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A system of Majorana zero modes with random infinite-range interactions—the Sachdev-Ye-Kitaev
(SYK) model—is thought to exhibit an intriguing relation to the horizons of extremal black holes in
two-dimensional anti–de Sitter space. This connection provides a rare example of holographic duality
between a solvable quantum-mechanical model and dilaton gravity. Here, we propose a physical realization
of the SYK model in a solid-state system. The proposed setup employs the Fu-Kane superconductor
realized at the interface between a three-dimensional topological insulator and an ordinary superconductor.
The requisite N Majorana zero modes are bound to a nanoscale hole fabricated in the superconductor that is
threaded by N quanta of magnetic flux. We show that when the system is tuned to the surface neutrality
point (i.e., chemical potential coincident with the Dirac point of the topological insulator surface state) and
the hole has sufficiently irregular shape, the Majorana zero modes are described by the SYK Hamiltonian.
We perform extensive numerical simulations to demonstrate that the system indeed exhibits physical
properties expected of the SYK model, including thermodynamic quantities and two-point as well as
four-point correlators, and discuss ways in which these can be observed experimentally.
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I. INTRODUCTION

Models of particles with infinite-range interactions have
a long history in nuclear physics dating back to the
pioneering works of Wigner [1] and Dyson [2] and in
condensed matter physics in studies describing spin glass
and spin liquid states of matter [3–5]. More recently, Kitaev
[6] and Maldacena and Stanford [7] formulated and studied
a Majorana fermion version of the model with all-to-all
random interactions first proposed by Sachdev and Ye [4].
The resulting Sachdev-Ye-Kitaev (SYK) model, defined by
the Hamiltonian Eq. (1.1), is solvable in the limit of large
number N of fermions and exhibits a host of intriguing
properties. The SYK model is believed to be holographic
dual of extremal black hole horizons in two-dimensional
anti–de Sitter (AdS2) space and has been argued to possess
remarkable connections to information theory, many-body
thermalization, and quantum chaos [8–13]. Various exten-
sions of the SYK model have been put forth containing

supersymmetry [14], interesting quantum phase transitions
[15,16], and higher-dimensional extensions [17,18], as well
as a version that does not require randomness [19]. Given
its fascinating properties it would be of obvious interest to
have an experimental realization of the SYK model or its
variants. Thus far a realization of the Sachdev-Ye model
(with complex fermions) has been proposed using ultracold
gases [20], and a protocol for digital quantum simulation of
both the complex and Majorana fermion versions of the
model has been discussed [21]. A natural realization of the
SYK model in a solid-state system is thus far lacking.
Recent years have witnessed numerous proposals for

experimental realizations of unpaired Majorana zero modes
in solid-state systems [22–26], with compelling experi-
mental evidence for their existence gradually mounting in
several distinct platforms [27–35]. The purpose of this
paper is to propose a physical realization of the SYK model
in one of these platforms. The SYK Hamiltonian we
implement is given by

HSYK ¼
X

i<j<k<l

Jijklχiχjχkχl; ð1:1Þ

where Jijkl are random independent coupling constants and
χj represent the Majorana zero-mode operators that obey
the canonical anticommutation relations
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fχi; χjg ¼ δij; χ†j ¼ χj: ð1:2Þ

The proposed device, depicted in Fig. 1, employs an
interface between a 3D topological insulator (TI) and an
ordinary superconductor such as Nb or Pb. Fu and Kane
[36] showed theoretically that magnetic vortices in such an
interface host unpaired Majorana zero modes, and signa-
tures consistent with this prediction have been reported in
Bi2Te3=NbSe2 heterostructures [34,35]. Under ordinary
circumstances these vortices tend to form an Abrikosov
lattice and the low-energy effective theory is dominated by
two-fermion terms iKijχiχj, with the hopping amplitudes
Kij decaying exponentially with the distance between
vortex sites jri − rjj. Four-fermion interaction terms of
the type required to implement the SYK Hamiltonian
Eq. (1.1) are generically also present but are subdominant
and also decay exponentially with distance. Realizing the
SYK model in this setup therefore entails two key chal-
lenges: (i) one must find a way to suppress the two-fermion
tunneling terms and (ii) render the four-fermion interactions
effectively infinite ranged. In addition, the four-fermion
coupling constants Jijkl must be sufficiently random. In the
following we show how these challenges can be overcome
by judicious engineering of various aspects of the device
depicted in Fig. 1.
The first challenge can be met by tuning the surface state

of the TI into its global neutrality point such that the
chemical potential μ lies at the Dirac point. At the neutrality
point the interface superconductor is known to acquire an
extra chiral symmetry which prohibits any two-fermion
terms [37]. In other words, the symmetry requires Kij ¼ 0

and the low-energy Hamiltonian is then dominated by the
four-fermion terms [38]. The second requirement of effec-
tively infinite-ranged interactions can be satisfied by
localizing all Majorana zero modes in the same region
of space. In our proposed device this is achieved by
fabricating a hole in the superconducting (SC) layer, as
illustrated in Fig. 1. If the sample is cooled in a weak
applied magnetic field, an integer number N of magnetic

flux quanta can be trapped in the hole. The SC phase θ will
then wind by 2πN around the hole, forming effectively an
N-fold vortex with N Majorana zero modes bound to the
hole. If, furthermore, the hole is designed to have an
irregular shape, the Majorana wave functions will have
random spatial structure and their overlaps will give rise to
the required randomness in the coupling constants Jijkl.
This randomness is related to random classical trajectories
inside such a hole, or “billiards,” as it is commonly called in
the quantum chaos literature [39,40]. We note a related
proposal to realize the SYK model using semiconductor
quantum wires coupled to a disordered quantum dot
advanced in the recent work [41].
In the rest of the paper we provide the necessary

background on our proposed system and support its relation
to the SYK model by physical arguments and by detailed
model calculations. We first review the Fu-Kane model [36]
for the TI-SC interface and numerically calculate the
Majorana wave functions localized in a hole threaded by
N magnetic flux quanta in the presence of disorder.
Assuming that the constituent electrons interact via
screened Coulomb potential, we then explicitly calculate
the four-fermion coupling constants Jijkl between the
Majorana zero modes. We, finally, use these as input data
for the many-body Majorana Hamiltonian which we
diagonalize numerically for N up to 32 and study its
thermodynamic properties, level statistics, as well as two-
and four-point correlators. We show that these behave
precisely as expected of the SYK model with random
independent couplings. We also discuss the effect of small
residual two-fermion terms that will inevitably be present
in a realistic device and propose ways to experimentally
detect signatures of the SYK physics using tunneling
spectroscopy.

II. SYK MODEL FROM INTERACTING
MAJORANA ZERO MODES AT THE

TI-SC INTERFACE

A. Fu-Kane superconductor

The surface of a canonical 3D TI, such as Bi2Se3, hosts a
single massless Dirac fermion protected by time-reversal
symmetry. When placed in the proximity of an ordinary
superconductor, the surface state is described by the
Fu-Kane Hamiltonian [36],

HFK ¼
Z

d2rΨ̂†
rHFKðrÞΨ̂r; ð2:1Þ

where Ψ̂r ¼ ðc↑r; c↓r; c†↓r;−c†↑rÞT is the Nambu spinor and

HFK ¼ τz
�
vFσ ·

�
p− τz

e
c
A

�
−μ

�
þ τxΔ1− τyΔ2: ð2:2Þ

Here, vF is the velocity of the surface state, p ¼ −iℏ∇
denotes the momentum operator, Δ ¼ Δ1 þ iΔ2 is the SC

3D TI

SC

B

FIG. 1. The proposed setup for a solid-state realization of the
SYK model.
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order parameter, and σ, τ are Pauli matrices in spin and
Nambu spaces, respectively. To describe the geometry
depicted in Fig. 1, we take

ΔðrÞ ¼
�
0 r < RðφÞ
Δ0eiNφ r > RðφÞ; ð2:3Þ

where φ is the polar angle and RðφÞ denotes the hole radius.
The vector potential is taken to yield total flux through the
hole

