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We summarize in this article the experiments which have been performed to test the theoretical findings
in stochastic thermodynamics such as fluctuation theorem, Jarzynski equality, stochastic entropy, out-of-
equilibrium fluctuation dissipation theorem, and the generalized first and second laws. We briefly describe
experiments on mechanical oscillators, colloids, biological systems, and electric circuits in which the
statistical properties of out-of-equilibrium fluctuations have been measured and characterized using
the abovementioned tools. We discuss the main findings and drawbacks. Special emphasis is given to the
connection between information and thermodynamics. The perspectives and followup of stochastic
thermodynamics in future experiments and in practical applications are also discussed.
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I. INTRODUCTION

When the size of a system is reduced, the role of
fluctuations (either quantum or thermal) increases. Thus,
thermodynamic quantities such as internal energy, work,
heat, and entropy cannot be characterized only by their
mean values, but also their fluctuations and probability
distributions become relevant and useful to make predic-
tions on a small system. Let us consider a simple example,
such as the motion of a Brownian particle subjected to a
constant external force. Because of thermal fluctuations,
the work performed on the particle by this force per unit
time, i.e., the injected power, fluctuates, and the smaller
the force, the larger is the importance of power fluctuations
[1–3]. The goal of stochastic thermodynamics is just that
of studying the fluctuations of the abovementioned thermo-
dynamic quantities in systems driven out of equilibrium
by external forces, temperature differences, and chemical
reactions. For this reason, it has received in the past
20 years an increasing interest for its applications in
microscopic devices and biological systems and for its
connections with information theory [1–3].
In the following we discuss the role of fluctuations in

out-of-equilibrium thermal systems when the energies
injected or dissipated are smaller than 100kBT (kB being
the Boltzmann constant and T the temperature). This limit
is relevant in biological, nano, and micro systems, where
fluctuations cannot be neglected. We are interested in
knowing the role of these fluctuations on the dynamics
and how one can gain some information by measuring them.

We have already mentioned the Brownian particle driven
by an external force, but to clarify the kind of questions that
we want to analyze, let us consider another simple example
of an out-of-equilibrium system, that is, a thermal con-
ductor whose extremities are connected to two heat baths at
different temperatures. The second law of thermodynamics
imposes that the mean heat flux flows from the hot to the
cold reservoir. However, the second law does not say
anything about fluctuations, and in principle one can
observe for a short time a heat current in the opposite
direction, which corresponds to an instantaneous negative
entropy production rate. What is the probability of observ-
ing these rare events? The same problem appears in the
abovementioned example of the Brownian particle where
one can ask, what is the probability that the particles move
in the opposite direction of the force? The answer to these
questions can be found within the framework of stochastic
thermodynamics and fluctuation theorems (FTs) [4–12],
which uses statistical mechanics to answer questions
related to extremes that are well beyond the mean (i.e.,
thermodynamics) and well beyond the standard fluctuation
theory normally dominated, away from critical points by
the central limit theorem. We see that the knowledge of out-
of-equilibrium fluctuation properties is actually very useful
in experiments to extract useful information on equilibrium
and out-of-equilibrium properties of a specific system.
Typical examples are the Jarzynski and Crooks equalities
[13–15], which estimate equilibrium properties starting
from nonequilibrium measurements. The measurement of
the linear response in out-of-equilibrium systems is another
very important aspect. Indeed, the new formulations of the
fluctuation dissipation relation (FDR) related to the FT are
quite useful for this purpose, because they allow the
estimation of the response starting from the measurement
of fluctuations of different quantities in nonequilibrium
steady states (NESSs) [10,16–21]. Within the context of the
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FDR for out-of-equilibrium states, many studies have been
done on the slow relaxation toward equilibrium, such as in
aging glasses after a temperature quench [22–24]. It turns
out that entropy production plays a unifying role between
the FT and the different extended formulations of the FDR
for out-of-equilibrium systems.
Another application of stochastic thermodynamics is the

study of the efficiency of micro or nano devices and the
role of fluctuations in the power production of these
systems. This is of course very useful for understanding
and measuring the efficiency of molecular motors, which
are isothermal and driven by chemical reactions.
It is worth mentioning that the study of stochastic

thermodynamics has allowed us to bring more insight to
the connection between information and thermodynamics.
Specifically, the study of the energy fluctuations in a small
system has transformed gedanken experiments, such as the
Maxwell’s demon, in experiments which may actually be
performed thanks to the new technologies such as optical or
electrical traps and single electron devices.
Before explaining how the article is organized, it is

mandatory to point out that the tools of stochastic thermo-
dynamics have also been applied to study the properties
of macroscopic fluctuations in out-of-equilibrium systems.
Indeed, the injected and dissipated energies may also
fluctuate in macroscopic systems if the dynamics is chaotic.
For instance, think of a motor used to stir a fluid strongly.
The motor can be driven by imposing a constant velocity.
Because of the turbulent motion of the fluid, the power
needed to keep the velocity constant fluctuates [25,26].
This simple example shows that fluctuations of the injected
and dissipated power may be relevant not only in micro-
scopic but also in macroscopic systems such as hydro-
dynamic flows [26], granular media [27–30], mechanical
systems [31], and more recently on self-propelling particles
[32,33]. The main difference is that in macroscopic systems
fluctuations are produced by the dynamics and are sus-
tained by a constant energy flux, whereas in small systems
they are of either thermal or quantum nature. Thus, it is
useful to divide the fluctuation in out-of-equilibrium
systems into two classes: one where thermal fluctuations
play a significant role (thermal systems) and another where
the fluctuations are produced by chaotic flows or fluctuat-
ing driving forces (athermal chaotic systems). In this
article, we focus on thermal systems and only a short
discussion on the problems related to the application of
stochastic thermodynamics to athermal systems is provided
in Sec. IX G.
As the goal of this article is to present several

general experimental aspects, we follow an experimentalist
approach, and the connection with theory is made on the
basis of experimental measurements. Furthermore, we
organize the sections in terms of the main topics and tools
of stochastic thermodynamics. For this reason, the same
experimental apparatus is analyzed in various sections

using different theoretical tools We start in Sec. II with
an analysis of the experimental results on the energy
fluctuations in a harmonic oscillator driven out of equilib-
rium by an external force. In Sec. III, we describe the
properties of FTs, and as illustrative examples we apply it
to (a) a harmonic oscillator (linear case) and (b) a Brownian
particle confined in a time-dependent double-well potential
(nonlinear case). The latter is one of the very few examples
where the FT is applied to a highly nonlinear potential,
because most of the experiments reported in the literature
are performed for linear potentials. In Sec. IV, we discuss
the application of the Jarzinsky and Crooks equalities to
the harmonic oscillators and to the measure of the free
energy of a single molecule. In Sec. VI, we introduce the
application of stochastic thermodynamics to the study of
the efficiency of micro or nano machines. The contribution
of fluctuations to the power produced by these machines is
described using the results of a proof of principle experi-
ment. In Sec. VII, we briefly present another relevant
aspect of nonequilibrium statistical mechanics: the meas-
urement of the linear response of a system in a non-
equilibrium state. We discuss here only the main relevant
features without giving any specific example as these FDT
aspects have already been discussed in other reviews
[2,3,34]. In Sec. VIII, the connections between information
and thermodynamics is analyzed following two comple-
mentary subjects. The first is the energy production by
devices controlled by aMaxwell’s demon. The second is the
minimum energy needed to process one bit of information.
Finally, we conclude in Sec. IX, where we describe other
useful experimental applications of stochastic thermody-
namics. We also discuss the perspectives and the artifacts
of these applications.

II. WORK AND HEAT FLUCTUATIONS IN
THE HARMONIC OSCILLATOR

The choice of discussing the dynamics of the harmonic
oscillator is dictated by the fact that it is relevant for many
practical applications, such as the measure of the elasticity
of nanotubes [35], the dynamics of the tip of an AFM [36],
MEMS, and the thermal rheometer that we developed
several years ago to study the rheology of complex fluids
[37], whose high sensitivity has actually allowed several
tests of FT. As the results of these experiments have already
been discussed in some detail in several reviews [3,38], we
describe here only the main results useful to introduce the
experimental activity in stochastic thermodynamics.

A. Experimental setup

The thermal rheometer is a torsion pendulum whose
angular displacement θ is measured by a very sensitive
interferometer. The details of the setup can be found in
Refs. [39–43]. A schematic diagram and a picture of the
apparatus are shown in Fig. 1.
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In equilibrium the variance δθ2 of the thermal fluctua-
tions of θ can be obtained from equipartition; i.e., for our
pendulum, δθ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=C
p ≃ 2 nrad, where C is the tor-

sional stiffness of the pendulum and T is the temperature of
the surrounding fluid. The measurement noise is 2 orders of
magnitude smaller than thermal fluctuations of the pendu-
lum whose resonance frequency fo is about 217 Hz. A
magnetostatic forcing [38,40,41] allows the application of
an external torque M, useful to excite the pendulum and to
drive it out of equilibrium. The typical applied torque is of
the order of a few pN m, and the mean power a few kBT=s.
The dynamics of the torsion pendulum can be assimi-

lated to that of a harmonic oscillator damped by the
viscosity of the surrounding fluid, whose equation of
motion reads

Ieff
d2θ
dt2

þ ν
dθ
dt

þ Cθ ¼ M þ η; ð1Þ

where Ieff is the effective moment of inertia of the
pendulum, which includes the inertia of the surrounding
fluid as discussed in Ref. [40]. The thermal noise η is,
in this case, delta correlated in time: hηðtÞηðt0Þi ¼
2kBTνδðt − t0Þ. However, if the fluid is viscoelastic, the
noise η is correlated and the process is not Markovian,
whereas in the viscous case the process is Markovian. Thus,
by changing the quality of the fluid surrounding the
pendulum one can tune the Markovian nature of the
process. In this review we consider only the experiment
in the glycerol-water mixture where the viscoelastic con-
tribution is visible only at very low frequencies and is
therefore negligible. This allows a more precise comparison

with theoretical predictions often obtained for Markovian
processes. (See Ref. [38] for a discussion on this point.)

