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We expand the standard thermodynamic framework of a system coupled to a thermal reservoir by
considering a stream of independently prepared units repeatedly put into contact with the system. These
units can be in any nonequilibrium state and interact with the system with an arbitrary strength and
duration. We show that this stream constitutes an effective resource of nonequilibrium free energy, and we
identify the conditions under which it behaves as a heat, work, or information reservoir. We also show that
this setup provides a natural framework to analyze information erasure (“Landauer’s principle”) and
feedback-controlled systems (“Maxwell’s demon”). In the limit of a short system-unit interaction time, we
further demonstrate that this setup can be used to provide a thermodynamically sound interpretation to
many effective master equations. We discuss how nonautonomously driven systems, micromasers, lasing
without inversion and the electronic Maxwell demon can be thermodynamically analyzed within our
framework. While the present framework accounts for quantum features (e.g., squeezing, entanglement,
coherence), we also show that quantum resources do not offer any advantage compared to classical ones in
terms of the maximum extractable work.
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I. INTRODUCTION

Thermodynamics was traditionally designed to under-
stand the laws that govern the behavior of macroscopic
systems at equilibrium in terms of a few macroscopic
variables (e.g., temperature, pressure, chemical potential,
energy, volume, particle number, etc.) containing very
limited information about the microscopic state of the
system. Remarkable progress has been made over the last
decades to understand under which conditions the laws of
thermodynamics emerge for small-scale systems where
quantum and stochastic effects dominate and which are
usually far away from thermal equilibrium. This includes a
consistent thermodynamic framework for driven systems
weakly coupled to large and fast thermal reservoirs, which
are described by a microscopically derived (quantum)
master equation (ME) [1–4]. Such MEs can also be
used as a basis to establish universal fluctuation relations
which replace the traditional second law formulated as an

inequality by an exact symmetry that fluctuations must
satisfy arbitrarily far from equilibrium [5–9]. This theory
has been very successful to study small systems in a large
variety of fields ranging from biophysics to electronics, and
many of its predictions have been verified experimentally
[10–16].
Yet, many situations encountered nowadays force us to go

beyond the setup of driven systems weakly coupled to
thermal reservoirs. Notable examples include the thermo-
dynamic description of computation and information
processing using feedback controls (“Maxwell demons”)
where different members of the statistical ensemble undergo
different drivings [17–21], systems interacting with reser-
voirs prepared in nonequilibrium states [22–28] or non-
Gibbsian equilibrium states [29], and systems described by
non-Hermitian dynamics [30].
In this paper, we extend the traditional framework of

thermodynamics by considering a systemwhich, in addition
to being in contact with a thermal reservoir, interacts with a
stream of external systems which we call “units.” Each
independently prepared unit interacts for a certain time with
the system before being replaced by another one, and no
additional assumption about the state of the units nor the
system-unit interaction is required. In the most general
picture, this stream of units will be shown to constitute a
resource of nonequilibrium free energy modifying the
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traditional energetic and entropic balances. We will study
the limits in which the stream of units effectively reproduces
the effect of a heat, work, or information reservoir. We
will also explore limits giving rise to an effective closed
dynamics for the system, which still allows for a consistent
thermodynamic description.Wewill focus on the ensemble-
averaged description and not on fluctuations.
Thebenefit of our generalized thermodynamic framework

is that it provides a unified perspective and encompasses
many previously considered setups. Inmodern physics, such
setups have probably first been used in quantum optics,
theoretically as well as experimentally, to model a maser in
which a stream of atoms is injected into a cavity in order to
macroscopically populate it [31–33]. Such setups have also
been used to stabilize photon number states via measure-
ment-based quantum feedback control [34]. In theoretical
works, an “information reservoir” made of a stream of bits
was proposed to extract work from a single heat reservoir
[35,36], a picture that also closely resembles a Turing
machine [17,37]. The setup is also close to resource theoretic
formulations of thermodynamics, in which one investigates
which system transformations are possible given a set of
freely available states and resources (all other states) [38,39].
Further analogies can be drawnwith biomolecular motors or
enzymes [11] which manipulate, e.g., nucleic acids (units)
on a DNA strand, or with scattering theory where incoming
and outgoing wave packets (units) interact for a short time
with the scatterer (the system) [40,41].

