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We consider a two-dimensional electron gas with strong spin-orbit coupling contacted by two
superconducting leads, forming a Josephson junction. We show that in the presence of an in-plane
Zeeman field, the quasi-one-dimensional region between the two superconductors can support a
topological superconducting phase hosting Majorana bound states at its ends. We study the phase diagram
of the system as a function of the Zeeman field and the phase difference between the two superconductors
(treated as an externally controlled parameter). Remarkably, at a phase difference of π, the topological
phase is obtained for almost any value of the Zeeman field and chemical potential. In a setup where the
phase is not controlled externally, we find that the system undergoes a first-order topological phase
transition when the Zeeman field is varied. At the transition, the phase difference in the ground state
changes abruptly from a value close to zero, at which the system is trivial, to a value close to π, at which the
system is topological. The critical current through the junction exhibits a sharp minimum at the critical
Zeeman field and is therefore a natural diagnostic of the transition. We point out that in the presence of a
symmetry under a mirror reflection followed by time reversal, the system belongs to a higher symmetry
class, and the phase diagram as a function of the phase difference and the Zeeman field becomes richer.
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I. INTRODUCTION

Since the realization of two-dimensional topological
insulators a decade ago, a plethora of new phases of matter
with nontrivial topology in one, two, and three dimensions
have been discovered in experiment. Considerable exper-
imental and theoretical effort has been dedicated to the
study of zero-energy Majorana bound states which arise in
topological superconductors as edge states in one dimen-
sion or bound to vortices in two dimensions [1,2].
Advances in nanotechnology and the prospect of using
Majorana states as building blocks of topological quantum
computers have triggered intense experimental efforts to
realize and characterize them in one-dimensional systems
[3–6]. More recently, two-dimensional electron gases
(2DEGs) with induced superconductivity [7–10] have
emerged as a contender for topological superconductivity.
A key challenge for existing one-dimensional platforms

such as proximitized semiconductor nanowires [11] or
atomic chains [12] is to develop networks that allow
braiding of multiple Majorana states. An alternative route
towards realizing a scalable architecture is to pattern a
network of one-dimensional channels into a proximitized
2DEG using gates [7,10]. While this approach offers great

flexibility in designing networks, it may be cumbersome
to drive many channels individually into a topological
regime via local gates employing additional local probes.
Moreover, gates may change the shape of the channel or
physical parameters such as spin-orbit coupling, and their
effect is strongly influenced by the electrostatic properties
of the nearby superconductors [13].
Here, we pursue a different strategy to realize Majorana

bound states in an effectively one-dimensional system,
motivated by recent experiments on Josephson junctions
in proximity-coupled 2DEGs [7–10]. Carriers with energies
below the superconducting gap are trapped in the quasi-one-
dimensional junction region between two superconducting
leads as depicted in Fig. 1. In the presence of a Zeeman field,
the junction can enter a topological superconducting phase
akin to the one in proximitized nanowires, and Majorana
bound states appear at the ends of the junction.
A key advantage of this setup is that the lateral dimension

allows for additional experimental knobs such as a phase
difference or a supercurrent across the junction [14]. One of
the central results of thiswork is that a phase bias can induce a
robust topological phase in the junction. Most strikingly, in
the absence of normal reflection, junctions at a phase
difference of π host Majorana states, to a large extent,
independently of parameters such as chemical potential,
Zeeman field, width of the junction, or induced pairing
strength, as long as the gap in the bulk 2DEG does not close.
Moreover, the phase difference can be used as a powerful
switch that changes the topology of the entire phase space
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from trivial at zero to topological at π. This is in stark contrast
to previous proposals which require careful gating and a
Zeeman field beyond a critical value. A setup based on
Josephson junctions may also facilitate the realization of
topological superconductor networks. By tuning a global
phase difference, multiple Josephson junctions can be tuned
simultaneously into a topological phase without tuning local
parameters or requiring local probes.
In the presence of normal reflection in the junction or at

the interface to the superconductor, deviations from this
ideal behavior occur. As long as normal reflection is not too
strong, however, our results still hold in extended regions of
the parameter space.
Note that the setup we consider is very different from the

one discussed in Refs. [15,16], where a two-dimensional
topological superconducting phase is realized. Such a
phase hosts Majorana modes propagating along the edge
of the superconductor. In our setup, the two-dimensional
superconducting leads on the two sides of the junction are
trivial. It is the quasi-one-dimensional junction region that
is driven into the topological phase, with localized
Majorana end states appearing at the ends of the junction.
On the face of it, the system we consider belongs to class

D in the tenfold classification [17] since time-reversal
symmetry is broken and particle-hole symmetry holds.
In fact, our system has an additional symmetry given by a
combination of a mirror reflection and time reversal, which
places it in class BDI (see also Ref. [18]). Interestingly, this
symmetry is present for any value of the phase difference
between the superconductors. As a consequence, slivers
with additional topological phases appear in the phase
diagram as a function of the in-plane Zeeman field and the
phase difference between the superconductors. The system
is brought back to class D if the magnitude of the super-
conducting gap on the two sides of the junction is different.
If the phase difference is not imposed externally, the

system can undergo a first-order phase transition in which
the phase jumps from a phase close to 0 to a phase close to
π with increasing in-plane magnetic field. Similar transi-
tions have previously been studied in ferromagnetic
Josephson junctions [7,19–21]. Quite remarkably, our
results suggest that such a first-order phase transition in
the present setup is in fact a topological phase transition
unique to the two-dimensional geometry. The system can
thus self-tune into a topological phase when the magnetic
field is varied and realizes a first-order topological phase
transition without a gap closing. Moreover, this transition is
accompanied by a minimum of the critical current.
Therefore, the critical current can serve as an inherent
probe of the topological phase transition [22]. Surprisingly,
the contrast of the critical current modulation with the
field increases with temperature. At high temperatures,
the critical current vanishes at the magnetic field of the
underlying zero-temperature topological transition. This
insight suggests that the experimental results presented by

Hart et al. [7] indicate an underlying topological phase
transition in the ground state.
This paper is organized as follows. We start by presenting

the proposed setup and a summary of our results in Sec. II.
We then show the derivation of the phase diagram for the
system as a function of the phase difference and the Zeeman
field, and we discuss the magnitude of the topological gap
and the appearance of Majorana end modes in Sec. III. In
Sec. IV, we discuss the first-order topological phase tran-
sition as a function of the Zeeman field and show how the
critical current can serve as a novel experimental probe to
detect this transition in the suggested setup. We conclude
with a discussion of the presented results in Sec.V. The paper
is followed by four appendixes that cover several technical
details.

II. PHYSICAL PICTURE AND SUMMARY
OF RESULTS

We consider a two-dimensional semiconductor with
Rashba spin-orbit coupling, partially covered with two
superconducting contacts in an in-plane magnetic field as
depicted in Fig. 1(a). For the most part, we are interested in
the case of an infinite system, where the width of the leads
and the length of the junction WSC, L → ∞, while the
separation of the leads, W, remains finite. We describe
the system by a Bogoliubov–de Gennes Hamiltonian in the
Nambu basis ðψ↑;ψ↓;ψ

†
↓;−ψ

†
↑Þ,

H ¼
�
k2x − ∂2

y

2m
− μþmα2

2

�
τz þ αðkxσy þ i∂yσxÞτz

þ EZðyÞσx þ ΔðyÞτþ þ Δ�ðyÞτ−: ð1Þ

Here, kx is the momentum along x that is conserved in the
system (we setℏ ¼ 1 throughout thepaper),m is the effective
mass of the 2DEG, μ is the chemical potential measured from
the bottom of the spin-orbit split bands, α is the strength of
Rashba spin-orbit coupling, and EZðyÞ ¼ gðyÞμBB=2 is the
Zeeman energy induced by an external magnetic field. We
assume different g factors in the junction and underneath the
superconducting leads, and we denote

EZðyÞ ¼ EZ;Lθðjyj −W=2Þ þ EZ;JθðW=2 − jyjÞ; ð2Þ

where θðxÞ is a step function. For simplicity, we focus on the
case of a zero Zeeman field underneath the leads and
postpone the discussion of nonzero EZ;L to Sec. III A. The
proximity-induced pairing in the semiconductor 2DEG is
accounted for by