H
C dl · A ¼ NΦ0, with Φ0 ¼ hc=2e the SC flux

quantum and the contour C taken to encircle the hole at
a radius well beyond the effective magnetic penetration
depth of the SC film, λeff ¼ 2λ2L=d. (Here, λL is the London
penetration depth of the bulk SC and d the film thickness.)
The Hamiltonian Eq. (2.2) respects the particle-hole

(p-h) symmetry generated by Ξ ¼ σyτyK (Ξ2 ¼ þ1), where
K denotes complex conjugation. For a purely real gap
function Δ and zero magnetic field B ¼ ∇ × A, it also
obeys the physical time-reversal symmetry Θ ¼ iσyK
(Θ2 ¼ −1). In the presence of vortices Δ becomes complex
and the time-reversal symmetry is broken. The Fu-Kane
model with vortices therefore falls into symmetry classD in
the Altland-Zirnbauer classification [42], which, in accor-
dance with Ref. [37], implies a Z2 classification for the
zero modes associated with vortices. Physically, this means
that a system with total vorticity NV will have N ¼
ðNV mod 2Þ exact zero modes, in accord with the expect-
ation that any even number of Majorana zero modes will
generically hybridize and form complex fermions at non-
zero energy.
When μ ¼ 0, the Hamiltonian Eq. (2.2) also respects a

fictitious time-reversal symmetry generated by Σ ¼ σxτxK
(Σ2 ¼ þ1). It is important to note that unlike the physical
time-reversal, this symmetry remains valid even in the
presence of the applied magnetic field and vortices. At the
neutrality point, the two symmetries Ξ and Σ define a BDI
class with chiral symmetry Π ¼ ΞΣ ¼ σzτz. This, in
accordance with Ref. [37], implies an integer classification
of zero modes associated with point defects. A system with
total vorticity NV will thus exhibit N ¼ NV exact zero
modes, irrespective of the precise geometric arrangement of
the individual vortices and other details. This remains true
in the presence of any disorder that does not break the Σ
symmetry. Specifically, randomness in vF and Δ will not
split the zero modes but random contributions to μ will.
Another way to establish the existence of exact

zero modes in the Hamiltonian Eq. (2.2) with μ ¼ 0 is
to recognize it as a version of the Jackiw-Rossi Hamiltonian
[43], well known in particle physics. An index theorem for
this Hamiltonian, conjectured by Jackiw and Rossi and
later proven by Weinberg [44], equates the number N of its
exact zero modes in region M to the total vorticity,
NV ¼ ½1=ð2πÞ� H∂M dl · ∇θ, contained in that region. A
region threaded by NV magnetic flux quanta will thus
contain N exact zero modes.

In the geometry of Fig. 1 the Majorana modes we discuss
above can equivalently be viewed as living at the boundary
between a magnetically gapped TI surface on the inside and
a SC region on the outside of the hole. The existence of
such modes is well known and has been discussed in
several papers [45,46].
The existence and properties of the zero modes in the Fu-

Kane Hamiltonian have been extensively tested by analytic
and numerical approaches for a single vortex [36], pair of
vortices [47,48], periodic Abrikosov lattices [49,50], as
well as the “giant vortex” geometry [51] similar to our
proposed setup. This body of work firmly establishes the
existence of exact Majorana zero modes for μ ¼ 0 in
accordance with the Jackiw-Rossi-Weinberg index theo-
rem. Away from neutrality it is found that the zero modes
are split due to two-fermion tunneling termsKij ∝ μ, where
the constant of proportionality is related to the wave
function overlap between χi and χj. In addition, it has
been found that for a singly quantized vortex at neutrality
the zero mode is separated from the rest of the spectrum by
a gap ∼Δ0, where Δ0 is the SC gap magnitude far from the
vortex. We shall see that for a judiciously chosen hole size
this convenient hierarchy of energy scales remains in place
with N zero modes separated by a large gap from the rest of
the spectrum.

B. Low-energy effective theory

Having established a convenient platform that hosts N
Majorana zero modes with wave functions localized in
the same region of space, we now proceed to derive the
effective low-energy theory in terms of the Majorana zero-
mode operators χj. To this end, we write the full second-
quantized Hamiltonian of the system as

H ¼ HðNÞ
FK þ δHFK þHint: ð2:4Þ

Here, HðNÞ
FK stands for the part of the Fu-Kane Hamiltonian

Eq. (2.2) that obeys the fictitious time-reversal symmetry Σ
and exhibits, therefore, N exact zero modes. δHFK contains
all the remaining fermion bilinears that break Σ such as the
chemical potential term. Hint defines the four-fermion
interactions that have been ignored thus far but will play
a pivotal role in the physics of the SYKmodel we study. We
assume that electrons are subject to screened Coulomb
interactions described by

Hint ¼
1

2

Z Z
d2rd2r0ρ̂ðrÞVðr − r0Þρ̂ðr0Þ; ð2:5Þ

where VðrÞ is the interaction potential and ρ̂ðrÞ ¼ c†σrcσr is
the electron charge density operator.
Now imagine we have solved the single-electron prob-

lem defined by the Hamiltonian HðNÞ
FK for the device

geometry sketched in Fig. 1 with N flux quanta threaded
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through the hole. We thus have the complete set of single-

particle eigenfunctionsΦnðrÞ and eigenenergies εn ofHðNÞ
FK .

The corresponding second-quantized Hamiltonian can then
be written in a diagonal form,

HðNÞ
FK ¼

X
n
0 εnψ̂

†
nψ̂n þ Eg; ð2:6Þ

where

ψ̂n ¼
Z

d2rΦ†
nðrÞΨ̂r ð2:7Þ

is the eigenmode operator belonging to the eigenvalue εn.
The sum over n is restricted to the positive energy
eigenvalues and Eg is a constant representing the
ground-state energy. At the neutrality point, according
to our preceding discussion, N of the ψ̂n eigenmodes
coincide with the exact zero modes mandated by the
Jackiw-Rossi-Weinberg index theorem. We denote these
χj with j ¼ 1;…; N. Because εj ¼ 0, these modes do not
contribute to the Hamiltonian Eq. (2.6). The zero-mode
eigenfunctions ΦjðrÞ can be chosen as eigenstates of the
p-h symmetry generator Ξ. They then satisfy the reality
condition

σyτyΦ�
jðrÞ ¼ ΦjðrÞ; ð2:8Þ

which implies that χ†j ¼ χj; the zero modes are Majorana
operators.
As noted before, theN zero modes are separated by a gap

from the rest of the spectrum. As long as δHFK and Hint
remain small compared to this gap we may construct the
effective low-energy theory of the system by simply
projecting onto the part of the Hilbert space generated
by N Majorana zero modes. In practical terms this is
accomplished by inverting Eq. (2.7) to obtain

Ψ̂r ¼
X
n

ΦnðrÞψ̂n; ð2:9Þ

then substituting Ψ̂r into δHFK and Hint and retaining only
those terms that contain zero-mode operators χj but no
finite-energy eigenmodes. We thus obtain

Heff ¼
i
2!

X
i;j

~Kijχiχj þ
1

4!

X
i;j;k;l

~Jijklχiχjχkχl; ð2:10Þ

where

i ~Kij ¼ 2!

Z
d2rΦ†

i ðrÞδHFKðrÞΦjðrÞ; ð2:11Þ

~Jijkl ¼
4!