A. Outline

The structure of the paper and some of its main results
are summarized in Fig. 1. We start very generally in Sec. II

by considering two interacting systems, and we review
under what conditions the laws of thermodynamics can be
established if one of the systems is initially in a thermal
state and plays the role of the reservoir while the other is the
driven system of interest. Besides establishing notation, this
section also sets the basis for Sec. III, where the system now
also interacts with an external stream of units. Generalized
laws of thermodynamics are established which show that
the stream of units effectively constitutes a resource of
nonequilibrium free energy. We then consider various
limiting cases in Sec. IV, where the stream of units
respectively behaves as a heat, work, and information
reservoir. Furthermore, Landauer’s principle is derived,
as well as a quantum version of the second law of
thermodynamics under feedback control. We go one step
further in Sec. V by considering scenarios leading to a
closed reduced dynamics for the system when tracing out
the units, but where one still retains a consistent thermo-
dynamic description. More specifically, we consider the
limit of infinitesimally short interactions which are either
Poissonian or regularly distributed and which lead to
effective MEs. We also analyze the limit where the units
effectively generate a time-dependent Hamiltonian for the
system. Specific models, apparently unrelated in the
literature, are then analyzed within our unifying framework
in the subsequent section (Sec. VI). These include the
Mandal-Jarzynski engine, the micromaser, lasing without
inversion where work is extracted from quantum coher-
ence, and the electronic Maxwell demon. We finally close
the paper with Sec. VII, where we first show that our
generalized second law of thermodynamics does not
conflict with the traditional Kelvin-Planck statement of

FIG. 1. Overview of the structure of the article covering its main results and applications. Here and in the following, ES;U , SS;U , and
FS;U denote the energy, entropy, and nonequilibrium free energy of the system (S) or unit (U).Q is the heat flowing from the reservoir at
inverse temperature β ¼ T−1 (kB ≡ 1), andW is the work done on the system. Furthermore, ΣS denotes the entropy production and IS∶U
the mutual information between the system and unit. The picture of the Mandal-Jarzynski engine was taken from Ref. [35].
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the second law; we then prove that quantum thermody-
namics offers a priori no advantages compared to classical
thermodynamics within our framework; and we finally give
a short summary and outlook.

II. ENERGY AND ENTROPY BALANCE
OF AN OPEN QUANTUM SYSTEM

A. Two interacting systems

To introduce important concepts and notation, we start
by considering two interacting systems X and Y, which are
initially (at time t ¼ 0) decorrelated, i.e.,

ρXYð0Þ ¼ ρXð0Þ ⊗ ρYð0Þ≡ ρXð0ÞρYð0Þ: ð1Þ

Here, ρXY denotes the density operator of the compound
system X and Y, whereas ρX (ρY) describes the reduced
state of X (Y). In order to make a statement about the first
law of thermodynamics, we associate a Hamiltonian to the
setup, which we decompose as

HtotðtÞ ¼ HXðtÞ ⊗ 1Y þ 1X ⊗ HYðtÞ þHXYðtÞ
≡HXðtÞ þHYðtÞ þHXYðtÞ: ð2Þ

Here, 1X (1Y) denotes the identity on the Hilbert space of
system X (Y), which we usually suppress to simplify
notation, and HXYðtÞ describes the interaction between
systems X and Y. Furthermore, all terms can, in principle,
be explicitly time dependent.
The time evolution of the compound system is

governed by the Liouville–von Neumann equation
dtρXYðtÞ ¼ −i½HtotðtÞ; ρXYðtÞ� (ℏ≡ 1 throughout the text).
Introducing the unitary time evolution operator Ut ≡
T þ exp ½−i R t