ΔðyÞ ¼ ΔeisgnðyÞϕ=2θðjyj −W=2Þ; ð3Þ

where ϕ is the phase difference between the two super-
conductors. The Pauli matrices σ, τ act in the spin and
particle-hole basis, respectively, and τ� ¼ ðτx � iτyÞ=2.
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States at subgap energies are confined to the quasi-one-
dimensional junction between the two superconducting
leads. Under suitable conditions, the junction can enter a
one-dimensional (1D) topological superconducting phase.
We emphasize that the two-dimensional leads remain trivial
s-wave superconductors throughout this paper even when
the junction is in the topological regime. In fact, the model
in Eq. (1) is insufficient to describe a two-dimensional
topological superconductor, which requires either an out-
of-plane Zeeman field [15] or a Dresselhaus spin-orbit
interaction [16].
In this paper, we study two experimental configurations

in which the model described by Eq. (1) and Fig. 1(a) may
be realized. In the first configuration, the phase across the
junction is a parameter controlled externally by applying a
current or a magnetic flux. In the second configuration, the
phase is left to self-tune so as to minimize the ground-state
energy. For the first configuration, we calculate the phase
diagram as a function of the phase across the junction and
the Zeeman field, while for the second configuration, we
identify the conditions under which the system self-tunes to
a topological phase. We find that the critical current of the
junction can be used as a probe for the transitions between
topological and trivial phases.
We start by evaluating the topological index for particle-

hole symmetric systems in class D. As we shall see in
Sec. III B, the model has a higher symmetry involving a
combination of mirror reflection and time reversal that places
it into the BDI class. Each topological (trivial) region in the
phase diagram of class D will be split into subregions with an
odd (even) Z invariant [23–25]. Breaking this symmetry
stabilizes the topological phase with a single Majorana
bound state at each end. Note also that in the absence of
a Zeeman field and at a phase difference of 0 or π, the system
is time-reversal symmetric and, therefore, belongs to class
DIII. It was previously shown that Josephson junctions at a

phase difference of π can realize a time-reversal-invariant
topological superconducting phase, hosting Kramers pairs of
Majorana modes at its ends [27–29]. However, this requires
a spatially nonuniform spin-orbit coupling in the 2DEG,
unlike the one present in our model.
To determine whether our one-dimensional system is in

the topological phase of class D, we consider a configuration
with periodic boundary conditions in the x direction. As
analyzed in the seminal work by Kitaev [30], the topological
invariant is then given by the fermion parity of the ground
state of Hðkx ¼ 0Þ. Note that at kx ¼ 0, spin along the x
direction is conserved by the Hamiltonian in Eq. (1) and the
spin-orbit coupling can be gauged away by substituting
∂y → ∂y þ imασx. We arrive at the effective Hamiltonian

H0¼ð−∂2
y=2m−μÞτzþEZðyÞσxþΔðyÞτþþΔðyÞ�τ−: ð4Þ

The subgap spectrum of H0 as the phase difference ϕ is
varied is shown in Fig. 1(b). For simplicity of presentation,
we assume here a narrow junction in the Andreev limit
μ ≫ Δ, with vanishing normal reflection. When the phase
difference between the superconductors is zero, the system is
trivial, and thus the number of occupied states at kx ¼ 0 is
even. For vanishing Zeeman field, the spectrum as a function
of ϕ is twofold degenerate. The number of occupied states is,
therefore, even for all values of ϕ, and the system remains
trivial as ϕ is varied. At nonzero fields, the degeneracy is
split. In this case, as the phase difference is varied, a single
gap closing occurs for some 0 < ϕ1ðEZ;JÞ < π. At this gap
closing, the parity of the number of the occupied states
changes, and the system undergoes a transition into the
topological phase. As the phase is varied further, another gap
closing occurs at ϕ2 ¼ 2π − ϕ1 and the system undergoes a
transition back into the trivial phase. The system is therefore
in the topological superconducting phase for ϕ1 < ϕ < ϕ2.

FIG. 1. (a) A Josephson junction is formed in a 2DEG with Rashba spin-orbit coupling by proximity coupling it to two s-wave
superconductors with relative phase difference ϕ. An in-plane magnetic field is applied parallel to the interface between the normal and
the superconducting regions. (b) The bound-state spectrum in a narrow junction for kx ¼ 0. The spectrum in the absence of a Zeeman
field is twofold degenerate and is indicated by the grey lines. In the presence of the Zeeman field, the spectrum for the two spin states
(plotted in red and blue) is split, allowing for the appearance of a topological phase. (c) Phase diagram as a function of the Zeeman field
in the junction, EZ;J , given in units of the Thouless energy ET ¼ ðπ=2ÞvF=W and the phase difference ϕ. The solid lines are the phase
boundaries in the absence of any normal backscattering at the superconducting-normal interface, while the dashed lines correspond to a
junction transparency of 0.75 and a phase kFW þ φN ¼ 3π=8 as defined in Sec. III A. The arrows indicate the range of ϕ values between
the two zero energy crossings in (b) for which the system is topological.

TOPOLOGICAL SUPERCONDUCTIVITY IN A PLANAR … PHYS. REV. X 7, 021032 (2017)

021032-3



The resulting phase diagram as a function of Zeeman
field and phase bias is shown in Fig. 1(c). Most strikingly,
the system is in a topological phase at ϕ ¼ π for arbitrary
Zeeman fields except at isolated values given by even
integer multiples of the ballistic Thouless energy of the
junction ET ¼ ðπ=2ÞvF=W. In contrast, at zero phase
difference, the system remains trivial throughout. As will
be shown in Sec. III A, this result generalizes to junctions
of arbitrary width as long as normal reflection can be
neglected and the system remains gapped. The Z2 topo-
logical index cannot change at ϕ ¼ 0, π because the
spectrum is always doubly degenerate at kx ¼ 0, and
topological phase transitions thus come in pairs. Hence,
an externally applied phase bias is a powerful experimental
knob that allows one to tune the system between topologi-
cally distinct phases, to a large extent independent of
microscopic parameters.
We can qualitatively understand the effect of weak

normal reflection on the phase diagram from the subgap
spectra shown in Fig. 1(b). Normal backscattering couples
left and right movers, lifting the degeneracy of Andreev
levels at ϕ ¼ 0, π. Hence, the system becomes topological
(trivial) in a small range of Zeeman fields at ϕ ¼ 0 (ϕ ¼ π).
The avoided level crossings translate to avoided crossings
of phase transition lines as indicated by the dashed lines in
Fig. 1(c). As long as normal reflection is not too strong, it
remains possible to induce a topological phase by a phase
bias in extended regions of parameter space.
We next consider the second configuration in which the

phase is determined by the condition that the ground-state
energy is minimal. Remarkably, we shall see in Sec. IV
that, in this case, the system self-tunes to the topological
phase in a broad range of Zeeman fields, exhibiting a first-
order topological phase transition. Such a transition will be
accompanied by an abrupt change in various thermody-
namic quantities characterizing the system, e.g., the mag-
netization, as well as in the energy gap in the bulk.
The origin of the first-order transition is that the phase

difference ϕGS that minimizes the ground-state energy
changes abruptly between two distinct values, one in the
trivial region and one in the topological region, at certain
values of the Zeeman field. As a consequence, the junction
is expected to show a hysteretic behavior as the Zeeman
field is swept at low temperatures. Moreover, we find that
the critical current exhibits a minimum at these values of
the Zeeman field as shown in Fig. 2(b). The critical current
can thus be used as a novel experimental probe of the
topological phase transitions in this configuration.
These findings can be understood semiclassically in the

limit EZ;J ≪ αkF ≪ μ. Because of the Rashba-induced
spin-momentum locking, the Zeeman field shifts the two
Fermi surfaces uniformly along ky in opposite directions as
depicted in Fig. 2(a). This induces a nonzero center-of-
mass momentum q ¼ 2EZ;J=vF in Cooper pairs traversing
the junction. Thus, the wave function of a Cooper pair

leaving one superconducting lead can be described by a
linear combination of singlet and triplet contributions
cosðqyÞjSi þ sinðqyÞjTi. For qW > π=2 (or, equivalently,
EZ;J > ET=2), the singlet wave function has opposite signs
at the two superconducting leads, and ϕGS switches from 0
to π. As discussed above, the system is trivial at ϕ ¼ 0 and
topological at ϕ ¼ π in a wide range of parameters. We
see, therefore, that for EZ;J > ET=2, the system self-tunes
into a topological phase via a first-order phase transition.
Moreover, at the 0 − π transition point (EZ;J ¼ ET=2), the

(b)

(a)