2

Z Z
d2rd2r0ρijðrÞVðr − r0Þρlkðr0Þ; ð2:12Þ

and ρijðrÞ ¼ ði=2ÞΦ†
i ðrÞτzΦjðrÞ is the charge density

associated with the pair of zero modes χi and χj. We
observe that at the neutrality point, when ~Kij ¼ 0, the low-
energy effective Hamiltonian Eq. (2.10) coincides with the
SYK model. Equations (2.11) and (2.12) allow us to
calculate the relevant two- and four-fermion coupling
constants from the knowledge of the Majorana wave
functions in the noninteracting system. We carry out this
program in Sec. IV for a specific physically relevant model
system. Here, we finish by discussing some general
properties of the Hamiltonian Eq. (2.10) that follow from
symmetry considerations.
The reality condition Eq. (2.8) for the Majorana wave

function implies the following spinor structure of ΦjðrÞ in
the Nambu space:

Φj ¼
�

ηj

iσyη�j

�
; ð2:13Þ

where ηjðrÞ is a two-component complex spinor. We thus
have

ρij ¼
i
2
ðη†i ηj − c:c:Þ ¼ −Imðη†i ηjÞ: ð2:14Þ

The charge density is thus purely real and antisymmetric
under i ↔ j. In the simplest case, the Σ-breaking part of the
Fu-Kane Hamiltonian will simply be δHFKðrÞ ¼ −μτz. In
this situation, Eq. (2.11) implies that ~Kij ¼ 4μ

R
d2rρijðrÞ.

Thus, ~Kij is purely real and antisymmetric, as required for
Heff to be Hermitian.
Because of the anticommutation property Eq. (1.2)

of the Majorana operators, it is clear that only the fully
antisymmetric part of ~Jijkl contributes to the Hamiltonian
Eq. (2.10). As we define in Eq. (2.12), ~Jijkl is already
antisymmetric under i ↔ j and k ↔ l due to the anti-
symmetry ρij ¼ −ρji. With this in mind we can rewrite the
Hamiltonian Eq. (2.10) in a more convenient form:

Heff ¼ i
X
i<j

Kijχiχj þ
X

i<j<k<l

Jijklχiχjχkχl; ð2:15Þ

with

Kij ¼
1

2
ð ~Kij − ~KjiÞ; Jijkl ¼

1

3
ð ~Jijkl − ~Jikjl þ ~JlijkÞ

ð2:16Þ
now fully antisymmetric. In the following, we are interested
in situations where coupling constants are random and we
characterize the coupling strengths by two parameters K
and J defined by

K2 ¼ NK2
ij; J2 ¼ N3

3!
J2ijkl; ð2:17Þ
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where the bar represents an ensemble average over
randomness.

C. Structure and statistics of the coupling constants Jijkl
In order to approximate the SYK Hamiltonian, the

coupling constants Jijkl we give in the previous section
must behave as independent random variables. To assess
this condition, we now discuss their structure and statistics.
We make two reasonable assumptions: (i) the interaction
potential in Eq. (2.12) is short ranged and well approxi-
mated by VðrÞ≃ V0δðrÞ and (ii) there exists a length scale
ζ beyond which Majorana wave functions ΦjðrÞ can be
treated as random independent variables.
We coarse grain the Majorana wave functions on the grid

with sites rn and spacing ∼ζ. This amounts to replacing
ηjðrÞ → η̄jðrnÞ=ζ and

R
d2r → ζ2

P
n in Eqs. (2.13) and

(2.12). The discretized spinor wave functions then have the
following structure on each site:

η̄jðrnÞ ¼
�ϕ1

jðnÞ þ iϕ2
jðnÞ

ϕ3
jðnÞ þ iϕ4

jðnÞ

�
; ð2:18Þ

where ϕα
j ðnÞ are real independent random variables with

ϕα
i ðnÞ ¼ 0; ϕα

i ðnÞϕβ
j ðnÞ ¼

1

8Ms
δijδ

αβ: ð2:19Þ

Here, Ms ¼ πR2=ζ2 is the total number of grid sites in the
hole and the second equality follows from the normaliza-
tion of ΦjðrÞ.
Combining Eqs. (2.12), (2.14), (2.16), and (2.18) it

is possible to express the antisymmetrized coupling con-
stants as

Jijkl ¼ −
V0

ζ2
XMs

n¼1

ϵαβμνϕ
α
i ðnÞϕβ

j ðnÞϕμ
kðnÞϕν

l ðnÞ; ð2:20Þ

where ϵαβμν is the totally antisymmetric tensor and sum-
mation over repeated indices is implied. For a general value
of Ms, the many-body Hamiltonian defined by coupling
constants Eq. (2.20) represents a variant of the original
SYK model similar to models studied in Refs. [14,16]. As
such, it might be amenable to the large-N analysis using
approaches described in those works. Here, we focus on the
limitMs ≫ N, which works when the hole radius R is large
and the wave functions can be considered random on short
scales ζ. In this limit each Jijkl defined in Eq. (2.20) is given
by a sum of a large number of random terms given by
products of four random amplitudes ϕα

j ðnÞ. The central
limit theorem then assures us that J’s will be random
variables with a distribution approaching the Gaussian
distribution irrespective of the detailed statistical properies
of ϕα

j ðnÞ. It is furthermore easy to show that

JI ¼ 0; JIJJ ¼
�
3V0

8ζ2

�
2 1

M3
s
δIJ; ð2:21Þ

where the uppercase label represents a group of four
indices I ¼ fijklg. The coupling constants given
by Eq. (2.20) are asymptotically independent with the
higher-order correlators vanishing as higher powers of Ms,
e.g., JijklJklmnJmnij ∼M−5

s .
The above analysis suggests that under reasonable

assumptions coupling constants defining the many-body
Hamiltonian Eq. (2.15) can be considered independent
random variables. When additionally Kij can be taken as
negligible, we expect the Hamiltonian to approximate the
SYK model. Building on the experience gained from
Refs. [14,16], we furthermore expect our Hamiltonian to
describe an interesting non-Fermi-liquid phase even away
from the limit when J’s are independent variables. For
instance, certain specific correlations present in J’s are
known to lead to a very interesting supersymmetric version
of the SYK model [14] and a whole family of SYK-like
models discussed in Ref. [16] .
Recent work [41] performed a mathematical analysis of

deviations in J’s from ideal random independent variables
in a model qualitatively similar to ours. Here, we adopt a
different approach and proceed by evaluating the effect of
such deviations on the observable physical properties of the
many-body model defined by the Hamiltonian Eq. (2.15).
We find that coupling constants that follow from the giant
vortex geometry indeed give rise to a phenomenology that
is consistent with the SYK model.

III. LARGE-N SOLUTION AND THE
CONFORMAL LIMIT

When the number of Majorana fermions N is large,
the SYK model becomes analytically solvable in the
low-energy limit. Specifically, the Euclidean-space time-
ordered propagator defined as

GðτÞ ¼ hT τχðτÞχð0Þi ð3:1Þ
can be expressed in the Matsubara frequency domain
through the self-energy ΣðωnÞ as

GðωnÞ ¼ ½−iωn − ΣðωnÞ�−1: ð3:2Þ

Here, GðωnÞ ¼
R β
0 dτeiωnτGðτÞ, and β ¼ 1=kBT is the

inverse temperature. At nonzero temperatures the propa-
gator and the self-energy are defined for discrete Matsubara
frequencies ωn ¼ πTð2nþ 1Þ, with n integer and taking
kB ¼ 1 here and henceforth. Using the replica trick to
average over disorder configurations, or alternately sum-
ming the leading diagrams in the 1=N expansion, one
obtains (see, for example, Ref. [7]) the following expres-
sion for the self-energy appropriate for the Hamiltonian
Eq. (2.15):
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ΣðτÞ ¼ K2GðτÞ þ J2G3ðτÞ: ð3:3Þ

For arbitrary given parameters K, J, and β the self-
consistent equations (3.2) and (3.3) can be solved by
numerical iteration. Analytical solutions are available in
various limits and are reviewed below. In subsequent
sections we compare these with numerical results based
on the model described above.

