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Traditional studies of chaos in conservative and driven dissipative systems have established a
correspondence between sensitive dependence on initial conditions and fractal basin boundaries, but
much less is known about the relation between geometry and dynamics in undriven dissipative systems.
These systems can exhibit a prevalent form of complex dynamics, dubbed doubly transient chaos because
not only typical trajectories but also the (otherwise invariant) chaotic saddles are transient. This property,
along with a manifest lack of scale invariance, has hindered the study of the geometric properties of basin
boundaries in these systems—most remarkably, the very question of whether they are fractal across all
scales has yet to be answered. Here, we derive a general dynamical condition that answers this question,
which we use to demonstrate that the basin boundaries can indeed form a true fractal; in fact, they do so
generically in a broad class of transiently chaotic undriven dissipative systems. Using physical examples,
we demonstrate that the boundaries typically form a slim fractal, which we define as a set whose dimension
at a given resolution decreases when the resolution is increased. To properly characterize such sets, we
introduce the notion of equivalent dimension for quantifying their relation with sensitive dependence on
initial conditions at all scales. We show that slim fractal boundaries can exhibit complex geometry even
when they do not form a true fractal and fractal scaling is observed only above a certain length scale at each
boundary point. Thus, our results reveal slim fractals as a geometrical hallmark of transient chaos in
undriven dissipative systems.
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I. INTRODUCTION

Physicists often relate chaos with fractal basin bounda-
ries and sensitive dependence on initial conditions [1–5].
While the former is a geometrical concept and the latter is
inherently dynamical, the correspondence between the two
has been established for conservative systems and driven
dissipative systems. For example, in driven dissipative
systems, the geometry and dynamics of a chaotic attractor
are explicitly related through the Kaplan-Yorke formula [6],
which connects the information dimension of the attractor
with its Lyapunov exponents. A generalization of this
formula to chaotic saddles is the Kantz-Grassberger rela-
tion [7], which connects the information dimensions along
unstable directions with the associated Lyapunov expo-
nents and the overall rate of escape from the saddle. While
some fundamental open problems remain subjects of
active research (e.g., the properties and applications of
transient chaos [8–12], as well as the robustness [13], the

classification [14], and the very definition [15] of chaos),
studies of chaos in such systems are relatively mature [16].
In contrast, much less is understood about the relation

between dynamics and geometry in the large class of
physical processes categorized as dissipative but undriven,
in which energy dissipated is not balanced by energy
injected into the system. Examples of such systems abound,
including coalescing binary systems in astrophysics,
interacting vortices in viscous flows, chemical reactions
approaching equilibrium, and many forms of self-
organization. It also includes various arcade games (e.g.,
pinball) and games of chance (e.g., coin flipping and dice
throwing), as well as cue and throwing sports (e.g., billiards
and bowling). Because of the monotonic decrease of energy
to its minima in such systems, all trajectories in a compact
phase space will eventually settle to one of the fixed points,
and the fixed points are the only invariant sets. Yet, for
a transient period of time, the dynamics can be very
complicated and can demonstrate sensitive dependence
on initial conditions.
A recent paper by a collaboration involving one of us

[17] studied the nature of the dynamics of such systems.
It was demonstrated that these systems show fundamentally
different properties when compared to driven dissipative
systems. In particular, they exhibit doubly transient chaos:
System trajectories transiently follow a chaotic saddle,
which is itself transient. Moreover, the fraction of unsettled
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trajectories follows a doubly exponential function of time,
which corresponds to an exponential settling rate rather than
the constant settling rate observed in driven dissipative
systems. However, the geometry of the attraction basins
has not been characterized and has generally been perceived
as a very hard problem to address because these systems do
not enjoy scale invariance (i.e., the basin boundaries do not
exhibit any form of self-similarity, not even statistically).
While it is known [2,5,17] that the attraction basins are
intertwined and appear fractal-like, the absence of invariant
chaotic saddles suggests that the basin boundaries may be
simple at sufficiently small scales. Hence, the question
remains whether the boundaries are true fractals. If the
boundaries are fractals, what leads to the fractality despite
the lack of invariant chaotic saddles? If they are not fractals, is
there a characteristic length scale for the system that defines
the resolution at which the boundaries become simple? How
canwe quantify the sensitive dependence on initial conditions
in terms of their geometry? What roles do the observation
length scale and computational precision play in one’s ability
to measure and simulate the dynamics of the system?
In this article, we investigate the geometry of attraction

basins to address the questions posed above. We derive the
condition under which the boundaries form a true fractal set
(i.e., successive magnifications of the boundaries reveal
new structures at arbitrarily small scales) and have the
Wada property [18] (i.e., any boundary point between two
basins is also a boundary point between all basins) for a
general class of undriven dissipative systems. We show that
this condition is satisfied generically, indicating that true
fractal basin boundaries and the associated sensitive
dependence on initial conditions are not only possible
but are, in fact, common. The boundaries can also form a
finite-scale fractal, characterized at each point by a finite
length scale above which the fractal property is observed
and below which the boundaries are simple around
that point. Through extensive, high-precision numerical
simulations on physical examples—the dynamics of a
roulette of different shapes—we show that this fractality
length scale can be smaller than the resolution typically
used in simulations, making such basin boundaries practi-
cally indistinguishable from true fractals. We also find
that, as a function of phase-space position, the fractality
length scale can vary across many orders of magnitude. A
common feature shared by the observed fractal and finite-
scale fractal basin boundaries is that (at a given phase-space
position) the fractal dimension for a given length scale
decreases with the decrease of that length scale. Since this
property implies that the boundaries would appear to cover
less space when observed at higher resolution, we call such
sets slim fractals. For characterizing the complex geometry
of such boundaries, the existing fractal dimensions are not
adequate, whether they are defined asymptotically at zero
length scale or defined at a given finite length scale. Thus,
to capture the cumulative effect of fractal scaling across all

scales, we define the notion of equivalent dimension based
on the process of increasing the initial-state accuracy to
reduce the final-state uncertainty.
In the following, we first introduce the class of systems

we consider and derive the condition for the fractality of
their basin boundaries (Sec. II). We then apply the con-
dition to the roulette systems and numerically validate the
results (Sec. III). This is followed by the introduction of
the equivalent dimension and its application to the roulette
systems (Sec. IV). We provide concluding remarks in the
final section (Sec. V).

