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The ability to engineer nonreciprocal interactions is an essential tool in modern communication
technology as well as a powerful resource for building quantum networks. Aside from large reverse
isolation, a nonreciprocal device suitable for applications must also have high efficiency (low insertion
loss) and low output noise. Recent theoretical and experimental studies have shown that nonreciprocal
behavior can be achieved in optomechanical systems, but performance in these last two attributes has been
limited. Here, we demonstrate an efficient, frequency-converting microwave isolator based on the
optomechanical interactions between electromagnetic fields and a mechanically compliant vacuum-gap
capacitor. We achieve simultaneous reverse isolation of more than 20 dB and insertion loss less than 1.5 dB.
We characterize the nonreciprocal noise performance of the device, observing that the residual thermal
noise from the mechanical environments is routed solely to the input of the isolator. Our measurements
show quantitative agreement with a general coupled-mode theory. Unlike conventional isolators and
circulators, these compact nonreciprocal devices do not require a static magnetic field, and they allow for
dynamic control of the direction of isolation. With these advantages, similar devices could enable
programmable, high-efficiency connections between disparate nodes of quantum networks, even efficiently
bridging the microwave and optical domains.
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Many branches of physics and engineering employ
nonreciprocal devices to route signals along desired paths
of measurement networks. Conceptually, the simplest
nonreciprocal element is the isolator, a two-port device
that transmits signals from the first to the second port but
strongly attenuates in the reverse direction [1]. Placing an
ideal isolator (or its close relative, the circulator) between
two systems allows the first system to influence the second
but not vice versa. This nonreciprocal functionality enables,
for example, telecommunication antennas to transmit and
receive signals at the same time. Another example relevant
for future applications is quantum signal processing, where
the strict demands of quantum measurement require iso-
lators with high performance in several metrics, including
not only large isolation, but also high efficiency and low
noise [2].
Well-established technology uses magnetic materials to

achieve nonreciprocity for both microwave and optical
frequencies [3–5]. While these conventional devices have

enabled much of the progress in classical and quantum
signal processing, overcoming their limitations could
lead to exciting new developments in both areas. For
example, these components are typically bulky, not chip
compatible, and incompatible with superconducting tech-
nology because they require strong magnetic fields. Signal
losses due to these conventional nonreciprocal devices have
now become the bottleneck for the overall efficiency of, for
example, state-of-the-art microwave measurements [6–8].
In recent years, there has been interest in developing

nonmagnetic nonreciprocal devices to replace conventional
isolators and overcome the limitations discussed above for
superconducting microwave applications [9–15] as well as
limitations that arise in optical and room temperature
isolation [16]. Schemes based on coupled-mode physics
can break reciprocity without a static magnetic field
if the coupling is parametrically modulated in time [1].
Producing isolation further requires the coherent interfer-
ence of two paths from one port to another, as well as a
reservoir to absorb the backward-propagating power
[15,17]. These schemes are particularly promising because
they can naturally integrate with existing chip-based super-
conducting technology [10,11,17–20].
One route for efficient parametric nonreciprocity in the

microwave domain is to use Josephson junctions to couple
superconducting circuits [13,20]. More recently, theoretical
proposals [15,17,21,22] and experiments [23–25] have
begun exploring the parametric coupling between an
electromagnetic cavity and a mechanical oscillator as an
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alternative mode-coupling mechanism for nonreciprocity.
These optomechanical systems are attractive because of
their wide applicability beyond microwave frequencies and
cryogenic environments. For example, efficient, reciprocal
frequency conversion using optomechanics has already
been demonstrated in both the microwave [26] and optical

]27,28 ] frequency bands, as well as in conversion between
the two [29]. Nonreciprocal optomechanical devices, how-
ever, have yet to show the efficiencies and noise properties
needed for most applications.
Combining two independent optomechanical frequency

converters gives a natural way to achieve the interference
needed for nonreciprocity. Here, we realize this interference
by simultaneously coupling two electromagnetic cavity
modes to two distinct vibrational modes of a mechanical
membrane. We illustrate this concept for achieving

nonreciprocal frequency conversion between the two
cavities in Fig. 1(a).
To understand the optomechanical isolator, we begin

