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Machine learning, one of today’s most rapidly growing interdisciplinary fields, promises an
unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical
aspects of the representative artificial neural-network states has recently become highly desirable in the
applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the
data structures that encode the physical features in the network states by studying the quantum
entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM) architecture. We
prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary
dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction
that such states could exhibit volume-law entanglement, implying a notable capability of RBM in
representing quantum states with massive entanglement. Strikingly, the neural-network representation for
these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly
with the system size. We further examine the entanglement properties of generic RBM states by randomly
sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys
volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random
pure states. We show that their entanglement spectrum has no universal part associated with random matrix
theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is
capable of finding the ground state (with power-law entanglement) of a model Hamiltonian with a long-
range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-
protected topological cluster states, that the RBM representation may also be used as a tool to analytically
compute the entanglement spectrum. Our results uncover the unparalleled power of artificial neural
networks in representing quantum many-body states regardless of how much entanglement they possess,
which paves a novel way to bridge computer-science-based machine-learning techniques to outstanding

quantum condensed-matter physics problems.
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I. INTRODUCTION

Understanding the behavior of quantum many-body
systems beyond the standard mean-field paradigm is a
central (and daunting) task in condensed-matter physics.
One challenge lies in the exponential scaling of the Hilbert
space dimension [1-3]. In principle, a complete description
of a generic many-body state requires an exponential
amount of information, rendering the problem unattainable,
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even numerically. Fortunately, physical states usually only
access a tiny corner of the entire Hilbert space and can often
be characterized with much less classical resources.
Constructing efficient representations of such states is thus
of crucial importance in tackling quantum many-body
problems. Notable examples include quantum states with
area-law entanglement [4], such as ground states of local
gapped Hamiltonians [5] or the eigenstates of many-body
localized systems [6], which can efficiently be represented
in terms of matrix product states (MPS) [7-9] or tensor-
network states, in general [10-12]. These compact repre-
sentations of quantum states play a vital role and are
indispensable for tackling a variety of many-body problems
ranging from the classification of topological phases
[13,14] to the construction of the AdS/CFT correspondence
[15,16]. In addition, they are also the backbones of a
number of efficient classical algorithms for solving intricate
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many-body problems, e.g., density-matrix renormalization
group (DMRG) [9,17,18], time-evolving block decimation
(TEBD) [19], projected entangled pair states (PEPS)
[10,12], and multiscale entanglement renormalization
ansatz (MERA) methods [20,21]. Recently, a novel
neural-network representation of quantum many-body
states has been introduced [22] in solving many-body
problems with machine-learning techniques. However,
the entanglement properties (which are crucial for the
renowned MPS or tensor-network representations) of these
neural-network states remain unknown. In this paper, we
fill this crucial gap by studying the entanglement properties
of these many-body neural-network quantum states both
analytically and numerically. Our work provides an impor-
tant connection between the physical properties of many-
body quantum entanglement and the computer-science
properties of neural-network-based machine leaning.

Machine learning is the core of artificial intelligence and
data science [23]. It powers many aspects of modern
society, and its applications have become ubiquitous
throughout science, technology, and commerce [24,25].
In fact, perhaps because of the dominant presence of big
data in our modern world, the terms artificial intelligence,
machine learning, neural networks, deep learning, etc. have
generically entered the lexicon of the cultural world, well
outside the technical world of computer science where they
originated, often appearing in everyday press and popular
articles or stories—for example, the software technology
underlying automated self-driving cars crucially depends
on artificial intelligence and machine learning. Within
physics, applications of machine-learning techniques have
recently been invoked in various contexts such as gravi-
tational wave analysis [26,27], black hole detection [28],
material design [29], and classification of the classical
liquid-gas transitions [30]. Very recently, these techniques
have been introduced to many-body quantum condensed-
matter physics, raising considerable interest across different
communities [22,31-44]. Exciting progress has been made
in identifying quantum phases and transitions among them
(either conventional symmetry-broken [33,35,37,38] or
topological phases [32]), modeling thermodynamic observ-
ables [36], constructing decoders for topological codes
[39], accelerating Monte Carlo simulations [41,42], and
establishing connections to renormalization group tech-
niques [45,46], etc. In addition, machine-learning ideas
have also been explored in measuring quantum entangle-
ment and wave-function tomography through the analyses
of data extracted from quantum gas microscopes in cold-
atom experiments [47]. The fledgling field of machine-
learning applications in physics appears to be in its rapidly
growing early phase with many future breakthroughs
expected as it matures.

From the numerical perspective, the applications of
machine-learning techniques to many-body problems
would rely vitally on the underlying data structures of

the artificial neural networks, whose connections to the
entanglement features of the corresponding quantum states
are particularly desirable to address. In this paper, we study
the entanglement properties, such as the entanglement
entropy and spectrum, of the neural-network states. We
focus on the quantum states represented by the restricted
Boltzmann machine (RBM), which is a stochastic artificial
neural network with widespread applications [40,48-50].
We first prove the general result that all short-range RBM
states obey an entanglement area law, independent of
dimensionality and bipartition geometry. Since the one-
dimensional (1D) symmetry-protected topological (SPT)
cluster states and toric code states (in both 2D and 3D) have
an exact short-range RBM representation [51], it follows
immediately that they all have area-law entanglement. For
long-range RBM states, calculating their entanglement
entropy and spectrum analytically is very challenging (if
not impossible), and we thus resort to numerical simula-
tions. We randomly sample the weight parameters of the
RBM states and compute their entanglement entropy and
spectrum. We find that their entanglement entropy exhibits
a volume-law scaling, in general. However, surprisingly,
their entropy is noticeably less than the Page entropy for
random pure states, and their entanglement spectrum has no
universal part associated with random matrix theory and
bears a Poisson-type level statistics. This indicates that the
RBM states with random weight parameters live in a very
restricted subspace of the entire Hilbert space (in spite of
manifesting a volume-law entanglement entropy) and are
not irreversible—namely, there exists an efficient algorithm
to completely disentangle these states [52].

In addition, we analytically construct a family of RBM
states with maximal volume-law entanglement. These
states cannot be described in terms of matrix product
states or tensor-network states with a computationally
tractable bond dimension. In sharp contrast, their RBM
representation is remarkably efficient, requiring only a
small number of parameters that scales linearly with the
system size. This shows, in an exact fashion and in the most
explicit way, the unparalleled power of neural networks in
describing many-body quantum states with large entangle-
ment. Unlike MPS or tensor-network states, entanglement
is not the limiting factor for the efficiency of the neural-
network representation. As an important consequence, we
are able to calculate (through a reinforcement-learning
scheme [22,53]) the ground state, whose entanglement
has a power-law scaling with system size, of a spin
Hamiltonian with long-range interaction. Finally, we show
that the RBM representation could also be used as a tool to
analytically compute the entanglement entropy and spectrum
for certain quantum states with short-range RBM descrip-
tions. We demonstrate this by using a concrete example of
the 1D SPT cluster states. Our results not only demonstrate
explicitly the exceptional power of artificial neural networks
in representing quantum many-body states, but they also
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reveal some crucial aspects of their data structures, which
provide a valuable guide for the emerging new field of
machine learning and many-body quantum physics.