0 dsHtotðsÞ� (where T þ denotes the time
ordering operator), the state of the compound system at
time τ is given by

ρXYðτÞ ¼ UτρXð0ÞρYð0ÞU†
τ ; ð3Þ

which is, in general, correlated.
To obtain the reduced state of system X, we must trace

over system Y. Using the spectral decomposition of the
initial density matrix of system Y, ρYð0Þ ¼

P
lpljliYhlj, we

arrive at

ρXðτÞ ¼ trYfρXYðτÞg
¼

X
kl

TklρXð0ÞT†
kl ≡ΦXðτÞρXð0Þ; ð4Þ

where Tkl ≡ ffiffiffiffiffi
pl

p hkjUτjliY . The Tkl are still operators in the
Hilbert space of system X, and they fulfill the completeness
relation

X
kl

T†
klTkl ¼ 1X: ð5Þ

The map ΦXðτÞ in Eq. (4) is known as a Kraus map or
quantum operation, and it is the most general map
(preserving the density matrix properties) for a quantum
system which was initially uncorrelated [42–45]. We note
that the representation of ΦX in terms of the Kraus
operators Tkl is not unique.
The energy of the compound system at any point in

time is EXYðtÞ≡ trXYfHtotðtÞρXYðtÞg. Because the com-
pound system is isolated, the dynamics is unitary and the
energy change is solely due to the time dependence in the
Hamiltonian and can thus be identified as work,

dtEXYðtÞ ¼ trXYfρXYðtÞdtHtotðtÞg≡ _WðtÞ: ð6Þ

The rate of work injection _W is positive if it increases the
energy of the compound system. Equation (6) is the first
law of thermodynamics for an isolated system.
We now consider the entropy balance by defining the

von Neumann entropy of a system X, which we interpret as
a measure for our lack of knowledge about the state ρX, as
usual, by

SX ≡ −trXfρX ln ρXg: ð7Þ

Because the joint von Neumann entropy SXYðtÞ≡
−trXYfρXYðtÞ ln ρXYðtÞg does not change under unitary
time evolution, we have SXYðτÞ ¼ SXYð0Þ. We further
introduce the non-negative (quantum) mutual information

IX∶YðtÞ≡ SXðtÞ þ SYðtÞ − SXYðtÞ ≥ 0; ð8Þ

which measures the amount of correlations shared between
X and Y [43]. For the initially decorrelated state (1), we
have SXYð0Þ ¼ SXð0Þ þ SYð0Þ. Hence, in terms of the
mutual information, we can write that

IX∶YðτÞ ¼ ΔSXðτÞ þ ΔSYðτÞ ≥ 0: ð9Þ

Thus, the mutual information tells us how the sum of the
marginal entropiesΔSXðτÞ≡ SXðτÞ − SXð0Þ andΔSYðτÞ≡
SYðτÞ − SYð0Þ can change.
Introducing the relative entropy between two density

matrices ρ and σ [43],

Dðρ∥σÞ≡ trfρðln ρ − ln σÞg ≥ 0; ð10Þ

which is non-negative by Klein’s inequality, the mutual
information can also be written as

IX∶YðtÞ ¼ D½ρXYðtÞ∥ρXðtÞρYðtÞ� ≥ 0: ð11Þ

By measuring the local entropy changes in X and Y, the
mutual information is therefore also a measure of the
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information lost when disregarding the correlation estab-
lished over time t between X and Y while keeping full
knowledge of X and of Y separate in the description.
Note that relative entropy is not symmetric, i.e., Dðρ∥σÞ ≠
Dðσ∥ρÞ in general, but mutual information fulfills IX∶Y ¼
IY∶X. Furthermore, it is important to mention that the action
of any Kraus map Φ can never increase the relative entropy
[44,46], i.e.,

