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How DNA is mapped to functional proteins is a basic question of living matter. We introduce and study a
physical model of protein evolution which suggests a mechanical basis for this map. Many proteins rely on
large-scale motion to function. We therefore treat protein as learning amorphous matter that evolves
towards such a mechanical function: Genes are binary sequences that encode the connectivity of the amino
acid network that makes a protein. The gene is evolved until the network forms a shear band across the
protein, which allows for long-range, soft modes required for protein function. The evolution reduces the
high-dimensional sequence space to a low-dimensional space of mechanical modes, in accord with
the observed dimensional reduction between genotype and phenotype of proteins. Spectral analysis of the
space of 106 solutions shows a strong correspondence between localization around the shear band of both
mechanical modes and the sequence structure. Specifically, our model shows how mutations are correlated
among amino acids whose interactions determine the functional mode.
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I. INTRODUCTION: PROTEINS
AND THE QUESTION OF THE

GENOTYPE-TO-PHENOTYPE MAP

DNA genes code for the three-dimensional configura-
tions of amino acids (AAs) that make functional proteins.
This sequence-to-function map is hard to decrypt since it
links the collective physical interactions inside the protein
to the corresponding evolutionary forces acting on the gene
[1–5]. Furthermore, evolution has to select the tiny fraction
of functional sequences in an enormous, high-dimensional
space [6–8], which implies that protein is a nongeneric,
information-rich matter, outside the scope of standard
statistical methods. Therefore, although the structure and
physical forces within a protein have been extensively
studied, the fundamental question as to how a functional
protein originates from a linear DNA sequence is still open,
in particular, how the functionality constrains the accessible
DNA sequences.
To examine the geometry of the sequence-to-function

map, we devise a mechanical model of proteins as
amorphous learning matter. Rather than simulating con-
crete proteins, we construct a model that captures the
hallmarks of the genotype-to-phenotype map. The model is

simple enough to be efficiently simulated to gain statistics
and insight into the geometry of the map. We base our
model on the growing evidence that large-scale conforma-
tional changes—where big chunks of the protein move with
respect to each other—are central to function [9–15]. In
particular, allosteric proteins can be viewed as “mechanical
transducers” that transmit regulatory signals between
distant sites [16–19].
Dynamics is essential to protein function, but it is hard to

measure and simulate due to the challenging spatial and
temporal scales. Nevertheless, recent studies suggest a
physical picture of the functionally relevant conformational
changes within the protein: Nanorheological measurements
showed low-frequency viscoelastic flow within enzymes
[20], with mechanical stress affecting catalysis [21].
Computation of amino acid displacement, by analysis of
structural data, demonstrated that the strain is localized in
2D bands across allosteric enzymes [22]. We therefore take
as a target function to be evolved in our protein such a
large-scale dynamical mode. Other important functional
constraints, such as specific chemical interactions at bind-
ing sites, are disregarded here because they are confined to
a small fraction of the protein. We focus on this mechanical
function whose large-scale, collective nature leads to long-
range correlation patterns in the gene.
Ourmodel includes essential elements of the genotype-to-

phenotype map: The target mechanical mode is evolved by
mutating the gene that determines the connectivity in the
amino acid network. During the simulated evolution, muta-
tions eventually divide the protein into rigid and floppy
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domains, and this division enables large-scale motion in the
protein [23]. This provides a concrete map between
sequence, configuration, and function of the protein. The
computational simplicity allows for a massive survey of
the sequence universe, which reveals a strong signature of
the protein’s structure and function within correlation
ripples that appear in the space of DNA sequences.

II. MODEL AND RESULTS

Here, we give a summary and interpretation of our
results. The Appendixes contain further details and explain
choices we make in designing the model as close as
possible to real proteins.

A. Mechanical model of protein evolution

Our model is based on two structures: a gene, and a
protein, which are coupled by the genotype-to-phenotype
map. The coarse-grained protein is an aggregate of amino
acids, modeled as beads, with short-range interactions
given as bonds (Fig. 1). A typical protein is made of
several hundred AAs, and we take N ¼ 540. We layer the
AAs on a cylinder, 18 high and 30 wide, similar to
dimensions of globular proteins. The cylindrical configu-
ration allows for fast calculation of the low-energy modes,
and thereby fast evolution of the protein. Each AA may
connect to the nearest five AAs in the layer below, so that

we get 25 ¼ 32 effective AA species, which are encoded as
five-letter binary codons [24]. These codons specify the
bonds in the protein in a 2550-long sequence of the gene
[5 × 30 × ð18 − 1Þ, because the lowest layer is connected
only upwards].
To become functional, we want the protein to evolve to a

configuration of AAs and bonds that can transduce a
mechanical signal from a prescribed input at the bottom
of the cylinder to a prescribed output at its top [25]. The
solution we search turns out to be a large-scale, low-energy
deformation where one domain moves rigidly with respect
to another in a shear or hinge motion, which is facilitated by
the presence of a fluidized, floppy channel separating the
rigid domains [27–29].
These large-scale deformations are governed by the

rigidity pattern of the configuration, which is determined
by the connectivity of the AA network via a simple majority
rule (Fig. 1), which we detail in Appendix A 3. The basic
idea is that each AA can be either rigid or fluidized and that
this rigidity state propagates upwards: Depending on the
number of bonds and the state of other AAs in its immediate
neighborhood, anAAwill be rigidly connected, “shearable,”
i.e., loosely connected, or in a pocket of less connected AAs
within a rigid neighborhood [30]. As the sequence and hence
the connections mutate, the model protein adapts to the
desired input-output relation specified by the extremities of
the separating fluid channel [Fig. 1 (right)].
The model is easy to simulate: We start from a random

gene of 2550 bits, and at each time step we flip a randomly
drawn bit, thus adding or deleting a bond. In a zero-
temperature Metropolis fashion, we keep only mutations
that do not increase the distance from the target function,
i.e., the number of errors between the state in the top row
and the prescribed outcome. Note that, following the logics
of biological evolution, the “fitness” of the protein is only
measured at its functional surface (e.g., where a substrate
binds to an enzyme) but not in its interior.
Typically, after 103–105 mutations this input-output

problem is solved (Fig. 2). Although the functional
sequences are extremely sparse among the 22550 possible
sequences, the small bias for getting closer to the target in
configuration space directs the search rather quickly.
Therefore, we could calculate as many as 106 runs of
the simulation, which gives 106 independent solutions of
the evolutionary task.