II. FRACTALITY CONDITION FOR
BASIN BOUNDARIES

For concreteness, here we focus on the class of two-
dimensional potential systems with frictional dissipation
having n stable equilibria symmetrically located around
an unstable equilibrium and separated by “hills” in the
potential function. The equations of motion for such a
system are

ẍþ μ_x ¼ −
∂U
∂x ; ÿþ μ_y ¼ −

∂U
∂y ; ð1Þ

where μ is the dissipation constant and Uðx; yÞ is the
potential function. The dynamics of this system can be
regarded as a scattering process, in which a trajectory
entering the neighborhood of the unstable equilibrium
swings back and forth chaotically between the hills before
approaching one of the stable equilibria. The dynamics
is thus dominated by the shape of the potential in this
scattering region near the unstable equilibrium, which we
define to be the origin. Writing in polar coordinates, the
shape of the potential function near the origin is determined
by the leading term in the expansion,

Uðr; θÞ ¼ a2ðθÞr2 þ a3ðθÞr3 þ � � � ; ð2Þ

if Uðr; θÞ is smooth with respect to r. The symmetry of the
system implies that the coefficients are n-fold periodic
functions: aiðθ þ 2πj=nÞ ¼ aiðθÞ for each integer j. The
coefficient a2ðθÞ additionally satisfies a2ð2πj=nÞ ≤ 0 and
a02ð2πj=nÞ ¼ 0 for each j because the attracting equilibria
can be assumed to be located along the lines θ ¼ 2πj=n
without loss of generality.
We establish that the fractality of the basin boundaries

is determined by system trajectories that move down a hill
in the potential and approach the neighborhood of the
origin. Specifically, we show that the basin boundaries are
(1) fractal if all such trajectories pass through the neighbor-
hood and (2) not fractal if some of them can asymptotically
approach the origin without passing through it. Case
(1) includes the generic situations in which a2ðθÞr2 is
the leading term in Eq. (2), coefficient a2ðθÞ takes both
positive and negative values depending on θ [with positive
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a2ðθÞ in the direction of the hills], and the dissipation is
sufficiently weak. Case (2) includes the nongeneric sit-
uation in which a2ðθÞ is identically zero [thus making the
leading term in Eq. (2) cubic or higher], and the leading
coefficient ajðθÞ takes both positive and negative values.
As an example for case (1), consider the potential

U2ðr; θÞ≡ −r2 cos 3θ ð3Þ
[i.e., n ¼ 3, a2ðθÞ ¼ − cos 3θ, and no higher-order terms].
Although this potential makes Eq. (1) an open scattering
system with no attractors, it can be regarded as an
approximation of a system that has n ¼ 3 attractors far
away from the scattering region. There are three possible
ways [denoted E1, E2, and E3; see Fig. 1(a)] for a trajectory
to exit the scattering region. We can show that, between any
two trajectories starting on the vertical line segment labeled

A in Fig. 1(a) with velocity zero and eventually leaving the
region through two different exits, we can find another
trajectory that goes to the third exit (see Appendix A). Such
a situation is illustrated in Fig. 1(a) by the red and green
trajectories starting near the color boundary on segment A,
which turn around near curve B and exit the region through
E1 and E2, respectively. We indeed see that the orange
trajectory starting between them turns around near B,
passes the neighborhood of the origin, and exits through
E3. Since the same situation can occur after an arbitrary
number of oscillations between the hills (e.g., after bounc-
ing off B once and reaching C), this translates to the
following property of the basins on A: Between any two
segments of different colors, we can always find a segment
of the third color. These geometrical properties are verified
numerically by successive magnifications near a boundary
point in Fig. 1(b). We note that our argument for segment A
(on which the initial velocity is zero) can be extended to an
arbitrary line segment in the full four-dimensional phase
space connecting points from different basins (see
Appendix A). This implies that any cross section of the
neighborhood of any boundary point has a similar Cantor-
set structure and has the Wada property, establishing that
the entire set of basin boundaries is fractal.
As an example for case (2), consider the potential

U3ðr; θÞ≡ −r3 cos 3θ ð4Þ
[i.e., n ¼ 3, a2ðθÞ ¼ 0, a3ðθÞ ¼ − cos 3θ, and no higher-
order terms]. With this potential, Eq. (1) is also an open
scattering system that approximates one with three attrac-
tors. In this case, we can show that there exists a finite-
length line segment f−rs ≤ x ≤ 0; y ¼ 0g from which
all trajectories approach the origin asymptotically [see
Appendix A] and that this segment is a simple boundary
between the basins of E2 and E3, which does not belong
to the boundary of the basin of E1. This is because any
trajectory starting above (below) this segment with zero
initial velocity, no matter how close it is to the segment,
moves toward the origin initially but soon curves away and
exits through E2 (E3). The trajectories starting exactly on
the segment do not exit the region at all. The green, orange,
and black trajectories starting from A0 in Fig. 1(c) illustrate
this situation. Thus, every point on this segment is a
boundary point between basins of E2 and E3 and hence
is a non-Wada point, implying that successive magnifica-
tions around this segment would not reveal any finer
structures. We can further show that the segment splits
into two branches forming simple boundaries, each of
which in turn splits into two branches forming simple
boundaries [see branching points indicated by blue arrows
in Fig. 1(c)], and so on, composing a binary tree of simple
boundary segments. Thus, the boundaries are not fractal
[as numerically verified by successive magnifications in
Fig. 1(d)]; however, since they have a Cantor set structure
down to finite length scales (which are different for
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FIG. 1. Geometry and dynamics in the scattering region of
undriven dissipative systems. (a) Fractal basin boundaries in the
two-dimensional cross section _x ¼ _y ¼ 0 for potential U2ðr; θÞ
and μ ¼ 0.2. The basins of the exits E1, E2, and E3 are colored
red, green, and beige, respectively. Trajectories starting on the
one-dimensional cross section at x ¼ −0.5 (vertical line segment
A) are shown with arrows indicating the direction of flow and
colors indicating the basin to which they belong. (b) Successive
magnifications of the one-dimensional cross section at x ¼ −0.5
in (a), showing the fractal nature of the basin boundaries.
(c) Finite-scale fractal basin boundaries for the potential
U3ðr; θÞ and μ ¼ 1. Trajectories with initial conditions on the
cross sections at x ¼ −0.2 (segment A0), x ¼ −0.5 (segment B0),
and x ¼ −1 (segment C0) are shown. (d) Successive magnifica-
tions of the cross section at x ¼ −1 in (c), revealing a simple
boundary.
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different branches), we say that such boundaries form a
finite-scale fractal. We now generalize this result to lift the
zero initial velocity assumption. Our argument is based on
applying the center manifold reduction [19] to the equi-
librium at the origin. Transforming Eq. (1) with U3ðr; θÞ
into a suitable coordinate system ð~x; ~y; ~u; ~vÞ, we determine
the local center manifold to be

�
~u

~v

�
¼ 3

μ2

�
−~x2 þ ~y2

2~x ~y

�
ð5Þ

and the dynamics on that manifold to be

_~x ¼ 3

μ
ð~x2 − ~y2Þ;

