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Unconventional metallic states which do not support well-defined single-particle excitations can arise
near quantum phase transitions as strong quantum fluctuations of incipient order parameters prevent
electrons from forming coherent quasiparticles. Although antiferromagnetic phase transitions occur
commonly in correlated metals, understanding the nature of the strange metal realized at the critical
point in layered systems has been hampered by a lack of reliable theoretical methods that take into account
strong quantum fluctuations. We present a nonperturbative solution to the low-energy theory for the
antiferromagnetic quantum critical metal in two spatial dimensions. Being a strongly coupled theory, it can
still be solved reliably in the low-energy limit as quantum fluctuations are organized by a new control
parameter that emerges dynamically. We predict the exact critical exponents that govern the universal
scaling of physical observables at low temperatures.
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I. INTRODUCTION

One of the cornerstones of condensed matter physics is
Landau Fermi liquid theory, according to which quantum
many-body states of interacting electrons are described by
largely independent quasiparticles in metals [1]. In Fermi
liquids, the spectral weight of an electron is sharply peaked
at a well-defined energy due to the quasiparticles with long
lifetimes. On the other hand, exotic metallic states beyond
the quasiparticle paradigm can arise near quantum critical
points, where quantum fluctuations of collective modes
driven by the uncertainty principle preempt the existence
of well-defined single-particle excitations [2–5]. In the
absence of quasiparticles, many-body states become
qualitatively different from a direct product of single-
particle wave functions. Because of strong fluctuations
near the Fermi surface, the delta function peak of the
electron spectral function is smeared out, leaving a
weaker singularity behind. The resulting non-Fermi liquids
exhibit unconventional power-law dependences of physi-
cal observables on temperature and probe energy [6]. A
primary theoretical goal is to understand the universal
scaling behavior of the observables based on low-energy
effective theories that replace Fermi liquid theory for the
unconventional metals [7–21].

Antiferromagnetic (AFM) quantum phase transitions
arise in a wide range of layered compounds [22–24].
Despite the recent progress made in field theoretic and
numerical approaches to the AFM quantum critical metal
[25–33], a full understanding of the non-Fermi liquid
realized at the critical point has been elusive so far. In
two dimensions, strong quantum fluctuations and abundant
low-energy particle-hole excitations render perturbative
theories inapplicable. What is needed is a nonperturbative
approach that takes into account strong quantum fluctua-
tions in a controlled way [20].
In this article, we present a nonperturbative field

theoretic study of the AFM quantum critical metal in
two dimensions. Although the theory becomes strongly
coupled at low energies, we demonstrate that a small
parameter that differs from the conventional coupling
emerges dynamically. This allows us to solve the strongly
interacting theory reliably. We predict the exact critical
exponents that govern the scaling of dynamical and
thermodynamic observables.

II. LOW-ENERGY THEORY AND
INTERACTION-DRIVEN SCALING

The relevant low-energy degrees of freedom at the
metallic AFM critical point are the AFM collective mode
and electrons near the hot spots, a set of points on the Fermi
surface connected by the AFMwave vector. In the presence
of fourfold rotational symmetry and reflection symmetry
in two spatial dimensions, there are generically eight hot
spots, as shown in Fig. 1. Following Ref. [30], we write the
action as
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S¼
X4
n¼1

X
σ¼↑;↓

Z
dkΨ̄n;σðkÞ½iγ0k0þ iγ1εnð~kÞ�Ψn;σðkÞ

þ1

4

Z
dq½q20þc20j~qj2�Tr½Φð−qÞΦðqÞ�

þ ig
X4
n¼1

X
σ;σ0¼↑;↓

Z
dkdq½Ψ̄n̄;σðkþqÞΦσ;σ0 ðqÞγ1Ψn;σ0 ðkÞ�

þu
Z

dk1dk2dqTr½Φðk1þqÞΦðk2−qÞ�

×Tr½Φð−k1ÞΦð−k2Þ�: ð1Þ

Here, k ¼ ðk0; ~kÞ denotes Matsubara frequency and

two-dimensional momentum ~k ¼ ðkx; kyÞ, with dk ≡
ðd3k=ð2πÞ3Þ. The four spinors are defined by Ψ1;σ ¼
ðψ ðþÞ

1;σ ;ψ
ðþÞ
3;σ ÞT , Ψ2;σ ¼ðψ ðþÞ

2;σ ;ψ
ðþÞ
4;σ ÞT , Ψ3;σ ¼ðψ ð−Þ

1;σ ;−ψ
ð−Þ
3;σ ÞT ,

and Ψ4;σ ¼ ðψ ð−Þ
2;σ ;−ψ

ð−Þ
4;σ ÞT , where ψ ðmÞ

n;σ ’s are electron fields
with spin σ ¼ ↑;↓ near the hot spots labeled by n ¼ 1, 2, 3,
4, m ¼ �. Ψ̄n;σ ¼ Ψ†

n;σγ0, where γ0 ¼ σy, γ1 ¼ σx are
2 × 2 gamma matrices for the spinors. The energy dis-
persions of the electrons near the hot spots are written as

ε1ð~kÞ ¼ vkx þ ky, ε2ð~kÞ ¼ −kx þ vky, ε3ð~kÞ ¼ vkx − ky,

and ε4ð~kÞ ¼ kx þ vky, where ~k represents the deviation
of momentum away from each hot spot. The commensurate

AFMwave vector ~QAFM is chosen to be parallel to the x and
y directions modulo reciprocal lattice vectors. The compo-

nent of the Fermi velocity parallel to ~QAFM at each hot
spot is set to have unit magnitude. v measures the
component of the Fermi velocity perpendicular to ~QAFM.
ΦðqÞ ¼P3

a¼1 ϕ
aðqÞτa is a 2 × 2 matrix boson field that

represents the fluctuating AFM order parameter, where the

τa’s are the generators of the SU(2) spin. c0 is the velocity
of the AFM collective mode. g is the coupling between the
collective mode and the electrons near the hot spots. n̄
represents the hot spot connected to n via ~QAFM: 1̄ ¼ 3,
2̄ ¼ 4, 3̄ ¼ 1, 4̄ ¼ 2. u is the quartic coupling between the
collective modes.
In two dimensions, the conventional perturbative expan-

sion becomes unreliable as the couplings grow at low
energies. Since the interaction plays a dominant role, we
need to include the interaction up front rather than treating
it as a perturbation to the kinetic energy. Therefore, we start
with an interaction-driven scaling [20] in which the
fermion-boson coupling is deemed marginal. Under such
a scaling, one cannot keep all the kinetic terms as marginal
operators. Here, we choose a scaling that keeps the fermion
kinetic term marginal at the expense of making the boson
kinetic term irrelevant. This choice will be justified through
explicit calculations. It reflects the fact that the dynamics of
the boson is dominated by particle-hole excitations near the
Fermi surface in the low-energy limit, unless the number of
bosons per fermion is infinite [34]. The marginality of the
fermion kinetic term and the fermion-boson coupling
uniquely fixes the dimensions of momentum and the fields
under the interaction-driven tree-level scaling:

½k0� ¼ ½kx� ¼ ½ky� ¼ 1;

½ψðkÞ� ¼ ½ϕðkÞ� ¼ −2: ð2Þ
Under this scaling, the electron keeps the classical scaling
dimension, while the boson has an Oð1Þ anomalous
dimension compared to the Gaussian scaling. At this point,
Eq. (2) is merely an ansatz. The real test is to show that
these exponents are actually exact, which is the main goal
of this paper.
Under Eq. (2), the entire boson kinetic term and the

quartic coupling are irrelevant. The minimal action which
includes only marginal terms is written as

S¼
X4
n¼1

X
σ¼↑;↓

Z
dkΨ̄n;σðkÞ½iγ0k0þiγ1εnð~kÞ�Ψn;σðkÞ

þi

ffiffiffiffiffiffi
πv
2

r X4
n¼1

X
σ;σ0¼↑;↓

Z
dkdq½Ψ̄n̄;σðkþqÞΦσ;σ0 ðqÞγ1Ψn;σ0 ðkÞ�:

ð3Þ

Here, the fermion-boson coupling is set to be proportional
to

ffiffiffi
v

p
by rescaling the boson field. The Yukawa coupling

is replaced with
ffiffiffi
v

p
because the interaction is screened

such that g2 becomes OðvÞ in the low-energy limit [30].
Although g and v can be independently tuned in the
microscopic theory, they rapidly flow to a universal line
defined by g2 ∼ v at low energies [35]. Equation (3) should
be understood as the minimal theory that captures the
universal physics at low energies, where the dynamics of

FIG. 1. A Fermi surface with fourfold rotational symmetry. The
(red) dots represent the hot spots connected by the AFM wave
vector ~QAFM.
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the collective mode is dominated by particle-hole excita-
tions rather than the bare kinetic term, and v is the only
dimensionless parameter. In the small v limit, g also
vanishes because a nested Fermi surface provides a large
phase space for low-energy particle-hole excitations with

momentum ~QAFM that screen the interaction. Even when g,
v are small, this is a strongly interacting theory because
g2=v ∼ 1 is the expansion parameter in the conventional
perturbative series. With g2=v ∼ 1, the leading boson
kinetic term that is generated from particle-hole excitations
is Oð1Þ, as we show below.

III. SELF-CONSISTENT SOLUTION

Naively, the theory is singular due to the absence of a
boson kinetic term. However, particle-hole excitations
generate a self-energy that provides nontrivial dynamics
for the collective mode. The Schwinger-Dyson equation for
the boson propagator (shown in Fig. 2) reads

DðqÞ−1¼mCT−πv
X4
n¼1

Z
dkTr½γ1Gn̄ðkþqÞΓðk;qÞGnðkÞ�:

ð4Þ

Here, DðkÞ, GðkÞ, and Γðk; qÞ represent the fully dressed
propagators of the boson and the fermion, and the vertex
function, respectively. mCT is a mass counterterm that is
added to tune the renormalized mass to zero. The trace in
Eq. (4) is over the spinor indices. It is difficult to solve the
full self-consistent equation because GðkÞ and Γðk; qÞ
depend on the unknown DðqÞ. One may use v as a small
parameter to solve the equation. The one-loop analysis
shows that v flows to zero due to emergent nesting of the
Fermi surface near the hot spots [25,26,28,31]. This has
been also confirmed in the ϵ expansion based on the
dimensional regularization scheme [30,35]. Of course, the
perturbative result valid close to three dimensions does
not necessarily extend to two dimensions. Nonetheless, we
show that this is indeed the case. Here, we proceed with the
following steps: (1) we solve the Schwinger-Dyson equa-
tion for the boson propagator in the small v limit and (2) we
show that v flows to zero at low energies by using the boson
propagator obtained under the assumption of v ≪ 1.