with the fundamental parametric interaction between an
electromagnetic cavity and a mechanical oscillator [30]. A
general multimode cavity-optomechanical system consists
of a set of cavity resonances and mechanical modes.
Consider a given cavity mode j with resonant frequency
ωj and linewidth κj and a given mechanical mode k with
frequency Ωk and intrinsic linewidth Γk, obeying
Γk ≪ κj < Ωk ≪ ωj. The position of the mechanical oscil-
lator tunes the cavity frequency, providing the mechanism
of coupling. Analysis of the equations of motion for the
cavity and mechanical mode annihilation operators, âj and
b̂k, shows that a strong electromagnetic field (the drive)
applied at a frequency near the red sideband (defined
by ωjk ¼ ωj − Ωk) induces an effective beam splitter
interaction. The interaction Hamiltonian is ℏðgjkâjb̂†kþ
g�jkâ

†
j b̂kÞ, where ℏ is the reduced Planck constant, and

the coupling rate gjk is a complex number with phase and
amplitude set by the drive. We parametrize the coupling
strength in terms of the cooperativity Cjk ¼ 4jgjkj2=ðκjΓkÞ.
Our optomechanical isolator is fully described by the

general theory of linear coupled-mode systems [17,20,31].
In the quantum input-output formalism [32], each mode
âj couples to its environmental input and output operators
âj;in and âj;out through the standard input-output boundary
conditions. The scattering matrix elements are defined
as the ratios of output to input field amplitudes, Sjk ¼
hâj;outi=hâk;ini, where h·i indicates expectation value.
Demonstrating an efficient isolator requires maximizing
the forward transmission jSjkj2 while minimizing the
reverse transmission jSkjj2.
We experimentally create a system consisting of two

cavity modes and two mechanical modes by designing and
fabricating a superconducting circuit of aluminum on a
sapphire substrate [33–35], as shown and characterized in
Figs. 1(b)–1(d). A vacuum-gap capacitor combined with an
inductive network defines two microwave cavities with
resonant frequencies ω1=2π ¼ 6.528 GHz and ω2=2π ¼
6.733 GHz and linewidths κ1=2π ¼ 1.3 MHz and
κ2=2π ¼ 2.0 MHz. We design the cavities to be highly
overcoupled so that the intentional inductive coupling rate
to the measurement line κext dominates the total dissipation
rate of each cavity κtot. The coupling efficiencies for
each cavity, defined as ηj ≡ κj;ext=κj;tot, are measured to
be η1 ≃ 0.99 and η2 ≃ 0.98. The vacuum-gap capacitor has
a mechanically compliant top plate that vibrates with
several spectrally distinct mode frequencies. In this experi-
ment, we use the two lowest-frequency vibrational modes
at Ω1=2π ¼ 6.7 MHz and Ω2=2π ¼ 9.4 MHz with intrin-
sic linewidths Γ1=2π ¼ 15 Hz and Γ2=2π ¼ 19 Hz, as
determined by independent measurements of the energy

FIG. 1. Concept and experimental realization. (a) Mode-cou-
pling diagrams for the optomechanical isolator. Optomechanical
interactions (double-sided arrows) between two cavity modes (â1
and â2) and two mechanical modes (b̂1 and b̂2) induce directional
scattering between the two cavities when the parametric loop
phase is equal to its optimal values�ϕopt. (b) Microscope images
of the device. A microfabricated vacuum-gap capacitor (inset)
resonates with spiral inductors to produce two electromagnetic
cavities. (c) Schematic of the optomechanical circuit. Input
signals from microwave generators couple inductively to the
device and reflect back through the amplification chain to be
measured by a network or spectrum analyzer. (d) Frequency
space diagram. Mode susceptibilities are plotted versus fre-
quency. Two mechanical modes and two cavity modes are
characterized by their resonant frequencies (Ωk and ωj) and
their linewidths (Γk and κj), and the cavities are further charac-
terized by their coupling efficiencies ηj.
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dissipation rate. We place the device in a dilution cryostat
with a base temperature of 19 mK and interrogate the
circuit with signals routed from microwave generators and
a vector network analyzer. From room temperature com-
ponents, input signals pass through attenuators, reflect off
the device at a circulator, and pass through a cryogenic
high-electron-mobility transistor amplifier, with more
amplification at room temperature. We operate the device
as a single physical port measured in reflection; ports 1 and
2 used hereafter refer to input or output signals near the
resonant frequencies of cavities 1 and 2.
As reciprocal frequency conversion forms the basis for the

optomechanical isolator, we first demonstrate this process
through each mechanical mode (Fig. 2). In this scheme, one
microwave drive is applied at each cavity’s red sideband
with respect to a single mechanical mode; a signal entering
one cavity down-converts to the mechanical mode and then
up-converts to the other cavity [Figs. 2(a) and 2(b)].