II. NEURAL-NETWORK REPRESENTATION
AND QUANTUM ENTANGLEMENT:
CONCEPTS AND NOTATIONS

An artificial-neural-network representation of quantum
many-body states has recently been introduced by Carleo
and Troyer in Ref. [22], where they demonstrated the
remarkable power of a reinforcement-learning approach in
calculating the ground state or simulating the unitary time
evolution of complex quantum systems with strong inter-
actions. We show elsewhere that this representation can be
used to describe topological states, even for those with
long-range entanglement [51]. To start with, let us first
briefly introduce this representation in the RBM architec-
ture. We consider a quantum system with N spins living on
a d-dimensional cubic lattice E = (oy,.0y,,...,0r, )
Correspondingly, we introduce Ey for spins in a subsystem
Y as By = {o,:r € Y}. The geometric details of the lattice
do not matter. Here, we choose cubic lattices and focus on
spin-% (qubits) systems for simplicity. A RBM neural
network contains two layers, one visible layer with N
nodes (visible neurons) corresponding to the physical
spins, the other a hidden layer with M auxiliary nodes
(hy,+ hy,, ... hy,) (hidden neurons). The neurons in the
hidden layer are connected to those in the visible layer, but
there is no connection among neurons in the same layer
(see Fig. 1 for a 2D illustration). The RBM neural-network
representation of a quantum state is obtained by tracing out
the hidden neurons [22]:

(DM(E, Q) = Zleargi+Zr’bT’IZT’+er’ W","h"/gi, (1)
{he}

where {h.} = {—1,1}" denotes the possible configura-
tions of the hidden spin variables and the weights Q =
(ay, by, W,y ) are parameters that need to be trained to best
represent the many-body quantum state. It is worthwhile to
mention that the RBM state defined in Eq. (1) is a
variational state, with its amplitude and phase specified
by ®,,(E; Q). The actual quantum state should be under-
stood as (up to an irrelevant normalization constant)
|P(Q)) => =Py (E;Q)|E), similar to the Laughlin-like
description of the resonating-valence-bond ground state of
the exactly solvable Haldane-Shastry model [54,55].

We remark that RBMs can be trained in either supervised
or unsupervised ways, and in the machine-learning com-
munity, RBMs have had successful applications in
classification [50], dimensionality reduction [48], feature
learning [56], and collaborative filtering [49], etc.
Mathematically, the ability of the RBM to approximate
any many-body state is assured by representability

FIG. 1. A 2D pictorial illustration of artificial-neural-network
quantum states in the restricted-Boltzmann-machine architecture.
The yellow balls (green cubes) denote the neurons on the visible
(hidden) layer, corresponding to the physical (auxiliary) spins.
The brown lines show the connections between visible and
hidden neurons, with the weight parameter denoted by W,
(only a small portion of the connections are shown for the best
visualization). Here, we also show a typical bipartition of the
system into two subsystems A and B in order to study the
entanglement properties of the neural-network states.

theorems [57-59]. Nevertheless, the approximation may
require a huge number (exponential in system size) of
neurons and parameters, thus rendering the representation
impractical, especially in numerical simulations. A ques-
tion of both theoretical and practical interest is as follows:
What kind of many-body quantum states can be efficiently
described by RBMs with a numerically feasible number of
neurons and parameters? It is now established that entan-
glement plays a crucial role in determining whether a
quantum state can be efficiently represented by a MPS or
tensor network or not. Quantum states with volume-law
entanglement cannot be described efficiently by a MPS or
tensor network and thus cannot be simulated efficiently by
DMRG, PEPS, or MERA. In sharp contrast, as we will
show in the following sections, RBMs are indeed capable
of efficiently describing certain specific quantum states
with volume-law entanglement, giving rise to the great
potential of numerically simulating these states with new
machine-learning algorithms based on RBMs.

In this paper, we study the quantum entanglement
properties of the RBM states. In particular, we investigate
the entanglement entropy, the Rényi entropy [60], and the
entanglement spectrum [61], which are three of the most
broadly used quantities for characterizing many-body
entanglement of a pure quantum state. These quantities
can be defined as follows: Considering a pure many-body
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quantum state |y), we divide the system into two sub-
regions, A and B (a typical bipartition of a 2D system is
shown in Fig. 1). We then construct the reduced density
matrix of subsystem A by tracing out the degree of freedom
in B: ps(|lw)) = Trg(|lyw)(w|). The ath order Rényi entropy
is defined as

SA =

log|Tr(p%)]-
—— log{Tr(sf)]
The zeroth-order (@ = 0) Rényi entropy is related to the
rank, namely, the number of nonzero singular values of p,.
When a — 1, the first-order Rényi entropy reduces to the
von Neumann entropy,

St = =Tr(ps log pa).

In the literature, the entanglement entropy usually means
the von Neumann entropy. However, throughout this paper,
we do not differentiate between the entanglement entropy
and the Rényi entropy since most of the results are valid for
the Rényi entropy to all orders. To define the entanglement
spectrum, we first define the entanglement Hamiltonian by
taking the log of py4:

Hent = —IngA,

and then the entanglement spectrum is defined as the
spectrum of H.,. We mention that entanglement is nowa-
days a central concept in many branches of quantum
physics. In condensed-matter physics, the entanglement
entropy and spectrum have proven to be powerful tools
characterizing topological phases [4,61-64], quantum
phase transitions [65-67], and many-body localization
[68—70], etc. A number of theoretical proposals have been
introduced to measure the entanglement entropy [71-74]
and spectrum [75] in many-body systems. Notably, exper-
imental measurements of the second-order Rényi entropy
have been achieved in recent cold-atom experiments in
optical lattices [76,77]. We expect that our study of
entanglement properties of neural-network states would
also provide novel inspiration in this context.

III. AREA-LAW ENTANGLEMENT FOR
SHORT-RANGE NEURAL-NETWORK STATES

We start with short-range RBM states and prove that they
obey an area-law entanglement scaling; namely, the amount
of entanglement between a subsystem and its complement
scales, at most, as the surface area or the boundary rather
than the volume of the subsystem [4]. Historically, the
study of entanglement area laws is inspired by the holo-
graphic principle in black hole physics, where the
Bekenstein-Hawking entropy of a black hole is believed
to scale as its boundary surface rather than its volume [78].
It has been argued that the origin of the black hole entropy
is the quantum entanglement between the inside and the

outside of the black hole [79-81]. Although it is apparent
that entanglement in “natural” quantum systems should
roughly live on the boundary and many numerical simu-
lations indeed support this intuition, rigorously proving the
area law for a given family of quantum states is notoriously
challenging and often involves sophisticated mathematical
techniques [4]. A breakthrough was first made by Hastings
in Ref. [5], where he proved an entanglement area law for
the ground states of 1D gapped local Hamiltonians by using
the Lieb-Robinson bound [82]. More recently, this proof
has been simplified and generalized to ground states with a
finite number of degeneracy by a combinatorial approach
based on Chebyshev polynomials [83,84]. Unfortunately,
both the Lieb-Robinson bound approach and the combi-
natorial approach seem unlikely to carry over to the case of
higher dimensions. Establishing the area-law entanglement
for ground states of gapped Hamiltonians in more than
one dimension remains a major open problem (and argu-
ably the most important one) in the field of Hamiltonian
complexity [3].