We emphasize that the expansion in v is different from
the conventional perturbative expansion in coupling.
Rather, it involves a nonperturbative summation over an
infinite series of diagrams, as we show in the following.
We discuss step (1) first. In the small v limit, the solution

to the Schwinger-Dyson equation is

DðqÞ−1 ¼ jq0j þ cðvÞ½jqxj þ jqyj�; ð5Þ

where the “velocity” of the strongly damped collective
mode is given by

cðvÞ ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v logð1=vÞ

p
: ð6Þ

Solving the Schwinger-Dyson equation consists of two
parts. First, we assume Eq. (5) with a hierarchy of the
velocities v ≪ cðvÞ ≪ 1 as an ansatz to show that only the
one-loop vertex correction is important in Eq. (4). Then we
show that Eqs. (5) and (6) actually satisfy Eq. (4) with the
one-loop dressed vertex.
We begin by estimating the magnitude of general

diagrams, assuming that the fully dressed boson propagator
is given by Eq. (5) with Eq. (6) in the small v limit. In
general, the integrations over loop momenta diverge in the
small v limit as fermions and bosons lose their dispersion in
some directions. In each fermion loop, the component of
the internal momentum tangential to the Fermi surface is
unbounded in the small v limit due to nesting. For a small
but nonzero v, the divergence is cut off at a scale propor-
tional to 1=v, and each fermion loop contributes a factor
of 1=v. Each of the remaining loops necessarily has at least
one boson propagator. For those loops, the momentum
along the Fermi surface is cut off by the energy of the boson
which provides a lower cutoff momentum proportional
to 1=c for c ≫ v. Therefore, the magnitude of a general
L-loop diagram with V vertices, Lf fermion loops, and E
external legs is at most

I ∼ vV=2−Lfc−ðL−LfÞ ∼ vðE−2Þ=2
�
v
c

�ðL−LfÞ
; ð7Þ

where V ¼ 2Lþ E − 2 is used. Higher-loop diagrams
are systematically suppressed with increasing ðL − LfÞ
provided v ≪ c. This is analogous to the situation where a
ratio between velocities is used as a control parameter in
a Dirac semimetal [36,37]. If Eq. (6) holds, the upper
bound becomes I ∼ vðE−2Þ=2þðL−LfÞ=2 up to a logarithmic
correction. It is noted that Eq. (7) is only an upper bound
because some loop integrals that involve unnested fermions
remain finite even in the small v limit. Some diagrams can
also be smaller than the upper bound because their depend-
ences on external momentum are suppressed in the small
v and c limit. A systematic proof of Eq. (7) is available in
Appendix A.

FIG. 2. The exact boson self-energy. The double line is the fully
dressed fermion propagator. The triangle represents the fully
dressed vertex.
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For v ≪ c, the leading order contribution for the boson
self-energy (E ¼ 2) is generated from Fig. 3(a), which is
the only diagram that satisfies L ¼ Lf. All other diagrams
are subleading in v. However, this is not enough because

the one-loop diagram gives DðqÞ−1 ¼ jq0j, which is
independent of spatial momentum. One has to include
the next order diagram [Fig. 3(b)], which generates a
dispersion. Therefore, Eq. (4) is reduced to

DðqÞ−1 ¼ m0
CT þ jq0j −

π2v2

2

X4
n¼1

Z
dpdkTr½γ1Gð0Þ

n ðkþ pÞγ1Gð0Þ
n̄ ðpþ qþ kÞγ1Gð0Þ

n ðqþ kÞγ1Gð0Þ
n̄ ðkÞ�DðpÞ: ð8Þ

Here, m0
CT is a two-loop mass counterterm. We can use the

free fermion propagator Gð0Þ
n because the fermion self-

energy correction is subleading in v. An explicit calculation
of Eq. (8) confirms that the self-consistent boson propa-
gator takes the form of Eq. (5). The boson velocity satisfies
the self-consistent equation c ¼ ðv=8cÞ logðc=vÞ, which is
solved by Eq. (6) in the small v limit. c is much larger than
v in the small v limit because of the enhancement factor
1=c in the two-loop diagram: the collective mode speeds up
itself through enhanced quantum fluctuations if it gets too
slow. We note that the antiscreening nature of the vertex
correction associated with the non-Abelian SU(2) vertex,P

3
a¼1 τ

aτbτa ¼ −τb, is crucial to generate the right sign for
the boson kinetic term [38]. This does not hold for Ising-
like or XY-like spin fluctuations [39]. The details of the
computation of Eq. (8) are available in Appendix B. It is
noted that Eq. (8) constitutes a nonperturbative sum over
an infinite series of diagrams beyond the random phase
approximation. The dynamics of the boson generated from
the fermionic sector dominates at low energies. This
justifies the choice to drop the bare kinetic term in Eq. (3).
Thus far, we assume that v is small to obtain the self-

consistent dynamics of the AFM collective mode. Now we
turn to step (2) and show that v indeed flows to zero in the
low-energy limit. According to Eq. (7), the leading quan-
tum corrections to the local action in Eq. (3) are the one-
loop diagrams for the fermion self-energy and the vertex
function. However, the momentum-dependent one-loop
fermion self-energy happens to be smaller than what is

expected from Eq. (7) by an additional power of c ∼
ffiffiffi
v

p
.

This is because the dependence on the external momentum
is suppressed in the small c limit for the one-loop self-
energy. As a result, we include the fermion self-energy up
to two loops in order to capture all quantum corrections to
the leading order in v. All other higher-loop diagrams are
negligible in the small v limit. The self-energy and vertex
correction are logarithmically divergent in a UV cutoff.
Counterterms are added such that the renormalized quan-
tum effective action becomes independent of the UV cutoff.
The full details of the computation of the counterterms and
the beta function are found in Appendix C. The bare action
that includes the counterterms is obtained to be

SB ¼
X4
n¼1

X
σ¼↑;↓

Z
d3kΨ̄n;σðkÞ½iZ1γ0k0 þ iγ1εBn ð~kÞ�Ψn;σðkÞ

þ iZ6

ffiffiffiffiffiffi
πv
2

r X4
n¼1

X
σ;σ0¼↑;↓

Z
d3kd3q½Ψ̄n̄;σðkþ qÞ

×Φσ;σ0 ðqÞγ1Ψn;σ0 ðkÞ�; ð9Þ

where εB1 ð~kÞ ¼ Z2vkx þ Z3ky, εB2 ð~kÞ ¼ −Z3kx þ Z2vky,

εB3 ð~kÞ ¼ Z2vkx − Z3ky, and εB4 ð~kÞ ¼ Z3kx þ Z2vky, with
Z1 ¼ 1 − ð3=4πÞðv=cðvÞÞ logðΛ=μÞ, Z2 ¼ 1þ ð15=4π2Þ
v logð1=cðvÞÞ logðΛ=μÞ, Z3 ¼ 1 − ð9=4π2Þv logð1=cðvÞÞ
logðΛ=μÞ, and Z6 ¼ 1 − ð1=4πÞðv=cðvÞÞ logðcðvÞ=vÞ
logðΛ=μÞ. Here, Λ is a UV cutoff above which nonlinear
terms in the fermionic dispersion become important. μ is the
scaleatwhich thephysicalpropagatorsandvertex functionare
expressed in terms of v through the renormalization con-
ditions, ð−i=2Þð∂=∂k0ÞTr½γ0G1ðkÞ−1�jk¼ðμ;0;0Þ¼1þF1ðvÞ,
ð−i=2Þð∂=∂kxÞTr½γ1G1ðkÞ−1�jk¼ð0;μ;0Þ ¼ v½1 þ F2ðvÞ�,
ð−i=2Þð∂=∂kyÞTr½γ1G1ðkÞ−1�jk¼ð0;0;μÞ ¼ 1þ F3ðvÞ, 1

2
Tr

½γ1Γðk; qÞ�jq¼0;k¼ðμ;0;0Þ ¼ 1þ F4ðvÞ, where the FiðvÞ’s are
UV-finite functions of v, which vanish in the small v limit.
The specific form of FiðvÞ is unimportant, and they can
be changed by adding finite counterterms in Zi. GnðkÞ
with n ¼ 2, 3, 4 are fixed from G1ðkÞ by the fourfold
rotational symmetry. The bare and renormalized variables
are related to each other through kB;x¼kx, kB;y ¼ ky, kB;0 ¼
ðZ1=Z3Þk0, vB ¼ ðZ2=Z3Þv, ΨBðkBÞ¼ðZ3=Z

1=2
1 ÞΨðkÞ,

ΦBðkBÞ ¼ ðZ1=2
3 Z6=Z1Z

1=2
2 ÞΦðkÞ. By requiring that the

(a) (b)

FIG. 3. The leading order diagrams for the boson self-energy in
the small v limit. Solid lines are the bare fermion propagators.
The wiggly double line represents the boson propagator con-
sistently dressed with the self-energy in (a) and (b). The dressed
boson propagator includes an infinite series of nested self-
energies with a fractal structure.
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bare quantities are independent of μ, we obtain the beta
function βv ≡ ðdv=d log μÞ, which dictates the dependence
of the renormalized velocity on the scale:

βv ¼
6

π2
v2 log

�
1

cðvÞ
�
: ð10Þ

As a function of the energy scale μ, v is renormalized
according to

dv
d log μ

¼ 6

π2
v2 log

�
1

cðvÞ
�
: ð11Þ

If v is initially small, Eq. (11) is reliable. It predicts that v
becomes even smaller and flows to zero as

v ¼ π2

3

�
log

1

μ
log log

1

μ

�
−1

ð12Þ

in the small μ limit. The way v flows to zero in the low-
energy limit does not depend on the initial value of v.
This completes the cycle of self-consistency. Equation (5)
obtained in the small v limit becomes asymptotically
exact in the low-energy limit within a nonzero basin of
attraction in the space of vwhose fixed point is v ¼ 0. The
dynamical critical exponent and the anomalous dimensions
are given by

z ¼ 1þ 3

4π

v
cðvÞ ; ηϕ ¼ 1

4π

v
cðvÞ log

�
cðvÞ
v

�
;

ηψ ¼ −
3

8π

v
cðvÞ ð13Þ

to the leading order in v. Here, z sets the dimension of
frequency relative to momentum. ηϕ, ηψ are the corrections
to the interaction-driven tree-level scaling dimensions of
the boson and fermion, respectively. The critical exponents
are controlled by w≡ v=cðvÞ, which flows to zero as
w ¼ ð4π= ffiffiffi

3
p Þðlog1=2ð1=μÞ log logð1=μÞÞ−1 in the low-

energy limit. This confirms that the scaling dimensions
in Eq. (2) become asymptotically exact in the low-energy
limit. This is compatible with the fact that an inclusion
of higher-loop corrections in the ϵ expansion reproduces
z ¼ 1, irrespective of ϵ [35].

