take the initial product state to be the polarized
state j…1111…i.
We show that using these three types of unitaries at the

given locations, one can construct a state whose entangle-
ment entropy is given byEq. (A1). Since Eq. (A1) defines the
entropy inductively, we only have to show it inductively, too.
At t ¼ 0, all the spins are unentangled, so we can simply

choose E for every designated location. Clearly, Eq. (A1) is
satisfied. At later times, if we do not apply E except on
an unentangled pair of spins, then a spin can be either
unentangled or maximally entangled with a single other
spin. Therefore, at time t > 0, the spin sL that is immedi-
ately left to the bond x can be (i) unentangled, (ii) entangled
with a spin to the left of sL, (iii) entangled with the spin sR
that is immediately to the right of the bond y, or
(iv) entangled with a spin to the right of sR.
These are exclusive possibilities, and similarly sR has

four options. Enumerating all 16 cases, which in fact

reduces to seven different cases excluding invalid ones
and those related by reflection, one easily checks that there
is always a choice among I,W, E that makes Eq. (A1) true.
Let us treat three exemplary cases here. If sL and sR are
entangled at time t, then Sðx − 1; tÞ ¼ Sðxþ 1; tÞ and
Sðx; tÞ ¼ Sðx − 1; tÞ þ 1, so one chooses the identity I.
If sL is entangled with a spin on the left of sL and sR
is entangled with a spin on the right of sR, then
Sðx − 1; tÞ ¼ Sðxþ 1; tÞ ¼ 1þ Sðx; tÞ. One chooses the
swap W to obtain Sðx; tþ 1Þ ¼ Sðx; tÞ þ 2. If sL and sR
are both unentangled, then one applies the entangling
unitary E to obtain Sðx;tþ1Þ−1¼ Sðx;tÞ¼ Sðx−1; tÞ¼
Sðxþ1; tÞ.
For the second part, recall that for any bipartite state

jψi ¼
X
i;j

Mi;jjiijji; ðA3Þ

the number of nonzero Schmidt coefficients is equal to the
number of nonzero singular values of the matrix M, which
is nothing but the rank ofM. For any positive integer r, the
rank of M is smaller than r if and only if every r × r
submatrix has determinant zero; i.e., all r × r minors
vanish. Thus, a bipartite state jψi having Hartley entropy
(log of rank ofM) strictly smaller than log r is expressed by
a system of polynomial equations on the coefficients of jψi.
If jψi is given by Ut…U2U1j0i, where j0i is a fixed
product state, then the coefficients are some polynomials of
the entries of the unitaries Ui, and hence the equations that
expresses vanishing determinants are polynomial equations
in the entries of the unitaries.
Our claim Eq. (A1) completely determines the Hartley

entropy based on the location of unitaries, and therefore the
spatial configuration of the unitaries tells uswhichminorswe
should check. Namely, the size r of the minors we turn into
the polynomial equations is given by (the exponential of)
the right-hand side ofEq. (A2). In otherwords, given a spatial
configuration of unitaries, the polynomial equations that
express Eq. (A2) are determined. The polynomial equations
are over tL variables, and the actual number of equations is
much larger yet finite. We do not need explicit expressions
for these polynomials, only the fact of their existence. These
polynomials might a priori read 0 ¼ 0; i.e., they could be
trivially satisfied. In that case, the solution to the polynomial
equation would be the entire set of unitaries, and Eq. (A1)
could never be satisfied. However, we just showed in the first
part that this cannot happen because there exists a choice of
unitaries for which Eq. (A1) is satisfied. This implies that the
polynomial equations are nontrivial and define a measure
zero subset of the entire set of unitaries. This completes the
genericity proof.