B. Energy balance

When the system is driven out of equilibrium by the
external deterministic torque M (which is, in general, time
dependent), it receives an amount of work, and a fraction of
this energy is dissipated into the heat bath. Multiplying
Eq. (1) by _θ and integrating between ti and ti þ τ, one
obtains a formulation of the first law of thermodynamics
between the two states at time ti and ti þ τ [Eq. (2)]. This
formulation was first proposed in Ref. [44] and widely used
in other theoretical and experimental works in the context
of stochastic thermodynamics [1,2]. The change in internal
energy ΔUτ of the oscillator over a time τ, starting at a time
ti, is written as

ΔUτ ¼ Uðti þ τÞ −UðtiÞ ¼ ~Wτ −Qτ; ð2Þ

where ~Wτ is the work done on the system over a time τ and
Qτ is the dissipated heat. The work ~Wτ is defined in the
classical way,

~Wτ ¼
Z

tiþτ

ti

Mðt0Þ dθðt
0Þ

dt0
dt0; ð3Þ

and we use a tilde in order to distinguish it from a more
general definition often used in stochastic thermodynamics
[see Eq. (12) and the discussion at the end of Sec. IVA].
The internal energy is the sum of the potential energy and
the kinetic energy:

UðtÞ ¼
�
1

2
Ieff

�
dθðtÞ
dt

�
2

þ 1

2
CθðtÞ2

�

: ð4Þ

The heat transfer Qτ is deduced from Eq. (2). It has two
contributions:

Qτ ¼ ~Wτ − ΔUτ ¼
Z

tiþτ

ti

�

ν

�
dθ
dt0

�
2

− ηðt0Þ dθ
dt0

�

dt0; ð5Þ

where the integrals in Eqs. (3) and (5) are performed using
the Stratonovich convention.
The first term in Eq. (5) corresponds to the viscous

dissipation and is always positive, whereas the second term
can be interpreted as the work of the thermal noise, which
has a fluctuating sign. The second law of thermodynamics
imposes hQτi to be positive. Notice that because of the
fluctuations of θ and _θ all the quantities ~Wτ, ΔUτ, and Qτ

fluctuate, too. We are interested in characterizing these
fluctuations, which are related by Eq. (2), which is a
formulation of the first law of thermodynamics between the
two states at time ti and ti þ τ. Although Eq. (2) has been

FIG. 1. (a) The torsion pendulum. (b) The magnetostatic
forcing. (c) A picture of the pendulum. (d) The cell where the
pendulum is installed.
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obtained for the harmonic oscillators, is indeed a general
statement for the energy fluctuations of any system.

C. Nonequilibrium steady state: Sinusoidal forcing

We now consider a periodic forcing of amplitudeMo and
frequency ωd, i.e.,MðtÞ ¼ Mo sinðωdtÞ [41–43], which is a
NESS because all the averages performed on an integer
number of the driving periods do not depend on time. This
kind of periodic forcing is very common and it has been
studied in the case of the first-order Langevin equation [45]
and of a two-level system [46] and in a different context for
the second-order Langevin equation [47]. Furthermore, this
is a very general case, because using Fourier transform any
periodical driving can be decomposed in a sum of sinus-
oidal modes. We explain here the behavior of a single
mode. Experiments have been performed at variousMo and
ωd. We present the results for a particular amplitude and
frequency: Mo ¼ 0.78 pNm and ωd=ð2πÞ ¼ 64 Hz.

1. Work fluctuations

The work done by MðtÞ is computed from Eq. (3) on a
time τ ¼ 2πn=ωd, i.e., an integer number n of the driving
period. ~Wτ fluctuates and its probability density function
(PDF) is plotted in Fig. 2(a) for various n. This plot has
interesting features. Specifically, work fluctuations are
Gaussian for all values of n, and ~Wτ takes negative values
as long as τ is not too large. The probability of having
negative values of ~Wτ decreases when τn is increased.
There is a finite probability of having negative values
of the work; in other words, the system may have an
instantaneous negative entropy production rate although
the average of the work h ~Wτi is, of course, positive (h·i
stands for ensemble average). In this specific example,
h ~Wτi ¼ 0.04nðkBTÞ.

2. Heat fluctuations

The dissipated heat Qτ cannot be directly measured
because Eq. (5) requires us to compute the work done by
the thermal noise, which is experimentally unmeasurable
since η is unknown. However,Qτ can be obtained indirectly

from the measure of ~Wτ and ΔUτ. We first make some
comments on the average values. The average of ΔUτ is
obviously vanishing because the time τ is a multiple of the
period of the forcing. Therefore, h ~Wτi and hQτi are equal,
as it must be.
We rescale the work ~Wτ (the heat Qτ) by the average

work h ~Wτi (the average heat hQτi) and define wτ ¼
ð ~Wτ=h ~WτiÞ (qτ ¼ ðQτ=hQτiÞ). In the present article, xτ
(Xτ) stands for either wτ or qτ ( ~Wτ or Qτ).
We compare now the PDF of wτ and qτ in Fig. 2. The

PDFs of heat fluctuations qτ have exponential tails
[Fig. 2(b)]. It is interesting to stress that although the
two variables ~Wτ and Qτ have the same mean values, they
have a very different PDF. The PDFs of wτ are Gaussian,
whereas those of qτ are exponential. On a first approxi-
mation, the PDFs of qτ are the convolution of a Gaussian
(the PDF of ~Wτ) and exponential (the PDF ofΔUτ) [38,43].
In Fig. 2, the continuous lines are analytical predictions
obtained from the Langevin dynamics with no adjustable
parameter (see Sec. III C).

III. FLUCTUATION THEOREMS

In the previous section, we see that both ~Wτ and Qτ

present negative values; i.e., the second law is verified only
on average, but the entropy production can have instanta-
neously negative values. The probabilities of getting
positive and negative entropy production are quantitatively
related in nonequilibrium systems by the fluctuation
theorems [4–6],
There are two classes of FTs. The stationary state

fluctuation theorem (SSFT) considers a nonequilibrium
steady state. The transient fluctuation theorem (TFT)
describes transient nonequilibrium states where τ measures
the time since the system left the equilibrium state. A
fluctuation relation examines the symmetry around 0 of
the probability density function pðxτÞ of a quantity xτ, as
defined in the previous section. It compares the probability
of having a positive event (xτ ¼ þx) versus the probability
of having a negative event (xτ ¼ −x). We quantify the FT
using a function (symmetry function):

FIG. 2. Sinusoidal forcing. (a) Pdf of ~Wτ. (b) PDF of Qτ for various n: n ¼ 7 (∘), n ¼ 15 (□), n ¼ 25 (⋄), and n ¼ 50 (×). The
continuous lines are not fits but are analytical predictions obtained from the Langevin dynamics, as discussed in Sec. III C.
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SymðxτÞ ¼
kBT
hXτi

ln

�
pðxτ ¼ þxÞ
pðxτ ¼ −xÞ

�

: ð6Þ

The TFT states that the symmetry function is linear
with xτ for any values of the time integration τ and the
proportionality coefficient is equal to 1 for any value of τ:

SymðxτÞ ¼ xτ; ∀xτ; ∀τ: ð7Þ
Contrary to TFT, the SSFT holds only in the limit of infinite
time (τ):

lim
τ→∞

SymðxτÞ ¼ xτ: ð8Þ

In the following, we assume linearity at finite time τ
[48,49] and use the following general expression:

SymðxτÞ ¼ ΣxðτÞxτ; ð9Þ

where for SSFT ΣxðτÞ takes into account the finite-time
corrections and limτ→∞ΣxðτÞ ¼ 1, whereas ΣxðτÞ ¼ 1, ∀ τ
for TFT.
However, these claims are not universal because they

depend on the kind of xτ that is used. Specifically, we see in
the next sections that the results are not exactly the same if
Xτ is replaced by any one of ~Wτ, Qτ, and the total entropy
[11,12]. Furthermore, the definitions given in this section
are appropriate for stochastic systems, and the differences
between stochastic and chaotic systems are not addressed
in this review. A discussion on this point can be found
in Ref. [38].

A. FTs for ~Wτ and Qτ measured
in the harmonic oscillator

The questions we ask are whether for finite time FTs are
satisfied for either xτ ¼ wτ or xτ ¼ qτ and what are the
finite-time corrections? As a first step, we test the correc-
tion to the proportionality between the symmetry function

SymðxτÞ and xτ. In the region where the symmetry
function is linear with xτ, we define the slope ΣxðτÞ, i.e.,
SymðxτÞ ¼ ΣxðτÞxτ. As a second step, we measure finite-
time corrections to the value ΣxðτÞ ¼ 1, which is the
asymptotic value expected from FTs.
In this article, we focus on the SSFT applied to the

experimental results of Sec. II C and to other examples. The
applications of TFT are not presented in this section, but
we discuss them in Sec. IV B, and interested readers may
find more details in Ref. [43].
From the PDFs of wτ and qτ plotted in Fig. 2, we

compute the symmetry functions defined in Eq. (6). The
symmetry functions SymðwτÞ are plotted in Fig. 3(a) as a
function of wτ. They are linear in wτ. The slope ΣwðnÞ is not
equal to 1 for all n, but there is a correction at finite time.
Nevertheless, ΣwðnÞ tends to 1 for large n. Thus, SSFT is
satisfied for ~Wτ and for a sinusoidal forcing. The con-
vergence is very slow and we have to wait a large number
of periods of forcing for the slope to be 1 (after 30 periods,
the slope is still 0.9). This behavior is independent of the
amplitude of the forcing Mo and consequently of the mean
value of the work h ~Wτi, which, as explained in Ref. [38],
changes only the time needed to observe a negative event.
The system satisfies the SSFT for all forcing frequencies
ωd, but finite-time corrections depend on ωd [43].
We now analyze the PDF of qτ [Fig. 2(b)] and we

compute the symmetry functions SymðqτÞ of qτ plotted in
Fig. 3(b) for different values of n. They are clearly very
different from those of wn plotted in Fig. 3(a). For SymðqτÞ
three different regions appear.
(I) For large fluctuations qn, SymðqτÞ equals 2. When τ

tends to infinity, this region spans from qn ¼ 3 to infinity.
(II) For small fluctuations qn, SymðqnÞ is a linear

function of qn. We then define ΣqðnÞ as the slope of the
function SymðqnÞ, i.e., SymðqnÞ ¼ ΣqðnÞqn. We have
measured [43] that ΣqðnÞ ¼ ΣwðnÞ for all the values of
n; i.e., finite-time corrections are the same for heat and
work. Thus, ΣqðnÞ tends to 1 when τ is increased and SSFT

FIG. 3. Sinusoidal forcing. Symmetry functions for SSFT. (a) Symmetry functions SymðwτÞ plotted as a function of wτ for various n:
n ¼ 7 (circle), n ¼ 15 (square), n ¼ 25 (diamond), and n ¼ 50 (times). For all n, the dependence of SymðwτÞ on wτ is linear, with slope
ΣwðτÞ. (b) Symmetry functions SymðqτÞ plotted as a function of qτ for various n. The dependence of SymðqτÞ on qτ is linear only for
qτ < 1. Continuous lines are theoretical predictions.
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holds in this region II, which spans from qn ¼ 0 up to
qn ¼ 1 for large τ. This effect was discussed for the first
time in Refs. [48,49].
(III) A smooth connection between the two behaviors.
These regions define the fluctuation relation from the

heat dissipated by the oscillator. The limit for large τ of the
symmetry function SymðqτÞ is rather delicate and it is
discussed in Ref. [43].
The conclusion of this experimental analysis is that

SSFT holds for work for any value ofwτ, whereas for heat it
holds only for qτ < 1. The finite-time corrections to FTs,
described by 1 − Σ, are not universal. They are the same for
both wτ and qτ, but they depend on the driving frequency
and on the kind of driving force Ref. [38,43].
These kinds of measurements are important because they

allow us to test complex theoretical concepts on relatively
simple systems in order to apply them to more complex
cases. Furthermore, the experimental analysis on model
systems allows us to check the theoretical hypothesis made
in order to prove the theorems. For example, one of these
hypotheses is that the properties of the heat bath are not
modified by the forcing. This hypothesis can be precisely
checked in the experiments.