FIG. 2. (a) A Zeeman field along x shifts the two Rashba-split
Fermi surfaces of the 2DEG in opposite directions along y. The
arrows indicate the orientation of the spin at each point on
the Fermi surface. (b) The phase difference ϕGS that minimizes
the ground-state energy (upper panel) and the critical current
modulation (lower panel) as a function of the Zeeman field
obtained numerically using a tight-binding model for the system
(see Appendix D 2 for details of the model). The parameters used
are as follows:W ¼ 5,WSC ¼ 10, t ¼ 1, α ¼ 0.1, μ ¼ −2.4, and
Δ ¼ 0.3 [31]. The left (right) panel corresponds to a temperature
of T ¼ 0.05Δ (T ¼ 0.3Δ). (Note that we set kB ¼ 1 throughout
the paper.) The light blue color indicates the region in the
parameter space for which the system is in the topological phase.
As the Zeeman field is varied, the system undergoes a series of
first-order topological phase transitions, in which ϕGS changes
abruptly between values lying in the topological and trivial
regions of the phase diagram. The critical current exhibits minima
at the points of the phase transitions. As the temperature is
increased, the minima become deeper.
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singlet component, which carries the supercurrent, has a
node at the second interface resulting in a vanishing critical
current. Beyond the semiclassical approximation, we find
that the critical current remains nonzero but assumes a local
minimum at the transition, as shown by the tight-binding
calculations presented in Fig. 2(b).
When the constraint αkF ≪ μ is lifted, the phase differ-

ence in the ground state is not necessarily 0 or π, and it
varies with EZ;J [33]. However, generically, the system still
exhibits a jump in ϕGS as a function of Zeeman field. This
jump is accompanied by a change of fermion parity at
kx ¼ 0; therefore, it coincides with a topological phase
transition even in the more general case. Moreover, the
critical current still exhibits a minimum at the phase
transition point, EZ;J ¼ ET=2. Surprisingly, the minimum
grows sharper with increasing temperature, as can be seen
in Fig. 2(b). This is due to the fact that at high temperatures,
only the lowest harmonic of the supercurrent survives, and
the semiclassical argument presented above, which predicts
a vanishing critical current at the minima, is a good
approximation. At lower temperatures, transport coherence
persists over multiple Andreev reflections, giving rise to
higher harmonics in the supercurrent. The additional
contributions from higher harmonics result in less-pro-
nounced minima of the critical current as a function of
magnetic field, as discussed in more detail in Sec. IV.
It is encouraging that the modulation of the critical

current as a function of an in-plane magnetic field, and in
particular, its revival, has been observed in experiment
realizing the setup we consider [7], indicating that the
topological regime in Josephson junctions is within reach
of current experiments even in the absence of a phase bias.
Moreover, our theoretical analysis suggests that the vanish-
ing of the critical current as a function of magnetic field,
observed in Ref. [7], is indicative of a first-order topologi-
cal phase transition. As analyzed in detail in Ref. [7], the
vanishing of the critical current was observed at a value of
the magnetic field compatible with the expression
gμBB ¼ ðπ=4ÞvF=W, and hence also with the position of
the first-order topological phase transition predicted here.
A direct signature of topological superconductivity can be

obtained by a straightforward extension of the setup in
Fig. 1(a), when the system has a large but finite length L.
Adding a tunnel probe at one end of the junction would
enable the detection of Majorana bound states via tunneling
conductance measurements. While the conductance should
exhibit a zero-bias peak at the end of the junction, no such
feature is expected when tunneling into the center of the
junction.

III. EZ −ϕ PHASE DIAGRAM, TOPOLOGICAL
GAP, AND MAJORANA END MODES

A. Class D phase diagram

As was discussed in the previous section, topological
phase transitions occur when there are nondegenerate

zero-energy solutions of the model at kx ¼ 0, given by
Eq. (4). We use scattering theory to obtain the bound-state
spectrum of the system and, in particular, to find the
conditions for the formation of a zero-energy state. We
work in the limit μ ≫ Δ and assume at first that there is no
normal reflection at the superconducting-normal interfaces.
In this case, the eigenstates decompose into those with left-
and right-moving currents. We denote the junction’s trans-
mission amplitude for electrons (holes) by teðhÞ and the
Andreev reflection amplitudes by r�A ¼ expðiη� iϕ=2Þ,
where η ¼ cos−1 ½ðE − EZ;LÞ=Δ�, and the sign corresponds
to the current direction [34]. In the limit μ ≫ EZ;J, we can
approximate

teðhÞ ¼ exp

�
�ikFW þ i

ðE − EZ;JÞ
vF

W

�
; ð5Þ

where kF ¼ ð2mμÞ1=2 and vF ¼ kF=m are the Fermi
momentum and velocity, respectively. The bound-state
spectrum can be obtained from the condition 1 ¼
ðr�A Þ2teth [35].
We arrive at the following condition for the subgap

spectrum:

cos−1
�
En − EZ;L

Δ

�
¼ π

2

En

ET
−
π

2

EZ;J

ET
� ϕ

2
þ nπ; n ∈ Z:

ð6Þ
This equation implies a twofold degeneracy of the spectrum
at ϕ ¼ 0 and ϕ ¼ π. This degeneracy is a consequence of a
mirror symmetry and the absence of normal reflection from
the superconducting leads. As an important consequence of
this degeneracy, the Z2 topological index cannot change at
ϕ ¼ 0, π as zero-energy crossings always come in pairs.
We first consider the case EZ;L ¼ 0. Equation (6) then has
zero-energy solutions for

π

2

EZ;J

ET
� ϕ

2
¼ π

2
þ πn: ð7Þ

This condition sets the phase boundaries for the phase
diagram. It creates a diamond structure with alternating
trivial and topological regions as can be seen in Fig. 1(c).
For nonvanishing normal reflection probability at the

superconducting-normal interface, the equation for the
bound states is identical to Eq. (6), with ϕ replaced by

~ϕ ¼ cos−1 ½r2 cosð2kFW þ 2φNÞ þ ð1 − r2Þ cosϕ�: ð8Þ

The phase φN is defined in Eq. (A3) and depends on the
details of the normal reflection. (See Appendix A for the
derivation of this result.) The phase boundaries are there-
fore given by Eq. (7), with ϕ → ~ϕ. These are depicted as
dashed lines in Fig. 1(c). As expected, the degeneracy at
ϕ ¼ 0 and ϕ ¼ π is removed, and the topological (trivial)
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phase can now be obtained for some range of Zeeman fields
at ϕ ¼ 0 (ϕ ¼ π). Because of the dependence of ~ϕ on kF,
the finite reflection amplitude will result in oscillatory
modulations of the phase boundaries as a function of μ, as
we show in Fig. 3.
So far, we have neglected the effect of the Zeeman field

in the lead, which limits the realization of a topological
phase to junctions wide enough that ET ∼ EZ;J. In the
presence of a sizable Zeeman effect in the lead, a topological
phase may be accessible even in much narrower junctions
where ET greatly exceeds experimentally realizable Zeeman
fields. The zero-energy solutions of Eq. (6) then read

EZ;L ¼ Δ cos
�
π

2

EZ;J

ET
� ϕ

2

�
: ð9Þ

In the limit of a narrow junction with EZ;J ≪ ET , the first
term inside the cosine can be neglected. The corresponding
phase diagram is shown in Fig. 4. The topological phase is
limited to EZ;L < Δ, as larger Zeeman fields drive the leads
into a gapless regime.
Inside the gapped regime, the system always remains

trivial (topological) at ϕ ¼ 0 (ϕ ¼ π) because of the
degeneracy of the spectrum at these values of the phase
difference. In the presence of normal reflection, the phase
difference ϕ in Eq. (9) is replaced by ~ϕ defined in Eq. (8).

The corresponding phase boundaries are plotted in Fig. 4 as
dashed lines.