IV. PHYSICAL OBSERVABLES

Although z − 1, ηψ , and ηϕ vanish in the low-energy
limit, the sublogarithmic decay of w with energy introduces
corrections to the correlation functions at intermediate
energy scales, which are weaker than power law but
stronger than logarithmic corrections [40]. The retarded
Green’s function for the hot spot 1þ takes the form

GR
1þðω; ~kÞ ¼

1

Fψ ðωÞ
h
ωFzðωÞ

�
1þ i

ffiffi
3

p
π

2
1ffiffiffiffiffiffi

log1ω
p

log log1ω

�
−
�
π2

3
kx

log1ω log log
1
ω
þ ky

�i ð14Þ

in the small ω limit with the ratio ð~k=ωFzðωÞÞ fixed. Here,
ω is the real frequency. FψðωÞ and FzðωÞ are functions that
capture the contributions from ηψ and z at intermediate
energy scales. In the small ω limit, they are given by

FψðωÞ ¼
�
log

1

ω

�
3=8

;

FzðωÞ ¼ e2
ffiffi
3

p f½logð1=ωÞ�1=2=½log logð1=ωÞ�g: ð15Þ

Fψ and Fz contribute only as subleading corrections
instead of modifying the exponents. However, they are
still parts of the universal data that characterizes the critical
point [28]. The additional logarithmic suppression in the
dependence of kx is due to v, which flows to zero in the
low-energy limit. The local shape of the Fermi surface is
deformed as ky ∼ kxðlog 1=kx log log 1=kxÞ−1. The scaling
form of the Green function at different hot spots can be
obtained by applying a sequence of 90° rotations and
a space inversion to Eq. (14). The spectral function at
the hot spots exhibits a power-law decay with the

superlogarithmic correction as a function of frequency,
AðωÞ ∼ ðωFzðωÞFψðωÞðlog 1=ωÞ1=2 log log 1=ωÞ−1.
The retarded spin-spin correlation function is given by

DRðω; ~qÞ ¼ 1

FϕðωÞ
h
−iωFzðωÞ þ π

4
ffiffi
3

p jqxjþjqyj
ðlog1ωÞ1=2

i ð16Þ

in the small ω limit with fixed ð~q=ωFzðωÞÞ. FϕðωÞ is
another universal function that describes the superlogar-
ithmic correction of ηϕ,

FϕðωÞ ¼ eð2=
ffiffi
3

p Þ½logð1=ωÞ�1=2 ; ð17Þ

in the small ω limit. The factor of ðlogð1=ωÞÞ−1=2 in the
momentum-dependent term is due to the boson velocity,
which flows to zero in the low-energy limit. Because of
the strong Landau damping, the spin fluctuation is highly
incoherent. It will be of great interest to test the scaling
forms in Eqs. (14) and (16) from angle-resolved photo-
emission spectroscopy and neutron scattering, respectively.
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Now we turn to thermodynamic properties. The total free-
energy density can be written as f ¼ 1

2
Tr½logD−1 − ΠD�−

Tr½logG−1 − ΣG� þΦ2, where Π, Σ are the self-energies of
the boson and fermion, respectively, and Φ2 includes the
two-particle irreducible diagrams [41]. Here, the traces sum
over three momenta and flavors. To the leading order in v,
fB ¼ 1

2
Tr½logD−1� and fF ¼ Tr½logGð0Þ� dominate. The

dominant fermionic contribution comes from electrons away
from the hot spots, fF ∼ kFT2, where kF is the size of the
Fermi surface. Naively, the bosonic contribution is expected
to obey hyperscaling, because low-energy excitations are
confined near the ordering vector. However, the free energy
of the mode with momentum ~p is suppressed only alge-
braically as T2=cðjpxj þ jpyjÞ at large momenta, in contrast
to the exponential suppression for the free boson. The slow
decay is due to the incoherent nature of the damped AFM
spin fluctuations, which have a significant spectral weight
at low energies even at large momenta. As a result, fB ∼R
d~pðT2=cðjpxj þ jpyjÞÞ is UV divergent. In the presence of

the irrelevant local kinetic term, ðc20= ~ΛÞj~pj2 with c0 ∼ 1, the
momentum integration is cut off at pmax ∼ c ~Λ, and fB is
proportional to ~Λ. From the scaling equation for fB,
½zTð∂=∂TÞþ ~Λð∂=∂ ~ΛÞ−βcð∂=∂cÞ−ð2þzÞ�fBðT;c; ~ΛÞ¼0,
we obtain fB ∼ ~ΛT2FzðTÞ in the low-temperature limit.
Remarkably, the bosonic contribution violates the hyper-
scaling, and it is larger than the fermionic contribution at low
temperatures. In this case, the power-law violation of the
hyperscaling is a consequence of the z ¼ 1 scaling rather
than the fact that v, c flow to zero [42]. The free energy gives
rise to the specific heat, which exhibits T-linear behavior
with the superlogarithmic correction:

cV ∼ ~ΛTFzðTÞ: ð18Þ

We note that the deviation from the T-linear behavior is
stronger than a simple logarithmic correction because FzðTÞ
includes all powers of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=TÞp

.
If the system is tuned away from the critical point,

the boson acquires a mass term, ðλ − λcÞ
R
dqTr½ΦqΦ−q�,

where λ is a tuning parameter. Because of the suppression
of higher-loop diagrams, the scaling dimension of Φ2 is −4
in momentum space. This implies that ν ¼ 1 in the low-
energy limit, which is different from the mean-field
exponent. The power-law scaling of the correlation length
ξ with λ is modified by a superlogarithmic correction,

ξ ∼ ðλ − λcÞ−1Fξðλ − λcÞ; ð19Þ

where FξðδλÞ is a universal function that embodies both the
anomalous dimension of the boson and the vertex correc-
tion for the mass insertion. The former dominates close to
the critical point, and FξðδλÞ is the same as FϕðδλÞ to the
leading order in small δλ. The derivation of the scaling

forms of the physical observables is available in
Appendix D.
The scaling forms of the physical observables discussed

above are valid in the low-energy limit. At high energies,
there will be crossovers to different behaviors. The first
crossover is set by the scale below which the dynamics of
the collective mode is dominated by particle-hole excita-
tions, and therefore Eqs. (16) and (18) hold. It is determined
by the competition between Eq. (5) and the irrelevant local
kinetic term for the collective mode in Eq. (1). For
ω < ðcðvÞ2=c20Þ ~Λ, the terms linear in frequency and
momentum dominate, where ~Λ is an energy scale asso-
ciated with the irrelevant kinetic term. The details of the
crossover are described in Appendix B. In the small v limit
with c0 ∼ 1, this crossover scale for the boson goes as
E�
b ∼ c2 ~Λ. The second crossover scale, denoted as E�

f, is the
one below which the behavior of the fermions at the hot
spots deviates from the Fermi liquid one. For a small but
nonzero v, the leading order self-energy correction to the
fermion propagator is ð3=4πÞðv=cðvÞÞω logðΛ=ωÞ, which
becomes larger than the bare term for ω < E�

f, with

E�
f ∼ Λe−ðπ=3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlog 1=vÞ=v

p
. Since v flows to zero only log-

arithmically, the flow of v can be ignored for the estimation
of E�

f. The value of v changes appreciably below

Λe−1=ðv log 1=vÞ, as is shown in Appendix C.
At sufficiently low temperatures, the system eventually

becomes unstable against pairing. An important question is
how the crossover scales compare with the superconducting
transition temperature Tc. The spin fluctuations renorm-
alize pairing interactions between electrons near the hot
spots, and enhance d-wave superconductivity [32,43–46].
In the small v limit, however, the renormalization of the
pairing interaction by the AFM spin fluctuations is sup-
pressed by v=cðvÞ for the same reason that the vertex
correction is suppressed. Because the Yukawa coupling is
marginal at the fixed point, it adds an additional logarithmic
divergence to the usual logarithmic divergence caused by
the BCS instability [47–49]. The pairing vertex is enhanced
by αðv=cÞ logðΛ=ωÞ logðE�

b=ωÞ with α ∼ 1 at frequency ω.
The first logarithm is from the usual BCS mechanism. The
second logarithm is from the gapless spin fluctuations,
where E�

b ∼ c2 ~Λ is the energy cutoff for the spin fluctua-
tions in the small c limit, as is shown in Appendix B. This

gives Tc ∼ c
ffiffiffiffiffiffiffi
Λ ~Λ

p
e−

ffiffiffiffiffiffiffiffiffiffi
c=ðαvÞ

p
. Although Tc is enhanced by

the critical spin fluctuations, it remains exponentially small
in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðvÞ=vp

∼ v−1=4 in the small v limit. There is a
hierarchy among the energy scales, E�

f ≪ Tc ≪ E�
b, in

the small v limit. This suggests that the system undergoes a
superconducting transition before the fermions at the hot
spots lose coherence. On the one hand, this is similar to the
nematic quantum critical point in two dimensions, where
the system is prone to develop a superconducting instability
before the coherence of quasiparticles breaks down [50,51].
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On the other hand, even without superconductivity, the
fermions are only weakly perturbed by the spin fluctuations
in the present case. It is the collective mode that is heavily
dressed by quantum effects. For the collective mode, there
is a large window between Tc and E�

b within which the
universal scaling given by Eq. (5) is obeyed. The size of the
energy window for the critical scaling is nonuniversal due
to the slow flow of v, and it depends on the bare value of v.
Our prediction is that there is a better chance to observe the
z ¼ 1 critical scaling above Tc, and the enhancement of
Tc by AFM spin fluctuations is rather minimal [52] in
materials whose bare Fermi surfaces are closer to perfect
nesting near the hot spots.