Here, we prove that short-range RBM states obey the
area law of entanglement in any dimension for arbitrary
bipartition geometry. To be precise, we call a RBM state an
R-range RBM state if each hidden neuron is only con-
nected to these visible neurons within an R neighborhood;
i.e., W = 0if [r — r'| > R. For instance, in Ref. [51], we
have demonstrated that both the 1D SPT cluster states and
toric code states (both 2D and 3D) can be represented
exactly by RBMs, with hidden neurons being connected
only to nearest visible neurons. These states are 1-range
RBM states. For general R-range RBM states, we have the
following theorem:

Theorem I.—For an R-range RBM state, the Rényi
entropy for all orders satisfies

§4 <28(A)Rlog2, V a, (2)
where S(A) denotes the surface area of subsystem A. This
area law is valid in any dimension and for arbitrary
bipartition geometry.

Proof.—For RBMs, since there is no intralayer connec-
tions between neurons, we can explicitly factor out the
hidden variables and rewrite @, (E; Q) in a product form:
®y(5;Q) = [[e*[[,Tv(Eyr), where we have intro-
duced a local subregion notation ry = {r:|r —ry| < R},
and a local function I'y(E.) = 2cosh(by + > Wyprof).
We call I, (E) the 'y factor for the hidden neuron at r’.
Moreover, by the definition of an R-range RBM, the values
of I'y factors only depend on the configuration of these
visible neurons (physical spins) within an R neighborhood
[denoted by N (R)]. We can thus simplify I'v(E,) as
I (Ey) = 2cosh(by + 3 ren, (r)Weroi). This indicates
the locality feature of I'y factors, which is the origin of
the area law.
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In order to utilize the locality feature of 'y factors, we
can further divide the subregion A (B) into three parts: Ay,
A,, and A3 (By, B,, and Bj), as illustrated in Fig. 2.
Explicitly, the subregion with r directly coupled (via one
hidden neuron) to the lattice sites in B is defined to be As,
the one directly coupled to A3 within A is defined to be A,,
and the rest of A is A;. The subregions B , 3 are introduced
correspondingly. One can regard the subregions A,, Az, B>,
and Bj as hypersurfaces with thickness R in high dimen-
sions. Let Y = A, U A3 U B, U Bs; then, we can rewrite
the R-range RBM state as

@)= [ TwE)leales) 3)

Ey r'€A;UB;

where [p4) = ZEAI Hr’eAIUAz Iy (Er_’>|EA> and |pp) =
ZEBI [Ives,us, I'v(Er)|Ep). From Eq. (3), we only have,
at most, 2/¥! terms, with | Y| denoting the number of spins in
region Y, in the summation, and each term is a tensor
product of orthogonal states of A and B. This gives the
upper bound in Eq. (2) after tracing out the degrees of
freedom in region B. We stress two crucial aspects of
Eq. (3): (i) |@4) is independent of spin configurations in
region B, and |¢p) is independent of spin configurations in
region A; (ii) the coefficients [[ye4,up,Iv(Er) for each

B,

FIG. 2. A sketch for the proof of area-law entanglement for
short-range restricted-Boltzmann-machine states. The system is
divided into two subsystems, A and B, with the red line showing
the interface boundary. In order to show that the Rényi entropy S4
obeys an area law for any a, the subsystem A (B) is further
divided into three parts: A, A,, and A3 (B, B,, and B3). Since the
neural network is short range, the I'. factors with r € A; U A,
(r € B; U B,) are independent of spin configurations in region B
(A); thus, we can group the spins in regions A; and B, with their
I',. factors. The entropy of the reduced density matrix p, then only
depends on the degree of freedom in region A, U Az, which is
proportional to the surface area of region A. This gives us a clear
geometric picture of why S4 is upper bounded by the surface area
of A, up to an unimportant scaling constant as given in Eq. (2).

orthogonal component |@,)|@g) are independent of spin
configurations outside Y. Points (i) and (ii) are crucial for
the validity of the proof, and they are made evident by the
deliberate partitions of both subregions A and B further into
three smaller parts.

We emphasize that in the above proof, we did not specify
the dimensionality or the geometry of the bipartition. The
proof works for any dimension and any bipartition of the
system. Thus, it might shed new light on the important
challenging problem of proving the entanglement area law
for local gapped Hamiltonians in higher dimensions [5,83—
85], given the possibility that all ground states of these
Hamiltonians are perhaps representable by short-range
RBMs, although a rigorous proof of this still remains
unclear. Intuitively, one can increase the number of hidden
neurons to increase the number of local weight parameters.
When there are enough free parameters, the corresponding
RBMs should be able to represent the ground states of
general local gapped Hamiltonians. This would work
because of a crucial aspect of our proof—the numbers
of hidden neurons and weight parameters are unlimited as
long as the connections are finite-ranged.

As shown in our previous work [51], the 1D SPT cluster
states, the toric code states in both 2D and 3D, and the low-
energy excited states with Abelian anyons of the toric code
Hamiltonians can all be represented exactly by short-range
RBMs with R = 1. An immediate corollary of the above
theorem is that the entanglement of all these states fulfill an
area law. In fact, based on the RBM representation, one can
even analytically compute the entanglement spectrum of
the 1D SPT cluster state, as we will show in Sec. V. It is
important to clarify that although the RBMs are short-
ranged, their represented quantum states can capture long-
range entanglement. The RBM representations of the toric
code states (both in 2D and 3D), which have intrinsic
topological orders (long-range entangled), are such exam-
ples. The area law of short-range RBM states does not
imply short-range entanglement. This distinction between
short-ranged in the RBM sense and short-ranged in the
entanglement sense is an important point.

In 1D, the area-law bound in Eq. (2) gives rise to an
interesting relation between the RBM and MPS represen-
tations of quantum many-body states. It has been proved
that a bounded Rényi entropy of all orders in 1D neces-
sarily guarantees an efficient MPS representation [86] (note
that a counterexample does exist if only the von Neumann
entropy is bounded [87]). As a result, our area-law results
imply that all 1D short-range RBM states can be efficiently
described in terms of MPS. However, the validity of the
inverse statement is unknown. It would be interesting to
find out whether all MPS descriptions with small bond
dimensions have efficient RBM representations or not, and
if so, what the general procedure is for recasting MPS into
RBM states. It would also be interesting to investigate the
relations between higher-dimensional RBM states and

021021-5



DENG, LI, and DAS SARMA

PHYS. REV. X 7, 021021 (2017)

tensor-network states, PEPS, or MERA. Nonetheless, it is
worth emphasizing here that the entanglement scaling of
RBM states is sharply distinctive from MPS—the maximal
entanglement entropy of an R-range RBM state scales
linearly with R, whereas a bond-dimension (y) MPS has an
entanglement entropy scaling as logy. This implies that
even though a RBM state can be generically converted to a
MPS, the parametrization in RBM states is much more
efficient for representing highly entangled quantum states.