B. Class BDI phase diagram

As mentioned in Sec. II, the model in Eq. (1) possesses
additional symmetries, placing it in the BDI class. In the
absence of a Zeeman field and for a phase difference of π
between the superconductors, the Hamiltonian is time-
reversal symmetric. In addition, it commutes with a mirror
operator with respect to the x-z plane that we define as
My ¼ ðy → −yÞ × iσy. A Zeeman field along x, as well as a
shift of the phase difference away from π, breaks both of
these symmetries but remains symmetric to their product.
We can therefore define an anti-unitary effective time-
reversal operator ~T ¼ MyT, where T ¼ iσyK is the stan-
dard time-reversal operator, with K denoting complex
conjugation, which commutes with the Hamiltonian.
Note that ~T2 ¼ 1. The particle-hole operator, given in
the basis we are using by P ¼ σyτyK, obeys P2 ¼ 1,
and we therefore conclude that our model belongs to the
BDI symmetry class with a Z topological invariant. Note
that the Z2 invariant of class D discussed previously is
determined by the parity of the Z invariant. We therefore
expect that the topological (trivial) regions found previ-
ously will split into subregions with odd (even) Z indices.
To demonstrate this, we use a tight-binding version of

the Hamiltonian in Eq. (1) (see Appendix D 2 for details
of the model) and calculate the BDI invariant following
Ref. [32]. To this end, we bring the chiral symmetry
operator ~C ¼ Myτy to a diagonal form, with 1 in the
upper left block and −1 in the lower right block. In this
basis, the Hamiltonian is purely off-diagonal, and we can
calculate the phase of the determinant of the off-diagonal
part. The invariant is then calculated from the winding of
this phase as kx changes from 0 to π. The phase diagram
obtained for a particular set of parameters is shown in
Fig. 5. We note that although many additional subregions
with various Z indices appear in the phase diagram, a
large Z ¼ 1 gapped region is still present.
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φ=π with barrier(d)

FIG. 3. (a–c) Numerical results for the phase diagram as a
function of the Zeeman field and the chemical potential for
different values of ϕ, obtained using the scattering matrix
approach (see Appendix D 1 for details). The width of the
junction is W ¼ 5ðmΔÞ−1=2. The phase boundaries are deter-
mined by a gap closing at kx ¼ 0. At low chemical potentials,
μ≃ Δ, a finite amount of normal reflection from the super-
conducting leads results in oscillatory modulations of the phase
boundaries as a function of μ. The topological phase significantly
expands as the phase difference between the leads is tuned from 0
to π. (d) Same as (c) but with a rectangular potential barrier at
each interface between lead and junction. The barrier has height
200Δ and width 0.01ðmΔÞ−1=2. This corresponds to a trans-
parency of 0.82 at μ ¼ 10Δ. The presence of a reflecting barrier
leads to stronger modulations of the boundaries.

FIG. 4. Phase diagram as a function of the Zeeman field in the
leads EZ;L and the phase difference ϕ in the limit of a narrow
junction with EZ;J ≪ ET . For EZ;L > Δ, the system becomes
gapless. The solid lines are the phase boundaries in the absence of
any normal backscattering, while the dashed lines correspond to
junction transparency of 0.75 and a phase kFW þ φN ¼ 3π=8.
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To stabilize the topological phase with a single Majorana
bound state at each end, it is favorable to break this additional
symmetry. To this end, we introduce differentmagnitudes for
the two superconductors, Δ1;2. When jΔ1j ≠ jΔ2j, ~T no
longer commutes with the Hamiltonian, and the symmetry
class is reduced to D. We therefore expect that gap closing
lines observed in Fig. 5 corresponding to phase transitions
between different Z invariants with the same parity will no
longer be present.
To verify this result, we employ the tight-binding model

and plot in Fig. 6 the bulk gap versus the phase differenceϕ at
a constant Zeeman field EZ;J ¼ 0.6, for the same model
parameters as in Fig. 5. It can be seen that when jΔ1j ¼ jΔ2j,
the bulk gap closes at values of ϕ corresponding to

topological phase transitions between different (odd) Z
indices. Once a different magnitude for the two super-
conductors is introduced, and the effective time-reversal
symmetry is broken, a gap opens for all values of ϕ.

C. Topological gap

The topological protection of the phase is governed by
the size of the topological gap, which is determined by the
lowest-energy Andreev bound state in the junction. To
estimate the magnitude of the gap, we need to consider the
bound-state spectrum for all kx. Once again, we assume no
Zeeman field in the leads EZ;L ¼ 0, and we start by
considering the case of zero normal reflection probability.
We comment on the effect of normal reflection on the
magnitude of the gap towards the end of this section.
For kx ¼ 0, the solutions of Eq. (6) take a simple form in

the two limiting cases of a narrow and wide junction:

E ¼
8<
:

Δ cos
�
π
2

EZ;J

ET
� ϕ

2

�
Δ ≪ ET

ET

�
EZ;J

ET
� ϕ

π þ 2nþ 1
�

Δ ≫ ET:
ð10Þ

The largest gap in the topological region is obtained for
ϕ ¼ π and EZ;J ¼ ET . For a narrow junction, the gap is
given byΔ, while for a wide junction, the gap is smaller and
given by ET. We consider the scenario of a narrow but
finite-width junction with Δ≲ ET , which is likely to be the
most relevant case experimentally. Note that in order to
reach the maximal gap in the topological region in this case,
a relatively large Zeeman field EZ;J > Δ is required.
We next discuss the spectrum for nonzero kx [36]. In this

case, spin is no longer a good quantum number, and spin-
orbit coupling cannot be gauged out. We denote the magni-
tude of the Fermi momentum on the inner (outer) Fermi
surface in the presence of spin-orbit coupling by kF;1ð2Þ ¼
kF ∓ kSO, where kF ¼ ð2mμÞ1=2 and kSO ¼ mα. For a given
kx, we denote the y component of the Fermi momenta on the
two Fermi surfaces by kF;i;y ¼ ðk2F;i − k2xÞ1=2 ¼ kF;i sin θi,
where θi ¼ cos−1 ðkx=kF;iÞ. We note that for a given kx, the
spins of the electrons on the two Fermi surfaces are no longer
orthogonal. Therefore, when, e.g., an electron in the vicinity
of the inner Fermi surface is Andreev reflected from the
superconductor, it will be reflected as a superposition of
holes from both the inner and the outer Fermi surfaces.
However, in the limit of small spin-orbit coupling, αkF ≪ μ,
the overlap between the spins on the different Fermi surfaces
remains small (assuming that the Zeeman field does not
alter the Rashba-induced spin-momentum locking, i.e.,
EZ;J ≪ αkF). In the opposite limit of large spin-orbit
coupling, a large momentum transfer δky ¼ kF;2;y − kF;1;y
is required for such a process. If δky ≫ Δ=vF;1;y, such
scattering is suppressed. We conclude that Andreev reflec-
tion between different Fermi surfaces can be neglected if
EZ;J, Δ ≪ αkF. In this case, the scattering equations for the

FIG. 5. A phase diagram of the system as a function of the
Zeeman field and ϕ in the presence of the mirror symmetry My
defined in the text. The values of the Z invariant corresponding to
each region are indicated on the figure. Regions with odd (even)
Z indices, corresponding to topological (trivial) regions of the D
class, are filled with shades of blue (red). Note that, by our
definition of ϕ, the phase diagram is not invariant under ϕ →
ϕþ 2π since this operation flips the sign of the superconducting
gap function. The figure was obtained using a tight-binding
version of the model (see Appendix D 2) with the following
parameters: W ¼ 5, WSC ¼ 5, t ¼ 1, α ¼ 0.5, μ ¼ −2.75, and
Δ ¼ 0.3. Note that normal reflection is implicitly present in this
model because of the finite width of the superconductors.

FIG. 6. The bulk gap calculated along a cut in Fig. 5 with
EZ;J ¼ 0.6. When jΔ1j ¼ jΔ2j ¼ 0.3, the system is in the BDI
symmetry class. The bulk gap closes when the system undergoes
topological phase transitions between regions with different (odd)
Z indices. When jΔ1j ≠ jΔ2j, the effective time-reversal sym-
metry is broken, and the bulk becomes gapped for all values of ϕ.
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two spin species (corresponding to the two Fermi surfaces)
can still be decoupled.
To write down the scattering equation, we need to

determine the phase shift acquired by an electron (or a
hole) upon crossing the normal region of the 2DEG. To this
end, we use the plane-wave basis along y and diagonalize
the Hamiltonian (1) in the normal region jyj < W=2. The
resulting spectrum for the electrons is given by

E¼ k2x
2m

þ k2y
2m

−μþmα2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2k2xþðEZ;J−αkyÞ2

q
: ð11Þ

The spectrum for the holes can be obtained using particle-
hole symmetry. We see that the energy shift of an electron
(or a hole) on Fermi surface i due to the Zeeman field, to
first order in EZ;J, is given by ΔEi ≃ EZ;J sin θi. Therefore,
the phase accumulated when traversing the junction,
ðΔEi=vF;i;yÞW ¼ ðEZ;J=vFÞW, is the same for the two
Fermi surfaces and is independent of kx.
We conclude that the scattering equation for the bound

states at nonzero kx is given by Eq. (6), with ET →
ET;iðkxÞ ¼ ðπ=2ÞðvF;i;y=WÞ and EZ;J → EZ;J sin θi (such
that the ratio EZ;J=ET is left unchanged). Hence, the
energies are given by Eq. (10) with the same substitution.
Note that the kx-dependent Thouless energy decreases with
increasing kx. Once ET;iðkxÞ becomes smaller than Δ,
multiple bound states appear, and the gap at kx becomes
governed by ET;iðkxÞ. As kx approaches kF;i, the gap is
reduced to be of order 1=ðmW2Þ.
At high values of the Zeeman field, the gap can be further

limited by the following effect. In the normal state, Δ ¼ 0,
and in the presence of a nonuniform Zeeman field,
EZ;J > EZ;L, a potential well is formed by the Zeeman
energy in the normal region. The depth of this potential
depends on kx. In the limit EZ;J ≪ αkF, the potential at
kx ≃ kF is equal to −E2