DðΦρ∥ΦσÞ ≤ Dðρ∥σÞ: ð12Þ

B. System coupled to a thermal reservoir

To make further contact with thermodynamics, we now
consider the case where the system Y is supposed to play
the role of a thermal reservoir. For this purpose, we relabel
Y by R and make the two assumptions that the Hamiltonian
HR is time independent and that the initial state of the
reservoir is thermal:

ρRð0Þ ¼ ρRβ ≡ e−βHR

ZR
; ZR ¼ trðe−βHRÞ: ð13Þ

Similar treatments were presented, e.g., in Refs. [47–50].
Following the rational of Eq. (6), the energy change in

the total system is identified as the work done by the
external time-dependent driving on the system,

dtEXYðtÞ ¼ trXRfρXRðtÞdt½HXðtÞ þHXRðtÞ�g
≡ _WðtÞ: ð14Þ

The energy flowing out of the reservoir is in turn identified
as the heat flow into the system X at time t (positive if it
increases the system energy),

_QðtÞ≡ −trRfHRdtρRðtÞg: ð15Þ

Consequently, the internal energy of the system X is
identified as

EXðtÞ≡ trXRf½HXðtÞ þHXRðtÞ�ρXRðtÞg ð16Þ

so that

dtEXðtÞ ¼ _WðtÞ þ _QðtÞ: ð17Þ

This constitutes the first law of thermodynamics for a
closed system. We use the conventional terminology of
thermodynamics where a system exchanging only energy
(but not matter) with a reservoir is called “closed,” though
one would rather call it “open” from the perspective of open
quantum system theory. An open system in the thermo-
dynamic sense (also exchanging matter with its environ-
ment) can be considered by introducing a chemical
potential for reservoir R, which is then described by an

initial grand canonical equilibrium state. Integrating the
first law over an interval ½0; τ� gives

ΔEXðτÞ ¼ EXðτÞ − EXð0Þ ¼ WðτÞ þQðτÞ ð18Þ

with

WðτÞ≡
Z

τ

0

dt _WðtÞ ¼ EXRðτÞ − EXRð0Þ;

QðτÞ≡
Z

τ

0

dt _QðtÞ ¼ −trRfHR½ρRðτÞ − ρRð0Þ�g: ð19Þ

By analogy with the second law of phenomenological
nonequilibrium thermodynamics [51] which states that the
non-negative entropy production characterizing the irre-
versibility of a process is given by the sum of the entropy
change in the system and in the (macroscopic ideal and
always equilibrated) reservoir, we follow Ref. [47] and
define entropy production as

ΣðτÞ≡ ΔSXðτÞ − βQðτÞ: ð20Þ

Since the initial reservoir state (13) is thermal, the non-
negativity of Σ can be shown by noting the identities [47]

ΣðτÞ ¼ D½ρXRðτÞ∥ρXðτÞ ⊗ ρRβ �
¼ D½ρRðτÞ∥ρRβ � þ IX∶RðτÞ ≥ 0: ð21Þ

It relies on the assumption that the initial total system state
is decorrelated. We emphasize that ΣðτÞ ≥ 0 holds for any
reservoir size and thus cannot be considered as strictly
equivalent to the phenomenological second law of non-
equilibrium thermodynamics. We also note that expression
(21) provides interesting insight into the difference between
the way in which we treated the reservoir R in this section
compared to the way in which we treated system Y in the
previous section: The entropy production not only mea-
sures the information lost in the correlations between the
system and the reservoir via the mutual information IX∶R, it
also measures the information lost in not knowing the state
of the reservoir after the interaction via D½ρRðτÞ∥ρRβ �. This
translates into the obvious fact in thermodynamics that one
has no access to the state of the reservoir and that one only
knows the energy that has flown in it as heat.
We define an ideal heat reservoir as a reservoir that

remains close to thermal equilibrium during its interaction
with the system, i.e., ρRðτÞ ¼ ρRβ þ ϵσR, where ϵ is a small
parameter and trRðσRÞ ¼ 0. Using the exact identity