We remark that our rigorous proof of entanglement area
law for short-range RBMs provides a valuable guide for some
practical numerical calculations. For instance, in some
circumstances, we know that the problem may only involve
a small amount (an area-law) entanglement; then, we may
use short-range, rather than long-range, RBMs to reduce
the number of parameters and consequently speed up the
calculations (we have tested this in a numerical experiment of
finding the ground state of the transverse-field Ising model
via reinforcement learning, and a considerable speedup has
indeed been obtained). On the other hand, if the problem to be
solved involves large entanglement (such as some quantum
criticality or quantum dynamic problems), then short-range
RBMs will not necessarily work, and we should choose a
long-range RBM to begin with.

IV. VOLUME-LAW ENTANGLEMENT IN
LONG-RANGE NEURAL-NETWORK STATES

In the last section, we proved that all short-range RBM
states satisfy an area-law entanglement. What about RBM
states with long-range neural connections? From the linear-
in-R entanglement-entropy scaling of /R-range RBM states
derived in the last section, we would anticipate that long-
range RBM states could exhibit volume-law entanglement.
In this section, we explicitly show that this is indeed true by
a rigorous exact construction and a numeric benchmark.

A. Exact construction of maximal volume-law
entangled neural-network states

Here, we analytically construct families of neural-
network states with volume-law entanglement. These states
are exact and have unified closed-form RBM representa-
tions. More strikingly, the RBM representation of these
states is surprisingly efficient—the number of nonzero
parameters scales only linearly with the system size. We
stress that efficient representations of quantum states play a
vital role in solving many-body problems, especially when
numerical approaches are employed. A prominent example
is the advantageous usage of the MPS representation in
DMRG [9] (for the ground states), TEBD [19] (for time
evolution), and DMRG-X [88] (for highly excited eigen-
states of local Hamiltonians deep in the many-body
localization region) algorithms. However, the MPS or
tensor-network representation is efficient only in describing
quantum states with area-law entanglement and thus

presents serious practical limitations in solving problems
involving volume-law entanglement states. As introduced
in the previous section, the construction philosophy of
neural-network states is very different from that of MPS or
tensor-network states. This gives rise to the possibility for
neural networks to efficiently represent quantum states and
solve problems with volume-law entanglement. We also
stress that our exact results here provide an important
anchor point for future theoretical and numerical studies
and should have far-reaching implications in the applica-
tions of machine-learning techniques in solving currently
intractable many-body problems. In Sec. IV C, we indeed
use RBMs to solve the ground state (with massive power-
law entanglement) of a modified Haldane-Shastry model
with long-range interactions by using the reinforcement
learning.

We first give a 1D example. Let us consider a 1D system
of N qubits. The goal is to construct a RBM state with
maximal volume-law entanglement entropy. To this end,
we introduce a RBM with N visible and M = | (3N)/2| — 1
hidden neurons. Here, the floor function |x| denotes the
largest integer less than or equal to x. The weight
parameters of ®,,(=E;Q), which characterize the RBM as
defined in Eq. (1), are chosen to be

a, =0, Ykell N, 4)

—iz kell,N-1]

bk - (5)

g oke[vH-1).

T (K. k)eS
Wi = { !

. (6)
0 otherwise,
where S is a set of paired integers defined by &=
{(i.j):ie[l,N—1]and j=i,i+lori€[N,[(3N)/2] —1]
andj=i+1-N,i+1—[N/2]}. The ceiling function [x]
denotes the smallest integer greater than or equal to x. A
pictorial illustration of this RBM is shown in Fig. 3. Now,
we show that the quantum states described by the above
RBM have volume-law entanglement entropy for any
contiguous region no larger than half of the system size.
To be more precise, we have the following theorem.
Theorem 2.—For a 1D RBM state with weight param-
eters specified by Egs. (4)—(6), if we divide the system into
two parts A and B, with A consisting of the first /
(1 <1< |[N/2]) qubits and B the rest, then the corre-
sponding Rényi entropy of p, is

sS4 =1log2, Va (7)
Proof.—As mentioned in Sec. III, since there
is no intralayer connection between neurons for

a RBM, we can explicitly factor out the hidden
variables and rewrite @, (2;Q) in a product form:
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Hidden Layer X

Visible Layer

FIG. 3. An illustration of the constructed 1D neural-network
state with a maximal volume-law entanglement entropy. This
restricted Boltzmann machine has N visible and [(3N)/2] -1
hidden neurons. For 1 <k <N —1(N <k < |[(3N)/2] — 1), the
kth hidden neuron is connected to two visible neurons at sites k
and k+1 (k+1—-N and k+1-[N/2]) with connection
weight parameters equal to (iz)/4. The on-site potentials for
the visible neurons are chosen to be zero, a; = 0 (Vk). For the
hidden neurons, b, is chosen as b, = —[(in)/4] (1 <k <N -—1)
and b, = [(=i)/2] (N < k < [(3N)/2]| — 1). The scissors show a
cut of the system into two subsystems (A and B) with equal sizes,
and for this bipartition, the Rényi entropy is $4 = |[N/2] log?2,
proportional to the system size. This is also the maximal amount
of entropy one can have for a system with N qubits.

Oy(ZQ) = [T, e [[Y_ Tw(8), with Tp(E) =
2cosh(by + > Wyior). From Eq. (4), a, =0 for all
k € [1,N]; thus, the first term [, e““t simply equals
1 and can be omitted from @, (Z;Q). Consequently,
the variational wave function ®,,(Z;Q) only depends
on the I'ys factors, which correspond to the hidden neurons.
As shown in Fig. 3, for K e[, N-1], Tp=
2cosh[—(in/4) + (in/4)(o}, + 0},,,)] connects its corre-
sponding hidden neuron at site k' to two nearest-neighbor
visible neurons at sites k' and k¥’ 4+ 1. Note that I';» has only
two possible values: I'y = -2 if oy =0y = —1 and
v =2 otherwise. For K €I[N,[(3N)/2]-1],
[y = 2cosh[(in/2) + (in/4) (0}, \_y + ai,ﬂ_wm)] con-
nects its corresponding hidden neuron at site k' to
two far-away, separated, visible neurons at sites
K+1—-N and K+1-[N/2]. Here, Ty vanishes if
and Tpy=2 [[p=-2) if

Oyl = 62’+1—[N/2] ==l (Op, 1y = 62’+1—[N/2] =D.
These features of the I'y factors are crucial in the following
proof of Eq. (7).

For convenience, we define two sets of integers: 3; =
{JiIN+1-[N/21<j<N+I1+1-[N/2]} and B,=
{jil+1<j<N+1—-[N/2]lorN+I+1-[N/2]<j<N}.
We note that B = B U B,. By using the features of the I'y
factors discussed above, the RBM state reduces to

z _ _ .z
Opi1-N = ~Ok11-N/2]

(W(Q)) =Dz, s X2, |4) B, 1Bp, = Ba)|Ep,), Where
s, = +C is a coefficient depending on E, 5, with C
a positive constant. By tracing out the degrees of freedom in
region B and putting back the normalization constant, we
obtain the reduced density matrix p, = I/2/, with I the
identity matrix of dimension 2/ x 2/. This completes
the proof.