V. SUMMARY AND DISCUSSION

In summary, we solve the low-energy field theory that
describes the antiferromagnetic quantum critical metal in two
spatial dimensions. We predict the exact critical exponents
that govern the universal scaling of physical observables at
low temperatures. Finally, we comment on earlier theoretical
approaches and provide a comparison with experiments.
Our results are qualitatively different from earlier theo-

retical works [25–29,31], which have invariably predicted
the dynamical critical exponent z to be larger than one. In
particular, if one uses the one-loop dressed propagators
with z ¼ 2, individual higher-loop corrections are loga-
rithmically divergent at most. However, this does not imply
that the higher-loop corrections are small. The logarithmic
corrections remain important in two dimensions due to the
strong coupling nature of the theory, and they can introduce
Oð1Þ anomalous dimensions. The one-loop analysis based
on the dimensional regularization scheme also predicts that
the dynamical critical exponent is z ¼ 1þOðϵÞ in 3 − ϵ
space dimensions [30]. It turns out that it is not enough to
include only the one-loop corrections even to the leading
order in ϵ due to an infrared singularity associated with the
emergent quasilocality [38]. Once all quantum corrections
are taken into account to the leading order in ϵ consistently,
the dynamical critical exponent becomes z ¼ 1 again [35],
in agreement with the current result. The key that makes the
present theory solvable is the emergent hierarchy of the
velocities v ≪ cðvÞ, which becomes manifest only after
quantum fluctuations are included consistently [35].
Now we make an attempt to compare our predictions

with experiments. Electron-doped cuprates are probably
the simplest examples of quasi-two-dimensional com-
pounds that exhibit antiferromagnetic phase transitions
in the presence of itinerant electrons, without having
extra degrees of freedom, such as local moments or extra
bands. In the normal state of the optimally doped
Pr0.88LaCe0.12CuO4−δ, inelastic neutron scattering shows
an overdamped AFM spin fluctuation peaked at ðπ; πÞ
whose width in momentum space exhibits a weak growth
with increasing energy [53]. The theoretical prediction
from Eq. (16) is that the width of the incoherent peak scales

linearlywith energy up to a superlogarithmic correction in the
low-energy limit. However, it is hard to make a quantitative
comparison due to the limited momentum resolution in the
experiment. In Nd2−xCexCuO4�δ (NCCO), inelastic neutron
scattering suggests that the magnetic correlation length ξ
scales inverselywith temperature near the critical doping [54].
Furthermore, ξ measured at the pseudogap temperature
diverges as ðx − xcÞ−1. If interpreted in terms of the clean
AFM quantum critical scenario, which may be questionable
due to disorder, this is consistent with z ¼ 1 and ν ¼ 1.
Angle-resolved photoemission spectroscopy for NCCO
shows a reduced quasiparticle weight at the hot spots
[55,56]. This is in qualitative agreement with the prediction
of Eq. (14), which implies that the quasiparticle weight
vanishes at the hot spots, as compared to the region away
from the hot spots where quasiparticles are well defined.
Although the spectroscopic measurements are in qualitative
agreement with the theoretical predictions, we believe that
more experiments are needed to make quantitative compar-
isons. On the theoretical side, transport properties need to be
better understood, for which electrons away from hot spots
are expected to play an important role.
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APPENDIX A: PROOF OF THE UPPER
BOUND FOR GENERAL DIAGRAMS

Here, we prove the upper bound in Eq. (7), assuming that
the fully dressed boson propagator is given by Eqs. (5)
and (6) in the small v limit. Since the boson propagator is
already fully dressed, we do not need to consider boson
self-energy corrections within diagrams. The magnitude of
a diagram is not simply determined by the number of
vertices, because in the small v limit patches of the Fermi
surface become locally nested, and the collective mode
loses its dispersion. When a loop is formed out of
dispersionless bosons and nested fermions, the loop
momentum along the Fermi surface becomes unbounded.
For small but nonzero v and c, the divergent integral is cut
off by a scale that is proportional to 1=v or 1=c. This gives
rise to enhancement factors of 1=v or 1=c. Our goal is to
compute the upper bound of the enhancement factors for
general diagrams. A diagram is maximally enhanced when
all the patches of the Fermi surface involved in the diagram
are nested. Since the patches are nested pairwise (1,3 and
2,4) in the small v limit, it is enough to consider diagrams
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that are made of patches 1,3 to compute the upper bound
without loss of generality. Diagrams that involve all four
patches are generally smaller in magnitude than those that
involve only 1,3 or 2,4 for fixed L, Lf, E, where L is the
total number of loops, Lf is the number of fermion loops,
and E is the number of external legs. We first show that
Eq. (7) holds for an example. Then we provide a general
proof in the following subsection.

1. Example

The diagram in Fig. 4(a) is a fermion self-energy with
one fermion loop and three other loops, which we call

“mixed loops.” For simplicity, we set the external momen-
tum to zero. This does not affect the enhancement factors of
1=c and 1=v, which originate from large internal momenta.
We label the loop momenta as shown in Fig. 4(b). With this
choice, each mixed loop momentum pi with i ¼ 1, 2, 3 has
a boson line that carries only pi, and the fermion loop
momentum p4 has a fermion line that carries only p4. These
four propagators, denoted in Fig. 4(b) by dashed lines, are
called “exclusive propagators.” In the next section, we
show that it is always possible to find such exclusive
propagators for every loop momentum in a general dia-
gram. The diagram in Fig. 4(a) is written as

I ∼ v4
Z Y4

r¼1

dpr

�Y3
j¼1

1

jpj;0j þ cðjpj;xj þ jpj;yjÞ
�

×
1

jp1;0 þ p2;0 þ p3;0j þ cðjp1;x þ p2;x þ p3;xj þ jp1;y þ p2;y þ p3;yjÞ

×
1

ip4;0 þ E1

1

ip1;0 þ E2

1

iðp1;0 þ p2;0Þ þ E3

1

iðp1;0 þ p2;0 þ p3;0Þ þ E4

×
1

iðp4;0 − p1;0Þ þ E5

1

iðp4;0 − p1;0 − p2;0Þ þ E6

1

iðp4;0 − p1;0 − p2;0 − p3;0Þ þ E7

; ðA1Þ

where pr is the set of internal three-momenta, and Ei represents the energy of the fermion in the ith fermion propagator as
denoted in Fig. 4(c):

(a) (b)

(c)

FIG. 4. (a) A four-loop diagram with one fermion loop. The numbers next to the fermion lines represent the patch indices. (b) The four
exclusive propagators are denoted as dashed lines. The remaining propagators represent the connected tree diagram. Loops (closed solid
colored lines) are chosen such that each loop momentum goes through only one of the exclusive propagators. (c) The seven internal
fermion propagators whose energies are denoted as El with 1 ≤ l ≤ 7. E1; E2;…; E5 are used as new integration variables along with
p0
i ¼ cpi;x, with i ¼ 1, 2, 3, as discussed in the text.

SCHLIEF, LUNTS, and LEE PHYS. REV. X 7, 021010 (2017)

021010-8



E1 ¼ vp4;x þ p4;y;

E2 ¼ vp1;x − p1;y;

E3 ¼ vðp1;x þ p2;xÞ þ ðp1;y þ p2;yÞ;
E4 ¼ vðp1;x þ p2;x þ p3;xÞ − ðp1;y þ p2;y þ p3;yÞ;
E5 ¼ vð−p1;x þ p4;xÞ − ð−p1;y þ p4;yÞ;
E6 ¼ vð−p1;x − p2;x þ p4;xÞ þ ð−p1;y − p2;y þ p4;yÞ;
E7 ¼ vð−p1;x − p2;x − p3;x þ p4;xÞ

− ð−p1;y − p2;y − p3;y þ p4;yÞ:

Since frequency integrations are not affected by v and c,
we focus on the spatial components of momenta from now
on. Our aim is to change the variables for the internal
momenta so that the enhancement factors of 1=v and 1=c
become manifest. As our first three new variables we
choose p0

j ≡ cpj;x, with 1 ≤ j ≤ 3. The last five variables
are chosen to be p0

lþ3 ≡ El, with 1 ≤ l ≤ 5. The trans-
formation between the old variables, written as fvpi;x; pi;yg,
and the new variables is given by

0
BBBBB@

p0
1

p0
2

..

.

p0
8

1
CCCCCA ¼

� c
v I3 0

~A ~V

�

0
BBBBBBBBBBBBB@

vp1;x

vp2;x

vp3;x

vp4;x

p1;y

p2;y

p3;y

p4;y

1
CCCCCCCCCCCCCA
; ðA2Þ

where ~A and ~V are written as

~A¼

0
BBBBBB@

0 0 0

1 0 0

1 1 0

1 1 1

−1 0 0

1
CCCCCCA
; ~V ¼

0
BBBBBB@

1 0 0 0 1

0 −1 0 0 0

0 1 1 0 0

0 −1 −1 −1 0

1 1 0 0 −1

1
CCCCCCA
; ðA3Þ

and I3 is the 3 × 3 identity matrix. For nonzero v, c, the
change of variables is nondegenerate, and the Jacobian of
the transformation is ð2c3vÞ−1. We show in the following
section that such a nondegenerate choice is always possible
for general diagrams. An easy mnemonic is that each
fermion loop contributes a factor of 1=v because of nesting
in the small v limit, while each mixed loop contributes a
factor of 1=c because of the vanishing boson velocity.
In the new coordinates, the momentum integration in

Eq. (A1) becomes

I ∼
v3

c3

Z Y8
i¼1

dp0
i

�Y3
j¼1

1

jp0
jj þOðcÞ

��Y8
l¼4

1

p0
l

�
~R½p0�; ðA4Þ

where ~R½p0� includes the propagators that are not explicitly
shown. Now, we can safely take the small c limit inside the
integrand, because every momentum component has at
least one propagator which guarantees that the integrand
decays at least as 1=p0

j in the large momentum limit.
Therefore, the integrations are UV convergent up to
potential logarithmic divergences. To leading order in
small v, the diagram scales as

I ∼
�
v
c

�
3

∼ v3=2

up to potential logarithmic corrections.

2. General upper bound

Here, we provide a general proof for the upper bound,
by generalizing the example discussed in the previous
section. We consider a general L-loop diagram that
includes fermions from patches 1,3:

I ∼ vV=2
Z YL

r¼1

dpr

�YIf
l¼1

1

ikl;0 þ vkl;x þ ð−1Þðnl−1Þ=2kl;y

�

×

�YIb
m¼1

1

jqm;0j þ cðjqm;xj þ jqm;yjÞ
�
: ðA5Þ

Here, V is the number of vertices. If, Ib are the numbers of
internal fermion and boson propagators, respectively. pr is
the set of internal three-momenta. kl (qm) represents the
momentum that flows through the lth fermion (mth boson)
propagator. These are linear combinations of the internal
momenta and external momenta. The way kl, qm depend
on pr is determined by how we choose internal loops
within a diagram. nl ¼ 1, 3 is the patch index for the lth
fermion propagator. Since the frequency integrations are
not affected by v and c, we focus on the spatial components
of momenta from now on.
It is convenient to choose loops in such a way that there

exists a propagator exclusively assigned to each internal
momentum. For this, we follow the procedure given in
Sec. VI of Ref. [20]. For a given diagram, we cut internal
propagators one by one. We continue cutting until all
loops disappear while the diagram remains connected.
First, we cut one fermion propagator in every fermion loop,
which requires cutting Lf fermion lines. The remaining
Lm ≡ L − Lf loops, which we call mixed loops, can be
removed by cutting boson propagators. After cutting L lines
in total, we are left with a connected tree diagram. Now we
glue the propagators back one by one to restore the original
L-loop diagram. Every time we glue one propagator, we
assign one internal momentum such that it goes through the
propagator that is just glued back and the connected tree

EXACT CRITICAL EXPONENTS FOR THE … PHYS. REV. X 7, 021010 (2017)

021010-9



diagram only. This guarantees that the propagator depends
only on the internal momentum which is associated with the
loop that is just formed by gluing. In gluing Lf fermion
propagators, the associated internal momenta go through the
fermion loops. The Lm mixed loops necessarily include both
fermion and boson propagators. After all propagators are
glued back, L internal momenta are assigned in such a way
that for every loop momentum there is one exclusive
propagator.
With this choice of loops, Eq. (A5) is written as

I ∼ vV=2
Z YL

r¼1

dpr;xdpr;y

�YLm

j¼1

1

cjpj;xj þ cjpj;yj
�

×

�YIf
l¼1

1

ElðpÞ
�
R½p�: ðA6Þ

Here, frequency is suppressed, and IR divergences in the
integrations over spatial momenta are understood to be cut
off by frequencies. Our focus is on the UV divergence that
arises in the spatial momentum integrations in the limit of
small v and c. The first group in the integrand represents the
exclusive boson propagators assigned to the Lm mixed
loops. Each of the Lm boson propagators depends on only
one internal momentum due to the exclusive nature of our
choice of loops. The second group represents all fermion
propagators. ElðpÞ is the energy of the fermion in the lth
fermion propagator, which is given by a linear super-
position of pr;x, pr;y. R½p� represents the rest of the boson
propagators that are not assigned as exclusive propagators.
Our strategy is to find a new basis for the loop momenta

such that the divergences in the small v and c limit become
manifest. The first Lm variables are chosen to be cpj;x,
with j ¼ 1; 2;…; Lm, while the remaining 2L − Lm vari-
ables are chosen among fElðpÞg. This is possible because
If ≥ ð2L − LmÞ for diagrams with E > 0. We express
p0
j ≡ cpj;x and ElðpÞ in terms of vpr;x, pr;y:

0
BBBBBBBBBBBBBBBB@

p0
1

p0
2

..