TD½ρRðτÞ∥ρRβ � ¼ −QðτÞ − TΔSRðτÞ ≥ 0; ð22Þ

this means that the information lost by not knowing the
reservoir state becomes negligible because D½ρRðτÞ∥ρRβ � ¼
Oðϵ2Þ [52]. Consequently, the entropy change in the
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reservoir can be solely expressed in terms of the heat
flowing in it via Clausius equality, i.e., ΔSRðτÞ ¼ −βQðτÞ,
where these two quantities are generically of first order in ϵ
and only differ from each other to second order in ϵ. Using
Eq. (21), this also means that the entropy production due to
an ideal heat reservoir coincides (to second order in ϵ) with
the lost mutual information between the system and the
reservoir, i.e., ΣðτÞ ¼ IX∶RðτÞ.
Finally, it is useful to introduce the concept of a non-

equilibrium free energy. Following Refs. [47,53–55], we
define

FXðtÞ≡ EXðtÞ − TSXðtÞ; ð23Þ
where T is the temperature of the initial reservoir attached
to the system. Since it is fixed, dFXðtÞ is still an exact
differential. Using this quantity, we can write the second
law as

ΣðτÞ ¼ β½WðτÞ − ΔFXðτÞ� ≥ 0: ð24Þ
Explicit processes where ΣðτÞ can be made arbitrarily close
to zero have been considered, e.g., in Refs. [49,55–58].

C. Weak-coupling limit and master equations

The results above provide a general way to formally
derive the laws of thermodynamics as exact identities.
Remarkably, these relations hold even if the reservoir R is
arbitrarily small and strongly influenced by the presence of
the system. However, while the entropy production ΣðτÞ is
proven to be non-negative, its rate can be negative. Indeed,
as finite-size quantum systems evolve quasiperiodically, the
exact rate of entropy production must become negative at
some time to restore the initial state. Furthermore, these
identities are also of limited practical use because comput-
ing any particular expression requires solving the full
Liouville–von Neumann dynamics for the joint system
and reservoir.
The weak-coupling limit between the system and the

reservoir circumvents these limitations and is of great
practical relevance. It has been used for a long time
to study quantum thermodynamics [59,60] (see also
Refs. [1,3] for recent reviews). Within this limit, the system
does not perturb the reservoir over any relevant time
scale, and it is further assumed that the reservoir behaves
memoryless (i.e., Markovian). This allows us to close the
equation of motion for the system density matrix ρXðtÞ. The
resulting dynamics is called a (quantum) master equation
(ME). In this limit, the general results of Sec. II B reduce to
the well-known ME formulation of quantum thermody-
namics [47], where all thermodynamic quantities can be
expressed solely in terms of system operators.
More specifically, after applying the Born-Markov-

secular approximation [1,2,5,59,61], which is usually
justified in the weak-coupling limit, the ME can be put
into the form [62]

dtρXðtÞ ¼ −i½HXðtÞ; ρXðtÞ� þ LβðtÞρXðtÞ
≡ LXðtÞρXðtÞ; ð25Þ

where LβðtÞ and LXðtÞ denote superoperators that act
linearly on the space of system operators. In order to
derive Eq. (25), one also has to assume that the driving of
HXðtÞ is slow compared to the relaxation time of the
reservoir, though this does not imply that the driving must
be adiabatic [63–65]. For a system-reservoir coupling
of the form HXR ¼ P

kAk ⊗ Bk with Hermitian system
and reservoir operators Ak and Bk, the superoperator LβðtÞ
reads (see, e.g., Sec. 3.3 in Ref. [61] for a microscopic
derivation)

LβðtÞρðtÞ¼
X
ω

X
k;l

γklðωÞ

×

�
AlðωÞρðtÞA†

kðωÞ−
1

2
fA†

kðωÞAlðωÞ;ρðtÞg
�
:

ð26Þ

Here, fω ¼ ϵ − ϵ0g denotes the set of transition frequencies
of the Hamiltonian HSðtÞ ¼