It is worthwhile to mention that the subregion A does not
necessarily have to be at the left end. In fact, A can be any
contiguous region of length /, and Eq. (7) still remains
valid, although the details of the proof would change
slightly in this situation. We choose A to be at the left
end just for convenience. In the limit N — oo, for any
contiguous region, its entanglement entropy scales linearly
with the size of the region—a volume-law entanglement.

For the 2D case, we can construct volume-law-entangled
RBM states in a similar manner. We consider a system of N
qubits living on an L, x L, square lattice denoted as A. We
assume L, and L, are even integer numbers, for simplicity
(one can use the floor and ceiling functions to deal with the
case of odd numbers, but the notations will be more
cumbersome). We label each vertex of the lattice by a
pair of indices (k,, ky) 1<k, <L,and 1< ky < Ly) and

attach a qubit N = L, x L, to it. We construct a RBM with
N visible and %LXL}, —L,—L, hidden neurons. The
hidden neurons are divided into three groups. The first
(second) group, denoted by X ()), has (L,—1)xL,
[L, x (Ly — 1)] neurons that connect nearest visible neu-
rons along the x (y) direction. The third group, denoted by
Z, contains L, X %Ly hidden neurons that connect visible
neurons nonlocally. One can draw an analogy with the 1D
example: The neurons in groups X and ) connect nearest
visible neurons, and they correspond to the first N — 1
hidden neurons in the 1D case; similarly, those in group Z
correspond to the remaining ones. The hidden neurons in
X, Y, and Z are labeled by x = (x1,x,), ¥y = (y1,¥,), and
z = (21, 22), respectively. Following the 1D example, the
weight parameters can be chosen as
o Ky

akxk)_ = 0, \4 (k k ) S A,

pV) — p) — 7 (2) _ 17
y 4 ? 2 )
in . X z
WAz _ {z (x/y/2: Ky k) € S5/

x/y/z;k.k, — .
/3/5ksky 0 otherwise,

where Sg), S%), and SgZD) are the three sets that specify the
connections between the visible neurons and the
three groups of hidden neurons. They are defined as
S = {(xi ke k) ik = xi 2 + Lk, = x5}, Sh)=

{(y’kka ):kx:)ﬁ;ky:)’z’)’z‘f'l}’ Sglz)) = {(Z;kx’k)'):
(ke ky) = (21,22), (f(21): 22 + (Ly/2)},  with  f(z)) =
71+ (Ly/2) if 1 <2y < (Ly/2) and f(z)) = 7 — (Ly/2)
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if (L,/2) < z; < L,. Following the proof of theorem 2, it is
straightforward to verify that the entanglement entropy for
any small regular contiguous subregion A scales linearly
with the volume of A and is maximal, 4 = N, log 2. Here,
N, denotes the number of qubits inside region A.

We mention that similar constructions carry over to
higher dimensions straightforwardly. For a system defined
on a simple cubic lattice in d dimensions with N = L¢
qubits, our construction requires M = [(2d + 1)/2]L? —
dL“" hidden neurons and 3M nonzero weight parameters.
Both the number of hidden neurons and the number of
parameters scale only linearly with the system size. In
contrast, if we express these RBM states in terms of MPS or
tensor networks, the bond dimension will grow exponen-
tially with the system size, and the problem quickly
becomes intractable. This result explicitly demonstrates a
unique advantage of RBMs in representing quantum many-
body states with massive entanglement.

B. Entanglement benchmarking

For a general RBM state with long-range connections,
the entanglement entropy cannot be calculated analytically.
We thus resort to numerical simulations. We study the
entanglement properties of RBM states with random
weight parameters. We consider a 1D system with N
qubits. The corresponding RBM has N visible and M
hidden neurons, with the weight parameters chosen ran-
domly and independently. For each random sample, we

(a) : : : (b)

numerically calculate the coefficients for all possible spin
configurations (there are 2V configurations) and normalize
them to obtain the corresponding quantum state in the
computational basis. We then make an equal bipartition and
calculate the reduced density matrix p, for the A sub-
system. We diagonalize p, to compute the desired entan-
glement entropy and spectrum. The number of samples
used for numerics ranges from 10° (N =6) to 103
(N = 22). We mention that although we focus only on
1D systems, some entanglement features discovered here
should carry over to higher dimensions as well. Extensive
higher-dimensional RMB-based numerics are left for future
studies.

In Fig. 4(a), we plot the averaged entanglement entropy
scaling with different system sizes. When y is small (y = 1,
2, 3), we find that the averaged entanglement entropy scales
linearly with the system size—a volume law (this is another
indication that entanglement is not the limiting factor for
the RBMs in representing quantum many-body states).
Here, y = M/N denotes the ratio between the number of
hidden and visible neurons. However, when y increases, the
entanglement apparently bends downwards and seems to
saturate at large N. This result seems surprising at first sight
because an increase of y means an increase in the number of
connections between visible neurons, and intuitively, the
entanglement should increase as well. In fact, the bending
of the curve at large y may be understood by looking at the
original RBM representation in Eq. (1). Since we choose
W randomly, on average ®@,,(=; Q) will become less and
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FIG. 4. Entanglement scaling and distributions of neural-network states with random weight parameters. (a) The averaged von
Neumann entropy S4. For small y (y = M/N denoting the ratio between the number of hidden and visible neurons), S scales linearly
with the system size, indicating a volume-law entanglement. However, S tends to saturate when y becomes large (y = 4). Moreover, for
all y values studied, $7 deviates significantly from the Page value for the entanglement entropy averaged over random pure states.
(b) The entanglement distribution of 1 for different y. The peak shifts to the left as y increases, which is consistent with the observation
that the averaged S/ decreases as we increase y. Here, the system size is chosen to be L = 20, and we have used 10* random samples.
The inset shows S/? as a function of y for different system sizes. Note that S reaches its maximal value at y* ~ 0.7. However, even this
maximal value of S is still noticeably smaller than the Page value for random states. (c) The scaling of the Rényi entropy with the
system size. The second-order Rényi entropy S5 behaves similarly to the von Neumann entropy S¢. The inset shows the results for S/f/z.
For simplicity, we have chosen the on-site potentials a; (k € [1, N]) and by (k' € [1, M]) to be zero. The connection weight parameters
W are complex numbers randomly drawn from uniform distributions with Re(W,y) € [-3/N,3/N] and Im(W ) € [-x, x].
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less dependent on the spin configuration E as y increases. In
other words, in the represented many-body quantum wave
function, the difference between the coefficients of each
component becomes smaller and smaller. Thus, the state
becomes closer and closer to a product state, and therefore,
the entanglement decreases. This result is further justified
in the inset of Fig. 4(b), where the von Neumann entropy S
is shown as a function of y for different system sizes. From
this figure, we see that S reaches its maximal value at a
critical y* = 0.7, independent of system size. When y > y*,
S decreases as we increase y. It is also worthwhile to
mention that when we fix M as a finite number (y — 0 in
the thermodynamic limit N — o), then S7 is upper
bounded by Mlog?2, regardless of the system size. This
result can be understood heuristically by imagining all the
hidden neurons being grouped into subsystem B; then,
subsystem A can only have, at most, 2" degrees of freedom
that are entangled with B. Consequently, ¢ is bounded by
M log2. This explains the numerical observation in the
inset of Fig. 4(b), that for M = 1 (smallest y), S’f‘ ~ log?2
independent of the system size.