.

p0
Lm

E1

E2

..

.

EIf

1
CCCCCCCCCCCCCCCCA

¼
� c

v ILm
0

A V

�

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

vp1;x

vp2;x

..

.

vpLm;x

vpLmþ1;x

..

.

vpL;x

p1;y

p2;y

..

.

pL;y

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

: ðA7Þ

Here, Ia is the a × a identity matrix. Al;j ¼ ð1=vÞ
ð∂El=∂pj;xÞ, with 1 ≤ l ≤ If, 1 ≤ j ≤ Lm. V is an If ×
ð2L − LmÞ matrix whose first L − Lm columns are given
by Vl;i−Lm

¼ ð1=vÞð∂El=∂pi;xÞ, with Lm þ 1 ≤ i ≤ L, and
the remaining L columns are given by Vl;iþðL−LmÞ ¼
ð∂El=∂pi;yÞ, with 1 ≤ i ≤ L. Now, we focus on the lower
right-hand corner of the transformation matrix, which
governs the relation between ~ET ≡ ðE1; E2;…; EIfÞ and
~PT ≡ ðvpLmþ1;x;…; vpL;x; p1;y;…; pL;yÞ when pj;x ¼ 0

for 1 ≤ j ≤ Lm:

~E ¼ V ~P: ðA8Þ
~P represents the x, y components of momenta in the
fermion loops and the y components of momenta in the
mixed loops. The matrix V can be viewed as a collection of
2L − Lm column vectors, each of which have If compo-
nents. We first show that the 2L − Lm column vectors are
linearly independent.
If the column vectors were not linearly independent, there

would exist a nonzero ~P such that V ~P ¼ 0. This implies that
there exists at least a one-parameter family ofx,ymomenta in
the Lf fermion loops and ymomenta in the Lm mixed loops,
such that all internal fermions lie on the Fermi surface.
However, this is impossible for the following reason. For
v ≠ 0, a momentum on an external boson leg uniquely fixes
the internalmomenta on the two fermion lines attached to the
boson line if both fermions are required to have zero energy.
This is illustrated in Fig. 5. Similarly, a momentum on an
external fermion leg fixes the momenta on the adjacent
internal fermion and boson lines if the internal fermion is
required to have zero energy and only the y component of
momentum is allowed to vary in the mixed loops. Once the
momenta on the internal lines attached to the external lines
are fixed, those internal lines in turn fix themomenta of other
adjoining internal lines. As a result, all internal momenta
are successively fixed by external momenta if we require
thatEl ¼ 0 for all l. Therefore, there cannot be a nontrivial ~P
that satisfies V ~P ¼ 0. This implies that the column vectors
in V must be linearly independent.

(a) (b)

FIG. 5. (a) The vertex that describes the process where a boson
is absorbed by a fermion. (b) For a boson momentum ~q, there

exists a unique ~k such that ε1ð~kÞ ¼ ε3ð~kþ ~qÞ ¼ 0 for v ≠ 0.
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Since V is made of ð2L − LmÞ independent column
vectors, it necessarily includes ð2L − LmÞ independent row
vectors. Let the lkth rows with k ¼ 1; 2;…; ð2L − LmÞ be
the set of rows that are linearly independent, and ~V be a
ð2L − LmÞ × ð2L − LmÞ invertible matrix made of these
rows. We choose p0

Lmþk ≡ Elk with k ¼ 1; 2;…; ð2L − LmÞ
as the remaining ð2L − LmÞ integration variables. The
transformation between the original 2L momentum varia-
bles and the new variables is given by

0
BBBBB@

p0
1

p0
2

..

.

p0
2L

1
CCCCCA ¼

� c
v ILm

0

~A ~V

�

0
BBBBBBBBBBBBBBBB@

vp1;x

vp2;x

..

.

vpL;x

p1;y

p2;y

..

.

pL;y

1
CCCCCCCCCCCCCCCCA

; ðA9Þ

where ~A is a ð2L − LmÞ × Lm matrix made of the collection
of the lkth rows of A with k ¼ 1; 2;…; ð2L − LmÞ. The
Jacobian of the transformation is given by Y−1c−Lmv−Lf.
Here, Y ¼ j det ~V j is a constant independent of v and c,
which is nonzero because ~V is invertible.
In the new variables, Eq. (A6) becomes

I ∼ vV=2−Lfc−Lm

Z Y2L
i¼1

dp0
i

�YLm

j¼1

1

jp0
jj þOðcÞ

�

×

� Y2L
l¼Lmþ1

1

p0
l

�
~R½p0�: ðA10Þ

Every component of the loop momenta has at least one
propagator which guarantees that the integrand decays
at least as 1=p0

l in the large momentum limit. ~R½p0� is
the product of all remaining propagators. Therefore,
the integrations over the new variables are convergent
up to potentially logarithmic divergences. Using L ¼
1
2
ðV þ 2 − EÞ, one can see that a general diagram is

bounded by

I ∼ vðE−2Þ=2
�
v
c

�
L−Lf ðA11Þ

up to logarithmic corrections. Diagrams with large ðL − LfÞ
are systematically suppressed for v ≪ c. This bound can be
checked explicitly for individual diagrams.

APPENDIX B: DERIVATION OF THE
SELF-CONSISTENT BOSON

SELF-ENERGY

Here, we derive Eqs. (5) and (6) from Eq. (8).
The one-loop quantum effective action of the boson

generated from Fig. 3(a) is written as

Γ1L
ð0;2Þ ¼

1

4

Z
dqΠ1LðqÞTr½Φð−qÞΦðqÞ�; ðB1Þ

where

Π1LðqÞ ¼ −πv
X4
n¼1

Z
dkTr½γ1Gð0Þ

n ðkÞγ1Gð0Þ
n̄ ðkþ qÞ�;

ðB2Þ

and the bare fermion propagator is Gð0Þ
n ðkÞ ¼ −i½k0γ0 þ

εnð~kÞγ1�=½k20 þ ε2nð~kÞ� and dk≡ ðd3k=ð2πÞ3Þ. The integra-
tion of the spatial momentum gives Π1LðqÞ ¼ − 1

2

R
dk0

ððk0 þ q0Þk0=jk0 þ q0jjk0jÞ. The k0 integration generates a
linearly divergent mass renormalization, which is removed
by a counterterm, and a finite self-energy:

Π1L ¼ jq0j: ðB3Þ

Since the one-loop self-energy depends only on fre-
quency, we have to include higher-loop diagrams to
generate a momentum-dependent quantum effective action,
even though they are suppressed by powers of v compared
to the one-loop self-energy. According to Eq. (7), the next
leading diagrams are the ones with L − Lf ¼ 1. Among the
diagrams with L − Lf ¼ 1, the only one that contributes to
the momentum-dependent boson self-energy is shown in
Fig. 3(b). In particular, other two-loop diagrams that
include fermion self-energy insertions do not contribute.
Since the two-loop diagram itself depends on the unknown
dressed boson propagator, we need to solve the self-
consistent equation for DðqÞ in Eq. (8). Here, we first
assume that the solution takes the form of Eq. (5) with
v ≪ c ≪ 1 to compute the two-loop contribution, and
show that the resulting boson propagator agrees with the
assumed one. The two-loop self-energy reads

Π2LðqÞ ¼ −
π2v2

2

X4
n¼1

Z
dkdp

"
1

½k0 þ p0 − iεnð~kþ ~pÞ�½k0 − iεn̄ð~kÞ�

×
1

½k0 þ q0 − iεnð~kþ ~qÞ�½k0 þ p0 þ q0 − iεn̄ð~kþ ~pþ ~qÞ�

#
DðpÞ þ c:c: ðB4Þ
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Here, c.c. denotes the complex conjugate. Straightforward integrations over ~k and k0 give

Π2Lðq0; ~qÞ ¼ −
πv
8

X4
n¼1

Z
dp

� jq0j − jp0j
½ðp0 þ q0Þ − iεn̄ð~pþ ~qÞ�½ðq0 − p0Þ − iεnð~q − ~pÞ�

�
DðpÞ þ c:c: ðB5Þ

Since the frequency-dependent self-energy is already generated from the lower order one-loop graph in Fig. 3(a), we focus
on the momentum-dependent part. This allows us to set the external frequency to zero to rewrite Eq. (B5) as

Π2Lð0; ~qÞ ¼ πv
4

X4
n¼1

Z
dp

� jp0j
½ip0 þ εn̄ð~pþ ~qÞ�½ip0 þ εnð~p − ~qÞ�

�
DðpÞ: ðB6Þ

After subtracting the linearly divergent mass renormalization, ΔΠ2Lð0; ~qÞ≡ Π2Lð0; ~qÞ − Π2Lð0; 0Þ is UV finite,