B. Dimensional reduction in the
phenotype-to-genotype map

Thanks to the large number of simulations, we can
explore vast regions of the genetic universe. That the
sampling is well distributed can be seen from the typical
intersequences distance, which is comparable with the
universe diameter (Fig. 4). This also indicates that the
dimension of the solution set is high. Indeed, the observed
dimension of sequence space, as estimated following

FIG. 1. The main features of the physical model. Left: The
mapping from the binary gene to the connectivity of the amino
acid (AA) network that makes a functional protein. AAs are
beads and links are bonds. The color of the AAs represents their
rigidity state as determined by the connectivity according to the
algorithm of Appendix A 3. Each AA can be in one of three
states: rigid (gray) or fluid (i.e., nonrigid), which are divided
between shearable (blue) and nonshearable (red). Right: The AAs
in the model protein are arranged in the shape of a cylinder, in this
case with a fluid channel (blue region). Such a configuration can
transduce a mechanical signal of shear or hinge motion along the
fluid channel.
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Refs. [31,32], is practically infinite (∼150, Fig. 3). (We lack
sufficient data to determine such high dimensions precisely,
and 150 is a lower bound.) This shows that the bonds are
chosen basically at random, although we consider only
functional sequences.
On the other hand, very few among the 2540 configura-

tions are solutions, owing to the physical constraints of
contiguous rigid and shearable domains. As a result, when
mapped to the configuration space, the solutions exhibit a
dramatic reduction to a dimension of about 8–10 [33]. This
reduction between genotype (sequence) and phenotype
(configuration, function) [34,35] is the outcome of physical
constraints on the mechanical transduction problem. In the
nearly random background of sequence space, these con-
straints are also manifested in long-range correlations
among AAs on the boundary of the shearable region (see
Fig. 5 and Appendix B 4).

C. Spectral analysis reveals correspondence
of genotype and phenotype spaces

Spectral analysis of the solution set in both sequence and
configuration spaces provides further information on the
sequence-to-function map (Figs. 6 and 7). The sequence
spectrum is obtained by singular value decomposition
(SVD) of a 106 × 2550 matrix, whose rows are the binary
genes of the solution set. The first few eigenvectors (EVs)
with the larger eigenvalues capture most of the genetic
variation among the solutions, and are therefore the collec-
tive degrees of freedom of protein evolution [Fig. 6(b)]. The
first EV is the average sequence, and the next EVs highlight

FIG. 2. Evolution of mechanical function. Top: An initial
configuration with a given input (black ellipse at bottom) and
a random sequence is required to evolve into a straight fluid
channel (S) or a tilted one (T). Bottom: Following the success of
evolution. In each generation, a randomly drawn bit (a letter in the
five-bit codon) is flipped, and this point mutation is changing one
bond (similar to point mutations that change one base in a codon).
A typical run is a sequence of mostly neutral steps, a fraction of
deleterious ones, and rare beneficial steps. Note that the fitness
of the configuration is measured only at the top, not in the interior
of the cylinder.

FIG. 3. Dimensional reduction of the genotype-to-phenotype
map. Dimension measurement for the straight (S, top) and tilted
(T, bottom) cases. 106 independent functional configurations are
found for the input-output problem.An estimate for thedimension of
the solutions is the correlation length, the slope of the cumulative
fraction of solution pairs as a function of distance. In configuration
space (red), the distance is the number ofAAs (out of 540)with a dif-
ferent rigidity state. The estimated dimension from 1012=2 distances
is about 9 (black line) for problem S and 8.5 in problem T. The
sequence space is a 2550-dimensional hypercube with 32510 seque-
nces. Most distances are close to the typical distance between two
randomsequences (2550=2 ¼ 1275), indicating a high-dimensional
solution space.An estimate for the dimension is∼150 (black line) for
both S and T problems. The similarity of the dimensions in both
cases suggests that these numbers are not specific to the problem.
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positions in the gene that tend tomutate together to create the
fluid channel.
The spectrum of the configuration space is calculated in a

similar fashion by the SVD of a 106 × 540 matrix, whose
rows are the configurations of the solutions set [Fig. 6(a)]. In
the configuration spectrum, there are 8–10 EVs which stand
out from the continuous spectrum, corresponding to the
dimension eight shown in Fig. 3. Although the dimension of
the sequence space is high (∼150), there are again only 8–9
eigenvalues outside the continuous random spectrum.
These isolated EVs beautifully distill the nonrandom

components within the mostly random functional sequen-
ces. The EVs of both sequence and configuration are
localized around the interface between the shearable and
rigid domains. The similarity in number and in spatial
localization of the EVs reveals the tight correspondence
between the configuration and sequence spaces.
This duality is the outcome of the sequence-to-function

map defined by our simple model: The geometric constraints
of forming a shearable band within a rigid shell, required for
inducing long-range modes, are mirrored in long-range
correlations among the codons (bits) in sequence space.
The corresponding sequence EVs may be viewed as weak
ripples of informationover a sea of randomsequences, as only
about 8 out of 2550 modes are nonrandom (0.3%). These
information ripples also reflect the self-reference of proteins
and DNA via the feedback loops of the cell circuitry [36].
It is instructive to note similarities and differences between

the spectra. While the spectra of the configuration space and
of the sequence space have a similar form—with a continu-
ous, more or less random, part and a few isolated eigenvalues
above it—the location of the random part is different: In the
configuration case it is close to zero, while in the sequence
case it is concentrated at large values around 500.
The geometric interpretation is that the cloud of solution

points looks like an 8D–9D flat disk in the configuration
case, while in the sequence space, it looks like a high-
dimensional almost spherical ellipsoid. The few directions
slightly more pronounced of this ellipsoid correspond to the
nonrandom components of the sequence. The slight eccen-
tricity of the ellipsoid corresponds to the weak nonrandom
signal above the random background. This also illustrates
that the dimension of the sequence space is practically
infinite, while in the configuration space it is comparable to
the number of isolated eigenvalues.
We verify that the dimensional reduction and the spectral

correspondence depend very little on the details of the
models. For example, we examine a model with 16 AA
species instead of 32. (The natural genetic code with its 20
AAs is therefore an intermediate case.) We find that the
dimension of the phenotype space is ∼9.1, while a lower
bound on the genotype dimension is ∼150, very similar to
the dimensions of the 32 AA model (compare to Fig. 3).
The spectra and the eigenmodes of both configuration and
sequence spaces are also similar (not shown).