B. Trajectory-dependent entropy
and the total entropy

In the same way of ~Wτ and Qτ, the entropy produc-
tion rate can also be defined at the trajectory level. The
trajectory-dependent entropy difference δsτðtÞ is defined as
δsτðtÞ ¼ − log½P(r⃗ðtþ τÞ; λ)=P(r⃗ðtÞ; λ)�, where P(r⃗ðtÞ; λ)
is the probability of finding the system in the position
r⃗ðtÞ of the phase space at a value λ of the control parameter.
Thus, the total entropy difference on the time τ is
ΔStotðt; τÞ ¼ δsτðtÞ þQτðtÞ=T [11,12], i.e., the sum of
the trajectory-dependent entropy and of the entropy change
in the reservoir due to energy flow. The mean total entropy
difference is equal to the entropy production rate; i.e.,
hΔStotðt; τÞi ¼ hQτðtÞ=Ti. Furthermore, ΔStotðt; τÞ fully
characterizes the out-of-equilibrium dynamics as it is
rigorously zero, both in average and fluctuations. The
fluctuations of this quantity impose several constrains on
the time reversibility, which is a central result of stochastic
thermodynamics [2,11,15,50] and which has been tested
experimentally [51]. The FT for theΔStot in a SSFT implies
ΣðτÞ ¼ 1 for any τ; i.e., the FT does not have an asymptotic
validity but is valid for any τ. This is certainly a useful
property in experiment because one does not have to look
for very long asymptotic behavior. However, the calcula-
tion of Stot in experiment is not easy and a lot of care must
be used in order to correctly estimate this quantity [38,52].
We do not discuss here the experimental analysis per-
formed on electric circuits and harmonic oscillators, but an
example of the evaluation of ΔStotðt; τÞ is given in Sec. V.
For further information, the interested reader can look at
the abovementioned references and Ref. [53], where a

discussion on the different quantities for SSFT and TFT
can be found.
Furthermore, in order to avoid the complexity of

computing ΔStot from individual trajectories, another
quantity, which satisfies a SSFT for any τ, has been
proposed in Ref. [54]. This quantity is the joint probability
Pð ~Wτ; JτÞ of the work and of the energy currents in the
system. Although its measure might be difficult, it is by far
easier than the trajectory-dependent entropy. However, this
method, although very powerful, has never been tested on
experimental data, but it will certainly be useful to try.

C. Comparison with theory

The experimental analysis described in Sec. III A allows
a very precise comparison with theoretical predictions
using the Langevin equation [Eq. (1)] and using two
experimental observations: (a) the properties of the heat
bath are not modified by the driving and (b) the fluctuations
of the ~Wτ are Gaussian (see also Ref. [55], where it is
shown that in Langevin dynamics ~Wτ has a Gaussian
distribution for any kind of deterministic driving force if the
properties of the bath are not modified by the driving and
the potential is harmonic). The observation in point (a) is
extremely important because it is always assumed to be true
in all the theoretical analysis. In Ref. [43], this point has
been precisely checked. Using these experimental obser-
vations one can compute the PDF of qτ and the finite-time
corrections ΣðτÞ to SSFT (see Ref. [43]). The continuous
lines in Figs. 2 and 3 are not fit but analytical predictions,
with no adjustable parameters, derived from the Langevin
dynamics of Eq. (1) (see Ref. [43] for more details).

D. Nonlinear case: Stochastic resonance

In the harmonic oscillator described in the previous
section, the only nonlinearities, which might appear, are
those related to the elasticity of the torsion wire. However,
to reach this nonlinear regime, the system has to be forced
to such a high level that thermal fluctuations become
negligible. Thus, in order to study the nonlinear effects
we change the experiment and we measure the fluctuations
of a Brownian particle trapped in a nonlinear potential
produced by two laser beams, as shown in Fig. 4 [56]. It is
very well known that a particle of small radius R≃ 2 μm
can be trapped by a focused laser beam, which produces a
harmonic potential, thereby confining the Brownian par-
ticle motion to the potential well. When two laser beams are
focused at a distance D≃ R, as shown in Fig. 4(a), the
particle has two equilibrium positions, i.e., the foci of the
two beams. Thermal fluctuations allow the particle to hop
from one to the other. The particle feels an equilibrium
potential U0ðxÞ ¼ ax4 − bx2 − dx, shown in Fig. 4(b),
where a, b, and d are determined by the laser intensity
and by the distance of the two focal points. This potential
has been computed from the measured equilibrium
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distribution of the particle, PðxÞ ∝ exp½U0ðxÞ� (see
Ref. [56] for more experimental details). To drive the
system out of equilibrium we periodically modulate the
intensity of the two beams at low frequency ω. Thus,
the potential felt by the bead has the following pro-
file: Uðx; tÞ ¼ U0ðxÞ þUpðx; tÞ ¼ U0 þ cx sinðωtÞ.
The x position of the particle can be described by an

overdamped Langevin equation:

ν
dx
dt

¼ −
∂Uðx; tÞ

∂x þ η; ð10Þ

with ν the friction coefficient and η the thermal noise delta
correlated in time. When c ≠ 0, the particle can experience
a stochastic resonance [57–59], when the forcing frequency
is close to the Kramers rate [56]. As already done in the
case of the harmonic oscillator, one can compute the work

~Wτ ¼
Z

tþτ

t
fðt0Þ_xðt0Þdt0 ð11Þ

of the external force fðtÞ ¼ −c sinð2πftÞ on the time
interval ½t; tþ τ�, where τ ¼ ð2πn=ωÞ is a multiple of
the forcing period [56].
We consider the PDF Pð ~WτÞ, which is plotted in

Fig. 5(a). Notice that for small n the distributions are
double peaked and very complex. They tend to a Gaussian
for large n [inset of Fig. 5(a)]. In Fig. 5(b) we plot the
normalized symmetry function of ~Wτ. We can see that the
curves are close to the line of slope one. For high values of
work, the dispersion of the data increases due to the lack of
events. The slope tends toward 1 as expected by the SSFT.
It is remarkable that straight lines are obtained even for n
close to 1, where the distribution presents a very complex
and unusual shape [Fig. 5(a)]. The very fast convergence to
the asymptotic value of the SSFT is quite striking in this
example. We do not show here SðQτÞ as the behavior is

quite similar to that of the harmonic oscillator (Sec. III A)
although the PDFs are more complex [56]. The measure-
ment are in full agreement with a realistic model based on
the Fokker-Planck equations where the measured values of
Uðx; tÞ have been inserted [60]. This example shows the

D

(a)
(b)

FIG. 4. (a) Drawing of the polystyrene particle trapped by two laser beams whose axis distance is about the radius of the bead.
(b) Potential felt by the bead trapped by the two laser beams. The barrier height between the two wells is about 2kBT.

FIG. 5. (a) Distribution of classical work ~Wτ for different
numbers of period n ¼ 1, 2, 4, 8, and 12 (f ¼ 0.25 Hz). Inset:
Same data in lin-log. (b) Normalized symmetry function as
function of the normalized work for n ¼ 1 (plus), 2 (circle), 4
(diamond), 8 (triangle), and 12 (square).
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application of FT in a nonlinear case where the distributions
are strongly non-Gaussian. Other examples of application
of FT to nonlinear potentials can be found in Ref. [61].

IV. ESTIMATE THE FREE-ENERGY DIFFERENCE
FROM WORK FLUCTUATIONS

In 1997 [13,14] Jarzynski derived an equality which
relates the free-energy difference of a system in contact
with a heat reservoir to the PDF of the work performed on
the system to drive it from A to B along any path γ in the
system parameter space.

A. Jarzynski equality

Specifically, when a system parameter λ is varied from
time t ¼ 0 to t ¼ ts, Jarzynski defines for one realization
of the “switching process” from A to B the work performed
on the system as

W ¼
Z

ts

0

_λ
∂Hλ½zðtÞ�

∂λ dt; ð12Þ

where z denotes the phase-space point of the system andHλ

its λ parametrized Hamiltonian. One can consider an
ensemble of realizations of this switching process with
initial conditions all starting in the same initial equilibrium
state. Then W may be computed for each trajectory in the
ensemble. The Jarzynski equality states that [13,14]

exp ð−βΔFÞ ¼ hexp ð−βWÞi; ð13Þ

where h·i denotes the ensemble average and β−1 ¼ kBT
with kB the Boltzmann constant and T the temperature.
In other words, hexp ½−βWdiss�i ¼ 1, since we can always
writeW ¼ ΔF þWdiss, whereWdiss is the dissipated work.
Thus, it is easy to see that there must exist some paths γ
such that Wdiss ≤ 0. Moreover, the inequality hexp xi ≥
exphxi allows us to recover the second principle, namely,
hWdissi ≥ 0, i.e., hWi ≥ ΔF. If the probability distribution
of the work is Gaussian, PðWÞ∝ exp½−ð½W− hWi�2=2σ2WÞ�,
then Eq. (13) leads to

ΔF ¼ hWi − βσ2W
2

; ð14Þ

i.e., the dissipate energy hWdissi ¼ ðβσ2W=2Þ > 0.
Froman experimental point of view the Jarzynski equality

[Eq. (13)] is quite useful because there is no restriction on the
choice of the path γ. Furthermore, the other big advantage is
that only the initial state has to be an equilibrium state.
Indeed even if the system is not in equilibrium at time ts, one
obtains the value of ΔFðλðtsÞÞ, i.e., the value of the free
energy that the system would have at equilibrium for the
value of the control parameter λ ¼ λðtsÞ [62]. Finally, we
stress that the definition of work given in Eq. (12) is more
general than the classical definition used inEqs. (3) and (11).

Specifically, in the experiment described in Sec, III D, λ is
the external force and W ¼ ½fðtÞxðtÞ�tþτ

t − ~Wτ. Thus, in an
experiment in order to get the right value of the free energy
using Eq. (13), one has to clearly identify the control
parameter λ, which drives the system, and the definition
of Eq. (3) must be used to estimate W (see Ref. [40] for a
discussion on this point).

B. Crooks relation

This relation is related to the Jarzynski equality and it
gives useful and complementary information on the dis-
sipated work. Crooks considers the forward work Wf to
drive the system from A to B and the backward workWb to
drive it from B to A [Eq. (3) is used for bothWf andWb]. If
the work PDFs during the forward and backward processes
are PfðWÞ and PbðWÞ, one has [15]

PfðWÞ
Pbð−WÞ ¼ exp ðβ½W − ΔF�Þ ¼ exp ½βWdiss�: ð15Þ

Notice that the TFT defined in Sec. III is a special case of
Eq. (15), for which A≡ B and the backward and forward
protocols are the same.
A simple calculation leads from Eq. (15) to Eq. (13).