In order to compare the RBM states with random
parameters with generic random pure states, we also
calculate the so-called Page entropy [89], which is the
averaged entanglement entropy over pure states drawn
randomly from the entire Hilbert space of the system.
The Page entropy provides an estimate for entanglement
in extended thermal states [90] and has been widely
used in the context of quantum chaos [91], black hole
information [92,93], and many-body localization [94,95].
From the random matrix theory, it can be computed
as Spage = —[(ds — 1)/2dy] + 33, (1/k), where d,

and dp denote the Hilbert space dimensions of subsystems
A and B, respectively [89]. An interesting observation in
Fig. 4(a) and the inset of Fig. 4(b) is that the entanglement
entropy is always smaller than the Page entropy for all y.
This implies that the pattern of entanglement for the RBM
states with random parameters is distinct from that of
random pure states, which is consistent with the fact that
the RBM states live in a very small restricted subspace of
the entire Hilbert space. This also indicates that a random
state in the Hilbert space is probably not well described by a
RBM efficiently. In Fig. 4(b), we plot the entanglement
distribution for different y. We find that, as y increases, the
distribution becomes broader, and the density peak shifts
towards smaller values. This result is in agreement with the
observation in Fig. 4(a) that the entanglement decreases as
y increases. Figure 4(c) shows the results for the Rényi
entropy of orders a =2 and a = 1/2. As expected, S,
behaves very similarly to §;. For §;,,, we find a similar
volume-law scaling of entanglement, but the bending
feature does not show up at y = 4 because of finite-size
effects.

The entanglement entropy studied above provides a
wealth of information about the data structure of the
RBM states. However, as has been realized in a number
of different physical contexts, the entanglement entropy
cannot capture the full entanglement structure of the system
[96-101]. Much greater information can be extracted from
the entanglement spectrum. In order to obtain a more
comprehensive understanding of the data structure of the
RBM states with random weight parameters, we have
therefore also calculated their entanglement spectra and
the entanglement Hamiltonian level statistics. In Fig. 5(a),
we plot the averaged entanglement spectrum for different y.
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FIG. 5. Entanglement spectrum and level statistics for neural-network states with random weight parameters. Here, the lattice size is

chosen to be L = 20, and we have used 10* random samples. The random parameters are drawn from the same distribution as specified
in Fig. 4. (a) Averaged entanglement spectrum with different y. Here, &, denotes the kth eigenvalue of p, (the eigenvalues are arranged in
descending order). The red line denotes the spectrum of a completely random state (derived from a Marchenko-Pastur distribution). It is
evident that the entanglement spectra of the restricted-Boltzmann-machine states with random parameters are completely distinct from
the Marchenko-Pastur distribution, indicating that their corresponding entanglement Hamiltonians are very different from Wishart
matrices. (b) Density of states for the entanglement Hamiltonians. Here, e denotes the eigenspectrum of H.,. When increasing y, the
distribution of the eigenvalues broadens, and the peak shifts rightwards. (c) Distributions of the ratios of consecutive spacings for the
entanglement spectrum. These distributions follow a Poisson law and differ significantly from the predictions of GOE, GUE, or GSE.
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We find that the entanglement spectrum for the RBM states
is completely different from the Marchenko-Pastur distri-
bution derived from random matrix theory [102]. More
specifically, the Marchenko-Pastur distribution describes
the asymptotic average density of eigenvalues of a Wishart
matrix (a matrix of the form Y = XX T with X a random
rectangular matrix). It was shown recently in Ref. [97] that
the entanglement spectrum of highly excited eigenstates in
the delocalized phase bears a two-component structure:
(i) a universal part that is associated with random matrix
theory, i.e., a universal tail that follows the Marchenko-
Pastur distribution and thus is model independent, and (ii) a
model-dependent nonuniversal part that dominates the
weights in the spectrum. In the localized phase, the
universal part of the spectrum disappears in the thermo-
dynamic limit, leaving only the nonuniversal part that leads
to an area-law scaling of the entanglement entropy. In our
case for the RBM states with random weight parameters,
the universal part disappears completely even for a system
size as small as N = 20. In this sense, these RBM states are
less random than the highly excited eigenstates in both the
delocalized and localized phases. This further shows that,
although these RBM states obey a volume law of entan-
glement entropy on average, they are living in a very
restricted subspace of the entire Hilbert space. In Fig. 5(b),
we plot the density of states for the entanglement
Hamiltonian of these RBM states. We find that a broader
distribution shows up as we increase y, and the peak moves
to the right, which is consistent with the surprising results
from Fig. 4 (i.e., entanglement decreases as y increases).

Another quantity that is also useful in understanding the
data structure of the RBM states is the adjacent gap ratio r
defined as r, = [min(6,, §,_;)/ max(§,, 5,_;)], with §, the
level spacing between the nth and the (n — 1)th eigenstates
of the entanglement Hamiltonian. We note that the impor-
tance of the distribution of r has been broadly appreciated
in various contexts. In quantum chaos [103], it is argued
that whereas the level statistics for integrable quantum
Hamiltonians obeys a Poisson law [104], the case for
Hamiltonians with chaotic dynamics must follow one of the
three classical ensembles from random matrix theory [105],
namely, the Gaussian orthogonal ensemble (GOE), the
Gaussian unitary ensemble (GUE), and the Gaussian
symplectic ensemble (GSE). These three ensembles cor-
respond to Hermitian random matrices, with entries
being independently distributed random real, complex, and
quaternionic variables, respectively [106]. In many-body
localization, it is generally believed (recently verified by
extensive numerical calculations) that Hamiltonians in the
delocalized and localized regions manifest, respectively,
GOE (or GUE) and Poisson level statistics [68]. The level
statistics of the entanglement Hamiltonians in this context
has also been studied recently in Ref. [98]. It was shown
that, in the thermal phase, the entanglement spectrum
shows level statistics in agreement with predictions from

random matrix theory and is governed by the same random
matrix ensemble as the energy spectrum. However, in the
many-body localized phase, the entanglement spectrum
shows a semi-Poisson distribution, in contrast with the
energy spectrum following a Poisson law. For the RBM
states with random weight parameters studied in this
section, we find that their entanglement spectra follow a
Poisson distribution, as shown in Fig. 5(c). The averaged
value of r, (over 10* random samples) with N = 20 and
y = 3 equals 0.378, which is in good agreement with the
Poisson predicted value 2In2 — 1 ~ 0.386 [107]. The small
deviation could be attributed to finite-size effects. Thus,
these RBM states are distinct from the eigenstates of
Hamiltonians in either the delocalized or localized phases
on average. In addition, we also remark that the Poisson
behavior and the lack of a universal part in the entangle-
ment spectra of these RBM states imply that they are not
irreversible—namely, there exists an efficient algorithm to
completely disentangle these states [52]. Finding the
disentangling algorithm would provide some insight into
the nature of neural-network quantum states and is an
interesting topic for future investigation.