FIG. 4. Distribution of solutions in the sequence universe. A
measure for the expansion in the functional sequence universe is
the backward/forward ratio, the fraction of point mutations that
make two sequences closer versus the ones that increase the
distance [6]. The Hamming distances D (normalized by the
universe diameter dmax ¼ 2550) show that most sequences reach
the edge of the universe, where no further expansion is possible.
The black curve, D=ð1 −DÞ, is the backward/forward ratio from
purely random mutations.

FIG. 5. Long-range genetic correlations. (a) The sequence
correlation matrix across the 106 examples shows long-range
correlations among the bits (codons) at the rigid or fluid
boundary, and short-range correlations in the rigid domains.
(b) A cross section perpendicular to the diagonal axis.
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D. Stability of the mechanical phenotype
under mutations

First, we determine how many mutations lead to a
destruction of the solution [Fig. 8(a)]. About 10% of all
solutions are destroyed by just one random mutation. The
exponentially decaying probability of surviving m muta-
tions signals that these mutations act quite independently.
See Fig. 8(b), which shows the location of these destructive
mutations around the shearable channel [37].
We also study the loci where two interacting mutations

will destroy a solution (i.e., none of the two is by itself
destructive). In most cases, the two mutations are close to
each other, acting on the same site. The channel is less
vulnerable to such mutations, but the twin mutations
are evenly distributed over the whole rigid network
[Fig. 8(c)].

FIG. 6. Correspondence of modes in sequence and configura-
tion spaces. We produce the spectra by singular value decom-
position of the 106 solutions of problem S. The corresponding
spectra for the T case are shown in Fig. 7. (a) Top: The spectrum
in configuration space exhibits about 8–10 eigenvalues outside
the continuum (large first eigenvalue not shown). Bottom: The
corresponding eigenvectors describe the basic modes of the fluid
channel, such as side-to-side shift (second) or expansion (third).
(B) Top: The spectrum of the solutions in sequence space is
similar to that of random sequences (black line), except for about
8–9 high eigenvalues that are outside the continuous spectrum.
Bottom: The first eight eigenvectors exhibit patterns of alternating
þ=− stripes—whichwe term correlation ripples—around the fluid
channel region. Seeing these ripples through the random evolu-
tionary noise requires at least 105 independent solutions [39].

FIG. 7. Spectra and eigenfunctions for the tilted example (T).
Note the similarity with Fig. 6, and also how the tilt is manifested
not only in the protein modes, but also in the gene modes. This
demonstrates that the gene and the protein share common
features. (a) The configuration spectrum and eigenfunctions.
(b) The sequence spectrum and eigenfunctions.

FIG. 8. Stability of the mechanical phenotype to mutations.
Mutations at sensitive positions of the sequence move the output
away from the prescribed solution. (a) Fraction of runs (among
106) destroyed by the mth mutation. A single mutation destroys
about 9% of solutions. The proportion decays exponentially like
expð−0.09mÞ. (b) The density map of such mutations for
problems S and T (Fig. 2) shows accumulation around the fluid
channel and at the top layer (dark regions). (c) The double
mutations are evenly distributed in the rigid regions.
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E. Fluid channel supports low-energy shear modes

The evolved rigidity pattern supports low-energy modes
with strain localized in the floppy, fluid channel. We test
whether the evolved AA network indeed induces such
modes (Fig. 9), by calculating the mechanical spectrum of a
spring network in which bonds are substituted by harmonic
springs. The shear motion of the network is characterized
by the modes of H, its elastic tensor. H is the 2N × 2N
curvature matrix in the harmonic expansion of the elastic
energy E≃ 1

2
δrTHδr, where δr is the 2N vector of the 2D

displacements of the N AAs. H has the structure of the
network Laplacian multiplied by the 2 × 2 tensors of
directional derivatives (see Appendix B 3, which is derived
from Ref. [38], pp. 618–619).
We trace the mechanical spectrum of the protein during

the evolution of the fluidized channel (a shear band). We
find that the formation of a continuous channel of less
connected amino acids indeed facilitates the emergence of
low-energy modes of shear or hinge deformations (Fig. 9).
The energy of such low modes nearly vanishes as the
channel is close to completion. Similar deformations,
where the strain is localized in a rather narrow channel,
occur in real proteins, as shown in a recent analysis of
structural data [22].

F. Proteins can adapt simultaneously to multiple tasks

Our models are designed to trace the evolution of a
mechanical function and show how it constrains the
genotype-to-phenotype map, as we show above. Real
proteins also evolve towards other essential functions, such
as binding affinity and biochemical catalysis at specific
binding sites. Here, we examine another important molecu-
lar trait, stability.
Many studies examine the energetic stability of the

protein, as measured by its overall free energy (ΔG)
[4,5,8]. In the present model, this free energy is given
by the number of bonds, which represent chemical and
physical interactions among the amino acids. The higher
the number of bonds, the more stable and less flexible the
protein. By tuning stability, organisms adapt to their
environment. Thermophiles that live in hotter places, such
as hydrothermal vents, evolve more stable proteins to
withstand the heat. Cryophiles that reside in colder niches
have more flexible proteins [40].
We simulate the evolution of the two phenotypes, our

specific dynamical mode together with an energetic state
(i.e., a given bond density). We find that the large solution
set of the mechanical problem allows the protein to select a
subset with a specific energetic state. Thus, the evolu-
tionary dynamics could find solutions to the same mechani-
cal function when we impose extreme values of bond
density (Fig. 10). This demonstrates the capacity of the
protein to search in parallel for the solutions of several
biological tasks. Evolving a specific binding site is
expected to be an easier task, since such sites are confined
to a small fraction of the protein.