Z;J=ðαkFÞ, as can be seen from
Eq. (11). States at momenta close to kF, bound by this
potential, can lead to a suppression of the superconducting
gap, once the characteristic length for the decay of their

transverse wave function, ξB, becomes smaller than W.
In this regime, the decay length is given by ξB≃
½2mE2

Z;J=ðαkFÞ�−1=2. The discussion above suggests that
the optimal gap in the system is obtained at ϕ ¼ π and
EZ;J ¼ ET and is equal to min fΔ; ð1=mW2Þg. However, if
the Zeeman field for which ξB becomes smaller than W is
smaller than ET , the optimal gap can be suppressed. The
value of the Zeeman field at which ξB ∼W is given by
EC
Z;J ¼ ETðα=vFÞ1=2. This allows us to obtain a lower

bound on the optimal gap in the system. In a narrow
junction, Δ≲ 1=ðmW2Þ, the gap at ϕ ¼ π for EZ;J < EC

Z;J

is given by Δ sin ½ðπ=2ÞEZ;J=ET �. At EZ;J ¼ EC
Z;J, this

gives a gap of order Δðα=vFÞ1=2. Thus, a gap of order Δ
can be reached for vF ≲ α, but because of the slow,
power-law dependence, the system also has a sizable
gap for larger values of vF. In a wide junction,
Δ ≫ 1=ðmW2Þ, the superconducting gap will, in fact, be
affected by a finite ξB once it becomes smaller than
ξ ¼ 1=ðmWΔÞ ≪ W. This leads to a much looser con-
straint on the Fermi velocity, allowing for a gap of order
1=ðmW2Þ as long as vF=α < W=ξ.
We conclude that a topological gap of order Δ can be

obtained if the junction is narrow, Δ≲ 1=ðmW2Þ, and the
chemical potential is such that vF ≲ α. For a wider junction,
the size of the topological gap is governed by 1=ðmW2Þ.
The optimal gap is obtained for ϕ ¼ π and EZ;J ≲ ET .
For nonzero normal reflection probability, the energy

spectrum is given by Eq. (10) with ϕ replaced by ~ϕ,
defined in Eq. (8). For small reflection probability r2 ≪ 1,
we find that the optimal gap Δ is reduced by a factor of
1 − ðr=2Þ2 cosð2kFW þ 2φNÞ, allowing for a sizable gap
also in the presence of normal reflection.
To complement this analysis, we calculate the spectrum

of the system as a function of kx across the phase transition,
using a tight-binding version of the model, given in
Appendix D 2, and plot it in Fig. 7. It can be seen that
both in the trivial and the topological regions, the smallest
gap occurs at kx ≃ kF;i, in agreement with the discussion

FIG. 7. (a–c) Energy spectrum across the topological phase transition calculated using a tight-binding model for the system (see
Appendix D 2 for details). The tight-binding parameters used areW ¼ 5,WSC ¼ 20, t ¼ 1, α ¼ 0.5, μ ¼ −2.8, and Δ ¼ 0.3. The Fermi
momenta kF;1=2 are calculated in the absence of a Zeeman field. The values of ϕ and EZ;J for which the spectra are plotted are indicated
by crosses on the phase diagram shown in (d). The phase diagram is obtained by calculating the topological invariant for class D,
Q ¼ sign½PfðHk¼πτxÞ=PfðHk¼0τxÞ� [32]. In (a), the system is in the trivial phase; in (b), the gap at kx ¼ 0 closes, and the system
undergoes a topological phase transition; and in (c), the system is in the topological phase.
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above. At the phase transition, the gap at kx ¼ 0 closes, and
it is in fact also close to zero for other kx.
In addition, we calculate the gap numerically using the

scattering matrix approach (see Fig. 8). We consider a
narrow junction with Δ≃ 1=ðmW2Þ and find that a sizable
gap of order Δ can indeed be obtained for ϕ ¼ π with very
weak dependence on the chemical potential.

D. Majorana end modes

In the topological phase, we expect the system to host
Majorana bound states at its ends. To verify the appearance
of these zero-energy bound states in the proposed setup, we
calculate the local density of states (LDOS) close to the
boundaries of the system. To this end, we diagonalize a
tight-binding version of the Hamiltonian in Eq. (1) with
boundaries both along the x and the y dimensions (for
details of the model, see Appendix D 2). The resulting
LDOS as a function of the phase difference is shown in
Fig. 9. Indeed, a zero-energy state is present at the end
of the junction in a finite range of phase differences
around ϕ ¼ π.
Note that in the presence of the effective time-reversal

symmetry discussed in Sec. III B, multiple Majorana bound
states will appear at each end of the system. The number of
zero-energy states in this case will be determined by the
BDI Z invariant.

IV. FIRST-ORDER TOPOLOGICAL PHASE
TRANSITIONS AND THE CRITICAL CURRENT

In this section, we show that if the phase difference is not
imposed externally, the system will self-tune into the
topological phase in a wide range of Zeeman fields.
Using the bound-state spectrum obtained in Sec. III, we
calculate the ground-state energy of the system and the
Josephson current in the junction. We find that at a critical
value of the Zeeman field, the system undergoes a first-
order phase transition, in which the ground state of the
junction switches between values of ϕ corresponding to the
trivial and the topological phases, and that this transition is
accompanied by a minimum of the critical current.
To this end, we need to sum over the contributions of all

kx to the ground-state energy. In the analysis of the gap
presented in Sec. III C, we found that in the limit Δ ≪ μ, as
well as EZ;J ≪ αkF;1=2, and assuming EZ;L ¼ 0 and no
normal reflection, the spectrum for kx < kF;1 is given
by Eq. (10), with ET → ET;iðkxÞ and EZ;J → EZ;J sin θi
(such that the ratio EZ;J=ET is left unchanged). For
kF;1 < kx < kF;2, there is only a single spin species present
in the system, and thus only half of the bound states remain.
We first calculate the ground-state energy and the critical

current in the limit αkF ≪ μ. In this limit, ðkF;2−kF;1Þ=kF ¼
2kSO=kF → 0, and we can therefore neglect the contribution
ofmomenta in the range kF;1 < kx < kF;2.We later relax this
constraint and discuss how the results are altered.

FIG. 8. Induced gap as a function of systemparameters evaluated
in the continuum model using the scattering matrix approach (see
Appendix D 1 for details) for W ¼ 1ðmΔÞ−1=2, mα2 ¼ 9Δ, and
EZ;L ¼ 0. In the left panel, μ=Δ ¼ 20. The diamond-shaped gap
closing lines indicate the boundary between the trivial and the
topological regions. Additional regions of small gap occur in the
vicinity of BDI phase transitions, where the gap closes at nonzero
momenta. In the right panel,ϕ ¼ π, and a sizable topological gap is
obtained in a very broad range of Zeeman fields with hardly any
dependence on the chemical potential.
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FIG. 9. Local density of states at the edge (left panel) and in the
center (right panel) of the junction as a function of energy and
phase difference. In a range around ϕ ¼ π, a Majorana state
forms at the edge. The result is obtained numerically from a tight-
binding model (see Appendix D 2) using the following param-
eters (energies and length are in units of the hopping strength and
lattice spacing): α ¼ 0.5, EZ;J ¼ EZ;L ¼ 0.1, Δ ¼ 0.25, μ ¼
−3.75 (measured from the center of the tight-binding band),
junction width W ¼ 4, width of the superconducting leads
WSC ¼ 8, and length L ¼ 200. We plot a spatial average of
the density of states over a rectangle spanning the entire width of
the junction in the y directions and the first 10 sites from the edge
(left panel) or the most central 10 sites (right panel) in the x
direction. For presentation, the local density of states has been
convoluted with a Gaussian with a standard deviation of 0.02Δ.
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We first focus on the limit of an ultranarrow junction
with a single bound state (for each spin species) for all kx,
i.e., Δ ≪ 1=ðmW2Þ, and consider the contribution of a
single kx to the ground-state energy. In this limit, the
dominant contribution to the ϕ-dependent part of the
ground-state energy (and thus also to the Josephson current)
comes from the Andreev bound states [35]. We denote the
bound-state energies by E� ¼ Δ cos ðϕB � ϕ=2Þ, where
ϕB ¼ ðπ=2ÞEZ;J=ET is used as a shorthand notation (note
that ϕB is independent of kx). The ground-state energy is
obtained by summing over the negative energy states, i.e.,
EGS ¼ −jEþj − jE−j. The spectra of the bound states
as well as the resulting ground-state energy are plotted in
Fig. 10 for different values of EZ;J=ET . We note that at
EZ;J ¼ ðnþ 1=2ÞET , the value of ϕ for which the energy is
minimized switches between ϕ ¼ 0 and ϕ ¼ π. Since the
energy dependence on ϕ and the Zeeman field in this case is
the same for all kx, we conclude that at EZ;J ¼ ðnþ 1=2ÞET