P
ϵϵðtÞΠϵðtÞ with instantane-

ous eigenenergies ϵðtÞ and corresponding projection oper-
ators ΠϵðtÞ. Omitting the explicit time dependence in the
notation, AkðωÞ is defined as

AkðωÞ≡
X

ϵ−ϵ0¼ω

ΠϵAkΠϵ0 : ð27Þ

Furthermore, the rate γklðωÞ is the Fourier-transformed
reservoir correlation function

γklðωÞ ¼
Z

∞

−∞
dteiωttrRfBkðtÞBlð0ÞρRβ g; ð28Þ

which can be shown to be non-negative [61]. The thermal
generator (26) fulfills two important properties. First, it is
of so-called Lindblad form [69,70]. This means that the
time evolution of Eq. (25),

ρXðτÞ ¼ T þ exp
�Z

τ

0

dsLXðsÞ
�
ρXð0Þ ð29Þ

[or simply ρXðτÞ ¼ eLXτρXð0Þ if LX is time independent],
can be written as a Kraus map (4). Whereas each Lindblad
ME defines a particular Kraus map, the inverse is not
necessarily true; i.e., for a given Kraus map, we cannot
associate a unique ME in Lindblad form. Second, and very
important from the thermodynamic point of view, the rates
satisfy the property of local detailed balance

γklð−ωÞ ¼ e−βωγlkðωÞ; ð30Þ

which follows from the Kubo-Martin-Schwinger (KMS)
relation of the reservoir correlation functions [1,2,5,59,61].
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It also plays a crucial role to establish a consistent non-
equilibrium thermodynamics for classical stochastic proc-
esses [8,9]. More importantly for us here, it implies that the
steady state of the system corresponds to the canonical
equilibrium (or Gibbs) state [61]:

LβðtÞρXβ ðtÞ ¼ 0; ρXβ ðtÞ ¼
e−βHXðtÞ

ZXðtÞ
: ð31Þ

Since the system-reservoir interaction is now negligible,
the system energy reads EXðtÞ≡ trfHXðtÞρXðtÞg and the
first law takes the usual form,

dtEXðtÞ ¼ _WðtÞ þ _QðtÞ; ð32Þ

where the work rate on the system is given by

_WðtÞ ¼ trXfρXðtÞdtHXðtÞg ð33Þ

and the heat flow into the system is caused by the
dissipative part of the evolution,

_QðtÞ ¼ trXfHXðtÞdtρXðtÞg
¼ trXfHXðtÞLXðtÞρXðtÞg: ð34Þ

The second law is now more stringent since it not only
ensures the non-negativity of the entropy production but
also of its rate,

_ΣðtÞ ¼ dtSXðtÞ − β _QðtÞ ≥ 0: ð35Þ

Mathematically, this result follows from Spohn’s
inequality [71]

−trf½LXðtÞρXðtÞ�½ln ρXðtÞ − ln ρ̄XðtÞ�g ≥ 0: ð36Þ

This is true for any superoperator LXðtÞ of Lindblad form
with steady state ρ̄XðtÞ, i.e., LXðtÞρ̄XðtÞ ¼ 0, and it corre-
sponds to the differential version of Eq. (12). For the case
considered here, we have ρ̄XðtÞ ¼ ρXβ ðtÞ [see Eq. (31)], and
Spohn’s inequality gives, after a straightforward manipu-
lation, Eq. (35).

III. THERMODYNAMICS OF REPEATED
INTERACTIONS

A. Idea

Traditional thermodynamic setups consist of a system in
contact with thermal reservoirs, as reviewed in the previous
section. However, as motivated in the Introduction,
many experimental (and theoretical) setups today do not
fit into this picture, making use of much more structured
resources. For instance, a micromaser (as reviewed in
Sec. VI B) makes use of a stream of flying atoms prepared
in nonequilibrium states interacting sequentially with a

cavity. Another example is the measurement and sub-
sequent manipulation of a device by an external observer
(“Maxwell’s demon”); see Secs. IV E and VI D.
Although both examples are quite different, we can treat

them within a unified framework by introducing a new
form of “reservoir” which can be prepared in arbitrary
nonequilibrium states. The basic setup consists of a stream
of additional systems, which we generically call “units.”
These units are identically and independently prepared and
interact one after another with the device (i.e., the system of
interest) without ever coming back. This framework of
repeated interactions provides sufficient structure to for-
mulate a meaningful and tractable dynamics and thermo-
dynamics, as we now demonstrate.