_~y ¼ −
6

μ
~x ~y; ð6Þ

up to second order in ~x and ~y. These are both visualized in
Fig. 2. By extending the local basin boundaries determined
by Eq. (6) to the global phase space, we establish that
the full set of basin boundaries is a finite-scale fractal
(see Appendix A for details).
It is interesting to note that the stable manifold of just one

equilibrium (the origin) is responsible for the full complex-
ity of the basin boundaries—whether they are fractal or
finite-scale fractal—for the class of systems we consider.
To see this, note that the basin boundaries consist of all
points from which the trajectories never leave the scattering
region. Since the only possible asymptotic state in this
region is the unstable equilibrium at the origin, any
trajectory starting from a boundary point must approach
the equilibrium. Conversely, any point from which the
trajectory converges to the equilibrium is a boundary point.
This is because one can always find an arbitrarily small
change to the initial point that would make the trajectory
steer left or right just before converging to the equilibrium,
and eventually leave the scattering region through one exit
or another. Thus, the set of boundary points is the stable
manifold of the equilibrium.
In addition to case (2) discussed above, finite-scale

fractals can arise when the origin is a local maximum of
the potential [e.g., when a2ðθÞ < 0 for all θ], if the higher-
order terms in Eq. (2) create unstable saddle points that play
a role similar to that played by the origin in our argument
above. Wewill see an example of this situation below. Also,
the transition between fractal and finite-scale fractal boun-
daries can be studied using the class of potentials

Uαðr; θÞ≡ −rα cos 3θ ð7Þ
with arbitrary real parameter α. Indeed, we can fully
characterize this fractality transition: The boundaries
are fractal if α ≤ 2 and finite-scale fractal if α > 2
(see Appendix B for the analysis and Appendix C for
numerical verification).

Finally, we note that our arguments above do not rely on
the linearity of the dissipative term in Eq. (1) and can also
be applied to systems with nonlinear dissipation (i.e., when
μ is not constant and instead depends on the position, such
as in electric circuits with nonlinear resistors [20] and in
nanomechanical resonators [21]). In particular, our frac-
tality condition based on the behavior of the trajectories
approaching the origin remains valid for any nonnegative
function μ ¼ μðr; θÞ, and the condition can be expressed in
terms of μðr; θÞ (see Appendix B). For instance, if the
dissipation is of the form μ ¼ μ0rq, this condition reads as
follows: The boundaries form a true fractal if α ≤ 2ð1þ qÞ
and a finite-scale fractal if α > 2ð1þ qÞ.

III. ROULETTE AS A MODEL SYSTEM

As a physical example that can be described using a
potential of the form (2), consider a roulette system. When
the game is played in reality, a ball is released to a spinning

FIG. 2. Center manifold reduction of the dynamics at the origin
for Eq. (1) with U3ðr; θÞ. (a) Three-dimensional projection of the
approximate center manifold given by Eq. (5). (b) Approximate
dynamics on the center manifold, given by Eq. (6). The blue
curves are trajectories initiated at the (randomly chosen) initial
conditions indicated by red dots.
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roulettewith 38 slots labeledwith different numbers. Theball
collides multiple times with bumps on the surface of the
roulette and eventually falls into one of the slots. In our
study,we simplify this systemby assuming that the roulette is
still, has a smooth surface, and has three slots (thus, n ¼ 3).
We consider three different shapes of the roulette surface,
shown in Fig. 3 and given by the following functions:

S1ðr; θÞ≡ −r2 cos 3θ þ 1

2
r4; ð8Þ

S2ðr; θÞ≡ −r3 cos 3θ þ 3

4
r4; ð9Þ

S3ðr; θÞ≡ −ð2þ cos 3θÞr2 þ 3

2
r4: ð10Þ

Note that these functions also serve as the (gravitational)
potential of the system, and the three slots correspond to
three fixed-point attractors A1, A2, and A3 located at
ðr; θÞ ¼ ð1; 0Þ; ð1; 2π=3Þ, and ð1; 4π=3Þ, respectively. This
means that the results established above apply to this system,
implying that the basin boundaries are fractal for S1 [for
which a2ðθÞ ¼ − cos 3θ takes both positive and negative
values], while the boundaries are finite-scale fractal for S2
[for which a2ðθÞ ¼ 0] and for S3 [for which a2ðθÞ ¼ −ð2þ
cos 3θÞ < 0 for all θ, and the surface has three additional
saddle points, as indicated by the red dots in Fig. 3]. To
compensate for the fact that our simplified roulette is still, we
consider initial conditions in which the ball is placed on the
circle r ¼ 2 and has a velocity tangent to the circle. Friction
and gravity dominate the motion of the ball. In order to
prevent the ball from moving too far from the center of
the roulette, we impose a maximum vmaxðθ0Þ on the initial
speed v0, where vmaxðθ0Þ is defined as the value of v0

corresponding to zero centrifugal acceleration when the
ball’s initial position is ð2; θ0Þ in polar coordinates. The
ball experiences a dragging force proportional to its velocity
with coefficient μ [representing dissipation, as in Eq. (1)],
and here we use μ ¼ 0.2.
Figures 4(a)–4(c) show that, despite the difference in the

fractality resulting from the three shapes, the numerically
estimated boundaries between the basins of the three
attractors in the phase space show highly convoluted,
fractal-like structures in all three cases. Comparing
Figs. 4(a) and 4(b), we observe that the basin boundaries
appear more complex for S2 than for S1. However, a closer
look at the structure around the points P1 and P2 [marked
in Figs. 4(a) and 4(b), respectively] through successive
magnifications of one-dimensional cross sections in Fig. 5
reveals a surprising result: While for S1 a new basin keeps
appearing upon magnification [Fig. 5(a)] even at the limit
of numerical precision used for integration (on the order of
10−31), the magnification plots for S2 [Fig. 5(b)] show that
the basin boundary is simple below a certain finite length
scale (on the order of 10−15). To systematically quantify
this fractality length scale, consider applying the bisection
algorithm to a small vertical line segment of length Δ in the
ðv0; θ0Þ space, which can be used to estimate the location of
a boundary point (to a given numerical resolution). We
define lðv0; θ0Þ to be the length of the interval used in the
last occurrence of the following situation in the bisection
process: The midpoint belongs to a basin that differs from
those to which the two end points belong. For example, the
quadruple-precision bisection procedure used to generate
the magnification plots in Fig. 5 for P1 and P2 gives
l ≈ 2.58 × 10−27 and l ¼ 1.42 × 10−15, respectively (with
Δ ¼ 0.1 and resolution on the order of 10−27; see
Appendix D for details). Note that the fractality length