the ground state of the entire system switches from between
ϕ ¼ 0 and ϕ ¼ π. Note that in this transition, the fermion
parity of the kx ¼ 0 mode changes, indicating a transition
into the topological phase. This is a first-order phase
transition without a gap closing.
We next calculate the critical current in the junction in the

same limit. At zero temperature, the Josephson current is
given by IðϕÞ ¼ 2e½d=ðdϕÞ�EGS.We note that themaximum
of the Josephson current is obtained at the samevalue ofϕ for
all kx. We can therefore calculate the critical current in the
system, Ic ¼ max jIðϕÞj, as a function of the Zeeman field,
based on a single kx. Because of the relative phase shift in the
bound-states spectra of the two spins, the critical current of a
single momentum is modulated as the Zeeman field is varied
and is equal to Ic ¼ 2eΔmax fcos2 ϕB; sin2 ϕBg (see lower
panel of Fig. 10). The maximal value, Ic;max ¼ 2eΔ, is
obtained for ϕB ¼ πn=2, or equivalently EZ;J ¼ nET, and
the minimal one, Ic;min ¼ Ic;max=2 ¼ eΔ, is obtained for
ϕB ¼ ðπ=2Þðnþ 1=2Þ, or equivalentlyEZ;J ¼ ðnþ 1=2ÞET

[37].Note that theminima of the critical current occur exactly
at 0 − π transitions of the junction. The value of the Zeeman
field at which this transition takes place is in agreement with
the semiclassical argument given in Sec. II. However, we see
that the critical current does not vanish at these points.
When a finite temperature is considered, the Josephson

current is given by IðϕÞ ¼ 2e½d=ðdϕÞ�F, where F is the
free energy of the system. In the high-temperature limit,
T ≫ Δ, we obtain (see Appendix B)

IðϕÞ≃ −
4e
T

X
n

En
dEn

dϕ
¼ 2e

Δ2

T
cos ð2ϕBÞ sinðϕÞ: ð12Þ

We find that only the first harmonic of the Josephson
current is left. The critical current is proportional to
cos ð2ϕBÞ and is hence zero for ϕB ¼ ðπ=2Þðnþ 1=2Þ.
The suppression of the minimum of the critical current with
temperature can be seen in Fig. 2(b). The semiclassical
result is thus recovered in the high-temperature limit. This
recovery is due to the fact that higher harmonics of the
critical current, which correspond to multiple Andreev
reflections in the junction that are not accounted for in
the semiclassical argument, are suppressed in the high-
temperature limit.
We next lift the constraint of an ultranarrow junction.

More specifically, we assume that for some kx,
Δ ≪ ET;iðkxÞ. In the limit of kSO ≪ kF, we have
ET;1ðkxÞ≃ ET;2ðkxÞ, and we therefore suppress the band
index below. The maximal supercurrent is still obtained at
the same value of ϕ for all kx as will be clear from the
analysis below. Therefore, we can once again calculate the
contribution of a single momentum kx to the critical current
of the system, by considering the supercurrent due to that
momentum only. In this case, the contribution of the states
above the gap to the energy and the Josephson current
cannot, in general, be neglected [38]. However, taking the
limit Δ → ∞ allows us to consider only the bound states.

FIG. 10. The upper panel shows the bound-state energies of the two spin species (plotted in red and blue) and the energies of their
particle-hole symmetric states (indicated by dashed lines) for a single momentum kx < kF;1 in a narrow junction, as the Zeeman field is
varied. The contributions to the ground-state energy (obtained by summing over the negative energy states) and the Josephson current
are plotted for each value of the Zeeman field in the lower panel in blue and green, respectively. At EZ;J ¼ ET=2, the value of ϕ for
which the energy is minimized shifts from 0 to π. This transition is accompanied by a minimum in the critical current.
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Following the derivation in Ref. [39], we find that the
Josephson current in the presence of the Zeeman field is
given by

Iðkx;ϕÞ ¼ 8eT
X∞
p¼1

ð−1Þpþ1
cos ð2pϕBÞ sin ðpϕÞ
sinh (π2pT=ETðkxÞ)

: ð13Þ

At zero temperature, we obtain

Iðkx;ϕÞ ¼
8e
π2

ETðkxÞ
X∞
p¼1

ð−1Þpþ1
cos ð2pϕBÞ sin ðpϕÞ

p
:

ð14Þ

We note that since ETðkxÞ decreases with increasing kx, the
contribution of larger kx to the critical current is smaller. For
ϕB ¼ πn=2, the sum over p converges to a 2π periodic
sawtooth function, and the critical current is maximal and
equal to Ic;maxðkxÞ¼ 4eETðkxÞ=π. For ϕB¼ðπ=2Þðnþ1=2Þ,
all the odd harmonics are absent, and we obtain a π periodic
sawtooth function of half the amplitude, i.e., Ic;minðkxÞ ¼
Ic;maxðkxÞ=2 ¼ 2eETðkxÞ=π. Note that also in this case, the
minima of the critical current occur at the values of the
Zeeman field for which the minimum of the energy switches
between being at ϕ ¼ 0 and ϕ ¼ π, as can be seen by
integration of the Josephson current over ϕ.
In the high-temperature limit, which in this case corre-

sponds to T ≫ ETðkxÞ, once again only the first harmonic
is left:

Iðkx;ϕÞ ¼ 4eTe−π
2T=ETðkxÞ cos ð2ϕBÞ sinðϕÞ; ð15Þ

resulting in a vanishing current for ϕB ¼ ðπ=2Þðnþ 1=2Þ.
Note also that the critical current contribution from larger
kx is suppressed more strongly at finite temperatures.
We now lift the constraint αkF ≪ μ and consider the

contribution of momenta kF;1 < kx < kF;2 to the ground-
state energy. For simplicity, in this analysis, we once
again consider the limit of an ultranarrow junction,
Δ ≪ 1=ðmW2Þ. For kx > kF;1, there is a single spin species
in the system, and the energy of the corresponding bound
state is given by E− ¼ Δ cos ðϕB − ϕ=2Þ (assuming α > 0).
Upon integration of the energy over kx from −kF;2 to kF;2,
we obtain

EGS ¼ −
ΔL
π

�				 cos
�
ϕ

2
þ ϕB

�				kF;1
þ
				 cos

�
ϕ

2
− ϕB

�				kF;2
�
: ð16Þ

This function is depicted in Fig. 11 for several values of EZ;J

and kSO=kF. Concentrating onϕB ≤ π=2 andϕ ≤ π, we find
that this function can have two local minima at ϕ ¼ ϕ1;2

given by

tan
ϕ1

2
¼ tanϕB

kSO
kF

; 0 ≤ ϕ1 ≤ π − 2ϕB;

cot
ϕ2

2
¼ kSO

kF þ ðtanϕB − 1ÞkSO
; π − 2ϕB ≤ ϕ2 ≤ π:

ð17Þ

At ϕB ¼ π=4, or equivalently EZ;J ¼ ET=2, it can be
shown that ϕ1 þ ϕ2 ¼ π and that EGSðϕ1Þ ¼ EGSðϕ2Þ. We
can therefore conclude that at this value of the Zeeman
field, a first-order phase transition occurs with the value
of ϕ changing abruptly between ϕ1 and ϕ2. As long as
kF;1 > 0, or equivalently kF > kSO, we have ϕ1 < π=2 and
ϕ2 > π=2 at the transition point. Therefore, the system is in
the trivial phase on one side of the transition and in the
topological phase on its other side.
Finite temperature will smoothen the cusp in the ground-

state energy of the system as a function of the phase
difference. However, for low enough temperatures, two
local minima in the free energy still exist, allowing for a
first-order phase transition between them as the Zeeman
field is varied.
We note also that in the presence of normal

reflection, the values of the Zeeman field for which
the phase transitions occur, as well as the values for
which the critical current will be minimal, generically
shift away from EZ;J ¼ ðnþ 1=2ÞET and might no
longer coincide. However, as long as the normal
reflection probability is not too large, we expect these
deviations to be small.
Tight-binding calculations of the critical current, com-

plementing this analysis, are presented in Fig. 2(b). Note
that these calculations are performed in a different regime,
where EZ;J ≳ αkF. Nevertheless, we find that a first-order
topological phase transition still occurs from ϕGS close to
zero to ϕGS close to π.
Finally, we would like to address the case of a nonzero

Zeeman field in the leads. As was discussed in Sec. III A,
the system becomes gapless for EZ;L > Δ. Note that

FIG. 11. The ground-state energy of the junction as a function
of the phase difference ϕ in the limit of a narrow junction with a
single bound state for all kx [see Eq. (16)]. For kF > kSO, at
EZ;J ¼ ET=2, the system undergoes a first-order phase transition
as the ground state shifts between the two local minima. In the left
panel, EZ;J ¼ 0.45ET , and the system is in the trivial phase in its
ground state. In the right panel, EZ;J ¼ 0.55ET , and the system is
in the topological phase in its ground state.
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self-tuning into the topological phase requires EZ;J >ET=2.
Therefore, for a first-order topological phase transition
to be accessible in the system, it is necessary to have
EZ;L=EZ;J < 2Δ=ET .