A. Free-fermion limit

When J ¼ 0 the theory becomes noninteracting and an
analytic solution to Eqs. (3.2) and (3.3) can be given for all
temperatures. Specifically, the self-energy in Eq. (3.3) can
be written in the frequency domain as ΣðωnÞ ¼ K2GðωnÞ
and substituted into Eq. (3.2). Solving for GðωnÞ then gives

GfðωnÞ ¼
2i

ωn þ sgnðωnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n þ 4K2

p : ð3:4Þ

This implies the high-frequency limit GfðωnÞ≃ i=ωn and
the low-frequency limit GfðωnÞ≃ i=sgnðωnÞK.
It is useful to extract the single-particle spectral function

from Eq. (3.4) defined as AðωÞ¼ð1=πÞImGðωn→−iωþδÞ,
by analytically continuing from Matsubara to real frequen-
cies to obtain the retarded propagator. We thus find

AfðωÞ ¼
1

πK
Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ω

2K

�
2

s
; ð3:5Þ

the usual semicircle law. For this zero-dimensional system
AðωÞ coincides with the local density of states DðωÞ
averaged over all Majorana sites, which is experimentally
measurable in a tunneling experiment. Specifically, the
tunneling conductance gðωÞ ¼ ðdI=dVÞω¼eV is propor-
tional to the local density of states DðωÞ.

B. Conformal limit

When K ¼ 0 and T ≪ J the system is strongly interact-
ing but, nevertheless, an asymptotic solution of Eqs. (3.2)
and (3.3) can be found by appealing to their approximate
reparametrization invariance [6,7] that becomes exact in the
low-frequency limit when one can neglect the −iωn term in
Eq. (3.2). The conformal limit solution reads

GcðωnÞ ¼ iπ1=4
sgnðωnÞffiffiffiffiffiffiffiffiffiffiffi

Jjωnj
p ; ð3:6Þ

and the corresponding spectral function is

AcðωÞ ¼
1ffiffiffi
2

p
π3=4

1ffiffiffiffiffiffiffiffiffi
Jjωjp : ð3:7Þ

These expressions are valid for jωj ≪ J and must cross
over to the 1=ω behavior at large frequencies.

It is important to note that the low-frequency behaviors
of Af and Ac are quite different with the former saturating at
1=πK and the latter divergent. Thus, it should be possible to
distinguish the free-fermion and the interaction-dominated
behaviors, illustrated in Fig. 2(a), by performing a tunnel-
ing experiment. We discuss the measurement in more detail
in Sec. VI.

C. Crossover region

When both K and J are nonzero, as is the case in a
typical experimental setup, analytical solutions are not
available, but one can still understand the behavior of
the system from approximate analytical considerations and
numerical solutions. Let us focus on the T ¼ 0 limit and
study the effect of K and J on the self-energy ΣðωnÞ in
Eq. (3.3). To this end, it is useful to consider the
propagators Gf and Gc in the imaginary time domain.
For long times τ, one obtains

GfðτÞ ¼
1

πK
sgnðτÞ
jτj ; GcðτÞ ¼

1

π1=4
ffiffiffiffiffi
2J

p sgnðτÞ
jτj1=2 : ð3:8Þ
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FIG. 2. (a) Spectral functions, measurable in a tunneling
experiment, in the conformal (strongly interacting) limit
(red lines) and free-fermion limit (blue lines). (b) Numerically
evaluated large-N Matsubara Green’s functions for J ¼ 1.0,
T ¼ 0.001, and different values of K. Red dashed line shows
the conformal limit behavior Eq. (3.7) while the thick green
and brown lines correspond to free-fermion result Eq. (3.4) with
K ¼ 0.1 and 0.5, respectively.
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Consider the K ¼ 0 limit and then slowly turn K on.
Initially, GcðτÞ is a valid solution. However, for any
nonzero K it is clear that the first term on the right-hand
side of Eq. (3.3) will dominate at sufficiently long times
τ > τ�. At such long times one then expects a crossover to
the behavior resembling the free-fermion propagatorGfðτÞ.
The corresponding crossover time τ� can be estimated by
equating the two terms on the right-hand side of Eq. (3.3),
K2Gfðτ�Þ ¼ J2G3

cðτ�Þ, which gives

τ� ¼
ffiffiffi
π

p
8

J
K2

; ð3:9Þ

and the corresponding crossover frequency

ω� ¼
2π

τ�
¼ 16

ffiffiffi
π

p K2

J
: ð3:10Þ

We thus expect the spectral function to behave as indicated
in Eq. (3.7) for ω� < ω ≪ J with the divergence at small ω
cut off below ω� and saturate to ∼1=πK.
To confirm the above behavior, we solved Eqs. (3.2)

and (3.3) numerically. We find it most convenient to
work with Matsubara Green’s functions at very low but
nonzero temperatures. To this end, we rewrite Eq. (3.3) in
Matsubara frequency domain where the last term becomes
a convolution and substitute the self-energy into Eq. (3.2).
We obtain a single equation,

G−1
n ¼ −iωn − K2Gn − J2T2

X
k;l

GkGlGn−k−l; ð3:11Þ

for Gn ≡GðωnÞ that must be solved self-consistently.
Results obtained by iterating Eq. (3.11) are displayed in
Fig. 2(b). For very small K ¼ 0.01J, we observe that
numerically calculatedGðωnÞ coincides with the conformal
limit for a range of frequencies consistent with our
discussion above. For K ¼ 0.1J, this range becomes
smaller and completely disappears for K ¼ 0.5J.
We conclude that for any nonzero K the ultimate low-

energy behavior is controlled by the free-fermion fixed
point, as expected on general grounds. Nevertheless, when
K is sufficiently small in comparison to J, there can be a
significant range of energies in which the physics is
dominated by the SYK fixed point. At low temperatures
the corresponding range of frequencies is given by

16
ffiffiffi
π

p K2

J
< ω ≪ J: ð3:12Þ

In this range we expect the spectral function to obey the
conformal scaling form given by Eq. (3.7). A tunneling
experiment in this regime should therefore reveal the SYK
behavior of the underlying strongly interacting system.

IV. NUMERICAL RESULTS: THE UNDERLYING
NONINTERACTING SYSTEM

In this section, we provide support for the ideas we
present above by performing extensive numerical simula-
tion and modeling of the system we describe in Sec. II. We
start by formulating a lattice model for the surface of a TI in
contact with a superconductor. We then find the wave
functions of the Majorana zero modes by numerically
diagonalizing the corresponding Bogoliubov–de Gennes
(BdG) Hamiltonian for the geometry depicted in Fig. 1 with
N flux quanta threading the hole. In the following section,
using Eqs. (2.11) and (2.12), we calculate the coupling
constants Kij and Jijkl, which we then use to construct and
diagonalize the many-body interacting Hamiltonian
Eq. (2.15) for N up to 32. The resulting many-body spectra
and eigenvectors are used to calculate various physical
quantities (entropy, specific heat, two- and four-point
correlators), which are then compared to the results
previously obtained for the SYK model with random
independent couplings.

A. Lattice model for the TI surface

A surface of a 3D TI is characterized by an odd number
of massless Dirac fermions protected by time-reversal
symmetry Θ. The well-known Nielsen-Ninomyia theorem
[52,53] assures us that, as a matter of principle, it is
impossible to construct a purely 2D, Θ-invariant lattice
model with an odd number of massless Dirac fermions.
This fact causes a severe problem for numerical approaches
to 3D TIs because one is forced to perform an expensive
simulation of the 3D bulk to describe the anomalous 2D
surface. Aworkaround has been proposed [54] that circum-
vents the Nielsen-Ninomyia theorem by simulating a pair
of TI surfaces with a total even number of Dirac fermions.
This approach enables efficient numerical simulations in a
quasi-2D geometry while fully respecting Θ.
Here, because the physical time-reversal symmetry is

ultimately broken by the presence of vortices and is
therefore not instrumental, we opt for an even simpler
model which breaks Θ from the outset but nevertheless
captures all the essential physics of the TI-SC interface. We
start from the following momentum-space normal-state
Hamiltonian defined on a simple 2D square lattice:

h0ðkÞ ¼ λðσx sin kx þ σy sin kyÞ þ σzMk − μ; ð4:1Þ

with Mk¼m½ð2−coskx−coskyÞ−1
4
ð2−cos2kx−cos2kyÞ�.