B. Formal setup

The system X that we considered so far is split into two
as X ¼ S ⊕ U, where S denotes the system of interest
whereas U is an auxiliary system called the unit. We
assume that this unit interacts with the system S for a time τ0
and is afterwards decoupled from it and replaced at time
τ > τ0 by a new unit. This new unit interacts with S from τ
to τ þ τ0 before it is replaced by yet another new unit at 2τ.
The process is then repeated over and over. This means that
the system is interacting sequentially with a stream of units
fUng, where the index n refers to the nth interaction taking
place in the interval ½nτ; nτ þ τÞ as sketched in Fig. 2.
The Hamiltonian HXðtÞ of the joint system and all units

can be formally written as

HXðtÞ ¼ HSðtÞ þHU þHSUðtÞ; ð37Þ

where the system Hamiltonian HSðtÞ may or may not be
time dependent. The Hamiltonian of the stream of (non-
interacting) units can be written as a sum of (time-

independent) single-unit Hamiltonians HðnÞ
U ,

FIG. 2. Sketch of a stream of units interacting with a system in
contact with a heat reservoir at inverse temperature β. The lower
panel shows the switching on and off of the system-unit
interaction as a function of time. Note that τ denotes the full
interaction period, whereas the system and unit are only physi-
cally coupled during a time τ0.
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HU ¼
X
n

HðnÞ
U ; ð38Þ

and the system-unit interaction as

HSUðtÞ ¼
X
n

Θðt − nτÞΘðnτ þ τ0 − tÞVðnÞ
SUðtÞ; ð39Þ

where VðnÞ
SUðtÞ is an arbitrary interaction between the system

and the nth unit. The Heaviside step function explicitly
reads

ΘðtÞ≡
�
1 if t ≥ 0

0 if t < 0.
ð40Þ

This means that the interaction between the system and the
nth unit is switched on at time t ¼ nτ and switched off at
t ¼ nτ þ τ0 with 0 < τ0 < τ as explained above. During this
interaction time, the system and unit are both coupled to
the reservoir R. Their dynamics can be described exactly
or by a ME of the form (25) in the weak-coupling
limit. However, before or after the interaction with the
system, when the unit is not in contact with the system,

it will evolve freely (i.e., unitarily) with HðnÞ
U , and its

energy EðnÞ
U ðtÞ ¼ trUn

fHðnÞ
U ρðnÞU ðtÞg and entropy SðnÞU ðtÞ ¼

−trUn
fρðnÞU ðtÞ ln ρðnÞU ðtÞg will remain constant.

Our setup is meant to model situations where an
experimentalist can prepare independent units in any
desired state. Therefore, a crucial but reasonable
assumption that we use is that the incoming units are
decorrelated (i.e., independently prepared) and that their
statistical description is stationary in time; i.e., the density
matrix of the incoming units fulfills ρðnÞU ðnτÞ ¼ ρðmÞ

U ðmτÞ
for any n, m [72]. We further assume that the interaction

Hamiltonian VðnÞ
SUðtÞ always has the same form [of course, it

acts on different unit Hilbert spaces, but for simplicity, we
always denote it by VSUðtÞ].
Our goal is to formulate thermodynamic laws for the

system where one regards the stream of units as a non-
equilibrium reservoir, and to understand to what extent the
latter modifies the traditional thermodynamic laws. In the
next section,we focus on one fixed interval, where the system
interacts with a single unit only. For simplicity, we choose the
interval ½0; τÞ and drop the index n ¼ 0. Section III D then
discusses what happens if the system is repeatedly put into
contact with subsequent units andwhether one can expect the
system to reach a stroboscopic steady state.