V. DISCUSSION

We have shown that one-dimensional topological super-
conductivity can be realized in a Josephson junction across
a 2DEG with Rashba spin-orbit coupling and in-plane
magnetic field. Once the phase difference between the
superconductors is set to π, a ballistic junction is driven into
the topological phase without any further fine-tuning. If the
phase is not set externally, the system can self-tune into the
topological phase for a range of in-plane magnetic fields. In
this case, the modulation of the critical current serves as a
diagnostics of the phase transitions.
In practice, the system parameters should be chosen in a

way so as to optimize the gapΔtop protecting the topological
phase. We find that narrow junctions with 1=ðmW2Þ≃ Δ
allow for a gap of orderΔ in the topological phase. To reach
this limit, the chemical potential ideally should not exceed
the spin-orbit energymα2, althoughwe find sizablegaps even
for larger values of μ, as the gap decays, at most, as
Δtop ∼ Δðα=vFÞ1=2. The width of the junction also dictates
the magnitude of the Zeeman field required to be close to the
center of the topological phase, EZ;J ≲ ET , i.e., a large
Zeeman field is required if the junction is narrow.
Moreover, we assume, in our estimate of the gap, that the
Zeeman field does not interfere with the Rashba-induced
spin-momentum locking, i.e., that EZ;J ≪ αkF. Thus, mate-
rials with large spin-orbit coupling are favorable.
Although the orbital effects of the in-plane field have not

been discussed in the manuscript, we note that nonzero
magnetic field in the region between the superconducting
leads and the 2DEG can give rise to a spatial modulation of
the superconducting order parameter and destroy the gap
in the system. Moreover, this effect can lead to oscillations
of the critical current as a function of the magnetic field that
are not of topological origin. We further elaborate on this
effect in Appendix C.
While we expect the topological phase to be stable to a

certain amount of disorder, the system will eventually enter
a trivial phase at strong disorder. It would be interesting to
compare the effects of disorder with topological super-
conductors based on semiconductor nanowires. The latter
are restricted to relatively small chemical potentials, where
the effects of disorder are particularly severe. This indicates
that topological phases in planar Josephson junctions, for
which this restriction does not exist, could be more resilient
to disorder.
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Note added.—Recently, we became aware of Ref. [40],
which discusses topological superconductivity in a similar
setup, as well as Ref. [41], which analyzes surface states of
nanowires with some relation to our results.

APPENDIX A: PHASE DIAGRAM WITH
NORMAL REFLECTION

We now turn to an estimate of the phase boundaries in
the presence of normal reflection. We assume that the
mean-free path exceeds the width of the junction so that
normal reflection is limited to the superconducting
regions of the 2DEG and to the superconducting-normal
interface. Normal reflection can arise when μ and Δ are
of the same order or when the width of the super-
conducting segment is comparable to the superconducting
coherence length. Moreover, in experiments, the proxim-
ity-providing superconductor may dope the proximitized
part of the semiconductor with additional carriers because
of a difference in work functions. The corresponding
difference in chemical potential causes a momentum
mismatch between superconducting and normal 2DEG
regions, which introduces normal reflection at the super-
conducting-normal interface.
We focus on the scattering problem at zero energy, as

we are only interested in the phase diagram. In the
presence of normal reflections, the scattering matrix of
the left (right) normal-superconducting interface SL=R has
the form

SL=RðϕÞ¼ e�iϕ=2τzSe∓iϕ=2τz ; S¼
�
re rA
rA rh

�
; ðA1Þ

where re=h is the normal reflection amplitude for elec-
trons (holes). The subgap spectrum can be obtained from
the condition

detð1 − SLTSRTÞ ¼ 0; ðA2Þ

where T ¼ diagðte; thÞ is the transmission matrix of the
junction, te=h ¼ expðike=hWÞ, with ke=h the electron
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(hole) wave vector in the normal junction. The scattering
amplitudes are constrained by unitarity and can be
parametrized as

re=h ¼ �r expðiη� iφNÞ;
rA ¼ ð1 − r2Þ1=2 expðiηÞ: ðA3Þ

The phase η depends on the superconducting gap Δ, and
the phase φN depends on details of the normal reflection.
After a straightforward calculation, we can rewrite the
condition for a subgap state as

cosð2θ− þ 2ηÞ ¼ r2 cosð2θþ þ 2φNÞ þ ð1 − r2Þ cosϕ;
ðA4Þ

where we have introduced θ� ¼ ðke � khÞW=2. We can
solve this equation in several limiting cases:

(i) μ ≫ EZ;J, weak normal reflection: In this limit,
we can use Eq. (5) for te=h. The phases θ� are then
simply given by kFW and EZ;JW=vF ¼ ϕB,
respectively. The phase η can be expanded as
η¼arccos½ðE−EZ;LÞ=Δ�þOðr2Þ. In the case
EZ;L ¼ 0, the condition above for the subgap states
reduces to Eq. (6), which was used to describe the
bound states in the absence of normal reflection, with
ϕ replaced by ~ϕ defined in Eq. (8) of the main text.
For ϕ ¼ 0 and weak normal reflections r ≪ 1, the

topological phase transitions are given by

ϕB ¼ πn − arccosðEZ;L=ΔÞ � 2r sin ðkFW þ φNÞ:
ðA5Þ

Hence, in the presence of normal reflections, topo-
logical phases are possible even at zero phase bias. The
analytical result agrees well with numerical results
shown in Fig. 12. Similarly, for ϕ ¼ π, the phase
transitions are given by

ϕB ¼ ð2nþ 1Þ π
2
− arccosðEZ;L=ΔÞ

� 2r cos ðkFW þ φNÞ: ðA6Þ

The corrections to the scattering phase are linear in r
only at these two special values of ϕ. At other values,
0 < ϕ < π, the corrections are of order r2. This can be
seen by comparing Figs. 3(a)–3(c). The oscillations of
the phase boundaries for ϕ ¼ π=2 shown in panel
(b) vanishmore rapidly with increasing μ than those in
(a) and (c).
A topological phase may be accessible even in very

narrow junctions where EZ;J, Δ ≪ ET when the
Zeeman field in the lead is of order ofΔ. Equation (A4)
then yields the phase boundary

EZ;L ¼Δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− r2sin2ðkFWþφNÞ− ð1−r2Þsin2ϕ=2

q
:

ðA7Þ

The result is plotted in Fig. 4 as dashed lines. In
sufficiently short junctions when μ ≪ ET , we can set
θ� ¼ 0. Moreover, one can show in this case that
φN ≃ 0 when normal reflections are weak. The phase
boundaries then follow the well-known dispersion of
Andreev bound states in a short junction EZ;L ¼
Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − r2Þsin2ϕ=2

p
.

(ii) μ ≫ EZ;J, strong normal reflection: Normal reflec-
tion should ideally be avoided as it weakens the
proximity effect and reduces the overall gap of the
system. To illustrate the effect of increasing normal
reflections, we consider the extreme case r → 1. For
simplicity, we also set EZ;L ¼ 0. The phase diagram
then becomes independent of ϕ, and we find

ϕB ≃�ðkFW þ φNÞ − ηþ nπ: ðA8Þ

The phase boundaries EZ;J ≃�2μþ 2nET þ const
form diamonds in the EZ;J–μ plane. This trend can
already be seen for rather weak normal reflection in
Fig. 3(d). Thus, as normal reflection becomes
stronger, the phase space decomposes into similar-
sized patches of topological and trivial phase, which
alternate with period kFW as a function of chemical
potential. Note that when the normal reflection is
strong, the system may be thought of as a wire of
width W weakly coupled to two superconductors.
Then, the period of the oscillations corresponds to the
addition of a single transverse channel to the wire.
We conclude that normal reflection is generically

detrimental to topological superconductivity. Even
though normal reflection increases the phase space
area of the topological phase at ϕ ¼ 0, the small
patches make the topology vulnerable to potential
fluctuations. Moreover, tuning the topology with a
phase bias becomes less efficient in the presence of
normal reflection.