FIG. 3. Three shapes of the roulette surface that we consider, given by the functions S1, S2, and S3 defined in the text. In each panel,
the white dot indicates the unstable fixed point at the origin, the green dots the attractors (A1, A2, and A3), and the red dots the saddle
points away from the origin (only present for S3). The part of each surface corresponding to Siðr; θÞ < 0.5 is shown in the bottom row.
Surface colors indicate the value of the function, and a common color scheme is used in all six panels.
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scale at P2 is at the limit of double-precision calculation
and thus could not be clearly resolved without using higher
precision. This illustrates the fact that a finite-scale fractal
can be numerically indistinguishable from true fractals. The
fractality length scale can also be seen as a quantitative
measure of the Wada property at a given point (see
Ref. [22] for a different numerical approach to quantify
this property).
The fractality length scale lðv0; θ0Þ can generally

depend on phase-space location ðv0; θ0Þ, and its spatial

distribution is quite different for the three example shapes
[see Figs. 4(d)–4(f)]. For S1, the computed length scale l is
at the chosen precision (¼ 10−13) uniformly over the
boundary set (although the exact number depends slightly
on the details of each bisection sequence), which is
consistent with the true fractality of the boundaries.
For both S2 and S3, the boundaries are finite-scale fractals,
and for S3, the length scale l is indeed well above the scale
of the chosen precision across the boundary set. In contrast,
l shows a mixed behavior for S2, where l is close to the
scale of the chosen precision for the most part but is well
above that scale in certain locations. In this sense, the finite-
scale fractal for S2 is closer to a true fractal than for S3.
Further analysis of the probability distribution of l, as well
as of a quantitative measure of the Wada property, corrob-
orates these observations (see Appendix E).
We expect to see similar geometry of the basin bounda-

ries if we consider the more realistic case of a roulette
rotating at a constant angular velocity with zero initial
velocity for the ball. Rewriting Eq. (1) in the frame
corotating with the roulette, we gain two additional terms
representing the centrifugal and Coriolis forces. The former
effectively adds a constant to the coefficient a2ðθÞ in
Eq. (2), while the latter simply shifts the location of the

FIG. 5. Successive magnification of the attraction basins on
vertical line segments through the points P1 (a) and P2 (b) in
Figs. 4(a) and 4(b), respectively. The numbers on the left indicate
the length of the magnified intervals. The details on the computa-
tional procedure used to generate this figure can be found in
Appendix D.

FIG. 4. Slim fractal boundaries of the attraction basins for the
roulette system. (a)–(c) Attraction basins for the roulette shapes
shown in Fig. 3 in the two-dimensional subspace parametrized
by the initial condition ðv0; θ0Þ. The red, green, and beige regions
indicate the basins of the attractors A1, A2, and A3 (marked in
Fig. 3), respectively. (d)–(f) Spatial distribution of the (color-
coded) fractality length scale lðv0; θ0Þ on the boundaries of the
basins shown in (a)–(c). Note that v0 and θ0 are normalized by vmax
and 2π=3, respectively, only for the axes of the plots and
not for the computation of lðv0; θ0Þ. We compute lðv0; θ0Þ
using double precision and the bisection resolution of 10−13

for each of the 1024 × 1024 grid points [corresponding to
Δ ¼ 2−10vmaxðθ0Þ, which ranges from 3.38 × 10−3 to 6.48×10−3

depending on θ0 and the roulette shape].
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basin boundaries without altering the fractality of the
boundaries.

IV. EQUIVALENT DIMENSION
FOR SLIM FRACTALS

The fractality of the basin boundaries can also be
quantitatively characterized by their dimension, which
can be defined through a scaling relation between initial-
state accuracy and final-state uncertainty [1,23]. For a self-
similar system and an N-dimensional region of its phase
space, the scaling is fðεÞ ∼ εN−D, where the constant D is
defined as the fractal dimension of the boundaries, and fðεÞ
is the final-state uncertainty, defined as the fraction of pairs
of points belonging to different basins among all pairs that
are within the region and ε apart from each other. In
contrast, the scaling exponent is resolution dependent for
the systems studied here [as shown in Figs. 6(a)–6(c) for
the roulette system], which motivates us to adopt a finite-
scale measure of the dimension. With that in mind, we first
consider using the effective fractal dimension [24–26]
given by

DeffðεÞ ¼ N −
d ln fðε0Þ
d ln ε0

����
ε0¼ε

; ð11Þ

which is a strictly local measure of how uncertainty
changes with resolution. Specifically, the effective dimen-
sion describes the relation between small improvement in
initial-state accuracy and the resulting reduction in final-
state uncertainty at the finite scale ε. The usual (asymptotic)
definition of fractal dimension is recovered in the limit
ε → 0.

In general, for slim fractals—which we define as having
Deff that decreases with decreasing ε—the effective dimen-
sion at a given scale fails to capture the complexity of the
basin boundaries observed at larger scales and its impact on
the dynamics. To see this, consider the case of finite-scale
fractals, for whichwe haveDeff ¼ N − 1 below the fractality
length scale δ > 0. In this case, the final-state uncertainty
scales as fðεÞ ∼ εN−D ¼ ε, which is the same as that of a
system without sensitive dependence on initial conditions.
This means that the improvement in the accuracy of initial
conditions (i.e., the amount by which ε is reduced) required
to achieve a given level of uncertainty can be much less
compared to the case of fractal boundaries with N −D < 1.
However, a prerequisite for benefiting from this linear scaling
is that ε < δ, which is itself a requirement on the accuracy of
initial conditions. A similar argument applies to the case of
true (but slim) fractals since benefiting from smaller Deff
(thus larger scaling exponents) requires the initial condition
accuracy to be high in the first place.
To characterize the finite-scale sensitive dependence on

initial conditions, we define a new dimension DeqðεÞ to be
the dimension of an equivalent self-similar system, whose
final-state uncertainty is the same as the system being
studied at two different scales: ε and a larger reference
scale L. We term this quantity equivalent dimension and
show that it can be expressed as

DeqðεÞ ¼
1

lnL − ln ε

Z
L

ε

Deffðε0Þ
ε0

dε0; ð12Þ

which, as an integral quantity, properly accounts for
the cumulative impact of the effective dimension on the

FIG. 6. Dimension of slim fractals. (a)–(c) Uncertainty function fðεÞ estimated by sampling pairs of points ε apart on a vertical line
segment centered at P1, P2, and P3 in Fig. 4 for the roulette system with surface shapes S1, S2, and S3, respectively, for successively
smaller segments (left to right). (d) Equivalent dimension Deq, computed using Eq. (12) with L ¼ 2 × 10−3 and Deff estimated as the
slope for each segment in (a)–(c) from the linear least-squares fit [lines in (a)–(c) are offset for clarity]. The vertical dashed lines indicate
the fractality length scale l for S2 and S3. (e,f) Illustration of the effective dimension (e) and the final-state uncertainty (f) as a function of
lnð1=εÞ for three types of fractals.
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relation between initial-state accuracy and final-state
uncertainty in the systems we consider. The equivalent
dimension in Eq. (12) can be derived as follows. First,
writing the final-state uncertainty of the equivalent self-
similar system as ~fðε0Þ ¼ C · ðε0ÞN−Deq , where C is a
constant, we have fðLÞ ¼ CLN−Deq and fðεÞ ¼ CεN−Deq .
Next, we eliminate C from these two equations and obtain
Deq ¼ N − ðln fðLÞ − ln fðεÞÞ=ðlnL − ln εÞ. Since this
can also be obtained by using Eq. (11) and rewriting
Eq. (12), we see that the equivalent dimension is indeed
given by Eq. (12). Thus, we have a more intuitive and
direct definition of fractal dimension that considers the
entire process of decreasing ε to improve the accuracy of
predicting the final state.
For the case of finite-scale fractals, which have fractal

dimension D ¼ N − 1, the dependence of the equivalent
dimension on ε is given by the general formula