C. Reinforcement learning of ground
states with power-law entanglement

The above discussion shows that, unlike MPS or tensor-
network states, entanglement is not the limiting factor for
the efficiency of the RBM representation. As an important
consequence, RBM might be capable of solving some
quantum many-body problems where massive entangle-
ment is involved. To demonstrate this unprecedented
power, in this section, we consider the problem of finding
the ground state (with power-law entanglement) of a spin-
1/2 Hamiltonian with long-range interaction, through a
reinforcement-learning scheme [22,53]. We consider N
spin-1/2 particles living on a ring (see Fig. 6) with a
modified Haldane-Shastry [54,55] Hamiltonian given by

N
1 AXA AV AY AT AT
HMHS:Z_(_GfU;_G?]Gj + 6765), (8)
j<k “jk

where d;; = (N/x)|sin[z(j —k)/N]| is the so-called
“chord distance.” Since it has long-range interactions with
a power-law decaying strength, we expect its ground state
to have power-law entanglement. Although a rigorous
proof is still lacking and seems very hard to obtain, we
can verify the entanglement power law numerically. In
Fig. 7(a), we plot the von Neumann entropy for the ground
state of Hyys calculated from exact diagonalization (ED).
We find that it indeed has an excellent power-law fit with
the system size.

We now show that RBM is capable of faithfully and
efficiently representing the ground state of Hyg, and
the representing RBM can be efficiently obtained via
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FIG. 6. The modified Haldane-Shastry model. The N spin—%
particles form an equally spaced lattice on a ring. Each spin is
interacting with all the other spins. The interaction between spin j
and k is of Heisenberg XXZ type, and its strength is inversely
proportional to the square of the chord distance d; [see Eq. (8)].
The ground state of this model has power-law entanglement and
can be calculated with a restricted Boltzmann machine through
reinforcement learning.

reinforcement learning, despite the fact that the ground
state has a large amount of entanglement entropy. Since the
Hamiltonian has a lattice translation symmetry, we can use
this symmetry to reduce the number of variational param-
eters, and for integer hidden-variable density (y = 1,2, ...),

the weight matrix takes the form of feature filters Wﬁf ) with
f €[1,7], as described in Ref. [22]. In Fig. 7(b), we plot the
different spin correlations obtained via reinforcement
learning, for small system sizes. We compare the RBM
result with that from exact diagonalization. As shown in
this figure, the RBM result matches the ED result very well.
The accuracy of the RBM result can be improved by
increasing y and the number of iterations in the training
process. In Fig. 7(c), we show the feature maps after a
typical reinforcement learning process with y =4 and
N = 20. The accuracy of the trained RBM can be quanti-

fied by the relative error on the ground-state energy €, =

|(E(()RBM) — EEP)/EEP| [22]. For the parameters shown in
Fig. 7(c), we find €, ~1075. We then calculate the
correlation functions and ground-state energy density for
larger system sizes, which are far beyond the capability of
the ED technique. We plot some of the results for N = 100
in Fig. 7(d). We find that the correlation ({67, ;) has a
sharp jump at j = 2, which is also obtained in our ED
calculations for smaller system sizes, as shown in Fig. 7(b).

We remark that the DMRG/MPS-based simulations are
particularly challenging for the above problem and would
presumably require a substantially larger number of varia-
tional parameters than the RBM approach [9,108]. In this
regard, the reinforcement-learning-based RBM technique
has apparent advantages when large entanglement and
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FIG. 7. Reinforcement learning of the ground state of the
modified Haldane-Shastry model with power-law entanglement.
(a) The von Neumann entropy calculated by exact diagonaliza-
tion (ED) of the Hamiltonian with different system sizes. It has an
excellent power-law fit: S7 ~2.473N%10 —2.033. Here, the
entropy is calculated from an equal bipartition of the system.
(b) Spin correlations for small system sizes calculated by ED and
a restricted Boltzmann machine, respectively. (c) The learned
feature maps for representing the ground state with a restricted
Boltzmann machine. In panels (b) and (c), the hidden-unit density
y = 4, and the system size is fixed to N = 20. (d) Reinforcement
learning of the spin correlations and ground-state energy density
for larger system size N = 100. The inset shows the variational
energy density as a function of the iteration number of the
learning process. As the iteration number increases, the
energy converges smoothly to an asymptotic value around
Ey/N ~ =2.12.

long-range interactions are involved. Moreover, as pointed
out in Ref. [22], the RBM approach also works in higher
dimensions and for dynamical problems. We also mention
that Hyyg might be realized with trapped ions in a ring
geometry [109,110]. Thus, the numerically calculated
correlations could be experimentally verified in the future.

V. AN ANALYTICAL RBM RECIPE FOR
CALCULATING ENTANGLEMENT

In Sec. III, we proved that all short-range RBM states
obey an area-law entanglement. Can we calculate the
entanglement entropy and spectrum analytically? For a
general many-body state, this is an outstanding challenge,
especially for a system with a finite size. In fact, most of the
past works focus on the thermodynamic limit and compute
entanglement entropy asymptotically. The methods used
often involve complicated mathematics [4]. For instance,
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the Fisher-Hartwig formula has been used to evaluate the
asymptotic behavior of the entanglement entropy for the
critical XX model and other isotropic models [111-114].
Another notable approach is the use of conformal field
theory, where some universal properties of entanglement
entropy have been established for critical (1 + 1)-
dimensional systems [115-117]. For calculating the exact
entanglement entropy of a finite system, the quotient
group method has been used to calculate the entropy of
an arbitrary bipartition of the 2D toric code states
[118,119]. Here, however, we introduce an alternative
approach and show that the RBM representation would
also be helpful in the analytical calculation of the entan-
glement entropy and spectrum. As an example, we consider
the 1D SPT cluster state |¥),qer» Which is the ground
state of the cluster Hamiltonian H .. defined on a 1D
lattice with a periodic boundary condition: H uger =

Zk | 64_10307,- This state is a topological state pro-
tected by Z, x Z, symmetry [120]. It serves as a simple toy
model for studying SPT phases and has important appli-
cations in measurement-based quantum computation [121—
123]. An exact and efficient RBM representation of the 1D
cluster state has been found in Ref. [51]. This representa-
tion has N hidden neurons, with each one connecting only
locally to the visible neurons within a distance of 1. The
weight parameters are specified as

in iw, if |k—jl=1
by=—, W, =1 " 9
g ki {O otherwise, ©)

where w,s (4 =1, 0, —1) are positive real numbers given
by (@, wy, w_;) = (z/4)(2,3, 1). In the product form, the
normalized 1D cluster state reads

| cluster — Z H I_‘k’ E‘ (10)

2 K=l

where the 'y factor only depends on the configurations of
three nearest visible neurons 'y (E) =Ty (o},_, 07,01, ,) =
cos[(z/4)(1+20;,_, +30;, +07,,,)] (note that we returned
the normalization constant and rescaled all the I';s factor
by 1/2).