Here, σ are Pauli matrices in spin space and λ, m are
model parameters. The term proportional to λ respects Θ
and gives four massless Dirac fermions in accordance
with the Nielsen-Ninomyia theorem. The Mk term breaks
Θ and has the effect of gapping out all the Dirac fermions
except the one located at Γ ¼ ð0; 0Þ. The resulting energy
spectrum,
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εðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2ðsin2 kx þ sin2 kyÞ þM2

k

q
− μ; ð4:2Þ

is depicted in Fig. 3. In the vicinity of the Γ point, we
observe a linearly dispersing spectrum characteristic of a TI
surface state. It is to be noted that for small jkj we
have Mk ≃ 1

8
mk4, so the amount of Θ breaking can be

considered small in the physically important part of the
momentum space near the Γ point.
Proximity-induced superconducting order is imple-

mented by constructing the BdG Hamiltonian:

HBdGðkÞ ¼
�
h0ðkÞ Δ
Δ� −σyh�0ð−kÞσy

�
: ð4:3Þ

Writing HBdG in terms of σ and τ matrices it can be easily
checked that it respects the particle-hole symmetry Ξ we
define in Sec. II. A. The μ and Mk terms both break the
fictitious time reversal Σ that protects the Majorana zero
modes in our setup. As before, μ must be tuned to zero to
achieve protection. On the other hand, it is crucial to
remember that Mk has been introduced only to circumvent
the Nielsen-Ninomyia theorem and allow us to efficiently
simulate a single two-dimensional Dirac fermion on the
lattice. Breaking of Σ by Mk is therefore not a concern in
the experimental setup: in a real TI tuned to the neutrality
point, Σ is unbroken. Expanding HBdGðkÞ in the vicinity of
Γ to leading order in small k we recover the Fu-Kane
Hamiltonian HFK defined in Eq. (2.2). We thus conclude
that at low energies our lattice model indeed describes the
TI-SC interface and should exhibit the desired phenom-
enology, including Majorana zero modes bound to vortices.
We show that this is indeed the case. The only repercussion
that follows from the weakly broken Σ (present in the
higher-order terms in the above expansion) is a very small
splitting of the zero-mode energies that has no significant
effect on our results.

B. Solution in the giant vortex geometry

To study the nonuniform system with magnetic field and
vortices, we must write the Hamiltonian in the position
space. The normal-state piece Eq. (4.1) is most conven-
iently written in second-quantized form as

H0 ¼ iλ
X
r;α

ðψ†
rσαψ rþα − H:c:Þ þ

X
r

ψ†
r

�
3

2
mσz − μ

�
ψ r

−
m
8

X
r;α

ð4ψ†
rσzψ rþα − ψ†

rσzψ rþ2α þ H:c:Þ; ð4:4Þ

where we define on each lattice site r a two-component
spinor ψ r ¼ ðcr↑; cr↓ÞT and α ¼ x, y. The magnetic field is
included through the standard Peierls substitution, which
replaces tunneling amplitudes on all bonds according
to ψ†

rψ rþα → ψ†
rψ rþα expf−i½e=ðℏcÞ�

R
rþα
r dl · Ag. The full

second-quantized BdG Hamiltonian then reads

HBdG ¼ H0 þ
X
r

ðΔrc
†
r↑c

†
r↓ þ H:c:Þ; ð4:5Þ

whereΔr is the pair potential on site r, which takes the form
indicated in Eq. (2.3). In accord with our discussion in the
previous section, HBdG given in Eq. (4.5) represents a
version of the Fu-Kane Hamiltonian Eq. (2.1) regularized
on a square lattice. This lattice model is suitable for
numerical calculations and we expect it to reproduce all
the low-energy features of the Fu-Kane Hamiltonian. In
particular, we show shortly that it yields N Majorana zero
modes mandated by the Jackiw-Rossi-Weinberg index
theorem that are of central importance for the SYK model.
It is most convenient to solve the problem defined by

Hamiltonian Eq. (4.5) on a lattice with L × L sites and
periodic boundary conditions which ensure that no spuri-
ous edge states exist at low energies in addition to the
expected N Majorana zero modes bound to the hole. To
implement periodic boundary conditions, it is useful to
perform a singular gauge transformation,

ψ r → eiNφ=2ψ r; ð4:6Þ
which has the effect of removing the phase winding
from Δr and changing the Peierls phase factors to
expði R rþα

r dl ·ΩÞ, with

Ω ¼ 1

2

�
N∇φ −

2e
ℏc

A

�
: ð4:7Þ

We note that N must be even because only for integer
number of fundamental flux quanta hc=e ¼ 2Φ0 in the
system can one impose periodic boundary conditions. For
N even, the transformation Eq. (4.6) is single valued and
the issue of branch cuts that renders the analogous problem
with singly quantized vortices [55,56] more complicated
does not arise here. After the transformation the total
effective flux seen by the electrons

R
dSð∇ ×ΩÞz vanishes

M X M
2

1

0

1

2

k

k

m=0

m=0.5

FIG. 3. Band structure (4.2) of the lattice model Eq. (4.1) for
λ ¼ 1 and m ¼ 0 (blue dashed) and m ¼ 0.5 (red solid line). X
and M denote the ð0; πÞ and ðπ; πÞ points of the Brillouin zone,
respectively.
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and numerical diagonalization of the transformed
Hamiltonian Eq. (4.5) with periodic boundary conditions
becomes straightforward.
As a practical matter, it is easiest to define a regular-

shaped hole and introduce disorder through a replacement:

ðμ; λ;ΔrÞ → ðμ; λ;ΔrÞ þ ðδμr; δλr; δΔrÞ: ð4:8Þ

Here, ðδμr; δΔr; δλrÞ are independent random variables
uniformly distributed in the interval ð−wμ=2; wμ=2Þ for
δμr and similarly for δΔr and δλr. We choose a stadium-
shaped hole sketched in Fig. 4(a), which is known to
support classically chaotic trajectories [39,40]. In our
quantum simulation we find that much smaller disorder
strength is required to achieve sufficiently random
Majorana wave functions for a stadium-shaped hole than,
e.g., with circular hole. We furthermore choose magnetic
field B to be uniform inside the radius RB that contains the
hole and zero otherwise. We find that our results are
insensitive to the detailed distribution of B as long as
the total flux remains NΦ0 and is centered around the hole
(we test various radii RB as well as a Gaussian profile).
Typical results of the numerical simulations we describe

above are displayed in Fig. 4. In Fig. 4(b), we observe the
behavior of the energy eigenvalues En of HBdG. For zero
magnetic flux, there are several states inside the SC gap
(Andreev states bound to the hole) but no zero modes. For
N ¼ 24, these are converted into 24 zero modes required by
the Jackiw-Rossi-Weinberg index theorem. For μ¼wμ¼0

used in the simulation, their energies are very close to zero
(∼10−4λ), where the small residual splitting is attributable

to the fact that Σ symmetry is weakly broken in our lattice
simulation by theMk term. For nonzero μ or wμ, the energy
splitting increases in proportion to these Σ-breaking per-
turbations. In the following, we include these terms in
δHFK and incorporate them in our many-body calculation
via Kij terms given by Eq. (2.11).
Figures 4(c)–4(f) show examples of zero-mode wave

function amplitudes jΦjðrÞj2. The wave functions are
shown to exhibit random spatial structure, which depends
sensitively on the specific disorder potential realization.
Importantly, all the zero-mode wave functions are localized
in the same region of space defined by the hole and its
immediate vicinity. One therefore expects Eq. (2.12) to
produce strong random couplings Jijkl connecting all zero
modes χj once the interactions are included.