In Fig. 2(c), we show the reciprocal transmission from
one cavity to the other as a function of detuning from the
cavity center frequencies. We calibrate the scattering
parameters using methods described previously [26,29].
A drive power of approximately 1 nW damps mechanical
mode 1 (left) to about 70 kHz and mode 2 (right) to 7 kHz.
These damping rates are comparable to those we use later in
the nonreciprocal scheme. We achieve transmission above
−0.6 dB through each mode, limited by cavity loss and
drive strength imbalance. At our highest drive powers, the
bandwidths of frequency conversion through the mechani-
cal modes reach 150 and 35 kHz. Our frequency converter
operates in the high cooperativity limit, as evidenced by the
large ratios of damped mechanical linewidths to intrinsic
linewidths and the plateau in peak transmission versus
input power, shown in Fig. 2(c).
Now, to realize the optomechanical isolator, we

drive two branches of mechanically mediated frequency
conversion simultaneously. Figure 3(a) shows the

FIG. 2. Reciprocal mechanically mediated frequency conver-
sion. (a) Mode-connection diagrams. Double-sided arrows in-
dicate driven optomechanical interactions. (b) Frequency-space
diagrams. A red-detuned drive applied at each cavity induces
frequency conversion through one mechanical mode. Dashed
lines indicate frequencies of microwave drives. (c) Measured
magnitude of reciprocal transmission from cavity 2 to cavity 1 as
a function of the probe detuning from cavity center for a
particular drive power. Frequency conversion through the first
mechanical mode is shown in red on the left and through the
second mechanical mode in orange on the right. Solid lines are
fits to Lorentzian line shapes. (d) Maximum transmission as a
function of total input drive power for the first (red) and second
(orange) mechanical modes. Solid lines are fits to a model
described in Ref. [26]. The arrow indicates the drive power
used in (c).

FIG. 3. Optomechanical isolation. (a) Frequency space dia-
gram. Four drives (dashed lines) induce frequency conversion
between the two cavities through both mechanical modes simul-
taneously. (b) Measured magnitude of transmitted signal received
at cavity 1 (left) and cavity 2 (right) for two choices of loop phase.
At ϕ ¼ þ0.21π (solid blue) signals are transmitted from cavity 2
to cavity 1 and attenuated in the reverse direction. The behavior
reverses at ϕ ¼ −0.21π (dashed green line). Solid lines are fits to
the expanded coupled-mode theory model described in the text.
(c) Transmission (color scale) as a function of detuning and loop
phase. Lines show the source of data shown in (b). (d) Result of
the least-squares fit of the two-dimensional data in (c).
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frequency-space diagram of the experiment, with dashed
lines indicating the frequencies of the four drives. Ideal
isolation maximizes the magnitude of the transmission
difference, defined as ΔT ¼ jS12j2 − jS21j2. The transmis-
sion difference lies between −1 and 1, making it a useful
metric because it simultaneously favors high reverse iso-
lation and low insertion loss, both important for quantum
signals applications.
To achieve ideal isolation at the cavity resonances, the

powers, frequencies, and relative phases of the four drives
must be tuned to optimal values. Assuming the cavity
linewidths are much larger than the mechanical mode
linewidths and the optomechanical cooperativities are
large, we can derive simple closed-form solutions for
the optimal drive parameters and the scattering matrix
by analytically maximizing the function ΔT (see
Appendix). First, the drive powers should be such that
the cooperativities for all four optomechanical couplings
are equal (let their shared value be C). The isolation
performance increases with this cooperativity as ΔT ¼
η1η2½1 − ð2CÞ−1�. The second condition sets the drive
frequencies. One might expect that tuning the four drives
to the exact red sideband frequencies would be ideal.
In fact, this configuration leads to reciprocal behavior
precisely at the cavity center frequencies. Permitting
detuning of the drive pairs from the red sidebands
allows nonreciprocal transmission to occur on resonance
with the cavities. The optimal drive detunings are
δj ¼ �ð−1ÞjΓj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C − 1