In order to study its entanglement properties, we con-
sider an arbitrary bipartition of the system into two parts, A
and B, and we aim to calculate the entanglement entropy
and spectrum of subsystem A analytically. For convenience,
we further divide the subregion A (B) into two parts, A; and
A, (B, and B,), with A, (B,) containing only four sites, a;,
oy, a3, and ay (B, po, f3, and f,), as shown in Fig. 8.
Using the fact that the RBM is short-ranged and
v (E) = £(v/2/2), we can rewrite |¥) e in the follow-
ing form, where the subregions A and B appear explicitly,

|‘P>cluster = Z Faz Fa4 Fﬁz F/}4 |lPA> |lPB> ( 11 )

-—Az UB,

with [Wy) =[P4(Ey,)) = 2ZEA1 Lo To I Tvea, Te(Ea)lEa)
and |¥g) =¥ (EBg)> = 22531 Fﬁlr/i3nk’e3,rk’ (Ep)|Zp)-
Equation (11) is crucial in calculating the entanglement
entropy and spectrum. Compared with Eq. (10), it contains
only 28, rather than 2V, terms in the summation. Noting that
|¥4) (|¥35)) only depends on the spin configurations within
subregion A, (By) and (¥,(E,,)[ ¥, (E4,)) = bz, =, one
can perform a unitary transformation U, (Up) within
subregion A (B) to rotate the basis of the Hilbert space
H, (Hp) of A (B). Note that this rotation will not affect the
entanglement entropy and spectrum. In the new basis,
P4 (E4,)) [|P5(Ep,))] is just a basis vector of H, (Hg). By
tracing out the degrees of freedom in subregion B and
plugging in the parameter values in Eq. (9), we find a very
simple expression for the reduced density matrix p4 in the
new basis,

pa=M, &M, &M, ®M, ®0, (12)
A : B
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FIG. 8. A sketch for analytically computing the entanglement
entropy and spectrum of the 1D symmetry-protected-topological
cluster state, through the corresponding exact short-range re-
stricted-Boltzmann-machine representation. The scissors show a
cut of the system into two subsystems A and B. We calculate the
entanglement entropy and spectrum from the reduced density
matrix p,. In order to conveniently explore the short-range
feature of the restricted-Boltzmann machine, we further divide
A (B) into A; and A, (B; and B,). It is important that the 'y
factors in subregion A; (B;) are independent of spin configura-
tions in B (A), such that the summations of spin configurations
in A; and B, are interchangeable and can be factorized out
explicitly, as shown in Eq. (11).
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where M| = 21; ly1)(wi| and M, = % ly2)(w>| are four-by-
four matrices with |y) =1(]0) + [1)) ® (|0) — |1)) and
lya) =3(l0) = 1)) ® (|0) — 1)), respectively; O is a zero
matrix of dimension 2V x 2Vai | with N 4, denoting the
number of spins in subregion A;. From Eq. (12), the
eigenvalues of p, can readily be obtained. Note that p, has
only four nonzero eigenvalues that are degenerate and equal
to zlr As a result, the Rényi entropy is given by

S§4=2log2, V.

For the entanglement spectrum, H,., has a fourfold
degeneracy, with the four smallest eigenvalues equal to
2log?2 and the rest infinite. The fourfold degeneracy is a
signature of SPT phases [61,124-126].

We expect that this RBM approach would carry over to
calculating the entanglement entropy and spectrum for the
2D and 3D toric code states, whose RBM representation has
already been given in Ref. [51], although the calculation will
be more technically involved. Undoubtedly, like all analyti-
cal methods in calculating entanglement, our RBM approach
has obvious limitations and cannot be applied, in general, to
an arbitrary short-range RBM state. First, given a specific
quantum many-body system, there is so far no systematic
way to write down its wave function in terms of RBM.
Second, we need certain symmetries (such as the transla-
tional symmetry) to substantially simplify the equations.
Thus, this approach works only in certain specific circum-
stances. However, we emphasize that our method does not
contain sophisticated mathematics and is a completely new
approach that has never been considered in the literature.

VI. CONCLUSION AND OUTLOOK

In summary, we have studied the entanglement proper-
ties of neural-network quantum states in the RBM archi-
tecture. In particular, we have proved that all short-range
RBM states satisfy an area law of entanglement for
arbitrary dimensions and bipartition geometry. This result
not only immediately implies an area law for the entangle-
ment of the 1D SPT cluster states and the 2D/3D toric code
states (with or without anyonic excitations), but it also
sheds light on the open problem of proving the entangle-
ment area law for the ground states of local gapped
Hamiltonians in higher dimensions. For generic long-range
RBM states with random parameters, we numerically
studied their entanglement entropy and spectrum. We found
that (i) the averaged entanglement entropy follows a
volume law but is significantly smaller than the Page
entropy for random pure states and that (ii) their entangle-
ment spectrum has no universal part associated with
random matrix theory and manifests a Poisson-type level
statistics. In addition, we analytically constructed families
of RBM states (in both 1D and 2D) with maximal volume-
law entanglement, which cannot be represented efficiently
in terms of matrix product states or tensor-network states.

For these states, the RBM representation is remarkably
efficient, requiring only a small number of parameters
scaling linearly with the system size. These results explic-
itly show, in an exact fashion, the remarkable power of
artificial neural networks in describing quantum states with
massive entanglement. Unlike MPS or tensor-network
states, entanglement is not the limiting factor for the
efficiency of the neural-network representation of quantum
many-body states. Through reinforcement learning of a
modified Haldane-Shastry model, we have shown that
RBM is capable of calculating the ground state, which
has power-law entanglement. The corresponding ground-
state energy and correlations can also be efficiently
obtained. Finally, we also demonstrated, through a concrete
example, that the RBM representation could be used as a
tool to analytically compute the entanglement entropy and
spectrum for finite systems. Our results reveal some crucial
aspects of the data structures of neural-network quantum
states and provide a useful guide for the practical appli-
cations of machine-learning techniques in solving quantum
many-body problems.

Many open questions remain. First, what are the limiting
factors for RBMs in efficiently representing quantum
states? In the future, it would be interesting and important
to find the necessary and sufficient conditions under which
a many-body state can be represented efficiently by neural
networks, as well as to discover how to convert a general
quantum state satisfying these conditions into a RBM.
These findings would help develop new machine-learning
algorithms for solving many-body problems and advance
the understanding, from a physical perspective [127], of the
power of machine learning itself. It would also be interest-
ing to study entanglement properties in other types of
artificial-neural-network states [33,34]. Another interesting
direction worth more investigation is the relation between
the MPS or tensor-network representation and the neural-
network representation. In this context, we note a recent
work on supervised machine learning with quantum-
inspired tensor networks, where the tensor network repre-
sentation has been shown useful in training neural networks
in a supervised way [128]. From Sec. III, we now know that
all short-range RBM states in 1D can be represented in
terms of MPS. What about higher dimensions and the
inverse statement? Can we rewrite all states bearing a MPS
or tensor-network representation with small bond dimen-
sions in terms of short-range RBMs? These questions are
worth exploring in the future.
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