However, from an experimental point of view, Eq. (15) is
extremely useful because one immediately sees that the
crossing point of the two PDFs, that is, the point where
PfðWÞ ¼ Pbð−WÞ, is precisely ΔF. Thus, one has another
mean to check the computed free energy by looking at the
PDFs crossing point W×. The draw back is that both states
A and B have to be equilibrium states. A very interesting
and extended review on the Jarezynski and Crooks relations
can be found in Ref. [63].

C. Applications of Jarzynski and Crooks equalities

The Jarzynski equality has been tested for the first time
in a single-molecule experiment [64]. Here, we follow a
more pedagogical description by discussing first the appli-
cation to the harmonic oscillator and then to a single-
molecule experiment in Sec. IV C 2.

1. Harmonic oscillator

As a simple example we apply the Jarzynski equality to
the harmonic oscillator described in Sec. II. The oscillator
is driven from a state A (M ¼ 0) and to a state B (where
M ¼ Mo ≠ 0) by the external tork MðtÞ ¼ Mot=ts (for-
ward transformation). The backward transformation is
instead MðtÞ ¼ Mo −Mot=ts. The switching time ts is
varied in order to probe either the reversible (or quasistatic)
paths (ts ≫ τrelax) or the irreversible ones (ts ≲ τrelax),
where τrelax is the harmonic oscillator relaxation time.
We apply a torque which is a sequence of linear increasing
or decreasing ramps and plateaus. The latter are necessary
to relax the system in equilibrium before starting a new

S. CILIBERTO PHYS. REV. X 7, 021051 (2017)

021051-8



transformation. This periodic driving produces a sequence
of direct A-B paths and reversed ones, B-A, of θðtÞ, whose
time dependence is plotted in Fig. 6(a). The plotted
dynamics corresponds to quite irreversible transformation
as ts ≪ τrelax; specifically, ts=τrelax ≃ 0.1. The other rel-
evant parameters of the experiment are Mo ¼ 22.4 pN and
the stiffnessC ¼ 5.5 × 10−4 Nm rad−1. The workW can be
computed in each of the reverse or direct paths using
Eq. (12), and the PfðWÞ and PbðWÞ can be constructed.
The result is shown in Fig. 6(b), where the probability
distribution functions are plotted. We see that PfðWÞ and
PbðWÞ cross at about −112kBT, which is the measured
value of the ΔF computed from Eq. (15). Let us compare
the measured value with the theoretical estimate. In this
specific case of the harmonic oscillator, as the temperature
is the same in states A and B, the free-energy difference of
the oscillator alone is ΔF0 ¼ΔU¼ ½1

2
Cθ2�BA ¼ ½ðM2

o=2CÞ�BA.
However, the Jarzynski [Eq. (13)] and Crooks [Eq. (15)]
relations compute the free-energy difference of the system
(the harmonic oscillator) plus the driving, i.e.,ΔF ¼ ΔF0−
½ðM2=CÞ�BA, which in this case gives ΔF ¼ −ΔF0. From
the values of the experimental parameters, one gets
ΔF≃ 110kBT, which is very close to the experimental
value. This example shows that indeed using Eqs. (13) and
(15) it is possible to obtain the values of the free-energy
difference between two states even by doing a very fast
transformation with ts ≪ τrelax. However, the applications
of Eqs. (13) and (15) to the experiments may present
several problems, which are discussed in detail in Ref. [40].

2. Measure of the free-energy difference
of a single molecule

Jarzynsky and Crooks relations turn out to be a useful
tool to measure the free energy of a single molecule

[64–77]. Let us summarize a typical example extracted
from Ref. [65], where Eq. (15) has been used to measure
the ΔF between the folded and unfolded states of a DNA
hairpin. In Fig. 7(a), a schematic diagram of the experi-
ment is depicted, and the typical structure of the DNA
hairpin is shown in Fig. 7(b). In this experiment the DNA
hairpin is attached to two beads via double-stranded
DNA handles. As these two handles are much stiffer than
the hairpin, they do not deform during the stretching
cycles that are performed in the following way. The
bottom bead is kept by a micropipette, whereas an optical
trap captures the top bead. A piezoelectric actuator
controls the position of the bottom bead, which, when
moved along the vertical axis, stretches the DNA. The
difference in positions of the bottom and top beads gives
the end-to-end length of the molecule. The optical trap is
used to measure the force exerted by the stretched DNA
on the top bead. By driving the piezoelectric actuator, the
molecule is repeatedly subjected to unfold-refold cycles.
Every pulling cycle consists of a stretching process
(hereafter referred to as S) and a releasing (hereafter
referred to as R) process. In the stretching part of the
cycle the molecule is stretched from a minimum value of
the force (fmin ≃ 10 pN), so small that the hairpin is
always folded, up to a maximum value of the force
(fmax ≃ 20 pN), so large that the hairpin is always
unfolded. During the releasing part of the cycle the
force is decreased from fmax back to fmin at the same
rate of the loading cycle, which is the same protocol used
for the abovementioned example of the harmonic oscil-
lators. As the stretching force and the displacement of
the bead are independently measured, the work can be
computed using Eq. (12) at each cycle S and R. The
corresponding PSðWÞ and PRðWÞ histograms can be
computed too. The experiment has been repeated for

(a) (b)

FIG. 6. Free-energy measure in the harmonic oscillator. (a) Time evolution of θðtÞ under a periodic torque M which drives the
oscillator from A (θ ¼ 0) to B [θðtsÞ ¼ 4.1 nrad] and vice versa. In this specific case the stiffness is C≃ 5.5 Nm, the transition time is
ts ≃ 0.1τrelax, and Mo ¼ 22.4 Nm rad−1. (b) Probability distribution functions of the work for the forward (blue curve) and backward
(red curve) transformation. The crossing point of the two PDFs determines the value of ΔFA;B [see Eq. (15)]. The crossing point is at
W ¼ −112kBT, which is within experimental errors of the expected theoretical ΔF ≃ −110kBT (see text).
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different pulling-releasing speeds, and the results for
three speeds are shown in Fig. 7(c). We see that when
the speed is increased the difference between the mean
works in the S and R protocols increases. However, the
remarkable fact is that the PSðWÞ and PRðWÞ cross,
within experimental errors at the same value of W
independently of the pulling speed, showing the validity
of Eq. (15). As already explained, the crossing point
gives the value of the free-energy difference between the
folded and unfolded states.

3. Short discussion on applications of Jarzynski
and Crooks relations

The examples in Secs. IV C 1 and IV C 2 show the
power of Jarzynski and Crooks relations which are a very
useful tool to estimate the free-energy differences of micro
and nano systems where the role of fluctuation is very
important.
It is worth mentioning that there is a large amount

of work on this topic performed by the biophysics
and chemistry communities. The estimation of the
protein-folding landscapes is an important application,
which remains one of the main interests despite many
years of investigation; useful examples can be found in
Refs. [73,74].
Furthermore, using extensions to the basic results of

Jarzynski [68], the works in Refs. [72,75,76] collectively
show that nonequilibrium measurements give the most
precise reconstructions, to date, of free-energy landscapes
for single molecules (DNA hairpins).
The reader might also be interested in a recent extension

of these relations by Camunas-Solder et al. [77], who have

shown that fluctuation relations can be used for much more
than estimating free-energy differences. They study ligand
binding and use single-molecule force spectroscopy to
measure binding energies, selectivity, and allostery of
nucleic acids.
Finally, useful extensions and generalizations of

the Jarzynski equality that allow the study of the
transition between two nonequilibrium steady states have
been derived in Ref. [78] and checked experimentally
in Ref. [79].

V. TWO HEAT BATHS

In Secs. II, III D, and IV, we discuss systems in contact
with a single heat bath, which, within the context of
stochastic thermodynamics, are the most studied cases
both experimentally and theoretically [2,3]. Conversely,
systems, driven out of equilibrium by a temperature
gradient, in which the energy exchanges are produced
only by the thermal noise, have been analyzed mainly in
theoretical models [47,80–90]. This problem has been
studied only in a few very recent experiments [91–95],
because of the intrinsic difficulties of dealing with large
temperature differences in small systems.
In order to illustrate the main properties of the energy

fluxes in these systems driven out of equilibrium by a
temperature gradient, we summarize in this section the
main results of Refs. [91,92]. These two articles analyze
both experimentally an theoretically the statistical pro-
perties of the energy exchanged between two conductors
kept at different temperature and coupled by the electric
thermal noise.

(c)(a)

FIG. 7. (a) Experimental setup. The DNA hairpin whose sequence is shown in (b) is attached to two beads. The bottom bead is kept by
a micropipette and top bead is captured by an optical trap. The drawing is not to scale; the diameter of the beads is around 3000 nm,
much greater than the 20-nm length of the DNA. (b) DNA hairpin sequence. Labels 5 and 3 indicate the polarity of the phosphate chain
of the hairpin. (c) Typical work distributions for three different loading rates: 1 pN=s (slow, blue), 4.88 pN=s (medium, green),
14.9 pN=s (fast, red). The vertical lines show the range of the estimated experimental errors for the value ofΔF (adapted from Ref. [65]).
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A. Two electric circuits interacting via
a conservative coupling

1. Experimental setup and stochastic variables

The experimental setup is sketched in Fig. 8(a). It is
constituted by two resistances R1 and R2, which are kept
at different temperatures T1 and T2, respectively. These
temperatures are controlled by thermal baths, and T2 is
fixed at 296 K, whereas T1 can be set at a value between 88
and 296 K using the stratified vapor above a liquid nitrogen
bath. In the figure, the two resistances have been drawn
with their associated thermal noise generators η1 and η2,
whose power spectral densities are given by the Nyquist
formula j~ηmj2 ¼ 4kBRmTm, with m ¼ 1, 2 [see Eqs. (16)
and (17)]. The coupling capacitance C controls the elec-
trical power exchanged between the resistances and, as a
consequence, the energy exchanged between the two baths.
No other coupling exists between the two resistances which
are inside two separated screened boxes. The quantities
C1 and C2 are the capacitances of the circuits and the
cables. Two extremely low-noise amplifiers A1 and A2 [96]
measure the voltage V1 and V2 across the resistances R1

and R2, respectively. All the relevant quantities considered
in this paper can be derived by the measurements of V1

and V2, as we discuss below.