p
=2, where δj is the detuning from

the red sideband of the drives accessing the jth mechanical
mode. The third important condition relates to the optimal
relative drive phases. A signal traversing the loop in mode
space acquires a phase called the loop phase ϕ. Because the
frequency conversion processes are parametric, this phase
is related to the sum of the relative phases of the four drives,
making it a dynamically tunable parameter. Under the
assumptions mentioned above, the optimal value of the
loop phase is ϕopt ¼ arccosð1 − 1=CÞ.
After substituting these optimized drive parameters, and

further letting η1 ¼ η2 ¼ 1 and taking the large C limit, the
full scattering matrix becomes

jSj2 ¼

0
BBB@

0 1 0 0

0 0 1=2 1=2

1=2 0 1=4 1=4

1=2 0 1=4 1=4

1
CCCA; ð1Þ

where the mode basis is ordered ðâ1; â2; b̂1; b̂2Þ. We see
that the upper left-hand corner defines the ideal 2 × 2
isolator, perfectly isolating cavity 2 from cavity 1. The
other matrix elements describe scattering of signals input to
the mechanical modes. At the opposite loop phase, the
scattering matrix becomes the transpose of that shown
above, isolating cavity 1 from cavity 2.

In contrast to reciprocal frequency conversion, the
mechanical dissipation plays a key role in the nonreciprocal
behavior of the device. This is a consequence of power
conservation; isolation can occur only if power entering a
cavity mode can be completely routed into the mechanical
environments. The mechanical modes are coupled to their
environment with fixed rates Γj. So, while the bandwidth
ΓR of reciprocal mechanically mediated frequency con-
version increases with cooperativity as ΓR ¼ Γjð1þ 2CÞ
[26], the nonreciprocal bandwidth ΓNR for the isolating
system in the high-cooperativity limit is ΓNR ¼ 4Γ1Γ2=
ðΓ1 þ Γ2Þ, involving only the intrinsic mechanical line-
widths, independent of cooperativity. As we explore below,
damping processes that occur outside the nonreciprocal
loop produce effective mechanical linewidths and, there-
fore, allow the nonreciprocal bandwidth to increase.
Before describing the data, it is necessary to include an

important deviation of our device from the simple system of
four modes described thus far. Ideally, a given parametric
drive couples a single mechanical mode to a single cavity
mode. In practice, however, this drive also couples the other
mechanical mode to the cavity off-resonantly. This residual
coupling damps and cools the mechanical modes. These
effects can be rigorously accounted for in the coupled
equations of motion by expanding the mode basis to
include all interactions (see Appendix). Modeling these
processes as additional modes allows us to accurately map
the experimental system to the simpler system of four
modes with effective mechanical linewidths and effective
cooperativities. By damping the mechanical modes to
widths much larger than the intrinsic mechanical line-
widths, these off-resonant terms greatly enhance the band-
width and noise performance of the isolator, but they also
reduce the effective cooperativities attainable. Modeling the
extra damping terms gives us a predictive theory with
which to tune the device and arrive at ideal performance
parameters.
Figure 3(b) shows the measured transmission from cavity

2 to cavity 1 (left) and from 1 to 2 (right) at two loop phases
for a particular drive configuration found from the tuning
process. On cavity resonance at ϕ ¼ þ0.21π (solid blue
line), we see high transmission (insertion loss of 1.5 dB)
from cavity 2 to cavity 1 but low transmission (isolation
above 20 dB) from cavity 1 to 2 with a 3-dB bandwidth of
5 kHz. At ϕ ¼ −0.21π (dashed green line), the behavior
reverses. We collect data at many loop phases, shown in
Fig. 3(c) with horizontal lines indicating the cuts shown in
Fig. 3(b). We fit the data to the expanded coupled-mode
model using a two-dimensional nonlinear least-squares fit,
the result of which is shown in Fig. 3(d), demonstrating
excellent agreement with the data. Mapping our expanded
model onto the four-mode system gives the effective
system parameters. The effective mechanical linewidths
are Γ1;eff=2π ¼ 1.6 kHz and Γ2;eff=2π ¼ 7.5 kHz, in agree-
ment with the nonreciprocal bandwidth of 5 kHz. The
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four effective cooperativities are ðC11; C12; C21; C22Þ ¼
ð5.4; 5.7; 2.9; 2.0Þ, where the notation Cjk indicates the
cooperativity coupling cavity j to effective mechanical
mode k.
While the loop phases of ϕ ¼ �0.21π give good balance