2. Counterexample to the stronger conjecture

We show above that Eq. (A1) holds when all unitaries are
chosen generically and the initial state is a product state.
Naively one might make the stronger conjecture: that the
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update rule Eq. (A1) holds whenever a generic unitary U is
applied to an arbitrary—possibly fine-tuned—state jΨi.
We construct an explicit jΨi, which is a counterexample to
this stronger conjecture.
Consider four degrees of freedom ABCD. The spins B

and C have dimension 2 each, and A andD have dimension
3 each. (To conform with our consideration of spin chains,
the subsystems A andD should be regarded as subspaces of
two or more spin-1=2’s.) The most general form of a
quantum state on ABCD is

X2
a;d¼0

X1
b;c¼0

Tabcdjaijbijcijdi: ðA4Þ

We consider Tabcd ¼ T 0
abdδc;0, i.e., C is in j0i, where

T 0
a0d ¼

0
B@

0 1 0

1 0 0

0 0 0

1
CA

ad

; T 0
a1d ¼

0
B@

0 0 1

0 0 0

1 0 0

1
CA

ad

:

ðA5Þ

(This does not give a normalized state, but we are only
concerned about ranks.)
The Hartley entropy for the cut A=BCD is simple to

compute. As we remark in the previous section, it is the
rank of the coefficient matrix. Interpreting this matrix as a
linear map, the rank is the dimension of the image of the
map from BCD to A. The image is precisely the linear span
of columns of T 0

a0d and T 0
a1d. They have three linearly

independent columns, implying that the Hartley entropy for
A=BCD is log23. Similarly, the rank of the coefficient
matrix for ABC=D is the dimension of the linear span of the
rows of T 0

a0d and T 0
a1d, which reads 3. That is, the Hartley

entropy for ABC=D is log2 3.
If Eq. (A1) were to be true for the generic choice of Haar

random unitary on BC, then we should be able to find a
unitary on BC such that

S0ðAB=CDÞ ¼ log23þ 1 ¼ log26: ðA6Þ

We show this cannot hold. Applying the unitary U on BC
the state, we obtain

X
b;c

Ub0c0;bcTabcd ¼ Ub0c0;00|fflfflffl{zfflfflffl}
U0

T 0
a0d þ Ub0c0;10|fflfflffl{zfflfflffl}

U1

T 0
a1d; ðA7Þ

whereU0 andU1 are 2 × 2matrices. The coefficient matrix
for the cut AB=CD is then

V ¼ U0 ⊗ T 0
0 þ U1 ⊗ T 0

1; ðA8Þ

whose rank should be 6 if S0ðAB=CDÞ ¼ log 6. Computing
all the minors of the 6 × 6 matrix V for arbitrary matrices

U0 andU1, we find that all (5 × 5) minors vanish, implying
that V has rank at most 4. Therefore, for this nongeneric
initial state,

S0ðx; tþ 1Þ ≠ min½S0ðx − 1; tÞ; S0ðxþ 1; tÞ� þ 1: ðA9Þ

3. Parameter-counting argument

Consider a 1D state jΨi in a matrix product representa-
tion. Labeling the states of the qubits (spins) by σ; σ0;…
running from 1 to q,

jΨi ¼
X
fσg

X
fag

ð…Aσ
ax−1;axA

0σ0
ax;axþ1

…Þj…σσ0…i: ðA10Þ

Since the state is not translationally invariant, we allow
the bond dimension dx to vary from bond to bond
(ax ¼ 1;…; dx). In an efficient representation, dx is equal
to the rank of the reduced density matrix for a cut at x:

dx ¼ qS0ðxÞ: ðA11Þ

We ask how S0ðxÞ changes when we apply a unitary U to
the two spins, σ and σ0, either side of bond x. This effects
the change (repeated indices are summed):

Aσ
ax−1;axA

0σ0
ax;axþ1

→ Uσσ0;ττ0Aτ
ax−1;axA

0τ0
ax;axþ1

: ðA12Þ

To update the matrix product representation, we must find
new matrices ~A and ~A0 which satisfy