DeqðεÞ ¼ Dþ (DeqðδÞ −D)
lnL − ln δ
lnL − ln ε

ð13Þ

for ε < δ [which follows directly from Eqs. (11) and (12)].
When DeqðδÞ > D, we see that DeqðεÞ slowly (and con-
tinuously) decreases from DeqðδÞ and approaches D as
ε → 0. Thus, the equivalent dimension for scales below δ
“feels” the effect of large DeqðδÞ (and hence of Deff at
scales larger than δ), which reflects the sensitivity to initial
conditions observed at scales above δ. While we do not
expect Eq. (13) to be followed exactly in practice, as the
scaling of fðεÞ is never perfect, we do expectDeqðεÞ to start
decreasing at the fractality length scale and approach the
asymptotic dimension D ¼ N − 1. This is indeed observed
in Fig. 6(d) for one-dimensional cross sections (thus,
D ¼ N − 1 ¼ 0) of the basin boundaries in our roulette
system with shapes S2 and S3. For S1, with the basin
boundaries forming a true fractal, the equivalent dimension
seems to approach Deq ≈ 0.14. The uncertainty-based
calculations for all three cases are consistent with the
results from another numerical approach (valid for N ¼ 1),
based on the fractal dimension estimate,

D ¼ −
ln 2

limi→∞ lnðliþ1=liÞ
; ð14Þ

where li is the length of the ith interval identified as part
of the Cantor set structure of the basin boundaries (see
Appendix F for details, where we account for intervals as
small as li ¼ 1.1 × 10−27). Interestingly, Fig. 6(d) shows
that the equivalent dimension of the finite-scale fractal for
S2 is significantly larger than that of the true fractal for S1
for scales above 10−20. This, however, is actually consistent
with the more complex basin boundaries observed for S2
[Fig. 4(b)] than for S1 [Fig. 4(a)].
The equivalent dimension fills a gap between classes of

systems that can be suitably characterized with existing

definitions. For self-similar systems, Deff is constant, as
illustrated in Fig. 6(e), which corresponds to a straight line
for the graph of ln fðεÞ vs lnð1=εÞ, as illustrated in Fig. 6(f).
In this case, the complexity of the basin boundaries is
captured well by the usual asymptotic definition of fractal
dimension D (and by Deff at any finite ε). For non-
hyperbolic systems (such as Hamiltonian systems with
mixed phase space [26]), Deff increases as a function of
lnð1=εÞ [27], as shown in Fig. 6(e), and this corresponds to
a convex curve in Fig. 6(f). In this case, the asymptotic
dimension D reflects the complex geometry of the basin
boundaries [and is lower bounded byDeffðεÞ for finite ε]. In
contrast, in the class of undriven dissipative systems we
consider here, Deff decreases as a function of lnð1=εÞ, as
shown in Fig. 6(e) [which is directly associated with the
decrease of Deq as a function of 1=ε observed in Fig. 6(d)],
and this corresponds to the concave curve in Fig. 6(f). This
behavior of Deff is the defining characteristic of slim
fractals and reflects their structure, which appears sparser
at smaller length scales. SinceDeffðεÞ ≥ D in this case,D is
only a “lower bound” for the finite-scale geometrical
complexity reflected in DeffðεÞ and can in fact indicate
no complexity at all (e.g., the case of finite-scale fractals
with asymptotic dimension D ¼ N − 1, which equals the
dimension of simple boundaries). Figure 6(f) illustrates that
the shape of the graph of ln fðεÞ vs lnð1=εÞ determines the
initial condition accuracy required to achieve a given level
of uncertainty fðεÞ ¼ f�. The concavity of this graph for
slim fractals implies that the required initial condition
accuracy ε�SF can be orders of magnitude smaller than
the corresponding numbers for the other types of fractals,
even when the asymptotic dimension [and thus the asymp-
totic slope of the curves in Fig. 6(f)] is the same. By design,
Deq integrates the finite-scale complexity over a range of
different scales and is therefore suitable for studying such
systems. As an integral of Deff , the equivalent dimension
also enjoys the benefit of having less numerical errors
than Deff .

V. DISCUSSION

We have demonstrated that the basin boundaries in
systems exhibiting doubly transient chaos are generically
true fractals, with both Cantor set structure and the Wada
property observed at arbitrarily small length scales. It is
instructive to compare this with the most previously studied
forms of transient chaos (i.e., those in driven or
conservative systems). In all cases, the basin boundaries
correspond to the stable manifolds of an unstable invariant
set. However, this set consists of an uncountable number of
trajectories in previous cases but of only one unstable fixed
point (the origin) in the systems considered here.
Accordingly, the basin boundaries consist of one or a
few manifolds in our case, as opposed to a bundle of
uncountably many manifolds as in previously studied
cases. But can a finite number of manifolds really define
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a fractal? The answer has long been known to be yes; the
Koch snowflake is an immediate example—though the
curve is nondifferentiable and constructed ad hoc—but
there are also known examples of a dynamically generated
manifold forming a fractal, such as the invariant manifolds
in homoclinic tangles [19]. Therefore, our result that such
boundaries are true fractals is not the first demonstration of
fractal geometry arising from a finite number of manifolds.
However, an interesting aspect of the fundamental problem
studied here is that, contrary to the case of homoclinic
tangles, which embed Smale horseshoes with (permanent)
chaotic trajectories, our dissipative systems cannot exhibit
any sustained oscillations (chaotic or otherwise): Every
system trajectory must converge to an equilibrium. This
underlies the fact that the stable manifold of a single
equilibrium is fully responsible for the complexity of the
fractal basin boundaries in the systems we consider.
We have also demonstrated that, even when the bounda-

ries do not form a true fractal, they can give rise to a form of
sensitive dependence on initial conditions, which never-
theless is not properly characterized by existing notions of
dimension. These results challenge us to think differently
about the definition of fractals. In many natural systems,
geometric structures similar to fractals are observed, but
they disappear at sufficiently small scales because of finite
resolution or the nature of physics at that length scale.
Nonetheless, those systems are likely to exhibit sensitive
dependence on initial conditions at physically relevant length
scales (e.g., those relevant for measuring the initial state). For
example, games of chance, such as a dice roll, are undriven
dissipative systems for which the basin boundaries can be
simple at sufficiently high resolution [28,29], but there are
no practical methods to measure initial conditions at that
resolution and predict the outcomes. Moreover, our results
show that the resolution below which boundaries become
simple can be highly dependent on the phase-space location.
An immediate option for studying such systems is to use an
existing notion of scale-dependent dimension, such as the
effective dimension. However, for being a local measure
of uncertainty versus length scale, the effective dimension
alone cannot capture the physically observable sensitive
dependence on initial conditions. Our integral-based defi-
nition of the equivalent dimension addresses this issue and,
together with the fractality length scale, offers an analysis
framework for studying undriven dissipative systems.
Our findings have profound implications for the physics

of undriven dissipative systems. Prominent examples
include the following:
(1) Astrophysical systems.When two compact objects—

e.g., neutron stars, white dwarf stars, or black holes—
orbit each other emitting gravitational waves, we have
an undriven dissipative system (since energy is lost
due to gravitational radiation) [30]. Such coalescing
binary systems serve as candidate sources of detect-
able gravitationalwaves. Characterizing the dynamics

and geometry of these systems has been controversial,
with arguments both for [31] and against [32] the
existence of chaos and fractal basin boundaries. This
issue is significant because sensitive dependence on
initial conditions would lead to an explosion in the
number of possible theoretical templates of gravita-
tional waves against which the observational data
would have to be matched, necessitating alternative
detection methods.