V. NUMERICAL RESULTS: THE MANY-BODY
SYK PROBLEM

Having obtained the zero-mode wave functions it is
straightforward to calculate couplings Kij and Jijkl from
Eqs. (2.11) and (2.12) and construct the many-body SYK
Hamiltonian Eq. (2.15). In the following, we assume that
the system has been tuned to its global neutrality point
μ ¼ 0 and include in δHFK only the random component of
the on-site potential δμr. For the interaction term we
consider the screened Coulomb potential defined as

VðrÞ ¼ 2πe2

ϵ

e−r=λTF

r
; ð5:1Þ
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FIG. 4. Numerical simulations of the BdG Hamiltonian Eq. (4.5). (a) Stadium-shaped hole geometry employed in the simulations. R
parametrizes the hole size whereas RB denotes the radius inside which the magnetic field is nonzero. (b) Energy levels En of the BdG
Hamiltonian Eq. (4.5) calculated for N ¼ 0 and N ¼ 24. Energies have been sorted in ascending order and plotted as a function of their
integer index n. The shaded band represents the SC gap region. (c)–(f) Density plots of the typical zero-mode wave function amplitudes
for N ¼ 24. The dashed circle in (c) has radius RB. The following parameters are used to obtain these results: λ ¼ 1,m ¼ 0.5, Δ0 ¼ 0.3,
μ ¼ wμ ¼ 0, wλ ¼ wΔ ¼ 0.1, L ¼ 42, R ¼ 10, and RB ¼ 15.
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where ϵ is the dielectric constant and λTF denotes the
Thomas-Fermi screening length. We furthermore assume
that λTF is short, so that in the lattice model the interaction
is essentially on site. The expression for ~Jijkl then
simplifies to

~Jijkl ≃ 12V0

Z
d2rρijðrÞρlkðrÞ; ð5:2Þ

with V0 ¼
R
d2rVðrÞ ¼ 2πe2λTF=ϵ. Coupling constants

Kij and Jijkl are easy to evaluate using Eq. (2.16) and
the Majorana wave functions ΦjðrÞ obtained in the
previous section. To facilitate comparisons with the
existing literature, we quantify the average strength of
these terms using parameters K and J defined in Eq. (2.17).
Specifically, we adjust wμ and V0 to obtain the desired
values of K and J. In the following section, we connect
these values to the parameters expected in realistic physical
systems.

A. Thermodynamic properties and many-body
level statistics

Once the coupling constants Kij and Jijkl are determined
as described above, one can construct a matrix representa-
tion of the many-body Majorana Hamiltonian Eq. (2.15)
and find its energy eigenvalues En by exact numerical
diagonalization. From the knowledge of the energy levels,
it is straightforward to calculate any thermodynamic
property. In Fig. 5, we display the thermal entropy SðTÞ
and the heat capacity CVðTÞ. These are calculated from

S ¼ hEi − F
T

; CV ¼ hE2i − hEi2
T

; ð5:3Þ

where hEαi ¼ ð1=ZÞPnE
α
ne−En=T , F ¼ −T lnZ is the free

energy, and Z ¼ P
ne

−En=T the partition function.
The entropy per particle is seen to saturate at high

temperature to S∞=N ¼ 1
2
ln 2≃ 0.3465, as expected for a

system of N Majorana fermions. The behavior of SðTÞ
calculated for the giant vortex system is qualitatively
similar to that obtained from the SYK model with random
independent couplings. The small deviations that exist are
clearly becoming smaller as N grows, suggesting that they
vanish in the thermodynamic limit. Nonzero two-body
coupling K is seen to modify the entropy slightly at low
temperature. For large N and K ¼ 0, the entropy per
particle is expected to attain a nonzero value ∼0.24 as T →
0 due to the extensive near ground-state degeneracy of the
SYKmodel. Our largest system is not large enough to show
this behavior (in agreement with previous numerical
results) although Fig. 5(a) correctly captures the expected
suppression of the low-T entropy in the presence of two-
body couplings, which tend to remove the extensive
ground-state degeneracy.

The heat capacity CVðTÞ, displayed in Fig. 5(b), likewise
behaves as expected for the SYK model with random
independent couplings with small deviations becoming
negligible in the large-N limit. CVðTÞ is, in principle,
measurable, and we can see from Fig. 5(b) that its
high-temperature behavior could be used to gauge the
relative strength of two- and four-fermion terms in the
system.
As discussed in Refs. [12,13], many-body level statistics

provides a sensitive diagnostic for the SYK physics
encoded in the Hamiltonian Eq. (2.15). To apply this
analysis to our results, we arrange the many-body energy
levels in ascending order E1 < E2 < � � � and form ratios
between the successive energy spacings:
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FIG. 5. Thermodynamic properties of the many-body Hamil-
tonian Eq. (2.15). (a) Thermal entropy per particle and (b) heat
capacity per particle. Dashed lines show the expected behavior
for the SYK model with random independent couplings, solid
lines show results for the couplings obtained from the giant
vortex system. In all panels the same parameters are used as in
Fig. 4 with V0 adjusted so that J ¼ 1.
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rn ¼
Enþ1 − En

Enþ2 − Enþ1

: ð5:4Þ

According to Refs. [12,13], the SYK Hamiltonian can be
constructed as a symmetric matrix in the Clifford algebra
Cl0;N−1 whose Bott periodicity gives rise to a Z8 classi-
fication with topological index ν ¼ N mod 8. As a result,
statistical distributions of the ratios PðrÞ cycle through
Wigner-Dyson random matrix ensembles with Z8 perio-
dicity as a function of N. Specifically, Gaussian orthogonal
(GOE), Gaussian unitary (GUE), and Gaussian symplectic
(GSE) ensembles occur with distributions given by the
“Wigner surmise,”

PðrÞ ¼ 1

Z
ðrþ r2Þβ

ð1þ rþ r2Þ1þ3β=2 ; ð5:5Þ

and parameters Z and β summarized in Table I for even N
relevant to our system. As emphasized in Ref. [13], the
level spacing analysis must be performed separately in the
two-fermion parity sectors of the Hamiltonian Eq. (2.15).
Figure 6 shows statistical distributions of the ratios rn

computed for N ¼ 24, 26, 28, 30, and 32 in our system.
For the sake of clarity Pðln rÞ is plotted along with the

anticipated distributions for GOE, GUE, and GSE given in
Eq. (5.5). Unambiguous agreement with the pattern indi-
cated in Table I is observed, lending further support to the
notion that our proposed system realizes the SYK model.
We check that the Z8 periodic pattern persists for all N
down to 16. Additionally, the above results should be
contrasted with the level statistics in the noninteracting case
J ¼ 0, K ¼ 1 displayed in the bottom row of Fig. 6. In the
absence of interactions, Z8 periodicity is absent and the
distribution of the ratio rn follows Poisson level statistics,

PðrÞ ¼ 1

ð1þ rÞ2 ; ð5:6Þ

for all N. It is to be noted that no adjustable parameters are
employed in the level-statistics analysis we present above.

B. Green’s function

Computing the Green function of the model is perhaps
the most straightforward way of comparing the behavior of
the system at finite N to the large-N limit solutions we
discuss in Sec. III. At the same time, computation of
propagators is numerically more costly because in addition
to many-body energy levels, one requires the correspond-
ing eigenstates. We compute the on-site retarded Green
function defined as

GR
i ðt − t0Þ ¼ −iθðt − t0ÞhfχiðtÞ; χiðt0Þgi: ð5:7Þ

Fourier transforming and using Lehmann representation in
terms of the eigenstates jni of the many-body Hamiltonian
Eq. (2.15), one obtains, at T ¼ 0,

TABLE I. Gaussian ensembles for even N.