G. Amino acid interactions

In the model described so far, the bonds are determined
by the AA species alone, while in real proteins, it is the
interaction between pairs of AA that determines the
formation of bonds (at least two AAs). (There may also
be higher-order terms.) This raises the question as to how
much our results are sensitive to the fine details of the
interaction model. As we show, a more realistic interaction
model does not change the main results, which demon-
strates the robustness of our approach.
To model two-body AA interactions, we consider a set of

three AA species, which we call A0, A1, and A2. Whether a
bond is formed or not is determined by a symmetric binary
relation bðAi; AjÞ, which we write as a 3 × 3 interaction
matrix (Table I).
This variant of the model is reminiscent of the hydro-

phobic-polar (HP) model with its two species of AAs [41].
The interaction range is kept identical to that of our
standard model; namely, an AA can form a bond with
the five nearest neighbors in the adjacent rows.
The gene in this variant of the model is a sequence of

18 × 30 ¼ 540 two-letter binary codons gi, each represent-
ing an AA, such that the overall length of the gene is 1080

FIG. 9. Mechanical shear modes. Displacement and strain
fields for the tilted solution T for two low eigenvalues. The
vectors show the direction of the displacement and the color code
denotes the strain (i.e., the local change in the vector field as a
function of position; maximal stress is red).
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bits. The genetic code is a map C from codons to AAs,
C∶gi → Ai. Since there are four codons and only three
AAs, there is a 25% redundancy in the genetic code. This is
reminiscent of the (higher) redundancy of the natural
genetic code in which 20 AAs are encoded by 61 codons
[42–44] (out of the 43 ¼ 64 codons, three are stop codons).
In our four-codon genetic code, the redundant AA is chosen
to be A0, Cð00Þ ¼ Cð01Þ ¼ A0, and the two other AAs are
encoded as Cð10Þ ¼ A1, Cð11Þ ¼ A2. For a given gene,
the bond pattern is determined by looking at all AA
pairs within the interaction range and calculating their
coupling according to the interaction matrix (Table I):
b(CðgiÞ; CðgjÞ) ¼ bðAi; AjÞ. Once the bond network is
determined from the gene, the rigidity pattern, rigid, fluid
or trapped, is calculated as in the standard model (see
Sec. II A).

In the simulations, at each step we flip one letter in a
randomly selected codon. A quarter of the mutations are
synonymous, since they exchange 00 and 01. The other
three quarters add or cut bonds, and we check, as before,
whether the connectivity change moves the rigidity pattern
closer to a pattern that allows for a low-energy floppy
mode. A small number of beneficial mutations eventually
resolve the mechanical transduction problem, typically
after 103–104 mutations.
In Fig. 11, we present some data (obtained from 4 × 105

solutions) to illustrate the robustness of the results relative
to model changes. We find that, despite having changed
the connectivity model, our main conclusions regarding
the geometry of the phenotype-to-genotype map remain
intact: a huge reduction from a high-dimensional genotype
space (dim > 100) to a low-dimensional phenotype space
(dim∼10), similar to the dimensions in Fig. 3. It is
noteworthy that the configuration eigenvectors are very
similar to those of a simpler model (as in Fig. 6), although
they are determined by very different bonding interactions.
This is evident in the (nonrandom) bond eigenvectors,
which are similar in number to those of the previous model
but differ in pattern, owing to the different bonding rules of

FIG. 10. Adaptation of thermal stability. Extreme configura-
tions, with low (50%, left) and high (95%, right) bond density,
solve problem T.

TABLE I. The interaction bðAi; AjÞ among the three AAs. The
formation of a bond by the pair Ai-Aj is denoted by a “1,” while
“0” denotes the absence of a bond.

A0 A1 A2

A0 1 1 1
A1 1 1 0
A2 1 0 0

FIG. 11. The AA interaction model. (a) Dimensions of the
genotype and phenotype spaces are similar to the standard model
(Fig. 3). (b) Left: The first few eigenfunctions for the configu-
ration. Right: The same for the bond patterns.
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Table I. The robustness of the results manifests the
universality of the dimensional reduction that originates
from the continuity of the mechanical transduction.

III. CONCLUSIONS

Our models of the genotype-to-phenotype map put
forward a new physical picture of protein evolution. Our
thesis is that rather than structure itself, it is the dynamics
that governs protein fitness. Our method considers proteins
as evolving amorphous matter with a mechanical function,
a specific low-energy conformational change. The rigidity
or shearability pattern of the protein, and hence its
dynamical modes, are determined by the connectivity of
the amino acid interaction network. The model explains
how the spatially extended modes appear as the gene
mutates and changes the amino acid network. These modes
are shear and hinge motions where the strain is localized in
the shearable channel and where the surrounding domains
translate or rotate as rigid bodies (Fig. 9).
A main insight from our model is that requiring the

protein to have floppy modes puts strong constraints on the
space of mechanical phenotypes. As a consequence, there
is a huge dimensional reduction when mapping genotypes
to phenotypes. We find that the collective mechanical
interactions among the amino acids are mirrored in corre-
sponding modes of sequence correlation in the genes.
These main results do not depend on details of the model
and have been reproduced in versions with (i) a different
number of AA species (16 instead of 32), (ii) bonds that
depend on pairwise interactions, and (iii) a harmonic spring
network [26]. All these suggest that the results are generic
and apply to a wide range of realizations.
Our models are distilled to their simplest physical-

mathematical schemes, but have concrete, experimentally
testable predictions. In the functional protein, the least
random, strongly correlated sites are concentrated in a rigid
shell that envelops the shearable channel [22]. Our model,
therefore, predicts that these sites are also the most
vulnerable to mutations [Fig. 8(b)], which distort the
low-frequency modes and thus hamper the biological
function. These effects can be examined by combining
mutation surveys, biochemical assays of the function, and
physical measurements of the low-frequency spectrum,
especially in allosteric proteins.
To that end, one may take an enzyme with a known shear

band (via analysis similar to Ref. [22]) and mutate amino
acids within and around the band. We expect the mutation
of these amino acids to have a significant impact on the
dynamics and biochemical function of the protein, as
compared to other mutations in the rigid subdomains.
By sequence alignment methods [39,45–47], it is possible
to test whether these sensitive positions in the protein
exhibit strong correlations in the gene, as predicted by the
model. One may also search for the dimensional reduction

predicted by the model in high-resolution maps of molecu-
lar fitness landscapes [48–51].
Past studies have shown that the motion of proteins