~Aσ
ax−1;ax

~A0σ0
ax;axþ1

¼ Uσσ0;ττ0Aτ
ax−1;axA

0τ0
ax;axþ1

: ðA13Þ

In order to solve this equation for ~A and ~A0, it will generally
be necessary to increase the bond dimension at x to a new
value d0x. Naively, the necessary value of d0x will generically
be determined by equating the number of independent
equations in Eq. (A13) with the number of degrees of
freedom in ~A and ~A0. (However, the previous section shows
that this expectation can fail for certain choices of A
and A0.)
The number of equations is q2dx−1dxþ1, since this is the

number of possible values for the external indices in
Eq. (A13). The numbers of degrees of freedom in ~A and
~A0 are qdx−1d0x and qdxþ1d0x, respectively. However, d0x2 of
these are redundant, because the state is unchanged by the
transformation ~Aσ → ~AσM, ~A0σ0 → M−1 ~A0σ0 , with M an
arbitrary d0x × d0x matrix. Equating the number of equations
with the number of independent degrees of freedom gives

ðd0x − qdx−1Þðd0x − qdxþ1Þ ¼ 0: ðA14Þ

Choosing the smallest solution,
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d0x ¼ qminfdx−1; dxþ1g: ðA15Þ

This agrees with Eq. (A1) since S0ðxÞ ¼ log dx.

APPENDIX B: HAAR AVERAGE FOR Trρ2x

Let ρxðtÞ be the reduced density matrix for a cut at x,
obtained by tracing out the spins to the left of the cut. Each
index on this matrix labels a configuration of the spins to
the right of the cut. Let us temporarily label these spins
1; 2;…, and let the spin immediately to the left of the cut
be denoted 0. The indices on the reduced density matrices
are then

ρx−1ðtÞσ0;σ1;σ2;…μ0;μ1;μ2;…; ρxðtÞσ1;σ2;…μ1;μ2;…; ρxþ1ðtÞσ2;…μ2;…: ðB1Þ

In the following we assume that repeated indices are
summed. After applying a unitary on bond x,

ρxðtþ 1Þσ1;σ2;…μ1;μ2;…
¼ Uτσ1;σ00σ

0
1
U�

τμ1;μ00μ
0
1
ρx−1ðtÞσ

0
0
;σ0

1
;σ2;…

μ0
0
;μ0

1
;μ2;…

:

Let us average Trρxðtþ 1Þ2 over the choice of unitary, for a
fixed initial state:

hTrρxðtþ 1Þ2i ¼ ρx−1ðtÞσ
0
0
;σ0

1
;σ2;…

μ0
0
;μ0

1
;μ2;…

ρx−1ðtÞμ
00
0
;μ00

1
;μ2;…

σ00
0
;σ00

1
;σ2;…

× hUτσ1;σ00σ
0
1
U�

τμ1;μ00μ
0
1
Uνμ1;μ000μ

00
1
U�

νσ1;σ000σ
00
1
i:

The Haar average for four elements of a UðdÞ matrix (here,
d ¼ q2, and each index on U represents a pair of spin
indices) is

hUa;bUa0;b0U�
c;dU

�
c0;d0 iHaar

¼ 1

d2 − 1

�
fδa;cδa0;c0δb;dδb0;d0 þ δa;c0δa0;cδb;d0δb0;dg

−
1

d
fδa;cδa0;c0δb;d0δb0;d þ δa;c0δa0;cδb;dδb0;d0g

�
: ðB2Þ

The index contractions give the result in the text:

hTrρxðtþ 1Þ2iHaar ¼ qðq2 þ 1Þ−1ðTrρ2x−1 þ Trρ2xþ1Þ:
ðB3Þ

APPENDIX C: ENTANGLEMENT ENTROPY
OF STABILIZER STATES

A stabilizer state is a state of an n-qubit system defined
by a complete set fg1;…; gng of commuting tensor
products of Pauli matrices through equations

gijψi ¼ þjψi: ðC1Þ
The group generated by fg1;…; gng is naturally called a
stabilizer group, and denoted by G [87,95]. A trivial
example is the all-spin-up state, defined as