Nðmod 8Þ 0 2 4 6

Level stat. GOE GUE GSE GUE
β 1 2 4 2
Z 8

27
4π=ð81 ffiffiffi

3
p Þ 4π=ð729 ffiffiffi

3
p Þ 4π=ð81 ffiffiffi

3
p Þ
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FIG. 6. Level statistics analysis. Top row: Histograms of ln rn obtained from the energy levels of the SYK Hamiltonian Eq. (2.15) with
coupling constants taken from the giant vortex model with V0 and wμ adjusted so that J ¼ 1 andK ¼ 0. Solid lines indicate the expected
distributions GOE (green), GUE (red), and GSE (orange) specified in Eq. (5.5). Bottom row: Results for the noninteracting case J ¼ 0,
K ¼ 1. Black solid line represents the Poisson distribution Eq. (5.6). Histograms in all panels are averaged over eight independent
realizations of disorder except for N ¼ 24, where 16 realizations are employed to obtain satisfactory statistics, and N ¼ 32, for which a
single realization is used.
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GR
i ðωÞ ¼

X
n

"
jhnjχij0ij2

ωþ E0 − En þ iδ
þ ðE0 ↔ EnÞ

#
; ð5:8Þ

where δ is a positive infinitesimal. From Eq. (5.8),
the spectral function AiðωÞ ¼ ð1=πÞImGR

i ðωÞ is readily
extracted.
In Fig. 7, we display the spectral function AðωÞ ¼

ð1=NÞPiAiðωÞ averaged over all Majorana zero modes.
Physically this corresponds to a tunneling experiment with
a large probe that allows for tunneling into all sites inside
the hole. In agreement with the existing numerical results
on the complex fermion version of the SYK model [57], we
find that for system sizes we can numerically access (up to
N ¼ 30), the conformal limit is approached only in a
narrow interval of frequencies. In the low-frequency limit,
numerical results approach a constant value instead of the
the ∼1=

ffiffiffiffi
ω

p
divergence expected in the large-N limit. The

dependence on N is very weak, with the larger values
showing reduced statistical fluctuations but otherwise
qualitatively similar behavior. To convincingly demonstrate
the conformal scaling of the Green function at the lowest
frequencies, numerical calculations using larger values of
N would be necessary. Unfortunately, these are currently
out of reach for the exact diagonalization method due to the

exponential growth of the Hamiltonian matrix size with N.
More sophisticated numerical techniques, such as the
quantum Monte Carlo method, could possibly reach larger
system sizes.
Spectral functions calculated for the giant vortex setup

exhibit larger statistical fluctuations compared to those
computed with random Gaussian coupling constants Jijkl
but are qualitatively similar when averaged over indepen-
dent disorder realizations. Therefore, we conclude that the
Green function behavior at finite N supports the notion that
our proposed system realizes the SYK model.

C. Out-of-time-order correlators
and scrambling

Scrambling of quantum information—a process in which
quantum information deposited into the system locally gets
distributed among all its degrees of freedom—is central to
the conjectured duality between the SYK model and AdS2
Einstein gravity. Black holes are thought to scramble with
the maximum possible efficiency: they exhibit quantum
chaos. For a quantum theory to be the holographic dual of a
black hole, its dynamics must exhibit similar fast scram-
bling behavior.
The out-of-time-order correlator (OTOC), defined in our

system as

FijðtÞ ¼ hχjðtÞχið0ÞχjðtÞχið0Þi; ð5:9Þ

allows us to quantify the quantum chaotic behavior. For
black holes in Einstein gravity scrambling occurs expo-
nentially fast with 1 − FðtÞ ∼ eλLt=N, where the decay rate
is given by the Lyapunov exponent λL ¼ 2πT [9].
Similarly, for the SYK model in the large-N limit, one
expects [6,7]

1 − FðtÞ ∼ J
NT

eλLt: ð5:10Þ

Previous works [10,57] gave numerical evaluations of
FðtÞ in the SYK model for N up to 14 but found these
system sizes to be too small to clearly show the expected
J-independent Lyapunov exponent. Here, we numerically
evaluate OTOC for N up to 22 and show that coupling
constants obtained from the giant vortex geometry give
qualitatively the same behavior as those for random
independent coupling constants. Our results are summa-
rized in Fig. 8, where we compute the on-site OTOC FiiðtÞ
averaged over all sites.
For J ¼ 1, the OTOC is seen to rapidly decay to zero,

consistent with previous works on the SYK model [10,57].
The rate of decay is controlled by J: as in Refs. [10,57], we
find that N ¼ 22 is not large enough to observe the
theoretically predicted J-independent Lyapunov exponent
controlled by temperature, even when J ≫ T. In addition,
we observe that adding a sizable two-body tunneling term
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FIG. 7. Spectral function AðωÞ computed at zero temperature
for coupling constants Jijkl obtained from the giant vortex
calculation (top) and taken from the Gaussian distribution
(bottom). Thin gray lines represent individual disorder realiza-
tions corresponding to a physical measurement in a system with
quenched disorder. Thick lines reflect the average over 25
independent disorder realizations. Dashed lines represent the
expected low-frequency behavior in the large-N conformal limit
Eq. (3.7). All parameters are as in Fig. 4 with J ¼ 1, K ¼ 0 and
broadening δ ¼ 0.04 in Eq. (5.8).
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K has only very modest effect on the behavior of FðtÞwhen
the interaction strength is maintained. However, in the
noninteracting case ðJ ¼ 0; K ¼ 1Þ, OTOC behavior
changes qualitatively with the fast decay replaced by
oscillations whose amplitude slowly increases.

VI. OUTLOOK: TOWARDS THE EXPERIMENTAL
REALIZATION AND DETECTION OF

THE SYK MODEL

Our theoretical results we present above indicate that
low-energy fermionic degrees of freedom in a device with
geometry depicted in Fig. 1 provide a physical realization
of the SYK model. Additionally, all the ingredients are
currently in place to begin experimental explorations of the
proposed system. Superconducting order has been induced
and observed at the surface of several TI compounds by
multiple groups [58–64]. Importantly, Ref. [62] already
demonstrated the ability to tune the chemical potential in
ðBixSb2−xÞSe3 thin flakes through the neutrality point in the
presence of superconductivity induced by Ti or Al contacts
by a combination of chemical doping (tuning x) and
backgate voltage. This is almost exactly what we require
for the implementation of the SYK model. Well-developed
techniques (such as focused ion milling) exist to fabricate
patterns, such as a hole with an irregular shape, in a SC film
deposited on the TI surface. In the remainder of this section

we discuss in more detail the experimentally relevant
constraints on the proposed device as well as possible
ways to detect manifestations of the SYK physics in a
realistic setting.

A. Device geometry, length, and energy scales

The key controllable design feature is the size of the
hole, parametrized by its radius R. For simplicity, in the
estimates below we assume a circular hole, but it should
be understood that in a real experiment irregular shape is
required to promote randomness of the zero-mode wave
functions. For the desired number N of Majorana zero
modes, the hole must be large enough to pin N vortices.
Vortex pinning occurs because the SC order parameter Δ is
suppressed to zero in the vortex core, which costs con-
densation energy. Vortices therefore prefer to occupy
regions where Δ has been locally suppressed by defects,
or in our case, by an artificially fabricated hole. The optimal
hole size RN for N vortices in our setup can thus be
estimated from the requirement that all the electronic states
inside the hole that reside within the SC gap are trans-
formed into zero modes,

πR2
N

Z
Δ

−Δ
dεDðεÞ ¼ N; ð6:1Þ

where DðεÞ ¼ jεj=2πv2Fℏ2 is the density of states of the TI
surface. This gives

RN ¼ πξ
ffiffiffiffiffiffiffi
2N

p
; ð6:2Þ

with ξ ¼ ℏvF=πΔ the BCS coherence length. In the
absence of interactions, a hole of this size will produce
an energy spectrum similar to that depicted in Fig. 4(b),
withN zero modes maximally separated from the rest of the
spectrum.
In reality, if the SC film is in the type-II regime, a

somewhat larger hole might be required to reliably pin N
vortices in a stable configuration and not create vortices
nearby. The latter condition is that B < Bc1, where Bc1 is
the lower critical field. Thus, the magnetic field to get the
necessary flux is

πðRN þ λeffÞ2B ¼ NΦ0; ð6:3Þ

where λeff is the effective penetration depth of a thin SC
film defined below Eq. (2.3). This gives

RN ≥

ffiffiffiffiffiffiffiffiffiffi
NΦ0

πBc1

s
− λeff : ð6:4Þ

Taking the standard expression for the lower critical field,
Bc1 ¼ ðΦ0=4πλ2effÞK0ðκ−1effÞ, where κeff ¼ λeff=ξ, Eq. (6.4)
becomes
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FIG. 8. Out-of-time-order correlators for our giant vortex
system (top) and random Gaussian couplings (bottom). Nonzero
temperature T ¼ 1 has been taken and other parameters as in
Fig. 4. Correlators are displayed for a single disorder realization
(unaveraged), but different realizations give very similar results
for all interacting cases. Detailed shape of the oscillations
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RN ≥ λeff
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N=K0ðκ−1effÞ
q