ΔΠ2Lð0; ~qÞ ¼ πv
4

X4
n¼1

Z
dp

jp0jF 1LðnÞðp0; ~p; ~q; vÞ
½p2

0 þ ε2n̄ð~pþ ~qÞ�½p2
0 þ ε2nð~p − ~qÞ�½p2

0 þ ε2n̄ð~pÞ�½p2
0 þ ε2nð~pÞ�

DðpÞ; ðB7Þ

where

F 1LðnÞðp0; ~p; ~q; vÞ ¼ ½p2
0 þ ε2nð~pÞ�½p2

0 þ ε2n̄ð~pÞ�½ip0 − εn̄ð~pþ ~qÞ�½ip0 − εnð~p − ~qÞ�
− ½p2

0 þ ε2n̄ð~pþ ~qÞ�½p2
0 þ ε2nð~p − ~qÞ�½ip0 − εn̄ð~pÞ�½ip0 − εnð~pÞ�: ðB8Þ

Nowwe consider the contribution of each hot spot separately. For n ¼ 1, the dependence on qx is suppressed by v compared
to the qy-dependent self-energy. Therefore, we set qx ¼ 0 for small v. Furthermore, the py dependence in DðpÞ can be
safely dropped in the small c limit because ε1ð~pÞ and ε3ð~pÞ suppress the contributions from large py. Rescaling the
momentum as ðp0; px; pyÞ → jqyjðp0; px=c; pyÞ followed by the integration over py, we obtain the contribution from the
hot spot n ¼ 1,

ΔΠ2Lð1Þð0; ~qÞ ¼ v
32πc

jqyj
Z

dp0dpx
ð1þ p2

0 − 3p2
xw2Þp2

0

ðp2
0 þ w2p2

xÞ½p2
0 þ ðwpx − 1Þ2�½p2

0 þ ðwpx þ 1Þ2�
1

jp0j þ jpxj
; ðB9Þ

where w≡ v=c. In the integrand, we cannot set w ¼ 0, because the integration over px is logarithmically divergent in the
small w limit:

ΔΠ2Lð1Þð0; ~qÞ ¼ v
32πc

jqyj
Z

dp0

1

1þ p2
0

�
−2 logðwÞ − 2p0cot−1ðp0Þ þ p2

0 log

�
p2
0

1þ p2
0

�
þOðwÞ

�
: ðB10Þ

Finally, the integration over p0 gives

ΔΠ2Lð1Þð0; ~qÞ ¼ jqyjv
16c

�
log

�
1

w

�
− 1þOðwÞ

�
: ðB11Þ

In the small w limit, the first term dominates. Hot spot 3
generates the same term, and the contribution from hot
spots 2,4 is obtained by replacing qy with qx. Summing
over contributions from all the hot spots, we obtain

ΔΠ2Lð0; ~qÞ ¼ v
8c

log

�
c
v

�
ðjqxj þ jqyjÞ þO

�
v
c

�
: ðB12Þ

The two-loop diagram indeed reproduces the assumed
form of the self-energy, which is proportional to jqxj þ jqyj
to the leading order in v. The full Schwinger-Dyson

equation now boils down to a self-consistent equation
for the boson velocity:

c ¼ v
8c

log

�
c
v

�
: ðB13Þ

c is solved in terms of v as

cðvÞ ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v log

�
1

v

�s �
1þO

�
log logð1=vÞ
logð1=vÞ

��
: ðB14Þ

This is consistent with the assumption that v ≪ c ≪ 1 in
the small v limit.
The full propagator of the boson, which includes the bare

kinetic term in Eq. (1), is given by

DðqÞ−1 ¼ jq0j þ cðjqxj þ jqyjÞ þ
q20
~Λ
þ c20

~Λ
j~qj2; ðB15Þ
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where ~Λ is a UV scale associated with the coupling.
Depending on the ratio between c and c0, which is
determined by microscopic details, one can have different
sets of crossovers.
For c0 > c, one has a series of crossovers from the

Gaussian scaling with z ¼ 1 at high energies, to the scaling
with z ¼ 2 at intermediate energies, and to the non-Fermi
liquid scaling with z ¼ 1 at low energies. In the low-energy
limit, the system eventually becomes superconducting. For
c0 < c, on the other hand, the z ¼ 2 scaling is replaced
with a scaling with z ¼ 1

2
at intermediate energies. This is

summarized in Tables I and II.

APPENDIX C: DERIVATION OF THE BETA
FUNCTION FOR v

Here, we derive the beta function for v in Eq. (11). We
first compute the counterterms that need to be added to
the local action such that the quantum effective action is
independent of the UV cutoff scale to the lowest order in v.

Then, we derive the beta function for v and its solution,
which confirms that v flows to zero in the low-energy limit.

1. Frequency-dependent fermion self-energy

According to Eq. (7), the leading order fermion self-
energy is generated from Fig. 6 in the small v limit. The
one-loop fermion self-energy for patch n is given by

Σ1LðnÞðk0; ~kÞ ¼
3πv
2

Z
dpγ1G

ð0Þ
n̄ ðpþ kÞγ1DðpÞ; ðC1Þ

where the dressed boson propagator is DðpÞ ¼ ½jp0jþ
cðvÞðjpxj þ jpyjÞ�−1 . We first compute Σ1LðnÞðkÞ for
n ¼ 1. The quantum correction is logarithmically diver-
gent, and a UV cutoff Λ is imposed on py,
which is the momentum perpendicular to the Fermi
surface for n ¼ 1 in the small v limit. However, the
logarithmically divergent term is independent of how
UV cutoff is implemented. To extract the frequency-

dependent self-energy, we set ~k ¼ 0 and rescale
ðp0; px; pyÞ → jk0jðp0; px=c; pyÞ to rewrite

Σ1Lð1Þðk0; 0Þ

¼ iγ0k0
3πv
2c

×
Z
dp

p0 þ 1

½ðp0 þ 1Þ2 þ ðwpx − pyÞ2�½jp0j þ jpxj þ cjpyj�
;

ðC2Þ

where w ¼ ðv=cÞ. Under this rescaling, the UV cutoff
for py is also rescaled to Λ0 ¼ Λ=jk0j. The p0 integration
gives

Σ1Lð1Þðk0;0Þ ¼ iγ0k0
3πv

2ð2πÞ3c
Z

Λ0

−Λ0

dpy

Z
dpx

×

�
π

2
jpy −wpxj

�
1

ðpy −wpxÞ2 þ ð−1þ jpxj þ cjpyjÞ2
−

1

ðpy −wpxÞ2 þ ð1þ jpxj þ cjpyjÞ2
�

− ðpy −wpxÞarccotðpy −wpxÞ
�

1

ðpy −wpxÞ2 þ ð−1þ jpxj þ cjpyjÞ2
þ 1

ðpy −wpxÞ2 þ ð1þ jpxj þ cjpyjÞ2
�

þ 1

2
log

�
1þ ðpy −wpxÞ2
ðjpxj þ cjpyjÞ2

��
1þ jpxj þ cjpyj

ðpy −wpxÞ2 þ ð1þ jpxj þ cjpyjÞ2
−

−1þ jpxj þ cjpyj
ðpy −wpxÞ2 þ ð−1þ jpxj þ cjpyjÞ2

��
:

ðC3Þ

TABLE I. The energy-dependent dynamical critical exponent
for c0 > c.

Energy Scaling Dynamical critical exponent

q0 > ~Λ q0 ∼ c0q z ¼ 1
c2

c2
0

~Λ < q0 < ~Λ q0 ∼ c20q
2= ~Λ z ¼ 2

q0 <
c2

c2
0

~Λ q0 ∼ cq z ¼ 1

TABLE II. The energy-dependent dynamical critical exponent
for c0 < c.

Energy Scaling Dynamical critical exponent

q0 >
c
c0

~Λ q0 ∼ c0q z ¼ 1

~Λ < q0 <
c
c0

~Λ q0 ∼
ffiffiffiffiffiffiffiffiffi
c ~Λq

q
z ¼ 1

2

q0 < ~Λ q0 ∼ cq z ¼ 1

FIG. 6. The one-loop diagram for the fermion self-energy.
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The logarithmically divergent contribution is obtained to be

Σ1Lð1Þðk0; 0Þ ¼
3

4π

v
c
log

�
Λ
jk0j
�
iγ0k0 ðC4Þ

in the small v limit. The self-energy for other patches is
obtained from a series of 90° rotations, and the frequency-
dependent part is identical for all patches. In order to
remove the cutoff dependence in the quantum effective
action, we add the counterterm,

X4
n¼1

X
σ¼↑;↓

Z
dkΨ̄n;σðkÞðZ1;1iγ0k0ÞΨn;σðkÞ; ðC5Þ

with

Z1;1 ¼ −
3

4π

v
c
log

�
Λ
μ

�
; ðC6Þ

where μ is the scale at which the quantum effective
action is defined in terms of the renormalized velocity v.

The counterterm guarantees that the renormalized propa-
gator at the scale μ is expressed solely in terms of v in the
Λ=μ → ∞ limit.

2. Momentum-dependent fermion self-energy

To compute the momentum-dependent fermion self-
energy, we start with Eq. (C1) for n ¼ 1 and set k0 ¼ 0.
Rescaling px → ðpx=cÞ gives

Σ1Lð1Þð0; ~kÞ

¼−
3πv
2c

iγ1

×
Z

dp
wpx−pyþ ε3ð~kÞ

fp2
0þ½wpx−pyþ ε3ð~kÞ�2g½jp0jþ jpxjþcjpyj�

:

ðC7Þ

The integration over p0 results in Σ1Lð1Þð0; ~kÞ ¼
Σ1Lð1Þð~kÞjterm 1 þ Σ1Lð1Þð~kÞjterm 2, where

Σ1Lð1Þð~kÞjterm 1 ¼ −iγ1
3πv

2ð2πÞ3c
Z

dpy

Z
dpx

sgn½wpx − py þ ε3ð~kÞ�ðjpxj þ cjpyjÞπ
ðpy − ε3ð~kÞ − wpxÞ2 þ ðjpxj þ cjpyjÞ2

; ðC8Þ

Σ1Lð1Þð~kÞjterm 2 ¼ −iγ1
3πv

2ð2πÞ3c
Z

dpy

Z
dpx

ðpy − ε3ð~kÞ − wpxÞ logð ðjpxjþcjpyjÞ2
ðpy−ε3ð~kÞ−wpxÞ2

Þ
ðpy − ε3ð~kÞ − wpxÞ2 þ ðjpxj þ cjpyjÞ2

: ðC9Þ

We first compute the first term. After performing the px integration, we rescale py → jε3ð~kÞjpy to obtain