between the goals of high reverse isolation and low
insertion loss, other loop phases can maximize these
metrics individually. For the drive configuration shown
here, the insertion loss can be as low as 1.16 dB (≈77%
efficiency) at ϕ ¼ �0.35π at the expense of reducing
reverse isolation to 9.2 dB. Alternatively, the reverse
isolation can be tuned arbitrarily high near ϕ ¼ �0.11π
at the expense of slightly increasing the insertion loss. In
our system, we observe isolation at a single frequency as
high 49 dB with corresponding insertion loss of 1.9 dB.
An ideal isolator for applications to signal processing

and quantum information would be both efficient and
noiseless. To characterize the noise properties of the device
while the four drives are on, we measure the noise spectrum
at the cavity outputs. In Fig. 4(a), we show the signal flow
diagrams corresponding to the ideal scattering matrix
[Eq. (1)] at the two optimal loop phases. Importantly,
the power input to the mechanical modes (namely, thermal
noise) should appear at the isolated cavity but not the other
cavity. The measured noise spectra shown in Fig. 4(b)
demonstrate this behavior. At the loop phase that isolates
cavity 1 from cavity 2 (near −0.21π in green), a noise peak
of about 7 photons appears at cavity 1. The behavior
reverses at the opposite loop phase. Data as a function of
frequency and loop phase are shown in Fig. 4(c), with
horizontal lines indicating the cuts used in Fig. 4(b).
We fit the noise spectra to our expanded model using the

parameters determined from the driven response fit as fixed
inputs [Fig. 4(d)]. The only remaining free parameters are
the thermal occupation numbers of the two mechanical
environments, n1 and n2. Equation (1) predicts the output
noise of the isolated port to be the average of these two
occupation numbers. In our system, off-resonant inter-
actions naturally damp and cool the mechanical modes,
yielding lower effective occupation numbers of the envi-
ronment nj;eff ¼ Γjnj=Γj;eff , measured to be n1;eff ¼
0.89� 0.09 and n2;eff ¼ 12� 1. The occupancies of the
mechanical modes themselves depend on the loop phase,
with their maxima and minima occurring at ϕ ¼ 0 and
ϕ ¼ π, respectively. From the fit to the data in Fig. 4, we
infer that these mechanical occupancies range from 0.13 to
0.60 phonons in mode 1 and from 1.5 to 3.7 phonons in
mode 2. Future implementations of the optomechanical
isolator could reduce the output noise by starting with
lower effective mechanical environment occupation num-
bers, for example, by introducing additional beam splitter
interactions to further damp and cool the mechanical modes
outside the nonreciprocal loop.
The device we report here represents a significant

advancement of nonreciprocal technology using

optomechanical resources. We derive closed-form expres-
sions for the optimal drive conditions required for ideal
isolation and experimentally implement them in a micro-
wave optomechanical circuit. We fully characterize the
nonreciprocal performance of the device, both in the
scattering parameters and the output noise. Although recent
optomechanical experiments have demonstrated large rel-
ative contrast between forward and reverse transmission
[23–25], applications in signal processing and quantum
information will also require simultaneously high effi-
ciency. Our ability to reach high cooperativity combined

FIG. 4. Noise performance of the optomechanical isolator.
(a) Graphical representation of signal flow. The mode-connection
diagram (left) induces signal flow diagrams (right) at the optimal
loop phases �ϕopt. Arrow widths are proportional to their
corresponding scattering matrix element [Eq. (1)]. (b) Measured
output noise at cavities 1 (left) and 2 (right) near loop phases
þ0.21π (solid blue line) and −0.21π (dashed green line). We
subtract constant noise offsets of 31.5 and 22.8 photons due to the
measurement chain at the two cavity frequencies. (c) Output noise
data (color scale) as a function of detuning from the cavity
frequencies and loop phase. Lines indicate the cuts shown in (a).
(d) Fit of the data in (c) to a coupled-mode theory with the
mechanical environment occupation numbers as free parameters.
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with the use of an expanded coupled-mode model to fit the
data and tune parameters has allowed us to greatly improve
the efficiency, isolation, and noise performance of an
optomechanical isolator, approaching the stringent require-
ments of quantum information processing. In addition, the
quantitative agreement between data and theory we show
here will be crucial for further optimizing performance
within experimental constraints as well as developing more
complex multimode systems. While we have pursued ideal
isolation, which preserves quantum signals, the parameters
we demonstrate here are also well suited for implementing
nonreciprocal amplification schemes [11,15,18,20,25,36].
Looking forward, the scheme we employ can be