Zijψi ¼ þjψi; ðC2Þ

for all i ¼ 1;…; n. The condition that jψi is nonzero and
unique is equivalent to the condition that the operator

1

jGj
X
g∈G

g ðC3Þ

is a projector of rank 1 [96,97]. Since jψi is in the image of
this projector, we see

jψihψ j ¼ 1

jGj
X
g∈G

g: ðC4Þ

Since this is a normalized pure density matrix, its trace is
equal to 1. But a Pauli matrix has the property that it is
traceless. Therefore, only the identity element on the right
has nonzero trace:

1 ¼ 1

jGj dimðC2Þ⊗n ¼ 1

jGj 2
n: ðC5Þ

From this expression, it is straightforward to obtain
expressions for reduced density matrices. Suppose the
n-qubit system is partitioned into two complementary
regions A and B. Tracing out B, we have

ρA ¼ 1

2n

X
g∈G

TrBðgÞ: ðC6Þ

TrBðgÞ is nonzero if and only if the tensor component
corresponding to B is identity, in which case

TrBðgÞ ¼ 2jBjgjA; ðC7Þ

where gjA denotes the tensor components of g correspond-
ing to A. The set of all gjA such that TrBðgÞ ≠ 0 can
be regarded as a subgroup of G, which we denote by GA.
The formula for ρA now reads

ρA ¼ 2jBj

2n

X
g∈GA

g ¼ jGAj
2jAj

1

jGAj
X
g∈GA

g: ðC8Þ

It is immediate that ρA is proportional to a projector since it
is a sum over a group. It follows that the rank of ρA is equal
to 2jAj=jGAj. In particular, the (Rényi or von Neumann)
entropy of ρA with base-2 logarithm is

SðρAÞ ¼ jAj − log2jGAj: ðC9Þ

The subgroup GA has period 2, and therefore log2jGAj is an
integer, which is equal to the number of independent
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stabilizers supported only on A. This expression for the
entanglement entropy has also appeared in Refs. [82,83].
Now, regard the stabilizer groupG as a binary vector space

V by ignoring the overall phase (sign) factors. Let ΠA be the
truncation map retaining the components corresponding to
the region A, and similarly let ΠB be the truncation map for
B ¼ Ā. It is routine to check that V decomposes as VA ⊕
VB ⊕ V 0 for some subspaceV 0⊆V, whereVA andVB are the
spans of stabilizers supported only on A and B, respectively.
Both the truncation maps are injective on V 0. It follows that
SA ¼ jBj − dimF2VB ¼ dimF2ðΠAVÞ − jAj. This completes
the proof of Eq. (33).

APPENDIX D: NUMERICS FOR FULL
CLIFFORD EVOLUTION

In Sec. VI A, we present numerical results for random
unitary evolution using only the CNOT gates Eq. (31). Here,
we present similar analysis using the full set of generators for
the Clifford group, showing that the additional gates do not
modify the universal behavior. The additional single-site
gates are the Hadamard and phase gates defined in Eqs. (29)

and (30). respectively. (The Hadamard gate corresponds to
swapping the X and Z vectors, while the phase gate
corresponds to adding the X vector to the Z vector.)
The von Neumann entropy in units of log 2 and the

corresponding width averaged over ∼2 × 105 realizations
(except for the last data point, where ∼2 × 104 realizations
are used for the average) are plotted in Fig. 27. The fit to
the KPZ universal form Eq. (49) gives βh ¼ 0.2� 0.15
and βw ¼ 0.3� 0.04. We also obtain vE ¼ 0.194� 0.001,
B ¼ 0.4� 0.2, C ¼ 0.4� 0.1, D ¼ 0.4� 0.6, and η ¼
−0.4� 0.8. These results are consistent with the KPZ
universality and with the data presented in Fig. 17.