Σ1Lð1Þð~kÞjterm 1 ¼ −
3π2v

2ð2πÞ3c iγ1ε3ð
~kÞ
Z

Λ3

−Λ3

dpy

	
πw

2ð1þ w2Þ ½sgnðpy − 1þ cwjpyjÞ þ sgnðpy − 1 − cwjpyjÞ�

þ sgnðpy − 1Þ
1þ w2

�
w arctan

�
wð−py þ 1Þ þ cjpyj
py − 1þ cwjpyj

�
þ w arctan

�
wðpy − 1Þ þ cjpyj
−py þ 1þ cwjpyj

�

− 2w arctanðw−1Þ − log

�
c2w2p2

y þ ðpy − 1Þ2 þ 2cwjpy − 1jjpyj
w2ðc2p2

y þ ðpy − 1Þ2Þ
��


; ðC10Þ

whereΛ3 ¼ ðΛ=jε3ð~kÞjÞ. The remainingpy integration gives

Σ1Lð1Þð~kÞjterm 1 ¼
3vðw − cÞ

4π
log

�
Λ

jε3ð~kÞj

�
iγ1ε3ð~kÞ ðC11Þ

to the leading order in v up to terms that are finite in the large
Λ limit.
The second term can be computed similarly in the small

v limit,

Σ1Lð1Þð~kÞjterm 2 ¼ −
3

2π2
v log

�
1

c

�
log

 
Λ

jε3ð~kÞj

!
iγ1ε3ð~kÞ

ðC12Þ

up to UV-finite terms. It is noted that the second term is
dominant for small v.
According to Eq. (7), the upper bound for the one-loop

fermion self-energy is v=c. However, Eq. (C12) is strictly
smaller than the upper bound. The extra suppression by c
arises due to the fact that the external momentum in Fig. 6
can be directed to flow only through the boson propagator,
and the diagram becomes independent of the external
momentum in the small c limit. Since this suppression
does not happen for higher-loop diagrams in general,
the one-loop diagram becomes comparable to some two-
loop diagrams with L − Lf ¼ 2. Therefore, we have to
include the two-loop diagrams for the self-energy in order
to capture all leading order corrections. The rainbow
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diagram in Fig. 7(a) is smaller for the same reason as the
one-loop diagram. Three- and higher-loop diagrams
remain negligible, and only Fig. 7(b) contributes to the

leading order. The two-loop self-energy for patch n is
given by

Σ2LðnÞðk0; ~kÞ ¼
3π2v2

4

Z
dpdq½γ1Gn̄ðkþ qÞγ1

×Gnðkþ qþpÞγ1Gn̄ðkþpÞγ1�DðqÞDðpÞ:
ðC13Þ

It is noted that Σ2LðnÞðk0; 0Þ is strictly smaller than

Σ1LðnÞðk0; 0Þ, and only Σ2LðnÞð0; ~kÞ is of the same order

as Σ1LðnÞð0; ~kÞ. Therefore, we compute only Σ2LðnÞð0; ~kÞ.
After performing the integrations over py, qy, the self-
energy for patch 1 becomes

Σ2Lð1Þð0; ~kÞ ¼ −
3v2

28π2c2
iγ1

Z
dp0

Z
dq0½sgnðp0Þ þ sgnðp0 þ q0Þ�½sgnðq0Þ þ sgnð2p0 þ q0Þ�

×
Z

dpx

Z
dqx

2wðpx þ qxÞ þ ð3vkx − kyÞ
4ðp0 þ q0Þ2 þ ½2wðpx þ qxÞ þ ð3vkx − kyÞ�2

1

jp0j þ jpxj
1

jq0j þ jqxj
: ðC14Þ

We single out the factor of ð3vkx − kyÞ by rescaling ðp0; px; q0; qxÞ → j3vkx − kyjðp0; px; q0; qxÞ. To perform the px and qx
integrals, we introduce variables a ¼ 1

2
ðpx þ qxÞ, b ¼ 1

2
ðpx − qxÞ. After the straightforward integration over b, we rescale

a → ða=wÞ to obtain

Σ2Lð1Þð0; ~kÞ ¼ −
3v2

27π2c2
iγ1ð3vkx − kyÞ

Z
dp0

Z
dq0½sgnðp0Þ þ sgnðp0 þ q0Þ�

× ½sgnðq0Þ þ sgnð2p0 þ q0Þ�
Z

da
4aþ 1

4ðp0 þ q0Þ2 þ ð4aþ 1Þ2

×

 
logðð2jajþwjp0jÞð2jajþwjq0jÞ

w2jp0jjq0j Þ
2jaj þ wðjp0j þ jq0jÞ

−
logð wjq0j

2jajþwjp0jÞ
2jaj þ wðjp0j − jq0jÞ

−
logð wjp0j

2jajþwjq0jÞ
2jaj − wðjp0j − jq0jÞ

!
; ðC15Þ

where the frequency integrations are understood to have
a UV cutoff, Λ0

3 ¼ ðΛ=j3vkx − kyjÞ, in the rescaled var-
iable. In the small w limit, the a integration diverges as
½logðwÞ�2. The subleading terms are suppressed compared
to the one-loop diagram, and we drop them in the small w
limit. The remaining frequency integrations are logarith-
mically divergent in the UV cutoff:

Σ2Lð1Þð0; ~kÞ ¼ −iγ1
3

32π2

�
v
c
log

c
v

�
2

× log

�
Λ

j3vkx − kyj
�
ð3vkx − kyÞ: ðC16Þ

This is of the same order as Eq. (C12) because of
ððv=cÞ logðc=vÞÞ2 ¼ 8v logð1=cÞ to the leading order in v.
The vertex correction in Fig. 7(b) strengthens the bare

vertex, and the two-loop self-energy has the same sign as
the one-loop self-energy. In particular, both the one-loop
and two-loop quantum corrections enhance nesting and

drive v to a smaller value at low energies. To remove the
cutoff dependences of Eqs. (C12) and (C16) in the quantum
effective action, we add the counterterm

X
σ¼↑;↓

Z
dkΨ̄1;σðkÞ½iγ1ðZ2;1vkx þ Z3;1kyÞ�Ψ1;σðkÞ; ðC17Þ

with

Z2;1 ¼
15

4π2
v log

�
1

c

�
log
�
Λ
μ

�
;

Z3;1 ¼ −
9

4π2
v log

�
1

c

�
log

�
Λ
μ

�
: ðC18Þ

Counterterms for n ¼ 2, 3, 4 are fixed by the fourfold
rotational symmetry.

3. Vertex correction

The one-loop vertex correction in Fig. 8 is given by

(a) (b)

FIG. 7. Two-loop diagrams for the fermion self-energy. While
(a) is subleading in the small v limit, (b) is of the same order as
Fig. 6.
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Γ1Lðk; qÞ ¼ πv
2

Z
dpγ1G

ð0Þ
n̄ ðpþ kþ qÞγ1Gð0Þ

n ðpþ kÞγ1DðpÞ: ðC19Þ

We set all external momenta to zero except for k0, which plays the role of an IR regulator. For n ¼ 1, it is convenient to
rescale ðp0; px; pyÞ → jk0jðp0; px=c; pyÞ. The p0 integration gives

Γ1Lð1Þðk0Þ ¼
πv
2c

γ1
1

ð2πÞ3
Z

Λ0

−Λ0

dpy

Z
dpx

×

8>><
>>:

(fðpy − wpxÞðpy þ wpxÞ3 þ ½−1þ ðjpxj þ cjpyjÞ2�2g½1þ ðpy − wpxÞ2 þ ðjpxj þ cjpyjÞ2�þ
ðpy − wpxÞðpy þ wpxÞf1þ 6ðjpxj þ cjpyjÞ2 þ ðjpxj þ cjpyjÞ4 þ ðpy − wpxÞ2½1þ ðjpxj þ cjpyjÞ2�g
þðpy þ wpxÞ2f½−1þ ðjpxj þ cjpyjÞ2�2 þ ðpy − wpxÞ2½1þ ðjpxj þ cjpyjÞ2�g) logðjpxj þ cjpyjÞ

9>>=
>>;

− 1
2

(
½ðpy − wpxÞ2 þ ð−1þ jpxj þ cjpyjÞ2�½ðpy þ wpxÞ2 þ ð−1þ jpxj þ cjpyjÞ2�
×½ðpy − wpxÞ2 þ ð1þ jpxj þ cjpyjÞ2�½ðpy þ wpxÞ2 þ ð1þ jpxj þ cjpyjÞ2�

)

þ

8>><
>>:

2arccotðpy þ wpxÞ½1þ ðpy þ wpxÞ2 − ðjpxj þ cjpyjÞ2�
þðpy þ wpxÞ log½1þ ðpy þ wpxÞ2�½1þ ðpy þ wpxÞ2 þ ðjpxj þ cjpyjÞ2�
þπsgnðpy þ wpxÞðjpxj þ cjpyjÞ½−1þ ðpy þ wpxÞ2 þ ðjpxj þ cjpyjÞ2�

9>>=
>>;

2py½ðpy þ wpxÞ2 þ ð−1þ jpxj þ cjpyjÞ2�½ðpy þ wpxÞ2 þ ð1þ jpxj þ cjpyjÞ2�

þ

8>><
>>:

2arccotðpy − pxwÞ½1þ ðpy − wpxÞ2 − ðjpxj þ cjpyjÞ2�
þðpy − wpxÞ log½1þ ðpy − wpxÞ2�½1þ ðpy − wpxÞ2 þ ðjpxj þ cjpyjÞ2�
þπsgnðpy − wpxÞðjpxj þ cjpyjÞ½−1þ ðpy − wpxÞ2 þ ðjpxj þ cjpyjÞ2�

9>>=
>>;

2py½ðpy − wpxÞ2 þ ð−1þ jpxj þ cjpyjÞ2�½ðpy − wpxÞ2 þ ð1þ jpxj þ cjpyjÞ2�
;

where the rescaled cutoff for py is Λ0 ¼ ðΛ=jk0jÞ. After the
~p integration, the logarithmically divergent contribution is
obtained to be

Γ1Lð1Þðk0Þ ¼
1

4π

v
c
log

�
c
v

�
log

�
Λ
jk0j
�
γ1 ðC20Þ

in the small v limit. The vertex corrections for different n
are the same. The counterterm for the vertex becomes

Z6;1i

ffiffiffiffiffiffi
πv
2

r X4
n¼1

X
σ;σ0¼↑;↓

×
Z

dk
Z

dqΨ̄n;σðkþ qÞΦσ;σ0 ðqÞγ1Ψn̄;σ0 ðkÞ; ðC21Þ

with

Z6;1 ¼ −
1

4π

v
c
log

�
c
v

�
log

�
Λ
μ

�
: ðC22Þ

We explicitly check that two-loop vertex corrections are
subleading in v, in agreement with Eq. (7).