straightforwardly applied to other optomechanical sys-
tems, including those at optical frequencies. The addition
of optomechanical systems to the nonreciprocal parametric
toolbox offers the new possibility to directionally route
acoustic signals and could enable nonreciprocal micro-
wave-to-optical transduction. Because the theory of the
device applies generally beyond optomechanical systems,
the nonreciprocal behavior we describe here could
also be explored in other parametric systems including
microwave resonators coupled through Josephson junc-
tions. Parametric nonreciprocity is a promising and
quickly developing field, which may soon enable previ-
ously unattainable efficiencies for both measurement and
control of classical and quantum systems.
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Note added.—Recently, we became aware of another work
using a similar method to demonstrate optomechanical
nonreciprocity [37].

APPENDIX

1. General theory of a four-mode isolator

We use the framework established in Ref. [17] with the
notational conventions used in Ref. [20] to analyze a four-
mode isolator. We characterize each mode, regardless of its
physical manifestation, by a natural frequency ωj, a (full
width at half maximum) linewidth γj, and an input signal
frequency ωs

j. Modes j and k can be coupled with a
complex coupling rate gjk. We describe the four-mode
system by a mode-coupling matrix,

M ¼

0
BBB@

Δ1 0 β13 β14

0 Δ2 β23 β24

β�13 β�23 Δ3 0

β�14 β�24 0 Δ4

1
CCCA; ðA1Þ

whereΔj ¼ ðωs
j − ωjÞ=γj þ i=2 is the normalized complex

detuning of mode j, and βjk ¼ gjk=
ffiffiffiffiffiffiffiffi
γjγk

p is the normalized
complex coupling strength between modes j and k. (Note
that the definition of β differs from that in Ref. [20] by a
factor of 2 to coincide with the conventional definition of g
in the optomechanics literature.) In our system, modes 1
and 2 are microwave cavities and modes 3 and 4 are
mechanical. The normalized magnitude of susceptibility for
mode j plotted in Fig. 1 is 1=jΔjj2. To clarify the analytic
results, we assume jβ13j¼jβ23j≡β3 and jβ14j¼jβ24j≡β4;
that is, each mechanical mode is equally coupled to both
cavity modes. We also put an explicit eiϕ on β14 for the loop
phase, so that the mode-coupling matrix becomes

M ¼

0
BBB@

Δ1 0 β3 β4eiϕ

0 Δ2 β3 β4

β3 β3 Δ3 0

β4e−iϕ β4 0 Δ4

1
CCCA: ðA2Þ

The scattering matrix is found from S ¼ iHM−1H − 1,
whereHjk ¼ δjk

ffiffiffiffi
ηj

p . We require nonreciprocity to occur at
the cavity resonance frequencies. This demand lets us set
Δ1 ¼ Δ2 ¼ i=2. On resonance, the real parts of the
mechanical detunings are equal to the detunings of the
drives from the red sidebands: Δ3;4 ¼ δ3;4 þ i=2, where δj
is a normalized detuning such that the drive frequency is
ωjk ¼ ωj − ωk þ γkδk, for j ∈ f1; 2g and k ∈ f3; 4g.
We first require impedance matching (S11 ¼ S22 ¼ 0) on

resonance. In the ηj ¼ 1 limit, impedance matching results
in the condition δ3 ¼ −δ4 and gives the optimal detuning as

δ3;opt ¼ −δ4;opt ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C3C4ð1 − cosϕÞ − 1

p
; ðA3Þ

where Cj ¼ 4β2j is the cooperativity associated with the
optomechanical interaction involving mode j ∈ f3; 4g.
We parametrize isolation in the system by the trans-

mission difference ΔT ¼ jS12j2 − jS21j2. At the optimal
drive detuning,

ΔT¼ 4η1η2 sinϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C3C4ð1−cosϕÞ−1

p
2þð1−cosϕÞðC2

3þC2
4þ2C3þ2C4−2C3C4cosϕÞ

:

ðA4Þ

Maximizing transmission difference over phase, we find
the optimal loop phase ϕopt ¼ arccosð1 − 1=

ffiffiffiffiffiffiffiffiffiffiffi
C3C4

p Þ, with
which the transmission difference becomes

ΔT ¼ η1η2
8

ffiffiffiffiffiffiffiffiffiffiffi
C3C4

p
− 4

ðC3 − C4Þ2 þ 2ð ffiffiffiffiffiffi
C3

p þ ffiffiffiffiffiffi
C4

p Þ2 : ðA5Þ

At high cooperativity, maximizing this function yields
C3 ¼ C4 ≡ C with corrections at order 1=C, simplifying
the transmission difference to ΔT ¼ η1η2½1 − ð2CÞ−1�.
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With these conditions applied, the scattering matrix at high
cooperativity and ηj ¼ 1 becomes

jSj2 ¼

0
BBB@

0 1 0 0

0 0 1=2 1=2

1=2 0 1=4 1=4

1=2 0 1=4 1=4

1
CCCA: ðA6Þ

Choosing ϕ ¼ −ϕopt transposes the above matrix.
To find the bandwidth of nonreciprocity, we calculate the

transmission difference as a function of the detuning δω
from the cavity centers with the approximation that the
cavity widths are much larger than the mechanical widths.
With the above optimizations for drive detunings, loop
phase, and cooperativities, the result is

ΔTðωÞ ¼ η1η2
γ�2

γ�2 þ 4ðδωÞ2 þOðC−1=2Þ; ðA7Þ

where γ� ¼ 4γ3γ4=ðγ3 þ γ4Þ. The above shows that in the
high cooperativity limit, the bandwidth of nonreciprocity is
independent of cooperativity and equal to

ΓNR ¼ 4
γ3γ4

γ3 þ γ4
: ðA8Þ

2. Off-resonant damping and expanded
coupled-mode theory

Because of the off-resonant coupling terms we discuss in
the main text, each mechanical mode can respond to all four
drives. To predict the effect of changing the drive powers
and frequencies, these extra interactions must be included
in the model. Expanding our mode basis allows us to fit the
experimental data using the intrinsic mechanical properties
and also predict the needed drive parameters to obtain
optimal performance.
The expanded mode basis needed, diagrammed in Fig. 5,

comes directly from the coupled equations of motion. In the

diagram, like-colored arrows indicate interactions driven by
the same microwave drive. Modes 1–4 are the four modes
appearing in the simplified four-mode model discussed
above. Modes 5–10 are auxiliary modes evaluated at the
relevant off-resonant frequencies determined by the drives.
For example, the signal frequency of mode 7 is ωs

7 ¼ ωs
1−

ω13 þ ω14, while that of mode 8 is ωs
8 ¼ ωs

2 − ω23 þ ω24.
As our analysis takes place in the Fourier domain, each of
these distinct coupled frequencies acts as another mode,
even if it resides in the same physical oscillator as another
mode. For this reason, modes 1, 7, and 9 share the
resonance frequency and linewidth of cavity 1, and likewise
for modes 2, 8, and 10 in cavity 2 and for the mechanical
mode pairs f3; 5g and f4; 6g.
A note is needed to justify the presence of the off-

resonant mechanical modes 5 and 6. In general, these extra
modes are needed to maintain common linewidths and
frequencies of all the auxiliary cavity modes. This effect is
typically negligible in optomechanics because the cavity
linewidths are so much larger than the mechanical line-
widths. Another reason for including modes 5 and 6,
however, is to be able to model the scattering parameters
over wide spans that include both resonant and off-resonant
structure. We therefore include the off-resonant mechanical
terms to fit wide scans of scattering parameters.
In total, these considerations lead to our system of ten

modes that quantitatively accounts for the off-resonant
damping. Notably, we ignore all amplification processes
occurring at the blue sidebands. This is a reasonable
approximation because the damping effects from these
terms are smaller by a factor of κ2=ð16Ω2Þ < 1%.
We justify above the need for an expanded model and