APPENDIX E: DETAILS OF STATISTICS
OF MEMBRANES

The exponents governing the membrane problem are
traditionally denoted θ and ζ, and are related by 2ζ − θ ¼
2 − d [47]. Consider a patch of the membrane with linear
dimensions scaling as l. This includes both its temporal
dimension and its internal spatial dimensions: after a
rescaling of time, the membrane is statistically isotropic
on large scales. The mean “energy” of this patch of
membrane scales as ld þ const × lθ, with fluctuations of
order lθ. The length scale for wandering of the membrane
in the transverse direction is of order lζ. The numerical
results we quote in the main text are in good agreement
with an epsilon expansion about d ¼ 4, which gives
ζ ≃ 0.208ð4 − dÞ [93] (see also Ref. [98]). The scaling
forms for the entanglement we discuss in the text are easily
found by regarding the membrane as made up of patches of
appropriate linear size: size t for Eqs. (57) and (58) and size
L for Eq. (59).
Note that the geometry of the membrane, including the

transverse length scale (which is Δx ∼ tζ for the regime
t≲ L), determines the dimensions of the space-time region
around ∂A for which the final entanglement is sensitive to
small changes in HðtÞ, i.e., in the history of the noise.

APPENDIX F: ENTANGLEMENT
PROBABILITY DISTRIBUTION

As we mention in the main text, a remarkable recent
advance in KPZ theory has been the derivation of the full
universal probability distribution for the height of the
surface at fixed position and fixed large time [56–66];
see Refs. [99–101] for reviews. In our case, this height
corresponds to the entanglement S across a cut in a system
undergoing noisy unitary dynamics. One may separate out
the nonuniversal growth rate vE, and the nonuniversal
constant D governing the scale of fluctuations, by writing

S ¼ vEtþDtβχ: ðF1Þ

The rescaled random variable χ is then expected to have
a universal probability distribution PðχÞ at late times.

FIG. 27. Top: Growth of the mean entanglement in units of log
2 as a function of time for the random Clifford evolution (only
CNOT gates). The red solid curve is a fit using the form Eq. (49).
Dashed line shows asymptotic linear behavior. Bottom: Growth
in the fluctuations in the entanglement with time. The exponent β
is found to be βw ¼ 0.3� 0.04, in agreement with the KPZ
prediction β ¼ 1=3. The dashed line shows the expected asymp-
totic behavior, wðtÞ ∼ tβ with β ¼ 1=3.
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This probability distribution depends on the initial con-
dition for the surface. For a surface that is initially flat, PðχÞ
is the Tracy-Widom distribution with β ¼ 1. This is the
case relevant to our setup, where Sðx; t ¼ 0Þ ¼ 0. (In the
directed polymer interpretation, this corresponds to a setup
where the x–coordinate of the upper end point of the
polymer is fixed but that of the lower end point is free;
again, this is the setup relevant to our minimal cut picture.)
Other initial conditions for a growing surface can give
different universal forms for PðχÞ—for example, the so-
called “narrow wedge” initial condition gives the Tracy-
Widom distribution with β ¼ 2. (The latter distribution is
likely to be relevant to noisy growth of entanglement
between two subsystems that are initially unentangled with
each other, but separately highly entangled.) [The gener-
alization of the directed polymer picture to entangled initial

states (Sec. IX) indicates that the lower end point of the
polymer is then no longer free, and instead favors x ¼ 0.]
In Fig. 28, we fit numerical data for the probability

distribution of S to the expected Tracy-Widom form and,
for comparison, to a Gaussian distribution. The data are for
the “full” Clifford dynamics (defined in Sec. VI A) at time
t ¼ 2048. Each fit involves two parameters, corresponding
to the mean and the variance. The Tracy-Widom distribu-
tion used is the theoretically expected one with β ¼ 1, but,
in fact, the present data do not allow us to discriminate
between TWβ¼1 and TWβ¼2. The Tracy-Widom distribu-
tion is a much better fit to the data than the Gaussian, as
quantified in the caption of Fig. 28. This is further
confirmation of KPZ universality in the Clifford case. A
more detailed investigation of the probability distribution is
beyond the scope of this paper, in view of finite-time effects
at the accessible time scales.
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