2. Stochastic equations for the voltages

We now proceed to derive the equations for the dynami-
cal variables V1 and V2. Furthermore, we discuss how our
system can be mapped onto a system with two interacting
Brownian particles, in the overdamped regime, coupled to
two different temperatures; see Fig. 8(b). Let qm (m ¼ 1, 2)
be the charges that have flowed through the resistances
Rm, so that the instantaneous current flowing through them
is im ¼ _qm. A circuit analysis shows that the equations for
the charges are

R1 _q1 ¼ −q1
C2

X
þ ðq2 − q1Þ

C
X
þ η1; ð16Þ

R2 _q2 ¼ −q2
C1

X
þ ðq1 − q2Þ

C
X
þ η2; ð17Þ

where ηm is the usual white noise, hηiðtÞηjðt0Þi ¼
2δijkBTiRjδðt − t0Þ, and where we have introduced the
quantityX ¼ C2C1 þ CðC1 þ C2Þ. Equations (16) and (17)
are the same as those for the two coupled Brownian
particles sketched in Fig. 8(b) when one regards qm as
the displacement of the particle m, im as its velocity, Km ¼
Cm0=X (m0 ¼ 2 if m ¼ 1 and m0 ¼ 1 if m ¼ 2) as the
stiffness of the spring m, K ¼ C=X as the coupling spring,
and Rm the viscosity term. The analogy with the Feymann
ratchet can be made by assuming, as done in Ref. [82], that
the particle m1 has an asymmetric shape and on average
moves faster in one direction than in the other one.
We now rearrange Eqs. (16) and (17) to obtain the

Langevin equations for the voltages, which will be useful
in the following discussion. The relationships between the
measured voltages and the charges are

q1 ¼ ðV1 − V2ÞCþ V1C1; ð18Þ

q2 ¼ ðV1 − V2ÞC − V2C2: ð19Þ

By plugging Eqs. (18) and (19) into Eqs. (16) and (17), and
rearranging terms, we obtain

ðC1 þ CÞ _V1 ¼ C _V2 þ
1

R1

ðη1 − V1Þ; ð20Þ

ðC2 þ CÞ _V2 ¼ C _V1 þ
1

R2

ðη2 − V2Þ: ð21Þ

FIG. 8. (a) Diagram of the circuit. The resistances R1 and R2 are kept at temperature T1 and T2 ¼ 296 K, respectively. They are
coupled via the capacitance C. The capacitances C1 and C2 schematize the capacitances of the cables and of the amplifier inputs. The
voltages V1 and V2 are amplified by the two low-noise amplifiers A1 and A2 [96]. The other relevant parameters are qm (m ¼ 1, 2), i.e.,
the charges that have flowed through the resistances Rm, and the instantaneous current flowing through them, i.e., im ¼ ðdqm=dtÞ.
(b) The circuit in (a) is equivalent to two Brownian particles (m1 and m2) moving inside two different heat baths at T1 and T2. The two
particles are trapped by two elastic potentials of stiffness K1 and K2 and coupled by a spring of stiffness K [see text and Eqs. (16) and
(17)]. The analogy is straightforward by considering qm the displacement of the particle m, im its velocity, Km ¼ Cm0=X (with m ≠ m0)
the stiffness of the spring m, and K ¼ C=X the coupling spring.
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3. Thermodynamics quantities

Two important quantities can be identified in the circuit
depicted in Fig. 8: the energy Qm;τ dissipated in each
resistor in a time and the work Wm;τ exerted by one circuit
on the other one in a time τ. These two thermodynamic
quantities are related to the internal energy variation in the
time τ by the first principle:

ΔUm;τ ¼ Wm;τ −Qm;τ: ð22Þ

Furthermore, it has been proved that the measured variance
σ2m of Vm is related to the mean heat flux h _Qmi ∝ ∂thQmi:

σ2m¼ hV2
mi ¼ σ2m;eq þ h _QmiRm; ð23Þ

where σ2m;eq ¼ kBTmðCþ Cm0 Þ=X is the equilibrium value
of σ2m. Note that h _Qmi ∝ ðTm0 − TmÞ; thus, in the equilib-
rium case Tm ¼ Tm0 , and consequently h _Qmi ¼ 0.
We do not give here the exact expressions of ΔUm;τ,

Wm;τ, Qm;τ, and σ2m, which have been computed and
measured in Refs. [91,92]. We discuss instead how the
FT is modified in the case of two heat baths.

4. Fluctuation theorem for work and heat

One expects that the thermodynamic quantities satisfy a
fluctuation theorem of the type [4,6,81,83,88–90]

ln
PðEm;τÞ
Pð−Em;τÞ

¼ β12Em;τΣðτÞ; ð24Þ

where Em;τ stands for either Wm;τ or Qm;τ, β12 ¼
ð1=T1 − 1=T2Þ=kB, and ΣðτÞ → 1 for τ → ∞.
Equation (24) has been proven in Ref. [92].
As the system is in a stationary state, we have

hWm;τi ¼ hQτ;mi. On the contrary, the comparison of the
PDF of Wm;τ with those of Qτ;m, measured at various
temperatures, presents several interesting features. In
Fig. 9(a), we plot PðW1;τÞ, Pð−W2;τÞ, PðQ1;τÞ, and
Pð−Q2;τÞ measured in equilibrium at T1 ¼ T2 ¼ 296 K
and τ≃ 0.1 s. We immediately see that the fluctuations
of the work are almost Gaussian, whereas those of the
heat present large exponential tails. This well-known
difference [48] between PðQm;τÞ and PðWm;τÞ is induced
by the fact that Qm;τ depends also on ΔUm;τ [Eq. (22)],
which is the sum of the square of Gaussian distributed
variables, thus inducing exponential tails in PðQm;τÞ. In
Fig. 9(a), we also notice that PðW1;τÞ ¼ Pð−W2;τÞ and
PðQ1;τÞ ¼ Pð−Q2;τÞ, showing that in equilibrium all fluc-
tuations are perfectly symmetric. The same PDFs measured
in the out-of-equilibrium case at T1 ¼ 88 K are plotted in
Fig. 9(b). We notice here that in this case the behavior of the
PDFs of the heat is different from those of the work. Indeed,
although hWm;τi> 0, we observe that PðW1;τÞ¼Pð−W2;τÞ,

while PðQ1;τÞ ≠ Pð−Q2;τÞ. Indeed, the shape of PðQ1;τÞ is
strongly modified by changing T1 from 296 to 88 K;
whereas the shape of Pð−Q2;τÞ is slightly modified by
the large temperature change, only the tails of Pð−Q2;τÞ
present a small asymmetry testifying to the presence
of a small heat flux. The fact that PðQ1;τÞ ≠ Pð−Q2;τÞ,
whereas PðW1;τÞ ¼ Pð−W2;τÞ, can be understood by
noticing that Qm;τ ¼ Wm;τ − ΔUm;τ. Indeed, ΔUm;τ

[Eq. (22)] depends on the values of Cm and V2
m. As C1 ≠

C2 and σ2 ≥ σ1, this explains the different behavior of Q1

and Q2. On the contrary, Wm depends only on C and the
product V1V2.
We study whether our data satisfy the fluctuation

theorem as given by Eq. (24) in the limit of large τ. It
turns out that the symmetry imposed by Eq. (24) is reached
for rather small τ for W. On the contrary, it converges very
slowly for Q. We have only a qualitative argument to
explain this difference in the asymptotic behavior: by
looking at the data one understands that the slow con-
vergence is induced by the presence of the exponential tails
of PðQ1;τÞ for small τ.
To check Eq. (24), we plot in Fig. 9(c) the symmetry

function SymðE1;τÞ ¼ ln½PðE1;τÞ=Pð−E1;τÞ� as a function
of E1;τ=ðkBT2Þ measured at different T1, but τ ¼ 0.1s
for SymðW1;τÞ and τ ¼ 2s for SymðQ1;τÞ. Indeed,
SymðQ1;τÞ reaches the asymptotic regime only for
τ → 2s. We see that SymðW1;τÞ is a linear function of
W1;τ=ðkBT2Þ at all T1. These straight lines have a slope
αðT1Þ which, according to Eq. (24), should be ðβ12kBT2Þ.
In order to check this prediction we fit the slopes of the
straight lines in Fig. 9(c). From the fitted αðT1Þwe deduce a
temperature Tfit ¼ T2=½αðT1Þ þ 1�, which is compared to
the measured temperature T1 in Fig. 9(d). In this figure, the
straight line of slope 1 indicates that Tfit ≃ T1 within a few
percent. These experimental results indicate that our data
verify the fluctuation theorem, Eq. (24), for the work and
the heat, but that the asymptotic regime is reached for much
larger time for the latter.

5. Entropy production rate

It is now important to analyze the entropy produced by
the total system, circuit plus heat reservoirs. We consider
first the entropy ΔSr;τ due to the heat exchanged with the
reservoirs, which reads ΔSr;τ ¼ Q1;τ=T1 þQ2;τ=T2. This
entropy is a fluctuating quantity as both Q1 and Q2

fluctuate, and its average in a time τ is hΔSr;τi ¼
hQr;τið1=T1 − 1=T2Þ ¼ AτðT2 − T1Þ2=ðT2T1Þ. However,
the reservoir entropy ΔSr;τ is not the only component
of the total entropy production: one has to take into account
the entropy variation of the system, due to its dynamical
evolution. Indeed, the state variables Vm also fluctuate as an
effect of the thermal noise, and thus, if one measures their
values at regular time interval, one obtains a “trajectory” in
the phase space ½V1ðtÞ; V2ðtÞ�. Thus, following Seifert [11],
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who developed this concept for a single heat bath, one
can introduce a trajectory entropy for the evolving system
SsðtÞ ¼ −kB logP½V1ðtÞ; V2ðtÞ�, which extends to none-
quilibrium systems the standard Gibbs entropy concept.
Therefore, when evaluating the total entropy production,
one has to take into account the contribution over the time
interval τ of

ΔSs;τ ¼ −kB log
�
P½V1ðtþ τÞ; V2ðtþ τÞ�

P½V1ðtÞ; V2ðtÞ�
�

: ð25Þ

It is worth noting that the system we consider is in a
nonequilibrium steady state, with a constant external
driving ΔT. Therefore, the probability distribution
PðV1; V2Þ does not depend explicitly on the time, and
ΔSs;τ is nonvanishing whenever the final point of the
trajectory is different from the initial one: ½V1ðtþ τÞ;
V2ðtþ τÞ� ≠ ½V1ðtÞ; V2ðtÞ�. Thus, the total entropy change
reads ΔStot;τ ¼ ΔSr;τ þ ΔSs;τ, where we omit the explicit

dependence on t, as the system is in a steady state, as
discussed above. This entropy has several interesting
features. The first one is that hΔSs;τi ¼ 0, and as a
consequence, hΔStoti ¼ hΔSri, which grows with increas-
ing ΔT. The second and most interesting result is that
independently of ΔT and of τ, the following equality
always holds:

hexpð−ΔStot=kBÞi ¼ 1; ð26Þ
for which we find experimental evidence, as discussed
in the following, and provide a theoretical proof in
Refs. [91,92]. Equation (26) represents an extension to
two temperature sources of the result obtained for a system
in a single heat bath driven out of equilibrium by a time-
dependent mechanical force [5,11], and our results provide
the first experimental verification of the expression in a
system driven by a temperature difference. Equation (26)
implies that hΔStoti ≥ 0, as prescribed by the second law.
From symmetry considerations, it follows immediately
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FIG. 9. (a) Equilibrium: PðWm;τÞ and PðQm;τÞ, measured in equilibrium at T1 ¼ T2 ¼ 296 K and τ ¼ 0.1s, are plotted as functions of
E, where E stands for either W or Q. Notice that when the system is in equilibrium, PðW1;τÞ ¼ Pð−W2;τÞ and PðQ1;τÞ ¼ Pð−Q2;τÞ.
(b) Out of equilibrium: Same distributions as in (a) but the PDFs are measured at T1 ¼ 88 K, T2 ¼ 296 K, and τ ¼ 0.1s. Notice that
when the system is out of equilibrium, PðW1;τÞ ¼ Pð−W2;τÞ but PðQ1;τÞ ≠ Pð−Q2;τÞ. The reason for this difference is explained in the
text. (c) The symmetry function SymðE1;τÞ, measured at various T1, is plotted as a function of E1 (W1 or Q1). The theoretical slope of
these straight lines is T2=T1 − 1. (d) The temperature Tfit estimated from the slopes of the lines in (c) is plotted as a function of the T1

measured by the thermometer. The slope of the line is 1, showing that Tfit ≃ T1 within a few percent.
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that, at equilibrium (T1 ¼ T2), the probability distribution
of ΔStot is symmetric: PeqðΔStotÞ ¼ Peqð−ΔStotÞ. Thus,
Eq. (26) implies that the probability density function of
ΔStot is a Dirac δ function when T1 ¼ T2; i.e., the quantity
ΔStot is rigorously zero in equilibrium, both in average and
fluctuations, and so its mean value and variance provide a
measure of the entropy production. The measured proba-
bilities PðΔSrÞ and PðΔStotÞ are shown in Fig. 10(a). We
see that PðΔSrÞ and PðΔStotÞ are quite different and that the
latter is close to a Gaussian and reduces to a Dirac δ
function in equilibrium, i.e., T1 ¼ T2 ¼ 296 K [notice that,
in Fig. 10(a), the small broadening of the equilibrium
PðΔStotÞ is just due to unavoidable experimental noise and
discretization of the experimental probability density func-
tions]. The experimental measurements satisfy Eq. (26) as
it is shown in Fig. 10(b). It is worth noting that Eq. (26)
implies that PðΔStotÞ should satisfy a fluctuation theorem
of the form log½PðΔStotÞ=Pð−ΔStotÞ� ¼ ΔStot=kB, ∀ τ;ΔT,
as discussed extensively in Refs. [2,53]. We clearly see in
Fig. 10(c)that this relation holds for different values of the
temperature gradient. Thus, this experiment clearly estab-
lishes a relationship between the mean and the variance
of the entropy production rate in a system driven out of
equilibrium by the temperature difference between two
thermal baths coupled by electrical noise. Because of the
formal analogy with Brownian motion, the results also
apply to mechanical coupling [95,97,98].

B. Entropy production in a single-electron box

Another interesting experiment on the measure of the
entropy production in a system subjected to a temperature
difference is presented in Ref. [93]. We summarize here the

main results. The experimental system is sketched in
Fig. 11, and it is based on a single-electron box at
low temperature. This is an excellent test benchmark for
thermodynamics in small systems [99,100], and an inter-
esting review of the statistical properties of coupled
circuits, both quantum and classical, can be found in
Ref. [101].
In the single-electron box shown in Fig. 11(a) the

electrons in the normal metal copper island (N) can tunnel
to the superconducting Al island (S) through the aluminium
oxide insulator (I). The integer net number of electrons
tunneled from S to N is denoted by n. This number,
monitored by the nearby single-electron transistor (SET)
shown in Fig. 11(a), is the classical system degree of
freedom.
Indeed, the device in Fig. 11(a) can be represented with

a classical electric circuit, in which the energy stored in
the capacitors and in the voltage sources can be exactly
measured [99]. As in the previous section, Sec. VA 1, the
conductor N and S are not at the same temperature.
Furthermore, here the system is driven by a voltage Vg

which oscillates much slower than the relaxation time of the
device. Thus, the forward and backward processes from
the maximum to the minimum of Vg can be considered.
By the measured values of nðtÞ and Vg, one can estimate
the heats, QN and QS, exchanged by the two heat baths
in a time tf, which is the period of the driving signal. In this
way the thermal entropy ΔSth ¼ QN=TN þQS=TS can be
computed. Furthermore, the trajectory-dependent entropy
can be estimated by measuring Δs ¼ −kb log½P(nðtfÞ)=
P(nð0Þ)�, where P(nðtÞ) is the probability that at time t the
system is in the state nðtÞ for a value of the driving VgðtÞ.
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FIG. 10. (a) The probability PðΔSrÞ (dashed lines) and PðΔStotÞ (continuous lines) measured at T1 ¼ 296 K (blue line) which
corresponds to equilibrium and T1 ¼ 88 K (green lines) out of equilibrium. Notice that both distributions are centered at zero at
equilibrium and shifted towards positive value in the out of equilibrium. (b) hexpð−ΔStotÞi as a function of T1 at two different τ ¼ 0.5s
and τ ¼ 0.1s. (c) Symmetry function SymðΔStotÞ ¼ log½PðΔStotÞ=Pð−ΔStotÞ� as a function of ΔStot. The black straight line of slope 1
corresponds to the theoretical prediction.
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The total entropy is, of course, ΔStot ¼ ΔSth þ ΔS, and
its probability distribution PðΔStotÞ can be measured.
The results for the forward and back processes are shown
in Fig. 12(a), and the corresponding symmetry func-
tions SymðΔStotÞ ¼ log½PðΔStotÞ=Pð−ΔStotÞ� are plotted
Fig. 12(b). In spite of the fact that PðΔStotÞ are highly non-
Gaussian, we notice that SymðΔStotÞ ¼ kBΔStot, which
implies that Eq. (26) is also satisfied by these data.
As in the previous section, Sec. VA 5, the main result

of this experiment is that stochastic entropy production
extracted from the trajectories is related to thermodynamic
entropy production from dissipated heat in the respective
thermal baths.

VI. MOTOR POWER AND EFFICIENCY

Historically, one of the main purposes of thermodynam-
ics has been the study of the efficiency of thermal machines
and power plants. Nowadays there is a wide interest in
extending these studies to micro and nano motors which
play a major role in biological mechanisms and small
devices. In Sec. II B, we see that in small systems all of the
thermodynamics quantities fluctuate. Thus, we are inter-
ested in knowing the influence of these fluctuations on the
efficiency of small devices where the dissipated energies
and the produced work are a few kBT. Furthermore, it is
useful to know this efficiency at the maximum power and
not in the quasistatic regimes, such as the Carnot cycle,
where the produced power is close to zero. These important
questions have been theoretically studied in several articles
[2,102–107] and only in a few proof-of-principle experi-
ments [108–111]. The first stochastic Carnot machine was
reported in Ref. [108]. In this experiment a Brownian
particle trapped by an optical tweezer is subjected to a kind
of Carnot cycle, inspired by a theoretical model proposed in
Ref. [103]. The cycle, used in a very similar experiment
[109], is sketched in Fig. 13(a), which we describe in some
detail. The Brownian particle is trapped by a harmonic
potential [bottom row in Fig. 13(a)] whose stiffness is
changed as a function of time. The increase of the stiffness
is equivalent to a compression (the motion of the particle
is more confined), the decrease to an expansion. In the
experiment the bead is subjected to a random force which
plays the role of an effective temperature, which can be
easily changed by changing the amplitude of the random
forcing. As in the Carnot cycle, the cycle in Fig. 13(a) is
composed by an isothermal and an adiabatic compression
and by an isothermal and an adiabatic expansion. Notice
that the construction of adiabatic processes for a Brownian
particle is a real challenge, which has been achieved by
changing simultaneously the temperature in such a way
that the exchanged heat, during the adiabatics, is zero on
average (see Refs. [109,112] for details). The work and the
heat in this experiment are computed as described in
Secs. II B, IV, and V. As these two quantities fluctuate,
the contribution of the fluctuations during adiabatics must

(a)

(b)

FIG. 12. (a) Probability distribution of the total entropy ΔStot,
which has been measured in the circuit shown in Fig. 11 and
described in the text. (b) The symmetry functions SymðΔStotÞ ¼
log½PðΔStotÞ=Pð−ΔStotÞ� of PðΔStotÞ as a function of ΔStot. In
spite of the highly non-Gaussian nature of PðΔStotÞ, we see that
SymðΔStotÞ ¼ kBΔStot (adapted from Ref. [93]).

FIG. 11. (a) Sketch of the measured system together with a
scanning electron micrograph of a typical sample. The colors
on the micrograph indicate the correspondingly colored circuit
elements in the sketch. (b) Typical trace of the measured detector
signal under a sinusoidal protocol for the drive Vg, plotted in
green. This trace covers three realizations of the forward protocol
(Vg from −0.1 to 1 mV), and three realizations of the backward
protocol (Vg from 1 to −0.1 mV). The SET current Idet, plotted in
black, indicates the charge state of the box. The output of the
threshold detection is shown in solid blue, with the threshold level
indicated by the dashed red line (adapted from Ref. [93]).
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be taken into account in computing the efficiency, which is
defined as ηcycle ¼ Wcycle=Qhot, where Wcycle is the work
produced during a cycle and Qhot is the heat absorbed from
the hot sources. Because of W and Q fluctuations, ηcycle
also fluctuates a lot because, as we have seen in previous
sections, Q can be zero and even negative. The measured
probability distribution of ηcycle is plotted in Fig. 13(b) as
function of the number of cycles used to average it. The
efficiency ηcycle is normalized to the standard Carnot
efficiency, ηc ¼ 1 − Tcold=Thot. Although the mean value
hηcyclei is smaller than ηc, we clearly see that, for a small
number of cycles, η has big fluctuations which extend from
values much larger than ηc to negative values. Furthermore,
as the cycle is performed in finite time, the power pro-
duced by the system can be computed as a function of
the cycle duration. This power has a maximum, and the
other interesting result of this experiment is that the mean
efficiency at the maximum power follows the Curzon-
Ahlborn expression hηcyclei ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tcold=Thot

p
[102].

Another interesting article [113] presents the theoretical
and experimental results on the conversion of one form of
work to another. Using a Brownian particle as an isothermal
machine driven by two independent periodic forces, the
authors of Ref. [113] analytically compute and experimen-
tally measure the stochastic thermodynamic properties
of this Brownian engine. Specifically, the efficiency of
the energy transfer between the two driving forces and the
Onsager coefficients of the coupling are evaluated.
The results of these experiments show the kind of

problems that one encounters in the study of the efficiency
of nano devices. For example, the study of the efficiency
at maximum power and the behavior of η fluctuations
have been subjects of extensive theoretical investigation
[2,104–106], to understand their system dependence and
eventually their universality. We do not discuss these
theoretical results because they are far from the purposes
of this review. The interested reader can look at the
abovementioned references. However, it is worth mention-
ing that several small devices, such as a molecular motor,
are driven by chemical reaction, and the efficiency of these
devices has been studied theoretically [107,114–116],
but to my knowledge no proof-of-principle experiment,
as the one presented here, has been performed for this
chemically driven system.