show how to find the signal frequencies of the modes. The
last part needed before calculating the scattering matrix is
the couplings involving the auxiliary modes. These are
found by relating all 16 couplings to the four original
couplings by multiplying by ratios of vacuum optome-
chanical coupling rates and intrinsic mechanical linewidths.
With the mode-coupling matrix fully determined, we

proceed to calculate the scattering matrix as above. We use
this expanded model for the scattering parameters to fit the
data shown in the main text and to predict the needed drive
parameters to maximize the transmission difference func-
tion. Figure 6 shows the data and theory fit for the full
scattering matrix including the reflection coefficients.
The ten-mode graph can be reduced to obtain an effective

four-mode graph. By allowing the inputs for the auxiliary
modes to be exactly zero, one can derive the effective
mode-coupling matrix describing the reduced system. This
reduction procedure is a classical approximation, so care
must taken in its application to quantum noise calculations.
In general, to reduce mode k from the matrix M, we
perform the transformation

M0
ij ¼ Mij −

MikMkj

Mkk
; ðA9Þ

1

2

3 4 56

7

8

9

10

Cavity 1:

Mechanical modes:

Cavity 2:

FIG. 5. Ten-mode graph diagram. Like-colored double-sided
arrows indicate optomechanical coupling driven by the same
microwave drive. Modes 1–4 are the four modes in the simplified
four-mode model. Modes 5–10 are duplicates evaluated off
resonance.
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which results in a new matrix M0 with one less dimension.
Reducing each auxiliary mode in turn results in the
effective four-mode model. Incidentally, the mode reduc-
tion formula encodes the meaning of the rotating wave
approximation in Fourier space; if the correction to element
Mij is negligible for all signal frequencies of interest, the
dynamics of mode k can be safely ignored.

3. Calculation and calibration of output noise

Here, we calculate a model for the output noise given the
(10 × 10) scatting matrix calculated above. We start with
the system output amplitude, then model the amplifier
chain and the spectrum analyzer.
The output amplitude for mode j in terms of the N input

amplitudes is

âj;out ¼
XN
k¼1

Sjkâk;in: ðA10Þ

The output amplitude is then amplified, which we model as
a transformation to another mode operator, ĉj, by

ĉj ¼
ffiffiffiffiffiffi
Gj

p
âj;out þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gj − 1

p
d̂†j ; ðA11Þ

where Gj is the gain at port j and d̂†j is an input creation
operator used to model the amplifier’s added noise. When
the mode ĉj is fed into the spectrum analyzer, the measured
noise power spectrum N ½ω� is [38]

N j½ω� ¼ ℏω
Z

∞

−∞

dω0

2π
hĉ†j ½ω�ĉj½ω0�i: ðA12Þ

Taking the large gain limit (so that Gj − 1≃Gj), and using
input correlators hâ†j;in½ω�âj;in½ω0�i ¼ 2πnδðω − ω0Þ for a
thermal state with occupancy n, we find

N j½ω� ¼ ℏωGj

�
1þ nj;amp þ

XN
k¼1

jSjkj2nk;th
�
; ðA13Þ

where nj;amp ≥ 0 is the noise from the amplifier and
nk;th ≥ 0 is the thermal occupation number for the input
field at port k. We measure N j½ω� in units of WHz−1.
Knowing the system gain and added noise allows us to
convert the spectrum to units of output photons from the
device. When the set of nk;th (and possibly the nj;amp) are
the only fit parameters, the model is linear and can therefore
be fit to the data using linear least-squares fitting methods.
The third term in the above equation is what we refer to as
the output noise of the device. We measure the amplifica-
tion noise at the two cavity frequencies to be n1;amp ¼
30� 3 and n2;amp ¼ 22� 2.
We calibrate the output noise by heating the cryostat to

100 mK and measuring single-drive optomechanical spec-
tra [39]. This process yields the system gain, system added
noise, and the four vacuum optomechanical coupling rates,
which are found for each cavity-mechanical mode pair to

be jðgð0Þ11 ; g
ð0Þ
12 ; g

ð0Þ
21 ; g

ð0Þ
22 Þj=2π ≃ ð50; 40; 60; 20Þ Hz, where

gð0Þjk is the vacuum coupling rate for the jth cavity and
the kth mechanical mode.
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