4. Beta function for v

The counterterms in Eqs. (C5), (C17), and (C21) are
added to the action in Eq. (3) to obtain the bare action:

SB ¼
X4
n¼1

X
σ¼↑;↓

Z
dkΨ̄n;σðkÞ½iZ1γ0k0 þ iγ1εBn ð~kÞ�Ψn;σðkÞ

þ iZ6

ffiffiffiffiffiffi
πv
2

r X4
n¼1

X
σ;σ0¼↑;↓

Z
dkdq½Ψ̄n̄;σðkþ qÞ

×Φσ;σ0 ðqÞγ1Ψn;σ0 ðkÞ�; ðC23Þ

where εB1 ð~kÞ ¼ Z2vkx þ Z3ky, εB2 ð~kÞ ¼ −Z3kx þ Z2vky,

εB3 ð~kÞ ¼ Z2vkx − Z3ky, εB4 ð~kÞ ¼ Z3kx þ Z2vky. Here,Zn ¼
1þ Zn;1 is given in Eqs. (C6), (C18), and (C22). The bare
action generates the physical quantum effective action,
which is expressed solely in terms of the renormalizedFIG. 8. The one-loop diagram for the vertex correction.
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coupling v measured at an energy scale μ. The relationship
between the renormalized and bare quantities is given by

kx;B ¼ kx; ky;B ¼ ky; k0;B ¼ Z1

Z3

k0;

vB ¼ Z2

Z3

v; ΨBðkBÞ ¼
Z3

Z1=2
1

ΨðkÞ;

ΦBðkBÞ ¼
Z1=2
3 Z6

Z1Z
1=2
2

ΦðkÞ: ðC24Þ

The beta function for v is obtained by requiring that the
bare coupling vB does not depend on μ:�

Z2Z3 þ v

�∂Z2

∂v Z3 − Z2

∂Z3

∂v
��

βv

þ v

� ∂Z2

∂ log μZ3 − Z2

∂Z3

∂ log μ
�

¼ 0: ðC25Þ

This gives the beta function, which describes the flow of v
under the change of the scale μ,

dv
d log μ

¼ 6

π2
v2 log

�
4

�
1

v log 1=v

�
1=2
�
; ðC26Þ

to the leading order in v. Introducing a logarithmic scale
l ¼ − log μ, the beta function can be rewritten as
ðdv=dlÞ ¼ ð3=π2Þv2 log v up to log log v. The solution
is given by

Ei½log 1=vðlÞ� ¼ Ei½log 1=vð0Þ� þ 3

π2
l; ðC27Þ

where EiðxÞ is the exponential integral function, which
goes as EiðxÞ ¼ ex½ð1=xÞ þOð1=x2Þ� in the large x limit.
Therefore, v flows to zero as

vðlÞ ¼ π2

3

1

l logl
; ðC28Þ

for l ≫ ð1=vð0Þ log 1=vð0ÞÞ. For sufficiently large l, vðlÞ
decays to zero in a manner that is independent of its initial
value. The velocity of the collective mode flows to zero at a
slower rate,

cðlÞ ¼ π

4
ffiffiffi
3

p 1ffiffiffi
l

p ; ðC29Þ

and the ratio w ¼ v=c flows to zero as

wðlÞ ¼ 4πffiffiffi
3

p 1ffiffiffi
l

p
logl

: ðC30Þ

Similarly, the multiplicative renormalization for the
frequency and fields in Eq. (C24) generates the deviation

of the dynamical critical exponent from one and the
anomalous dimensions for the fields

ηϕ ¼ d
d log μ

log

�
Z1=2
3 Z6

Z1Z
1=2
2

�
; ðC31Þ

ηψ ¼ d
d log μ

log

�
Z3

Z1=2
1

�
; ðC32Þ

z ¼ 1þ d
d log μ

log

�
Z1

Z3

�
; ðC33Þ

which reduce to the expressions in Eq. (13) to the leading
order in v.

APPENDIX D: DERIVATION OF THE SCALING
FORMS FOR PHYSICAL OBSERVABLES

Here, we derive the expressions for Green’s functions
and the specific heat in Eqs. (14), (16), and (18).

1. Green’s function

We derive the form of the electron Green’s function
near hot spot 1þ. Green’s functions for all other hot spots
are determined from that of 1þ by symmetry. The Green
function satisfies the renormalization group equation:

�
1 − 2ηψ − ðz − 1Þ

z
þ k0

∂
∂k0 þ

1

z
~k ·

∂
∂~k −

βv
z

∂
∂v
�

G1þðk0; ~k; vÞ ¼ 0: ðD1Þ

The solution becomes

G1þðk0; ~k; vÞ ¼ e
R

l

0
f1−2ηψ (vðl0Þ)−½z(vðl0Þ)−1�g=z(vðl0Þ)dl0

×G1þ½elk0; e
R

l

0
½1=z(vðl0Þ)�dl0~k; vðlÞ�; ðD2Þ

where vðlÞ satisfies ðdvðlÞ=dlÞ ¼ −ðβv=zðvÞÞ, with the
initial condition vð0Þ ¼ v, and zðvÞ and ηψðvÞ depend on
l through vðlÞ. We write ½1−2ηψ−ðz−1Þ�=z¼ð1=zÞ−2~ηψ ,
where ~ηψ ¼ 1

2
ð∂ logZ3=∂ log μÞ to the leading order in v.

Although ~ηψ is subleading compared to 1=z, we keep it
because only ~ηψ contributes to the net anomalous dimension
of the propagator. From Eqs. (C28)–(C30), one obtains the
solution to the scaling equation,

G1þðk0; ~k;vÞ

¼ exp

�
l− 2

ffiffiffi
3

p ffiffi
l

p

logðlÞ−
3

8
log l

�

×G1þ

�
elk0;exp

�
l− 2

ffiffiffi
3

p ffiffi
l

p

logðlÞ
�
~k;
π2

3

1

l logðlÞ
�
; ðD3Þ
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in the large l limit. We choose l ¼ logð1=k0Þ and take

the small k0 > 0 limit with expðl − 2
ffiffiffi
3

p ð ffiffi
l

p
= logðlÞÞÞ~k ∼ 1.

By using the fact that Green’s function is given by

G1þðk0; ~k; vÞ ¼ ðik0 þ vkx þ kyÞ−1 in the small v limit,
we readily obtain

G1þðk0; ~k; vÞ ¼
1

Fψðk0Þ½ik0Fzðk0Þ þ ðπ2
3

kx
log 1

k0
log log 1

k0

þ kyÞ�
ðD4Þ

in the low-energy limit with fixed ð~k=k0Fzðk0ÞÞ,
where Fψ ðk0Þ ¼ ðlogð1=k0ÞÞ3=8 and Fzðk0Þ ¼
e2
ffiffi
3

p f½logð1=k0Þ�1=2=log logð1=k0Þg. The analytic continuation to
the real frequency gives Eq. (14).
Similarly, the Green’s function of the boson satisfies

�
1 − 2ηϕ − ðz − 1Þ

z
þ q0

∂
∂q0 þ

1

z
~q ·

∂
∂~q −

βc
z

∂
∂c
�

×Dðq0; ~q; cÞ ¼ 0; ðD5Þ

where βc ¼ ðdc=d log μÞ. Here, we view the boson propa-
gator as a function of c instead of v because it depends on v
only through c to the leading order. However, this does not
affect any physical observable since in the end there is only
one independent parameter. The solution to the scaling
equation takes the form

Dðq0; ~q; cÞ ¼ exp

�
l−

2
ffiffi
l

pffiffiffi
3

p − 2
ffiffiffi
3

p ffiffi
l

p

log l

�

×D

�
elq0; exp

�
l− 2

ffiffiffi
3

p ffiffi
l

p

logðlÞ
�
~q;

π

4
ffiffiffi
3

p 1ffiffi
l

p
�
:

ðD6Þ

By choosing l ¼ logð1=q0Þ and using the fact that the
boson propagator is given by Eq. (5) in the limit of small v
and c, we obtain

Dðq0; ~qÞ ¼
1

Fϕðq0Þ
h
jq0jFzðq0Þ þ π

4
ffiffi
3

p jqxjþjqyj
ðlog 1

q0
Þ1=2
i ðD7Þ

in the low-energy limit with fixed ð~q=q0Fzðq0ÞÞ. Here,
Fϕðq0Þ≡ e2=

ffiffi
3

p ½logð1=q0Þ�1=2 is a universal function that
describes the contribution from the boson anomalous
dimension. The analytic continuation gives the retarded
correlation function in Eq. (16).

2. Free energy

Here, we compute the leading contribution to the free
energy which is generated from the quadratic action of the
dressed boson,

fBðTÞ ¼
Z

d~k
ð2πÞ2 fBð

~k; TÞ; ðD8Þ

where fBð~k; TÞ is the contribution from the mode with

momentum ~k,

fBð~k; TÞ ¼
3

2

�
T
X
ωm

−
Z

dωm

2π

�
log½jωmj þ εð~kÞ�; ðD9Þ

with εð~kÞ ¼ cðjkxj þ jkyjÞ and ωm ¼ 2πTm, where m runs
over the integers in the sum. The thermal mass is ignored
because it is higher order in v, and the temperature-
independent ground state energy is subtracted.
Using the identity log a ¼ −

R∞
0 ðdx=xÞðe−xa − e−xÞ,

we write the free energy per mode as

fBð~k; TÞ ¼ −
3

2

�
T
X
ωm

−
Z

dωm

2π

�

×
Z

∞

0

dx
x
ðe−x½jωmjþεð~kÞ� − e−xÞ: ðD10Þ

The summation over the Matsubara frequency results in

fBð~k; TÞ ¼ −
3T
2

Z
∞

0

dx
x

�
cothðπTxÞ − 1

πTx

�
e−xεð~kÞ:

ðD11Þ

For εð~kÞ ≫ T, the free energy is suppressed only
algebraically:

fBð~k; TÞ ¼ −
π

2

T2

εð~kÞ
f1þO½T=εð~kÞ�g: ðD12Þ

This is in contrast to the noninteracting boson, whose
contribution is exponentially suppressed at large momenta.
Because of the relatively large contribution from high
momentum modes, the bosonic free energy becomes
unbounded without a UV cutoff. This leads to a violation
of hyperscaling.

fBðTÞ ∼ −T2 ~Λ; ðD13Þ

where ~Λ is a UV cutoff associated with irrelevant terms, as
is discussed in Appendix B.
Equation (D13) is obtained without including the

renormalization of the velocity and anomalous dimensions
in Eq. (13), which alter the scaling at intermediate energy
scales. In order to take those into account, we consider the
scaling equation for fB:
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��
1þ 2

z

�
− T

∂
∂T þ βc

z
∂
∂c −

~Λ
z

∂
∂ ~Λ

�
fBðT; c; ~ΛÞ ¼ 0:

ðD14Þ

The solution takes the form

fBðT; c; ~ΛÞ ¼ e−
R

l

0
dl0½1þ2=zðl0Þ�fB½elT; cðlÞ; e

R
l

0
dl0=zðl0Þ ~Λ�;

ðD15Þ

where cðlÞ satisfies ðdcðlÞ=dlÞ ¼ −ðβc=zðcÞÞ, with the
initial condition cð0Þ ¼ c. In the large l limit, z ≈ 1 and
cðlÞ is given by Eq. (C29). By choosing l ¼ log 1=T and
using the fact that fB is linearly proportional to ~Λ, we
obtain

fB ∼ ~ΛT2FzðTÞ: ðD16Þ

This is the dominant term at low temperatures because the
contribution of free electrons away from the hot spots only
goes as T2. The contributions from vertex corrections are
subleading in v. Therefore, the specific heat in the low-
temperature limit is given by Eq. (18).
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[4] H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-
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