(2) Fluid systems. Interacting vortices in an otherwise
still viscous fluid form undriven dissipative systems
whose characterization of chaos is relevant and to
which existing tools do not apply. Typically, scenarios
involving three or more vortices are considered to
allow for chaotic dynamics. In part because of the lack
of adequate tools, previous studies of chaotic dynam-
ics in such systems focused primarily on potential
flows and other solutions of the Euler equations (in
which dissipation due to viscosity is neglected) [33].
Our results established here open the possibility of a
self-consistent study of chaos in solutions that prop-
erly account for viscous dissipation.

(3) Chemical systems. Nonlinear chemical reactions in
thermodynamically closed systems can exhibit cha-
otic dynamics in the absence of any driving [34,35].
Previous studies of such systems, of which the
Belousov-Zhabotinsky reaction is an example, have
focused primarily on the far-from-equilibrium regime
of strong chaotic oscillations. This regime is never-
theless transient, as dissipation unavoidably makes
the system approach thermodynamic equilibrium.
Our results can allow the complete characterization
of this transition to equilibrium, which thus far could
only be partially understood using the tools of
conservative and driven dissipative systems.

Ultimately, we note that our derivation of the fractality
condition and the measures introduced here to quantify
slim fractals do not rely on the specifics of the systems
considered. Thus, we expect these results to be general-
izable to undriven dissipative systems exhibiting doubly
transient chaos in higher dimensions and with an arbitrary
number of basins.
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APPENDIX A: DERIVATION OF THE
FRACTALITY CONDITION

Fractal for potential U2ðr; θÞ. Consider the set of
trajectories with initial velocity zero and initial positions
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on the vertical line segment labeled A in Fig. 1(a).
As illustrated by a few representative trajectories, the green,
red, and orange parts of the segment belong to the basins of
the exits E1, E2, and E3, respectively. Now consider the
trajectories initiated near the gap between the top green part
and the middle red part of the segment. These trajectories
climb the hill and turn around when they reach the curved
segment labeled B, after which some trajectories move back
toward the origin. Such trajectories will approximately trace
a trajectory on the line θ ¼ π=3, r ≥ 0, which is governed by
the equation ̈rþ μ_rþ 2r ¼ 0. Solving this equation and
assuming that the dynamics is under-damped (μ < μc, where
μc ≡ 2

ffiffiffi
2

p
), we see that this trajectory reaches the origin in

finite time with nonzero velocity. This implies that the
trajectory that turned around and approached the neighbor-
hood of the origin continues moving and exits through E3.
Thus, there is a small orange segment within the gap
between the green and red parts of line segment A. This
argument can be repeated for the trajectories leaving from
the gap between the red and orange portions of segment B,
and we find that some of these trajectories are deflected one
additional time when they reach segment C, and then exit
through E2. This implies that there is an even smaller green
segment of A in the gap between the orange and red portions.
The argument can be repeated indefinitely, which shows that,
between any two segments of different colors on A, one can
always find a segment of the third color.
Note that the qualitative argument above is general, as it is

valid as long as all trajectories moving downhill toward the
origin eventually leave the scattering region through the exit
on the other side. It can also be extended to cases in which
segment A is replaced by an arbitrary line segment con-
necting two points from different basins in the full phase
space. The trajectories from these two points generally
bounce between the three hills some number of times before
exiting the scattering region. If the patterns of these bounces
for the two trajectories are different, one can slide (along the
line segment) the initial point of the trajectory with fewer
bounces closer to the other point until the patterns of bounces
match (while ensuring that they still belong to different
basins). We can then apply the same argument as before to
see that, between these two initial points (which belong to
two different basins), there must be another initial point that
belongs to the third basin (with its trajectory approaching the
origin and then leaving through the third exit).
Finite-scale fractal for potential U3ðr; θÞ. In this case,

the dynamics on the line θ ¼ π=3, r ≥ 0, which is governed
by ̈rþ μ_rþ 3r2 ¼ 0, is effectively over-damped for arbi-
trary μ > 0 when the trajectory is sufficiently close to
the origin. This underlies the existence of the finite line
segment f−rs ≤ x ≤ 0; y ¼ 0g from which all trajectories
approach the origin asymptotically, which supports the
argument in the main text leading to the non-Wada property
of these boundary points. To show that this segment splits
into two branches forming simple boundaries, consider a

vertical segment at x < −rs, such as segment B0 at x ¼
−0.5 in Fig. 1(c). Because x < −rs, there is a part of this
segment from which trajectories eventually exit throughE1,
but the boundaries between different basins are simple.
This is due to the presence of a trajectory that is deflected
by the hill at θ ¼ π=3 before approaching the origin as
t → ∞ (black curve), similarly to the one starting on
segment A0 and approaching the origin asymptotically.
The same argument as above applied to this trajectory
shows that the boundary between basins of E1 and E3 is
simple. Thus, the simple segment of the boundary touching
the origin splits into two branches forming simple boun-
daries (the blue arrow indicates the branching point at
x ¼ −rs, y ¼ 0). Repeating this argument with segment C0
and other similar segments of initial positions, we see that
the basin boundaries form a binary tree of simple segments.
We observe that, as one moves away from the origin along
the branching tree, the gaps between branches narrow, thus
making the fractality length scale smaller. Since we have
assumed zero initial velocities, the binary tree we just
established is a two-dimensional cross section of the basin
boundaries in the full four-dimensional phase space.
To see that this full set of boundaries is also not truly