VII. FLUCTUATION DISSIPATION
RELATIONS FOR NESS

As we see in the previous section, current theoretical
developments in nonequilibrium statistical mechanics
have led to significant progress in the study of systems
around states far from thermal equilibrium. Systems in
nonequilibrium steady states are the simplest examples
because the dynamics of their degrees of freedom x under
fixed control parameters λ can be statistically described
by time-independent probability densities ρ0ðx; λÞ. NESSs
naturally occur in mesoscopic systems such as colloidal
particles dragged by optical tweezeres, Brownian ratches,
and molecular motors because of the presence of non-
conservative or time-dependent forces [117]. At these
length scales fluctuations are important, so it is essential to
establish a quantitative link between the statistical proper-
ties of the NESS fluctuations and the response of the
system to external perturbations. Around thermal equi-
librium this link is provided by the fluctuation-dissipation
theorem [34].
The validity of the FDR in systems out of thermal

equilibrium has been the subject of intensive study during
recent years. We recall that for a system in equilibrium with
a thermal bath at temperature T the FDR establishes a
simple relation between the two-time correlation function
Cðt − sÞ of a given observable and the linear response
function Rðt; sÞ of this observable to a weak external
perturbation,

FIG. 13. (a) Schematic of the Carnot cycle applied to a
Brownian particle trapped in a harmonic potential by a laser
beam. The bottom row indicates the harmonic potential as a
function of time. The stiffness of the potential is controlled by the
laser intensity, as indicated by the green line. A random force,
applied to the particle, plays the role of an effective temperature
whose value is changed as indicated by the magenta line.
(b) Contour lines of the probability distribution of the cycle
efficiency averaged on n number of cycles. The efficiency η is
normalized to the Carnot efficiency ηc. The black dashed line
indicates the mean value of η=ηc (adapted from Ref. [109]).
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∂sCðt; sÞ ¼ kBTRðt; sÞ; ð27Þ
where in equilibrium Cðt; sÞ and Rðt; sÞ depend only on the
time difference (t − s). However, Eq. (27) is not necessarily
fulfilled out of equilibrium and violations are observed in a
variety of systems, such as glassy materials [24,118–123],
granular matter [124], biological systems [125], and res-
onators [126].
This motivated a theoretical and experimental work

devoted to a search of a general framework describing
FD relations; see the review Ref. [34]. The generalization of
the fluctuation-dissipation theorem around NESS for sys-
tems with Markovian dynamics has been achieved from
different theoretical approaches [17,19,20,127–136]. The
different generalized formulations of FDR link correlation
functions of the fluctuations of the observable of interest
OðxÞ in the unperturbed NESS with the linear response
function of OðxÞ due to a small external time-dependent
perturbation around the NESS. The observables involved
in such relations are not unique, but they are equivalent in
the sense that they lead to the same values of the linear
response function. These theoretical relations may be
useful in experiments and simulations to know the linear
response of the system around NESS. Indeed, the response
can be obtained from measurements entirely done at the
unperturbed NESS of the system of interest without any
need to perform the actual perturbation. Nevertheless,
the theoretical equivalence of the different observables
involved in those relations does not translate into equiv-
alent experimental accessibility: e.g., strongly fluctuating
observables such as instantaneous velocities may lead
to large statistical errors in the measurements [137].
Additionally, NESS quantities themselves, such as local
mean velocities, joint stationary densities, and the stochas-
tic entropy, are not in general as easily measurable as
dynamical observables directly related to the degrees of
freedom [18]. Hence, before implementing the different
fluctuation-response formulas in real situations, it is
important to test its experimental validity under very well
controlled conditions and to assess the influence of
finite data analysis. The experimental test of some fluc-
tuation-dissipation relations has been recently done in
Refs. [18,61,137,138] for colloidal particles in toroidal
optical traps and in systems subjected to thermal gradients
[139,140]. We do not describe here specific experimental
results which have already been widely discussed in the
abovementioned articles (see also Refs. [2,3,34]). What is
important to recall is that this term is related to the out-of-
equilibrium current of the system, which is proportional to
the mean total entropy production for a NESS.

VIII. THERMODYNAMICS, INFORMATION,
AND THE MAXWELL DEMONS

The relationship between stochastic thermodynamics
and information now has an increasing importance both

theoretically and experimentally. This relationship is
related to the famous paradox of a Maxwell’s demon,
which is an intelligent creature able to monitor individual
molecules of a gas contained in two neighboring chambers
[141,142]. Initially, the two chambers are at the same
temperature, defined by the mean kinetic energy of the
molecules and proportional to their mean-square velocity.
Some of the particles, however, travel faster than others.
By opening and closing a molecule-sized trapdoor in the
partitioning wall, the demon can collect the faster mole-
cules in one chamber and the slower ones in the other. The
two chambers then contain gases with different temper-
atures, and that temperature difference may be used to
power a heat engine and produce mechanical work. By
gathering information about the particles positions and
velocities and using that knowledge to sort them, the
demon is able to decrease the entropy of the system and
convert information into energy. Assuming the trapdoor
is frictionless, the demon is able to do all that without
performing any work himself in an apparent violation of the
second law of thermodynamics. This paradox has origi-
nated a long debate on the connection between information
and thermodynamics. A solution of the problem was
proposed in 1929 by Leo Szilard, who used a simplified
one-particle engine to explain it. This gedanken experiment
can nowadays be realized [141].

A. Szilard engine: Work production from information

Modern technologies allow us to realize these gedanken
experiments related to the Maxwell’s demon original idea.

1. Sizlard engine

For example, a Szilard engine was realized in 2010
[143] by using a single microscopic Brownian particle in a
fluid and confined to a spiral-staircase-like potential shown
in Fig. 14. Driven by thermal fluctuations, the particle
performs an erratic up and down motion along the staircase.
However, because of the potential gradient, downward
steps will be more frequent than upward steps, and the
particle will on average fall down. The position of the
particle is measured with the help of a CCD camera.
Each time the particle is observed to jump upwards,
this information is used to insert a potential barrier that
hinders the particle to move down. By repeating this
procedure, the average particle motion is now upstairs
and work is done against the potential gradient. By lifting
the particle, mechanical work has therefore been produced
by gathering information about its position. This is the first
example of a device that converts information into energy
for a system coupled to a single thermal environment.
However, there is not a contradiction with the second law
because Sagawa and Ueda [144] formalized the idea that
information gained through microlevel measurements can
be used to extract added work from a heat engine. Their
formula for the maximum extractable work is
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Wmax ¼ −ΔF þ kBThIi; ð28Þ

where ΔF is the free-energy difference between the
final and initial state and the extra term represents the
so-called mutual information I. In the absence of meas-
urement errors this quantity reduces to the Shannon
entropy: I ¼ −

P
kPðΓkÞ ln½PðΓkÞ�, where PðΓmÞ is the

probability of finding the system in the state Γk. Then in
the specific case of the previously described staircase
potential [143]: I ¼ −p lnp − ð1 − pÞ lnp, where p is
the probability of finding the particle in a specific region.
In this context the Jarzynski equality discussed in

Sec. IV also contains this extra term and it becomes

hexpð−βW þ IÞi ¼ expð−βΔFÞ; ð29Þ

which leads to

hWi ≥ ΔF − kBThIi: ð30Þ

Equations (29) and (30) generalize the second law of
thermodynamics, taking into account the amount of infor-
mation introduced into the system [142,145]. Indeed
Eq. (30) indicates that, thanks to information, the work
performed on the system to drive it between an initial and a

final equilibrium state can be smaller than the free-energy
difference between the two states.
Equation (29) has been directly tested in a single-

electron transistor [146], similar to the one described in
Sec. VIII A.

2. Autonomous Maxwell’s demon improves cooling

In the previous section, Sec. VIII A, the Maxwell’s
demon has been realized using an external feedback.
However, working at low temperature and coupling in
a suitable way the single-electron devices, already
described in Sec. VIII A, one can construct a local
feedback which behaves as an autonomous Maxwell’s
demon and allows an efficient cooling of the system
[147,148]. The device, whose principle is sketched in
Fig. 15(a), is composed by a SET formed by a small
normal metallic island connected to two normal metallic
leads by tunnel junctions, which permit electron transport
between the leads and the island. The SET is biased by a
potential V and a gate voltage Vg, applied to the island via
a capacitance, controls the current I flowing through the
SET. The island is coupled capacitively with a single-
electron box which acts as a demon which detects the
presence of an electron in the island and applies a
feedback. Specifically, when an electron tunnels to the
island, the demon traps it with a positive charge [illus-
trations 1 and 2 in Fig. 15(a)]. Conversely, when an
electron leaves the island, the demon applies a negative
charge to repel further electrons that would enter the island
[illustrations 3 and 4 in Fig. 15(a)]. This effect is obtained
by designing the electrodes of the demon in such a way
that when an electron enters the island from a source
electrode, an electron tunnels out of the demon island
as a response, exploiting the mutual Coulomb repulsion
between the two electrons. Similarly, when an electron
enters to the drain electrode from the system island, an
electron tunnels back to the demon island, attracted by the
overall positive charge. The cycle of these interactions
between the two devices realizes the autonomous demon,
which allows the cooling of the leads. In the experimental
realization presented in Ref. [147], the leads and the
demon were thermally insulated, and the measurements of
their temperatures is used to characterize the effect of the
demon on the device operation. In Fig. 15(b) we plot the
variation of the lead temperatures as a function of ng ∝ Vg

when the demon acts on the system. We clearly see that
around ng ¼ 1=2 the two leads are both cooled of 1 mK at
a mean temperature of 50 mK. This occurs because the
tunneling electrons have to take the energy from the
thermal energy of the leads, which, being thermally
isolated, cool down. This increases the rate at which
electrons tunnel against Coulomb repulsion, giving rise to
increased cooling power. At the same time, the demon
increases its temperature because it has to dissipate energy
in order to process information, as discussed in Ref. [149].

FIG. 14. (a) Experimental realization of Szilard’s engine. (a) A
colloidal particle in a staircase potential moves downward on
average, but energy fluctuations can push it upward from time to
time. (b) When the demon observes such an event, it inserts a wall
to prevent downward steps. By repeating this procedure, the
particle can be brought to move upwards, performing work
against the force created by the staircase potential. In the actual
experiment, the staircase potential is implemented by a tilted
periodic potential and the insertion of the wall is simply realized
by switching the potential, replacing a minimum (no wall) by a
maximum (wall) (adapted from Ref. [143]).
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Thus, the total (system plus demon) energy production is
positive. The coupling of the demon with the SET can be
controlled by a second gate which acts on the single-
electron box. In Fig. 15(c) we plot the measured temper-
atures when the demon has been switched off. We clearly
see that in such a case the demon temperature does not
change and the two electrodes are heating up because of
the current flow. As far as I know, this is the only example
that shows that under specific conditions an autonomous
local Maxwell’s demon, which does not use the external
feedback, can be realized.