(iii) μ < EZ;J: The phase diagram has a qualitatively
different behavior when the Zeeman energy exceeds
μ as illustrated in Fig. 12. The normal system
becomes half metallic in the regime μ < EZ;J, and
thus only one spin component propagates in the
normal region. Similar to case (ii), superconducting
correlations inside the junction are suppressed. The
phase diagram becomes largely independent of the
phase difference, and the induced gap is reduced.

We focus on the eigenspace σx ¼ −1 of the Hamiltonian
at kx ¼ 0 in Eq. (4). In this subspace, the hole part of the
wave function is evanescent even in the normal region. For
simplicity, we assume a junction wider than the decay
length W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEZ;J − μÞp

≫ 1 so that the transmission of
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holes through the normal part is strictly zero. The scattering
matrix then only involves normal reflection of electrons
whose reflection amplitude ~r has unit modulus, while the
subgap spectrum is determined by its phase.
In this case, Eq. (A2) is modified and the condition for a

subgap state becomes

1 − ~reiθ ~reiθ ¼ 0 ðA9Þ
and thus

~reiθ ¼ �1; ðA10Þ

where θ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEZ;J þ μÞp

W is the phase shift of electrons
traversing the normal region.
When assuming μ ≪ EZ;J, we can neglect the μ depend-

ence of ~r. The calculation reveals the topological phase
transitions

μ ¼ EZ;J þ
1

2m

�
φr þ ð2nþ 1Þπ=2

W

�
2

ðA11Þ

with φr ¼ 2 arctan½1=ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EZ;J=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − E2

Z;L

qr
Þ�. This

result is in excellent agreement with numerical calculations
as shown in Fig. 12.

APPENDIX B: JOSEPHSON CURRENT AT
FINITE TEMPERATURE

To calculate the Josephson current at finite temperature,
we first calculate the many-body partition function of the
system. In the presence of particle-hole symmetry, it is
given by

Z ¼
Y
n

ð1þ e−βEnÞð1þ eβEnÞ ¼ 4
Y
n

cosh2
βEn

2
; ðB1Þ

where β ¼ T−1 and the product is taken over all the positive
energy states labeled by n. The free energy is then

F ¼ −T lnZ ¼ −
8

β

X
n

ln ( cosh

�
βEn

2

�
); ðB2Þ

and the Josephson current is

IðϕÞ ¼ 2e
dF
dϕ

¼ −8e
X
n

tanh

�
βEn

2

�
dEn

dϕ
: ðB3Þ

In the high-temperature limit with βEn ≪ 1 for all the
bound states,

IðϕÞ ¼ −4eβ
X
n

En
dEn

dϕ
: ðB4Þ

To show the effect of finite temperature on the critical
current, we calculate the current for the kx ¼ 0 mode in a
narrow junction with Δ ≪ ET by substituting the bound-
state spectrum for this case given in Eq. (10) into Eq. (B3).
Results are plotted in Fig. 13. It can be seen that the minima
of the critical current grow deeper rapidly as the temper-
ature is increased.

APPENDIX C: ORBITAL EFFECT OF
THE IN-PLANE MAGNETIC FIELD

If the magnetic field below the superconducting leads is
nonzero, it is important to also examine its orbital effect.
We choose a gauge in which the vector potential is given by

μ
/Δ

EZ,J /Δ

 0

1

2

3

4

5

 0 0.5 1

T

N

μ
/Δ

EZ,J /Δ

 0

0.5

1

 0 0.5 1

T

N

FIG. 12. Numerical phase diagram and analytical estimates for
two limiting cases. The green lines show the solution in the limit
B ≪ μ, Δ given by Eq. (A5) expanded to linear order in B=Δ.
The normal reflection in this limit is given by r≃ Δ=2μ and
φN ≃ 0. In the opposite limit μ ≪ B < Δ (red line), we use
Eq. (A11). Both panels show the same data for a width of W ¼
14ðmΔÞ−1=2 and ϕ ¼ 0.

FIG. 13. The critical current for the kx ¼ 0 mode in a narrow
junction at different temperatures. As the temperature is in-
creased, the contrast of the modulations is increased, with the
minima at EZ;J ¼ ðnþ 1=2ÞET becoming deeper.
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~A ¼ ð0; 0; ByÞ. An electron tunneling between the 2DEG
and the superconducting leads acquires a position-depen-

dent phase t⊥ ∼ eiAz
~d ¼ eiB ~dy, where we denote by ~d ¼

dþ λL the sum of the distance between the 2DEG and the
superconductors and the London penetration depth. The
induced order parameter therefore varies in space as
ΔðyÞ ¼ Δeiqy, where q ¼ 2B ~d. If the correlation length
of the induced pairing is smaller than the width of the
superconductors, WSC, then the effective superconducting
pairing will be

Δ̄ ¼ 1

WSC

Z
WSC

0

Δeiqy ¼ Δei
qWSC

2 sinc

�
qWSC

2

�
: ðC1Þ

Hence, for values of B equal to an integer multiple of
π=ð ~dWSCÞ, the superconducting gap will close, resulting, in
particular, in a vanishing critical current.

APPENDIX D: NUMERICAL CALCULATIONS

1. Scattering matrix formalism

To evaluate the phase diagram and the gap of the
Hamiltonian in Eq. (1), we employ a numerical method
based on a scattering matrix approach [42,43]. From the
scattering matrix S, we can obtain the bound-state
energies ϵ by solving det½1 − SðϵÞ� ¼ 0. For the phase
diagram in Fig. 3, we plot the lowest positive energy
eigenvalue at kx ¼ 0 in a color scale, where energies
below (above) ϵ ¼ 0.01 are plotted in black (blue). The
gap in Fig. 8 is found by minimizing the lowest energy
eigenvalue over all kx.

2. Tight-binding model

The tight-binding version of the Hamiltonian we use for
various calculations throughout the paper is given by

HTB ¼ H0 þHSOC þHZ þHΔ; ðD1Þ

H0 ¼ −μ
X
sij

c†i;j;sci;j;s − t
X

hij;i0j0is
½c†i;j;sci0;j0;s þ H:C:�; ðD2Þ

HSOC ¼ iα
X
s;s0

�XL−1
i¼1

X2WSCþW

j¼1

c†iþ1;j;sσ
s;s0
y ci;j;s0 −

XL
i¼1

X2WSCþW−1

j¼1

c†i;jþ1;sσ
s;s0
x ci;j;s0 − H:C:

�
; ðD3Þ

HZ ¼
X
iss0

�
EZ;J

XWSCþW

j¼WSCþ1

þEZ;L

XWSC

j¼1

þEZ;L

X2WSCþW

j¼WSCþWþ1

�
ðc†i;j;sσs;s

0
x ci;j;s0 þ H:C:Þ; ðD4Þ

HΔ ¼ Δe−iϕ=2
X
i

XWSC

j¼1

ci;j;↑ci;j;↓ þ Δeiϕ=2
X
i

X2WSCþW

j¼WSCþWþ1

ci;j;↑ci;j;↓ þ H:C:; ðD5Þ

where ci;j;s is the annihilation operator of an electron spin s
on site ði; jÞ with 1 ≤ j ≤ 2WSC þW and 1 ≤ i ≤ L and
h… ; …i denotes nearest neighbors. The hopping and spin-
orbit coupling strength are denoted by t and α, respectively.
The proximity-induced pairing strength Δ is nonzero only
in the leads 1 ≤ j ≤ WSC andWSC þW < j ≤ 2WSC þW.
The Zeeman field along the x direction has strength
EZ;L (EZ;J) in the leads (in the junction). This model
has been used to calculate the local density of states
in Fig. 9.
To describe an infinitely long junction, we assume

L → ∞ and perform a partial Fourier transform ck;j;s ¼P
i0e

iki0ci0;j;s. The resulting Hamiltonian HTBðkÞ is used to
calculate the BDI phase diagram in Fig. 5, the gap in the
system when the effective time-reversal symmetry is broken
in Fig. 6, and the spectrum across the topological phase
transition of class D in Fig. 7, as well as to demonstrate the

first-order phase transition accompanied by a minimum in
the critical current in Fig. 2(b).
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