[52–55] and their hydrophobicity patterns [56] may often
be approximated by a few normal modes, while others have
demonstrated that the variation in aligned sequences may
be characterized by a few correlation modes [39,45–47].
The present study links the genotype and phenotype spaces,
and explains the dimensional reduction as the outcome of a
nonlinear mapping between genes and patterns of mechani-
cal forces: We characterize the emergent functional mode to
be a soft, floppy mode, localized around a fluidized channel
(a shear band), a region of lower connectivity that is
therefore easier to deform. The contiguity of this rigidity
pattern implies that it can be described by a few collective
degrees of freedom, implying a vast dimensional reduction
of configuration space.
The concrete genotype-to-phenotype map in our simple

models demonstrates that most of the gene records random
evolution, while only a small nonrandom fraction is
constrained by the biophysical function. This drastic
dimensional reduction is the origin of the flexibility and
evolvability in the functional solution set.
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APPENDIX A: PROTEIN EVOLUTION MODEL

1. Cylindrical amino acid network

We model the protein as an aggregate of amino acids
with short-range interactions. In our coarse-grained model,
beads represent the AAs and bonds their interactions with
neighboring AAs (Fig. 1). We consider a simplified cylin-
drical geometry, where theAAs are layered on the surface of a
cylinder at randomized positions, to represent the noncrystal-
line packing of this amorphousmatter. Throughout this study,
we examine a geometrywith heighthð¼ 18Þ, i.e., the number
of layers in the z direction, and width wð¼ 30Þ, i.e., the
circumference of the cylinder. When the cylinder is shown as
a flat 2D surface (such as in Fig. 2), there are still periodic
boundary conditions in the horizontal w direction. The row
and column coordinates of anAAare ðr; cÞ, with r for the row
ð1;…; hÞ and c for the column ð1;…; wÞ. The cylindrical
periodicity is accounted for by taking the horizontal coor-
dinate c modulo w ¼ 30, c → modwðc − 1Þ þ 1.
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Each AA in row r can connect to any of its five nearest
neighbors in the next row below, r − 1. This defines
25 ¼ 32 effective species of amino acids that differ by
their “chemistry,” i.e., by the pattern of their bonds.
Therefore, in the gene, each AA at ðr; cÞ is encoded as a
five-letter binary codon, lrck, where the kth letter denotes
the existence (¼ 1) or absence (¼ 0) of the kth bond.
The gene is the sequence of NAA ¼ w × h ¼ 540 codons,
which represent the AAs of the protein. This means that
each codon just specifies which of the five bonds are
present or absent. Therefore, the codons are a genetic
sequence of 2700 ¼ w × h × 5 digits 0 or 1. Each of these
numbers determines whether or not a bond connects two
positions of the grid. Since the bonds from the bottom
row do not affect the configuration of the protein and the
resulting dynamical modes, the relevant length of the
gene is somewhat smaller, NS ¼ 2550 ¼ w × ðh − 1Þ × 5.

2. Evolution searches for a mechanical function

We now define the target of evolution as finding a
functional protein, in the following specific sense: To
become functional, the protein has to evolve a configura-
tion of AAs and bonds that can transduce a mechanical
signal from a prescribed input at the bottom of the cylinder
to a prescribed output at its top. This signal is a large-scale,
low-energy deformation where one domain moves rigidly
with respect to another in a shear or hinge motion, which is
facilitated by the presence of a fluidized, floppy channel
separating the rigid domains [27–29].

3. Rigidity propagation algorithm

The large-scale deformations are governed by the
rigidity pattern of the configuration, which is determined
by the connectivity of the AA network via a simple
majority rule (Fig. 1). The details of this majority rule
are as follows (Fig. 12). Each AA position will have two
binary properties, which define its state.

(i) The rigidity σ: This property can be rigid (σ ¼ 1) or
fluid (σ ¼ 0).

(ii) The shearability s: This property can be shearable
(s ¼ 1) or nonshearable (s ¼ 0). As we show below,
a nonshearable AA can be either rigid or fluid within
a rigid domain of the protein. Nonshearable domains
tend to move as a rigid body (i.e., via translation
or rotation), whereas shearable regions are easy to
deform.

Only three of the four possible combinations are
allowed: (1) nonshearable and solid AA (yellow) (σ ¼ 1;
s ¼ 0), (2) nonshearable and fluid AA (red) (σ ¼ 0; s ¼ 0);
(3) shearable and fluid AA (blue) (σ ¼ 0; s ¼ 1), (4) shear-
able solid is forbidden (see Fig. 12 for details).
Given a fixed sequence, and an input state in the bottom

row of the cylinder fσ1;c; s1;cg, the state of the cylinder
is completely determined as follows: The three states

percolate through the network, from row r to row rþ 1
(see Fig. 12). This propagation is directed by the presence
of bonds, with a maximum of five bonds ending in each AA
(of rows r ¼ 2 to h; the state of the first row is given as
input). These bonds can be present (¼ 1) or absent (¼ 0).
according to the codon lrck, k ¼ −2;…; 2 when they point
to the AA with coordinate ðr; cÞ coming from the
AA ðr − 1; cþ kÞ.
In a first sweep through the rows, we deal with the

rigidity property σ. In row r ¼ 1, each of the w AAs is in a
rigidity state rigid (σ ¼ 1) or fluid (σ ¼ 0). In all other
rows, r ¼ 2 to h, the five bonds determine the value of the
rigidity of ðr; cÞ through a majority rule:

σr;c ¼ θ

�X2
k¼−2

lrckσr−1;cþk − σ0

�
; ðA1Þ

where θ is the step function [θðx ≥ 0Þ ¼ 1, θðx < 0Þ ¼ 0].
The parameter σ0 ¼ 2 is the minimum number of rigid AAs
from the r − 1 row that are required to rigidly support AA:
In 2D, each AA has two coordinates that are constrained if
it is connected to two or more static AAs. In this way, the
rigidity property of being pinned in place propagates
through the lattice, as a function of the initial row and
the choice of the bonds that are present as encoded in the
gene.
We next address the shearability property. It is deter-

mined by the rigidity of AAs as follows: We assume that
all fluid AAs in row r ¼ 1 are also shearable [Fig. 1, blue:
(σ ¼ 0; s ¼ 1)]. A fluid node ðr; cÞ in row r will become
shearable exactly if at least one of its neighbors ðr − 1; cÞ or
ðr − 1; c� 1Þ is shearable:

FIG. 12. Illustration of the percolation rules for shearability and
fluid or solid states. Note that site ðr; cÞ is turned solid because it
is attached to two solid sites below it. Also note that the red site
above it is fluid, because it is attached to less than two solid sites
below it. But it is not shearable because it does not connect to a
shearable site below it. On the other hand, the top right-hand site
is shearable and fluid, since it is attached to only one solid site
[namely, ðr; cÞ] and no others on the invisible part of the structure
(as seen by its blue connections), and it is also connected to the
blue site at ðr; cþ 2Þ.
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sr;c ¼ ð1 − σr;cÞθ
�X1

k¼−1
sr−1;cþk − s0

�
; ðA2Þ

where s0 ¼ 1. The first term on the lhs ensures that a solid
AA can never become shearable. This completes the
definition of the map from the sequence to the state.

4. Fitness and mutations

As we explain above, the aim is to find a functional
protein that can transfer forces. To find such a protein, we
start from a random sequences (of 2550 codons), and from
an initial state (input) in the bottom row of the cylinder.
This initial state is just made from rigid and fluid beads, as
shown, e.g., in Fig. 2. For most simulations, we just take
five consecutive fluid beads among the remaining solid
beads.
We next define the target. It is a chain of w values,

fluid and shearable (σ ¼ 0; s ¼ 1) or solid (σ ¼ 1; s ¼ 0),
in the top row, which the protein should yield as
an output: fσ�c; s�cgc¼1;…;w. Given (i) a gene sequence,
which determines the connectivity lrck and (ii) the
input state fσ1;c; s1;cgc¼1;…;w, the algorithm we describe
above uniquely defines the output state in the top row,
fσh;c; sh;cgc¼1;…;w. At each step of evolution, the output
state is compared to the fixed, given target, by measuring
the Hamming distance, the number of positions where the
output differs from the target:

F ¼
Xw
c¼1

½1 − ðjsh;c − s�cj − 1Þðjσh;c − σ�cj − 1Þ�: ðA3Þ

In the biological convention, −F is the fitness that should
increase towards a maximum value of −F ¼ 0, when the
input-output problem is solved.
Solutions are found by mutations. At each iteration, a

randomly drawn digit in the gene is flipped; that is, the
values of 0 and 1 are exchanged. This corresponds to
erasing or creating a randomly chosen link of a randomly
chosen AA. After each flip, a sweep is performed, and the
new output at the top row is again compared to the target. A
mutation is kept only if the Hamming distance is not
increased as compared to the value before the mutation
(equivalently, the fitness is not allowed to decrease).
This procedure is repeated until a solution (F ¼ 0) is
found. This will happen with probability 1, perhaps after
very many flips, if the problem has a solution at all. This is
really the Metropolis algorithm [57] (at 0 temperature).
Remark.—It is an important feature of our model that the

quality of a network is only measured at the target line. This
corresponds to the biological fact that the protein can
interact with the outside world only through is surface (in
our case, the ends of the cylinder). One of the surprising
outcomes of our study is that this requirement has a strong
influence on what happens in the interior of the protein.

Also, the propagation of fluidity should not be confused
with learning in neural networks, but is rather of the
percolation type.

5. Simulation of evolutionary dynamics

All simulations are done on the 30 × 18 ¼ 540 play-
ground, as described above. We do simulations for many
variants of the model, and many targets, but we present
only two specific problems, for which we did the most
extensive study: In the first, the fluid regions of the input
and the target are opposite and of length 6 at the bottom
and length 5 at the top. In the second run, the top and
bottom are the same, but the top is shifted sideways by 5
units. We call these two examples straight and tilted,
denoted as S and T. We also studied examples in which
the position of the target (relative to the input) is left free,
but here we discuss only the results for the S and T case.
This serves to illustrate that the results are largely
independent of the details of the model. We also studied
many other variants, and in all cases, the main results are
qualitatively unchanged.
Remark.—We view this as an important outcome of our

theory, namely, that it illustrates a close connection
between gene and protein which goes way beyond the
simple model we consider here.
For both, S and T, we study 200 independent branches,

starting from a random sequence with about 90% of the
bonds present at the start. Given any fixed sequence, we
sweep according to the rules of Eqs. (A1) and (A2) through
the net and measure the Hamming distance F [Eq. (A3)]
between the last row and the desired target. When this
Hamming distance is 0, we consider the problem as solved.
If not, we randomly flip a bond (exchanging 0 with 1)
and recalculate the Hamming distance. We view this flip as
a mutation of the sequence, equivalent to mutating
one nucleic base in a gene. If the Hamming distance
decreases or remains unchanged, we keep the flip, other-
wise we backtrack and flip another randomly chosen bond.
This is repeated until a solution is found. (This is really a
Metropolis algorithm [57] at zero temperature.) Typically,
after 103–105 mutations this input-output problem is
solved. Although the functional sequences are extremely
sparse among the 22550 possible sequences, the small bias
for getting closer to the target in configuration space directs
the search rather quickly.
Once a solution is found, we destroy it by further

mutations and then look for a new solution, as before,
starting from the destroyed state. This we call a generation.
For each of the 200 branches, we follow 5000 generations,
leading to a total of 106 solutions. The time to recover from
a destroyed state is about 1500 flips per error in that state,
which is similar to the time it takes to find a solution
starting from a random gene. A destruction takes around
11.2 mutations on average.
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We also do another 106 simulations starting each time
from another random configuration. The statistics in both
cases are very similar, but the destruction-reconstruction
simulations obviously show some correlations between a
generation and the next. This effect disappears after about
four generations.

APPENDIX B: RESULTS, ANALYSIS,
AND INTERPRETATION

1. Dimension of solution set

The dimension of a space measures the number of
directions in which one can move from a point. In the
case of our model, since from any sequence in sequence
space one can move along NS ¼ 2550 axes by flipping just
one bit, we see that the sequence space has dimension 2550,
and the number of different elements in this space is a
hypercube with 22550 ∼ 10768 elements.
The set of solutions that we find has, however,

much smaller dimension, as we show in Fig. 3 for the
straight and tilted example. In the case of experimental
data, such as ours, the dimension is most conveniently
determined by the box-counting (Grassberger-Procaccia
[33]) algorithm. This is obtained by just counting
the number NðϱÞ of pairs at distances ≤ ϱ, and then finding
the slope in a log-log plot. This is indicated by the black
lines in Fig. 3, We see that, clearly, the dimension in the
space of configurations is about 8–9, while, in the space of
sequences, the dimension is basically infinite, namely, just
limited by the maximal slope one can obtain [31].