B. Energy cost of information erasure

The experiments in the previous two sections show
that one can extract work from information. In the rest
of this section, we discuss the reverse process, i.e., the
energy needed to erase information. By applying the
second law of thermodynamics, Landauer demonstrated
that information erasure is necessarily a dissipative
process: the erasure of one bit of information is accom-
panied by the production of at least kBT lnð2Þ of heat into
the environment. This result is known as Landauer’s
erasure principle. It emphasizes the fundamental differ-
ence between the process of writing and erasing infor-
mation. Writing is akin to copying information from one
device to another: state left is mapped to left and state
right is mapped to right, for example. This one-to-one
mapping can be realized in principle without dissipating
any heat (in statistical mechanics one would say that it
conserves the volume in phase space). By contrast,
erasing information is a two-to-one transformation: states
left and right are mapped onto one single state, say, right
(this process does not conserve the volume in phase
space and is thus dissipative).
Landauer’s original thought experiment was realized

[150,151] for the first time in a real system in 2011 using
a colloidal Brownian particle in a fluid trapped in a double-
well potential produced by two strongly focused laser
beams. This system has two distinct states (particle in the
right or left well) and may thus be used to store one bit of
information. The erasure principle has been verified by
implementing a protocol proposed by Bennett and illus-
trated in Fig. 16. At the beginning of the erasure process,
the colloidal particle may be either in the left or right well
with equal probability of one-half. The erasure protocol is
composed of the following steps: (1) the barrier height is
first decreased by varying the laser intensity, (2) the particle
is then pushed to the right by gently inclining the potential.
and (3) the potential is brought back to its initial shape.
At the end of the process, the particle is in the right well
with unit probability, irrespective of its departure position.
As in the previous experiment, the position of the particle is
recorded with the help of a camera. For a full erasure cycle,
the average heat dissipated into the environment is equal
to the average work needed to modulate the form of the
double-well potential. This quantity was evaluated from the
measured trajectory and shown to always be larger than
the Landauer bound, which is asymptotically approached
in the limit of long erasure times. However, in order to
reach the bound, the protocol must be accurately chosen
because, as discussed in Ref. [150] and shown experimen-
tally [152], there are protocols that are intrinsically irre-
versible no matter how slowly they are performed. The way
in which a protocol can be optimized has been theoretically
solved in Ref. [153], but the optimal protocol is not often
easy to apply in an experiment.

FIG. 15. (a) Principle of the experimental realization of the
autonomous Maxwell’s demon. The horizontal top row schema-
tizes a single-electron transistor. Electrons (blue circle) can tunnel
inside the central island from the left wall and outside from the
right wall. The demon watches at the state of the island and it
applies a positive charge to attract the electrons when they tunnel
inside and repels them when they tunnel outside. The systems
cools because of the energy released toward the heat bath by
the tunneling events, and the presence of the demon makes the
cooling processes more efficient. The energy variation of the
processes is negative because of the information introduced by
the demon. (b) The measured temperature variations of the left
(blue line) and right (green line) leads as a function of the external
control parameter ng when the demon is active and the bath
temperature is 50 mK. We see that at the optimum value,
ng ¼ 1=2, both leads are cooled to about 1 mK and the current
I flowing through the SET (black line) has a maximum. At the
same time, in order to processes information the temperature of
the demon (red line) increases a few mK. (c) The same parameters
of (b) are measured when the demon is not active. We see that the
demon temperature does not change, whereas both leads are now
heated by the current I.
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C. Other examples on the connection between
information and energy

By having successfully turned gedanken into real experi-
ments, the above three seminal examples provide a firm
empirical foundation to the physics of information and
the intimate connection existing between information and
energy. This connection is reenforced by the relationship
between the generalized Jarzinsky equality [154] and the
Landauer bound, which has been proved and tested on
experimental data in Ref. [151]. A recent article [155]
extends the equivalence of information and thermodynamic
entropies at thermal equilibrium.
A number of additional experiments have been performed

on this subject [156–160]. For example, in Ref. [157] the
symmetry breaking, induced in the probability distribution
of the position of a Brownian particle, is studied by com-
muting the trapping potential from a single- to a double-well
potential. The authors measured the time evolution of the
system entropy and showed how to produce work from
information. The experiment in Ref. [160] shows that using a
Maxwell’s demon in the information erasure costs less
energy than the Landauer bound. It is worth mentioning
experiments where the Landauer bound has been reached in
nano devices [156,159]. These experiments open the way to
insightful applications for future developments of informa-
tion technology.
Finally, the connection between thermodynamics

and information plays a very important role in the
understanding of biological systems [161,162]. Indeed,

information can be used to produce motion and, on the
contrary, information processing needs energy. We do not
discuss in more detail this important topic, which is
developed in two other articles [163,164].

IX. USE OF STOCHASTIC THERMODYNAMICS
IN EXPERIMENTS: DISCUSSION

AND PERSPECTIVES

In this review we present various experimental results
that allow us to introduce several fundamental concepts
of stochastic thermodynamics, such as the FT for heat
and work, the Jarzynski equality, and the trajectory entropy.
We have already mentioned several applications of these
concepts to the measure of the system response in NESS, to
the free-energy estimation, and to the relationship between
information and thermodynamics. In the experiments that
we have described, all of the theoretical predictions are
perfectly verified; thus, the question here is to see whether
those findings of stochastic thermodynamics might become
a useful measurement tool that allows us to calibrate and
to make predictions in experiments. We discuss here
several examples.

A. Using FT to calibrate an experiment

FT can be used to have a precise estimation of either
an offset or a calibration error in an experiment. The
method can be easily understood by considering the
systems modeled by either one or several Langevin

FIG. 16. Experimental verification of Landauer’s erasure principle. A colloidal particle is initially confined in one of two wells of a
double-well potential with probability one-half. This configuration stores one bit of information. By modulating the height of the barrier
and applying a tilt, the particle can be brought to one of the wells with probability one, irrespective of the initial position. This final
configuration corresponds to zero bit of information. In the limit of long erasure cycles, the heat dissipated during the erasure process can
approach, but not exceed, the Landauer bound indicated by the dashed line in the right panel (see Ref. [150] for details).
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equations described in Secs. II, III D, and V. For these
systems we have seen that the work and heat PDF satisfy
a FT. Thus, in an experimental system that can be modeled
by the Langevin equation, one can check the good
calibration of the apparatus by computing the work and
checking whether the FT holds for the measured variables.
If it does not hold, it means that some error has been made
in the calibration or some small offset exists in the
measured quantities (see also Refs. [38,165]).

B. Role of hidden variables

Along the same line of Sec. IX A, FT can be used to
estimate unknown parameters of a device. For example,
such a method has been used to measure the power of
molecular motors [38,166]. The idea is certainly very
smart and merits serious consideration for applications.
However, one has to pay attention to the influence of
hidden variables. Indeed, in Ref. [167] it has been
pointed out that in the abovementioned experiment of
Ref. [166] a hidden variable has been neglected; thus, the
estimated value of the motor power could be affected
by a large error. Another interesting analysis on hidden
variables has been done in Ref. [168] for the experiment
of Ref. [169] on a SET. In this experiment the bias
obtained from the measured FT does not completely
match with the experimental value of the applied bias. In
Ref. [168] it has been shown that this discrepancy is due
to the additional bias introduced by the SET that is used
to measure the electron transfers. More recent measures
proved that this is the case [170]. Another accurate
experimental analysis of the role of a hidden variable
on FT properties has been reported in Ref. [171]. This
role can be easily understood by looking at the experi-
ment described in Sec. V, which is modeled by the
coupled Langevin equations (20) and (21). Suppose now
that in that experiment instead of having access to both
V1 and V2 variables, only one of the two can be
measured. We immediately see that there is no way of
extracting the good values from the measurements. Thus,
the use of FT to extract experimental parameters from an
experiment might be a very good method, but it has to be
used with caution because of the possible existence of
hidden variables.

C. Statistical inferences

The problem of hidden variables mentioned in Sec. IX B
has been attacked in a different way in Refs. [172,173].
This approach, called statistical inferences by the authors,
analyzes to what extent the fact that FT and FDR do not
hold can give information on hidden variables. In
Ref. [173] the authors have been able to extract interesting
information on a single-molecule measurements. Thus, the
approach is certainly interesting and it merits further study
in more detail in the future.

D. Nano or micro motor efficiency

The other aspect that we have briefly discussed in
Sec. VI concerns the efficiency of nano or micro motor.
In spite of the large number of theoretical results on this
subject, there is a lack of experiments in this important
field, especially in what concerns the efficiency of power
supplies and of chemically driven motors. A bound on the
efficiency of these motors has been recently fixed by the
recently discovered indetermination relations [114–116].
However, as we have already said, no proof-of-principle
experiment, such as the Carnot cycle discussed in Sec. VI,
has been performed for chemically driven motors.

E. Role of Maxwell’s demons

The role ofMaxwell’s demons in increasing the efficiency
of small devices is certainly very important. This subject is in
its infancy and it might havevery powerful applications. The
described autonomousMaxwell’s demon is certainly a smart
system. However, it works because of the very small
operational temperature of the device. A very big challenge
is the realization of such an autonomous demon for a device
working at room temperature. At the moment, such a device
does not exist, and it is not even clear in which physical or
chemical system it could be realized.

F. Energy information connection

The connection of stochastic thermodynamics with the
energy dissipation in each logic operation is the last issue
that we have developed. It is clearly very important in
connection to the autonomous Maxwell’s demon to esti-
mate the amount of work that the demon has to perform in
order to process information. This will allow us to decide
whether the application of a demon is really an advantage to
reduce the energy consumption. Furthermore, deeper
knowledge of the connection between thermodynamics
and information is certainly useful not only to understand
biological processes but also to develop methods that allow
us to recover energy during reversible logical operation.
Also, this field is in his infancy and future development will
certainly appear.

G. Macroscopic and self-propelling systems

The are several aspects that we do not present because
this will extend too much the purpose of this review.
The first is the application to quantum systems, which
presents several problems discussed in another article
[174]. The other aspects are those related to the application
of stochastic thermodynamics to dissipative chaotic sys-
tems driven out of equilibrium by external forces such as,
for example, shaken granular media, turbulence fields, and
chaotic nonlinear oscillators. In these systems the main
source of randomness is not the thermal noise but the
chaotic behavior produced by the complex dynamics. As
summarized in Ref. [3], the main problem is the absence of
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a characteristic energy scale for all the degrees of freedom,
something similar to an “effective temperature.” Thus, the
possibility of applying the same tools discussed in this
article to nonthermal systems is certainly not universal
and it has to be studied in the specific cases. The same
problem occurs in the more recent applications of the
stochastic thermodynamics tools to the fluctuations in
self-propelling systems [32,33], on which it is difficult
to make very general statements as for the systems analyzed
in this article.

H. Conclusions

This review of the experimental aspects and applications
of stochastic thermodynamics is certainly not exhaustive,
as several topics have only been mentioned and not
developed. Furthermore, quantum aspects and macroscopic
systems have not been treated at all. However, we think that
this review gives a reasonable idea of what has been already
done, of what remains to do, and of what the possible
practical applications of stochastic thermodynamics are.
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