fractal, we apply the center manifold reduction [19] to the
equilibrium at the origin. The Jacobian matrix at the origin
has eigenvalues 0 and −μ, each with multiplicity 2. This
implies that there exists a two-dimensional center manifold
and a two-dimensional stable manifold in a neighborhood
of the origin. Writing Eq. (1) in terms of the eigenvector
coordinates ð~x; ~y; ~u; ~vÞ≡ ðxþ _x=μ; yþ _y=μ;−_x=μ;−_y=μÞ,
we determine the center manifold and the dynamics on it
to be given by Eqs. (5) and (6), respectively, up to second
order in ~x and ~y. Figure 2(b) shows that the region is
divided into three basins (corresponding to exits E1, E2,
and E3) by three segments of simple boundaries: the half
lines θ ¼ π=3, θ ¼ π, and θ ¼ 5π=3. Since the stable
manifold is two dimensional, these boundaries on the
center manifold extend to three pieces of simple, smooth,
and thus nonfractal three-dimensional boundaries dividing
a four-dimensional neighborhood of the origin. These
boundaries, when extended as much as possible, intersect
with the subspace _x ¼ _y ¼ 0 in the line segments
0 ≤ r ≤ rs, θ ¼ π=3, π, 5π=3, in Fig. 1(c). The full set
of basin boundaries can then be expressed as the set of all
points whose trajectory ultimately falls on one of these
local boundaries. This is because approaching the origin is
the only asymptotic behavior possible for the system
besides leaving the scattering region. Thus, in a sufficiently
small neighborhood of any basin boundary point, the
boundary is a three-dimensional smooth manifold since
it is a pre-image of part of the local boundaries near the
origin. Therefore, the global basin boundaries, whose two-
dimensional cross section is the binary tree we established
above, are not fractal but form a finite-scale fractal
inheriting the branching structure.
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APPENDIX B: CLASS OF POTENTIALS Uα
WITH ARBITRARY α

We show that the arguments in Appendix A are also valid
for the class of potential functions Uαðr; θÞ≡ −rα cosð3θÞ,
which then implies that the basin boundaries form a fractal
for α ≤ 2 and a finite-scale fractal for α > 2. In other words,
as α decreases through the transition point α ¼ 2, the basin
boundaries transform from a branching tree structure to a
shape similar to a Cantor fan that exhibits fine basin
structures at any resolution. To see why α ¼ 2 is the
transition point between the two regimes, note that we
can write Uαðr; θÞ ¼ −βðrÞr2 cosð3θÞ, where βðrÞ≡ rα−2

can be interpreted as an r-dependent prefactor for the
quadratic potential U2. According to this interpretation,
the dynamics on line θ ¼ π=3, r ≥ 0 [governed by
̈rþ μ_rþ 2βðrÞr ¼ 0] would be critically damped if
ξ ¼ μ=ð2 ffiffiffiffiffiffiffiffiffiffiffi

2βðrÞp Þ, over-damped if ξ > 1, and under-
damped if ξ < 1. For α > 2, the same argument we used
in the main text for the case α ¼ 3 can be used to show that
the basin boundaries form a finite-scale fractal, since the
dynamics is also effectively over-damped in this case as
long as ðμ2=8Þ1=ðα−2Þ. In comparison, for α ≤ 2, there is a
neighborhood of the origin in which the dynamics is
effectively under-damped. We can thus use the same
argument used above for the case α ¼ 2 to establish the
fractality of the basin boundaries. This fractality transition
at α ¼ 2 is numerically verified in Appendix C. In the more
general case of nonlinear μ ¼ μðr; θÞ ≥ 0, the condition
for the boundaries to be a finite-scale fractal (true fractal)
is that ξðrÞ ¼ μðr; π=3Þ=ð2 ffiffiffiffiffiffiffiffiffiffiffi

2βðrÞp Þ > 1ð< 1Þ for all r
sufficiently small. If the dissipation is of the form
μðr; θÞ ¼ μ0rq, q > 0, for example, the fractality transition
occurs at α ¼ 2ð1þ qÞ.

APPENDIX C: FRACTALITY
TRANSITION FOR Uα

To numerically verify that the transition occurs at α ¼ 2,
we estimate the length rs of the simple boundary segment
f−rs ≤ x ≤ 0; y ¼ 0g and confirm that this length
approaches zero as α → 2 from above. As explained in
Appendix A, all trajectories starting on this segment
approach the origin asymptotically, while any trajectory
starting on the line segment fx < −rs; y ¼ 0g passes
through the origin and exits through E1. We thus compute
rs by locating the point ð−rs; 0Þ using the following two-
level bisection method:
(1) For a given x, use the bisection algorithm to

determine the top and bottom boundary points of
the basin of E1 on the vertical line at x.

(2) Apply the bisection method on the x value to
determine x ¼ −rs as the boundary point between
those x values for which the basin of E1 is found and
those for which the basin is not found.

As shown in Fig. 7(a), the numerically estimated length rs
decreases to zero as α approaches two, but reaches the
machine (double) precision (≈10−15) well above α ¼ 2.
The condition for over-damping mentioned in Appendix B
suggests the relation rs ∼ ðμ2=8Þ1=ðα−2Þ. We thus fit the
nonlinear function fðα; b1; b2Þ ¼ b1ðμ2=8Þ1=ðα−b2Þ with
two tunable parameters b1 and b2 to the estimated values
of rs. The least-squares fit for ln rs, shown in Fig. 7(b),
yields b1 ≈ 2.055 and b2 ≈ 1.986, which is consistent with
our claim, b2 ¼ 2. We thus have numerical evidence that
the fractality transition takes place at α ¼ 2.

APPENDIX D: COMPUTATIONAL
PROCEDURE FOR FIG. 5

Figure 5 is generated by applying the bisection algorithm
to the vertical line segment 3.2 ≤ v0 ≤ 3.3, θ0 ¼ 0.8
(passing through P1 at v0 ≈ 3.295) and the segment
2.4 ≤ v0 ≤ 2.5, θ0 ¼ 1.8 (passing through P2 at
v0 ≈ 2.418). Both intervals thus have length Δ ¼ 0.1. In
each iteration, we determine the basin to which the
midpoint of the interval belongs by integrating the system
with quadruple precision and relative accuracy of 10−4

(with respect to the length of the bisection interval for that
iteration). We iterate until the interval length becomes equal
to 2−86 × Δ ≈ 1.29 × 10−27 and 2−84 × Δ ≈ 5.17 × 10−27

for P1 and P2, respectively. Numerical integration on these
intervals is thus performed with absolute accuracy of
1.29 × 10−31 and 5.17 × 10−31, respectively. In Fig. 5,
we show basins on every fourth bisection interval, so
two consecutive plots represent magnification by a factor
of 24 ¼ 16. We show only those intervals with length
≥ 2−80 × Δ ≈ 8.27 × 10−26. The magnification plots for
P1 demonstrate the existence of fine structure down to the
smallest scale resolvable at the limit of our quadruple-
precision numerics. Upon magnification of the narrow
beige strip on the third-to-last interval (by a factor of
16), we find even narrower green and red strips around it.