2. Spectrum in phenotype and genotype spaces

We compute spectra for both the sequences and the
configurations, for the 106 solutions. Let us detail this for
the case of sequences: We have 106 binary vectors with
NS ¼ 2550 components each, and we want to know the
typical spectrum of such vectors. This is conveniently
found with the singular value decomposition (SVD), in
which one forms a matrix W of size m × n ¼ 106 × 2550.
This matrix can be written as UDV�, where U is m ×m, V
is n × n, and D is an m × n matrix that is diagonal in the
sense that only the elements Dii with i ¼ 1;…; n are
nonzero. (We assume here that we are in the case
m > n.) The Dii are in general greater than 0, and in this
case the singular value decomposition is unique. We call
the set of the λGi ¼ Dii the spectrum of the sequences, and
the vectors in V the eigenvectors of the SVD. It is the first
few of those that are shown in Fig. 6.
Note that the SVD eigenvalues λGi are the square roots

of the spectrum of the covariance matrix WTW, which has
the same eigenvectors as W. Therefore, the high SVD
eigenvalues correspond to the principal components, the
directions with maximal variation in the solution set.
Mutatis mutandis, we perform the same SVD for the case

of the configurations, using the s values (that is, of the

shearability) of vectors of the configurations. (This is
reasonable, because, in general, there are very few non-
hearable and fluid AAs.)
Apart from the numerical findings, which are shown in

Fig. 6 for the straight (S) example and in Fig. 7 for the tilted
(T) one, some comments are in order:
Configuration space.— (The nine figures on the bottom left
of Figs. 6 and 7.) The first mode is proportional to the
average configuration. The next modes reflect the basic
deviations of the solution around this average. For example,
the second mode is left-to-right shift, the third mode is
expansion-contraction, etc. Since the shearable-nonshear-
able interface can move at most one AA sideways between
consecutive rows, the modes are constrained to diamond-
shaped areas in the center of the protein. This is the joint
effect of the influence zones of the input and output rows.
Sequence space.— (The nine figures on the bottom
right of Figs. 6 and 7.) The first eigenvector is the average
bond occupancy in the 106 solutions. The higher eigen-
values reflect the structure in the many-body correlations
among the bonds. The typical pattern is that of diffraction
or oscillations around the fluid channel. This pattern
mirrors the biophysical constraint of constructing a rigid
shell around the shearable region. Higher modes exhibit
more stripes, until they become noisy, after about the tenth
eigenvalue.
The bond spectrum, top right in Figs. 6 and 7, has

some outliers, which correspond to the localized modes
shown in the eight panels below. Apart from that,
the majority of the eigenvalues seem to obey the
Marčenko-Pastur formula; see Ref. [58]. If the matrix is
m × n, m > n, then the support of the spectrum is
1
2
ð ffiffiffiffi

m
p � ffiffiffi

n
p Þ. In our case, since we have a 106 × 2550

matrix, one expects (if they were really random) to find the
spectrum at 1

2
ð

ffiffiffiffiffiffiffi
106

p
� ffiffiffiffiffiffiffiffiffiffi

2550
p Þ, which is close to the experi-

ment, and confirms that most of the bonds are just randomly
present or absent. We attribute the slight enlargement of the
spectrum to memory effects between generation in the same
branch. This corresponds to the well-known phylogenetic
correlations among descendants in the same tree.
It is tempting to also study the continuous part of this

spectrum, which is not quite of the standard form. While in
principle this could be done by taking into account the
known correlations, even the techniques of Ref. [59] seem
difficult to implement.

3. Shear modes in the amino acid network

Consider now either of the two examples, straight or
tilted (S and T). A solution of such an example is given by a
set of bonds, and this set of bonds defines a graph on the
NAA ¼ h × w ¼ 540 AAs. This graph is embedded in 2D,
where x⃗r;c are the positions of the AAs, which are
connected by straight bonds. We now extend the scope
of our study somewhat, by assuming that the bonds are not
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totally rigid, but given by harmonic springs (see also
Ref. [26]). This allows us to study mechanical properties
that would be too stiff if we worked only with bonds that
are rigid sticks.
In this case, the calculations are straightforward, if

somewhat complex, and they are, e.g., well explained in
Ref. [38] (see pp. 618–619). We thus consider the elastic
tensor H, which is the tensor product of the network
Laplacian with the 2 × 2 tensor of directional derivatives.
For the reader who is unfamiliar with Ref. [38], we

describe what this means componentwise. The playground
Ω ⊂ Z2 has size h in the z direction and size w in the x
direction, with periodic boundary condition in the x
direction. All bonds go from some ðr; cÞ to ðrþ 1; cÞ,
ðrþ 1; c� 1Þ, ðrþ 1; c� 2Þ, again with periodic boun-
dary conditions in the c direction. Each such bond defines a
direction vector ðdz; dxÞ in R2 which we normalize to
d2x þ d2z ¼ 1. Note that this vector depends on both the
origin and the target of the bond.
If we imagine harmonic springs between the nodes

connected by bonds (all with the same spring constant),
then we can define the (symmetric) tensor matrix of
deformation energies in the x and y direction by

H0
km ¼ Mðk;mÞ; with k;m ∈ Ω;

and where each element of H0
km is—when k and m are

connected by a bond—the 2 × 2 matrix (indexed by
i; j ∈ f1; 2g)
Mðk;mÞ ¼ (dxðk;mÞ; dzðk;mÞ)T ⊗ (dxðk;mÞ; dzðk;mÞ)

¼
�

d2x dxdz
dxdz d2z

�
:

If k and m are not connected, thenMðk;mÞ is the 0 matrix.
The elements of Mðk;mÞ are denoted Mðk;mÞij.
Finally we complete the 2N × 2N matrix H0 to a