− 1
	
; ð6:5Þ

In the type-II regime, λeff > ξ and Eq. (6.5) will generally
imply larger hole size than Eq. (6.2). A larger hole size
would reduce the spectral gap to some extent, but N zero
modes will remain robustly present. If the SC film remains
in the type-I regime, then there is no additional constraint
on RN , but the applied field must be kept below the
thermodynamic critical field Bc of the film.
These considerations impose some practical constraints

on the material composition and thickness d of the SC film.
In general, we want the film to be sufficiently thin so that
scanning tunneling spectroscopy of the hole region can be
performed. On the other hand, we want it to be either in the
type-I or weakly type-II regime such that Eq. (6.5) does not
enlarge the hole size significantly beyond the ideal radius
given by Eq. (6.2). For Pb, we have ðξ; λLÞ ¼ ð83; 37Þ nm.
Taking d ¼ 20 nm results in λeff ≃ 137 nm, and Eq. (6.5)
imposes only a mild increase in the hole size compared to
the ideal, which should not adversely affect the zero modes.
For Al, we have ðξ; λLÞ ¼ ð1600; 16Þ nm, and one can go
down to very thin films and still remain in the type-I
regime.
The TI film must be sufficiently thick so that it exhibits

well-developed gapless surface states. For the Bi2Se3
family of materials this means thickness larger than 5 unit
cells. TI films close to this critical thickness will also be
easiest to bring to the neutrality point by backgating.
Using a hole close to the ideal size given by Eq. (6.2) will

also promote the interaction strength. Intuitively, it is clear
that screened Coulomb interaction between electrons will
have maximum effect on the zero modes if their wave
functions are packed as closely together as possible. With
this in mind one can give a crude estimate of the expected
interaction strength J as follows. Starting from Eq. (2.20)
with V0 ¼ 2πe2λTF=ϵ and using Eq. (2.19) it is easy to
show that

J ¼
�
N3

3!
J2ijkl

�
1=2

¼
ffiffiffiffiffiffi
N3

6

r
2πe2λTF
ϵξ2

12

M3=2
s

; ð6:6Þ

where we identify the length scale ζ with the SC coherence
length ξ. We can obtain a physically more transparent
expression by introducing the Bohr radius a0 ¼ ℏ2=mee2≃
0.52 Å and the corresponding Rydberg energy E0 ¼
e2=2a0 ≃ 13.6 eV:

J ¼ 48πffiffiffi
6

p
ffiffiffiffiffiffiffi
N3

M3
s

s �
a0λTF
ϵξ2

�
E0: ð6:7Þ

Several remarks are in order. Equation (6.7) implies that
for a fixed hole size R the coupling strength grows as
J ∼ N3=2. It is therefore advantageous to put as many flux

quanta in the hole as can be stabilized. For the “ideal” hole
size R ¼ RN , given by Eq. (6.2), we have Ms ¼ 2π3N and
the dependence on N drops out. The amplitude of J will
then depend only on the coherence length ξ, screening
length λTF, and dielectric constant ϵ of the system. To get
an idea about the possible size of J we assume λTF ≈ ξ
and ϵ ≈ 50, appropriate for the surface of a TI such as
Bi2Se3. Equation (6.7) then gives J ≈ ð1 Å=ξÞ17.8 meV. It
is clear that using a superconductor with a large gap and
short coherence length would aid the observation of the
SYK physics in this system at reasonable energy and
temperature scales. Taking Pb as a concrete example, we
have ξ≃ 52 nm, for d > 20 nm. Equation (6.5) does not
impose additional restrictions on the hole diameter, and one
obtains J in the range of tens of μeV. This energy scale is
accessible to scanning tunneling spectroscopy (STS),
which, as we argue below, constitutes the most convenient
experimental probe.

B. Experimental detection

In our proposed setup the experimental detection of the
signatures of the SYK state can be achieved using tunneling
spectroscopy. Either a planar tunneling measurement with a
fixed probe weakly coupled to the TI surface or a scanning
tunnel probe can be used. STS has the advantage of
simultaneously being able to image the topography of
the device with nanoscale resolution and measure the
tunneling conductance gðωÞ, which is proportional to the
spectral function of the system AðωÞ. A recently developed
technique [65] combines a STS tip with a miniature Hall
probe, which allows additional measurement of the local
magnetic field B at the sample surface. Such a probe is
ideally suited for the proposed SYK model setup as it can
be used to independently determine the magnetic flux and
thus the number N of Majorana fermions in the system.
In the large-N limit of the SYK model, AðωÞ exhibits the

characteristic 1=
ffiffiffiffiffiffijωjp

singularity [illustrated in Fig. 2(a)],
which should be easy to distinguish from the semicircle
distribution that prevails in a system dominated by random
two-fermion tunneling terms. In the large-N limit and at
sufficiently low temperature kBT ≪ J, the detection of the
SYK behavior via tunneling spectroscopy should therefore
be relatively straightforward.
In a realistic setup the number of flux quanta N will be

finite and perhaps not too large. In this case, our results in
Fig. 7 show that the characteristic 1=

ffiffiffiffiffiffijωjp
singularity is cut

off such that Að0Þ is finite and grows with N only very
slowly. Additional results assembled in Fig. 9 indicate that
even in this situation it is possible to distinguish the
interaction-dominated SYK behavior from the behavior
characteristic of the weakly interacting system with random
two-fermion couplings. For J ≳ K, we observe a relatively
smooth spectral density peaked at ω ¼ 0 characteristic of
the strongly interacting regime. In the opposite limit J ≲ K,
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nonuniversal fluctuations that strongly depend on the
specific disorder realization become increasingly promi-
nent. Eventually, when J ≪ K, the spectral function con-
sists of a series on N sharp peaks. These peaks occur at
the eigenvalues of theN × N randomHermitian matrix iKij

and represent the single-particle excitations of the non-
interacting problem at J ¼ 0. At large N, these peaks
merge to form a continuous distribution described by the
semicircle law.
Full numerical diagonalization of the SYK Hamiltonian

is feasible for N up to 32 on a desktop computer and
involves a matrix of size 215 × 215 in each parity sector. By
going to a supercomputer one can plausibly reach N ¼ 42
[66], but larger system sizes are out of reach due to the
exponential growth of the Hamiltonian matrix with N.
Experimental realization using the setup we propose here
has no such limitation. Measurement of the spectral
function in such a system could therefore help elucidate
the approach to the large-N limit in which the SYK model
becomes analytically tractable by field theory techniques.
This has relevance to the spontaneous breaking of the
emergent conformal symmetry at large N and a host of
other interesting issues extensively discussed in the recent
literature [6–13]. Measurement of the out-of-time-oder
correlator FðtÞ for N larger than 32 could furthermore
shed light on the emergence of the quantum chaotic
behavior in the system, scrambling, and the dual relation
to the extremal black hole in AdS2. A protocol to measure
FðtÞ in a system of this type is currently unknown, and this
represents an interesting challenge and an opportunity for
future study.

VII. CONCLUSIONS

To conclude, we propose a physical realization of the
Sachdev-Ye-Kitaev model that utilizes available materials

and experimental techniques. The proposal is to use
the surface of a 3D TI at its global neutrality point
proximitized by a conventional superconductor with an
irregular-shaped hole and magnetic flux threaded through
the hole. We demonstrate that the conventional screened
Coulomb interaction between electrons in such a setup
leads to a Majorana fermion Hamiltonian at low energies
with requisite random four-fermion couplings. Detailed
analysis indicates behavior consistent with that expected
of the SYK model. We give estimates for model parameters
in the realistic systems and suggest experimental tests
for the SYK behavior. This work thus provides connec-
tions between seemingly unrelated areas of research—
mesoscopic physics, spin liquids, general relativity, and
quantum chaos—and could lead to experimental insights
into phemomena that are of great current interest.
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