(a) (b)
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FIG. 7. Length rs of the simple boundary segment on the line
y ¼ 0 for systems with potential Uα. (a) The circles indicate the
numerically estimated rs as a function of α. The solid curve is
the best nonlinear fit to the data, as described in Appendix C.
(b) The same quantities shown as a function of 1=ðα − b2Þ, with
the best-fit value of b2 ≈ 1.986.
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The green strip is identified by the bisection process only
after five more bisection iterations beyond the last interval
shown in Fig. 5, when the bisection interval is of length
2.58 × 10−27. Thus, the fractality length scale for P1 (with
Δ ¼ 0.1 and resolution 1.29 × 10−27) is l ¼ 2.58 × 10−27.
In contrast, for the cross section through P2, the plots
indicate that the boundary becomes simple at a scale well
above the numerical resolution, with the narrowest observed
strip of basin found on the bisection interval of length
5.68 × 10−15 (the green part in the middle of the 12th plot in
Fig. 5). With two more iterations applied to this interval, we
have an interval of length 1.42 × 10−15 (not shown), and the
midpoint of that interval belongs to the green strip. Since
this is the last time this situation occurs, the fractality
length scale for P2 is l ¼ 1.42 × 10−15 (with Δ ¼ 0.1
and resolution 5.17 × 10−27).

APPENDIX E: DISTRIBUTION OF
FRACTALITY MEASURES

Figure 8(a) shows the probability density functions for
the fractality length scale l estimated using the same set of
line segments used to generate Figs. 4(d)–4(f). Note that l
is finite and broadly distributed above the numerical
precision even for the true fractal in the case of S1, since
the next smaller scale at which finer basin structure is
observed can be below the level of numerical resolution.
For S1, we have l < 10−10 for most boundary points (more
than 95% of the approximately 106 line segments used),
which is consistent with the true fractality of the bounda-
ries. For both S2 and S3, the boundaries are finite-scale
fractals; however, l for S3 is larger than 10−9 in more than
90% of the boundary points, indicating that the simple
boundaries can almost surely be observed after zooming in
a few times, while l for S2 is < 10−10 in about 93% of the
cases, suggesting that the simple boundaries at small scales
are mostly hidden behind numerical round-off errors.

As a measure to quantify the extent to which the
boundaries exhibit the Wada property, we define the
construction level Nlevel through the same bisection process
we used to define l. Rather than using interval length,
however, Nlevel is defined as the number of times the same
situation (i.e., the end points and the midpoint all belonging
to different basins) occurs in the process. Note that being
able to continue the bisection process indefinitely implies
that points belonging to all three basins can be found in an
arbitrarily small interval, indicating the Wada property.
Thus,Nlevel can be interpreted as the depth of the Cantor-set
construction levels observed by the bisection procedure,
and hence a quantitative measure of the Wada property.
Figure 8(b) shows the probability distributions of Nlevel
estimated from the set of line segments used for
Figs. 4(d)–4(f). The construction levels for S3 are relatively
small, as expected for finite-scale fractals. However, Nlevel
for S2 is significantly larger than for S1 on average, which is
the opposite of what one might expect since the boundaries
form a finite-scale fractal for S2 and a true fractal for S1;
however, this is consistent with the observation that the
complexity of the boundaries for S2 in Fig. 4 appears to be
higher than that for S1.

APPENDIX F: LENGTH OF BASIN INTERVALS

To account for scales below 10−14 in estimating the fractal
dimension, we directly measure the length of the basin
intervals in quadruple precision on a (one-dimensional) line
segment in the phase space (which is denoted by I0 and has
length l0) using an iterative procedure. In the nth iteration of
this procedure, we apply the following steps to the segment
(interval) In−1 from the previous iteration:
(1) Divide In−1 into M ¼ 100 subintervals of equal

length, giving M þ 1 uniformly spaced end points,
which we denote x0;…; xM. Determine the basin to
which each xi belongs by computing the trajectory
starting from xi.

(2) Identify i1, the first index i for which xi belongs to a
different basin than the one to which xiþ1 belongs.
Similarly, identify i2, the last index i for which xi
belongs to a different basin than the one to which
xi−1 belongs. To ensure that the points x0;…; xM
capture the basin structure in the interval In at a
sufficiently high resolution, we check whether ðxi2 −
xi1Þ=ðxM − x0Þ ≥ 0.9 holds. If it does, proceed to
step 3. Otherwise, redefine In−1 ≡ ½xi1 ; xi2 � (to zoom
in on the boundary points) and go back to step 1.

(3) Among x0;…; xM, identify the largest set of con-
secutive points that belong to the same basin, but
containing neither x0 nor xM. The interval ½xi3 ; xi4 �,
where xi3 and xi4 are the first and last points in the
set, respectively, defines the basin interval to be
removed in this iteration of a “Cantor-set construc-
tion” of the basin boundaries. The removal of this

10-12 10-9 10-6 10-310-6

10-4

10-2

100

0 5 10 1510-6

10-4

10-2

100

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y 

de
ns

ity

(a) (b)

FIG. 8. Distribution of fractality measures for the roulette
system computed from the 220 ≈ 1.05 × 106 grid points used
in Figs. 4(d)–4(f). (a) Estimated probability density function for
the fractality length scale l. (b) Estimated probability mass
function for the construction level Nlevel.
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interval leaves two subintervals, one of which is
chosen randomly with equal probability as the next
interval, denoted In.

Iterating this procedure starting with I0, we obtain a
sequence of intervals, I0; I1;…, having length l0;l1;…,
respectively.
For the standard Cantor set in which two equal-length

intervals are left after removing a middle part of the interval
in each iteration, the ratio liþ1=li for the sequence
generated by the above procedure is constant (i.e., inde-
pendent of i), and the fractal dimension of the set is given
by D ¼ − ln 2= lnðliþ1=liÞ. Thus, in general, if we apply
the procedure above to a one-dimensional cross section of
fractal basin boundaries (e.g., for S1), we expect liþ1=li to
approach a positive constant, which is a behavior equiv-
alent to that of the Cantor set whose dimension is given by
Eq. (14). This is indeed observed numerically for the
roulette system with shape S1 [starting from I0 defined
by 3.2 ≤ v0 ≤ 3.3 and θ0 ¼ 0.8 in the ðv; θÞ projection of
the phase space], as shown in Fig. 9, where we have
liþ1=li ≈ 0.015 for the smallest values of li ≈ 10−27,
corresponding to D ≈ 0.17.
For finite-scale fractal boundaries (e.g., for S2 and S3),

the basin structure is simple below a certain length scale.
This means that for some sufficiently large n, the interval
In−1 in step 1 consists of two basin intervals with one
simple boundary point in between. This leads to an
infinite loop repeating steps 1 and 2, which represents
an endless sequence of magnification by a factor of 1=M,
zooming in on the boundary point. In this case, the
procedure described above gives a finite sequence of
intervals, I0; I1;…; IN , for some N. Figure 9 demonstrates
this behavior for both S2 and S3, showing no intervals
with li < 1.0 × 10−16 for S2 (starting from I0 defined

by 2.4 ≤ v0 ≤ 2.5 and θ0 ¼ 1.8) and no intervals li <
1.7 × 10−8 for S3 (starting from I0 defined by 2.7 ≤ v0 ≤
2.8 and θ0 ¼ 0.8). This is consistent with our theoretical
result that D ¼ 0 for S2 and S3.
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