Laplacian H by adding diagonal elements to it, so that
the row (and column) sums are 0. In components, this
means that we require, for each k ∈ Ω and each
i; j ∈ f1; 2g, the sums

X
l

ðHkmÞij

to vanish. Other properties of A are described in Ref. [38].
Since we take periodic boundary conditions in the x

direction, there will always be a (simple) 0 eigenvalue ofH
in this direction. Other 0 eigenvalues correspond to trans-
lation in the z direction or rotation in the x-z plane. Another
type of (double) 0 eigenvalues are associated with any
patch of nodes that is totally disconnected from the rest of
the lattice. Since the density ϱ of bonds is about 1=2 and
otherwise quite random, and there are twice five bonds
at each interior node, we expect (assuming random

distribution of bonds) there to be about N × 2−10 ∼
0.001N isolated nodes, i.e., isolated singletons, and even
fewer patches of greater size.
Further zero modes come from nodes that can oscillate

sideways without first-order effects. This will happen if a
node is connected by only one bond. Since ϱ ∼ 1=2, the
probability of finding such a node is about

N
ð10
1
Þ

210
∼ 0.01N:

Thus, we show in Figs. 6 and 7 the eigenfunctions only for
the first eigenvalues after the trivial ones. Because of the
tensorial nature of the problem, the eigenvectors have two
components, which we show as 2D shear flow.

4. Genetic correlation matrix

In Fig. 3,we study the correlations among the 106 solutions
in sequence space. Given the matrix Wij, of all sequences,
with i ¼ 1;…; N ¼ 106, j ¼ 1;…; 2550 (of binary digits),
we compute the means hW ·ji ¼

P
N
i¼1 Wij=N and the stan-

dard deviations SDj ¼ ðPijWij − hW·jij2Þ1=2. Then, in the
usual way, we form Mij ¼ Wij − hW·ji and

Cj;j0 ¼
ðM�MÞj;j0
SDjSDj0

:

Figure 5 then shows logðjCj;j0 jÞ, with the autocorrelationCjj

omitted.
Note that both the means and the variances depend very

weakly on j. Figure 5 reveals and reinforces several
observations also made in other calculations of this paper.
First, looking onto the axis j ¼ j0 in the figure, one sees a
periodicity of the patterns corresponding to the 17 gaps
between the 18 rows of the configuration space. This
reflects the necessity to maintain a connected liquid
channel. Also, as seen in Fig. 5, the correlations grow
somewhat towards the ends, especially toward the upper
(j ¼ 2550) end. This is because of the mechanical con-
straint which forces the channel to become more precise
towards the ends, in analogy with Fig. 8(b).
The periodic patterns all over the square reflect not only

the natural periodicity of 150 (¼ 5 × w) elements in the
sequence, but also show that the boundaries of the channel
form a special shell (with two peaks per row).

5. Survival under mutations

Here, we ask how robust the solutions are as further
mutations take place. First, we determine how many
mutations lead to a destruction of the solution. The statistics
of this is shown in Fig. 8. We note that about 10% of all
solutions are destroyed by just one mutation, while there is
an exponential decay of survival of m mutations. This
signals that the mutations act independently.
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One can also ask where the critical mutations take place.
This is illustrated in Fig. 8(b), and is discussed in the main
text. We also study the places where exactly two mutations
will kill a solution (and none of the two is a single site
“killer”) [Fig. 8(c)], and in these cases, one finds that the
two mutations are generally close to each other, acting on
the same site. Again, the channel is less vulnerable to
mutations, but now the mutations are evenly distributed
over the rest of the network.

6. Expansion of the protein universe

Let us explain in further detail how Fig. 4 is obtained.
Here, we test our model against the ideas of Ref. [6]. Our
results give some insight about the nature of the graph of
solutions. First, we describe the question as it is found in
Ref. [6]. Take any two solutions and consider their gene
sequences s1 and s2. They will have a Hamming distance
dðs1; s2Þ, which we normalize by dividing by 2550
(the number of elements in si; i ¼ 1, 2), which we call
the protein universe diameter. The question is how much
the solution following one generation after s2 differs from
s1. If we call that solution s3, then the observed quantity is
defined as follows: Let wi ¼ 1 if s1;i ¼ 1 and −1 if s1;i ¼ 0,
for i ¼ 1;…; 2550. Then for each i let xi ¼ wiðs3;i − s2;iÞ.
Note that xi > 0 if the change between s3;i and s3;i is
towards s1 and < 0 if it is away from s1. Finally, Naway ¼P

i∶wi<01 and Ntowards ¼
P

i∶wi>01, and we plot in Fig. 4
Ntowards=Naway as a function of D.
In Fig. 4, we show the results for data set S (the plot for

set T looks similar). The black curve is nothing but
D=ð1 −DÞ, where D is the normalized Hamming distance,
i.e., the proportion of sites that are different between s1 and
s2. The fit to this curve tells us an important aspect about
the set of possible solutions. Note that the set of all possible
s forms a hypercube of dimension 2550 with 22550 corners.
The set of solutions is a very small subset of this hypercube,
where all corners that are not solutions have been taken
away, including the bonds leading to these corners. This
leads to a very complicated subgraph of the hypercube.
While we do not have a good mathematical description of
how it looks, the good fit shows that the comparisons
between s1, s2, and s3 are as if one performed a random
walk on the full cube. (Note that such a result must be
intimately connected to the high dimension of the problem,
since for low-dimensional hypercubes it does not hold.)
Almost all solutions are at the edge of the universe, where
the typical Hamming distances among the sequences are
close to the typical distance between random sequences,

7. Flexibility of solutions: Thermal stability

The histogram of the density of links for the 106

solutions is shown in Fig. 13. These distributions are
obtained for simulations in which links are flipped ran-
domly in a symmetric fashion. One can easily push these

densities somewhat up or down, by favoring or restricting
the flips of links towards 1. However, much more extreme
solutions can be found by deterministic procedures that
turn as many links to 1 (0). In these cases, we obtain
densities of as high as 0.96 and as low as 0.14, that is,
2452=2550 links (372=2550 links). Two such extreme
cases are illustrated in Fig. 10. This shows that the model,
if needed, can be adapted to questions of temperature
dependence of the protein, for example, by giving more or
less weight to the number of bonds, something like a
chemical potential in statistical mechanics.
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