C. Modified energy and entropy balance

To obtain the first law of thermodynamics, we can either
take Eq. (18) or integrate Eq. (32), where care has to be
taken with the definition of the time interval to correctly
capture boundary effects. Thus, we define the global
change of system and unit energy as

ΔESU ≡ lim
ϵ↘0

Z
τ−ϵ

−ϵ
dt

dEXðtÞ
dt

¼ ΔES þ ΔEU ð41Þ

such that the interaction term does not contribute. Here,
ΔES ¼ trSfHSðτÞρSðτÞg − trSfHSð0ÞρSð0Þg and analo-
gously for ΔEU. Integrating the rate of work yields two
terms:

W ≡ lim
ϵ↘0

Z
τ−ϵ

−ϵ
dt _WðtÞ ¼ WX þWsw: ð42Þ

The first term is standard and results from the smooth time
dependence of HSðtÞ during the full interval and of VSUðtÞ
during the interaction, i.e.,

WX ¼
Z

τ

0

dttrXfρXðtÞdtHSðtÞg

þ lim
ϵ↘0

Z
τ0−ϵ

ϵ
dt0trXfρXðtÞdtVSUðtÞg: ð43Þ

The second term, which we refer to as the switching work,
is a boundary term resulting from the sudden on and off
switching of the interaction, and it reads

Wsw ¼ trXfVSUð0ÞρXð0Þ − VSUðτ0ÞρXðτ0Þg: ð44Þ

Mathematically, it follows from dtΘðtÞ ¼ δðtÞ, where δðtÞ
is a Dirac delta distribution. Physically, we can interpret
Wsw as the work needed to pull the stream of units along the
system (we assume that the other units that do not interact
with the system move in a frictionless way). Finally, by
integrating the heat flow [Eq. (19) or (34)], we get

Q≡ lim
ϵ↘0

Z
τ−ϵ

−ϵ
dt _QðtÞ; ð45Þ

and the first law of thermodynamics takes the form

ΔES ¼ W þQ − ΔEU: ð46Þ

Using the second law of thermodynamics, Eq. (20) or
Eq. (35), as well as the factorization of the initial condition
ρXð0Þ ¼ ρSð0ÞρUð0Þ, the entropy production of the system
and unit during each interaction period reads

Σ ¼ ΔSS þ ΔSU − IS∶UðτÞ − βQ ≥ 0; ð47Þ

where the unit entropy change ΔSU and the final system-
unit correlations IS∶UðτÞ modify what would otherwise be
the traditional second law for the system in contact with its
reservoir. In view of our interpretation of Eq. (20), Eq. (47)
describes the dissipation of the joint system SU to the
reservoir. The units and the system are thus treated on the
same footing. However, since each unit only interacts
once with the system, the mutual information that they
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established by interacting with the system is never used or
recovered [73]. A more meaningful definition of entropy
production for our setup, which accounts for these losses,
is thus

ΣS ≡ ΔSS þ ΔSU − βQ ≥ IS∶UðτÞ ≥ 0: ð48Þ

This entropy production not only measures the lost infor-
mation as system-reservoir mutual information and as
relative entropy between the nonequilibrium and equilib-
rium reservoir state after the interaction [compare with
Eq. (21)], but it also accounts for the information lost as
mutual information by the units that never come back.
Obviously, ΣS ≥ Σ. In the special case where the coupling
to the reservoir is switched off, Q ¼ 0 and Σ ¼ 0, the
entropy production is solely given by the mutual informa-
tion ΣS ¼ IS∶U lost in our setup.
Using the first law (46) together with the definition

of the nonequilibrium free energy (23) with respect to the
reservoir temperature β, Eq. (48) can be rewritten as

ΣS ¼ βðW − ΔFS − ΔFUÞ ≥ IS∶UðτÞ ≥ 0: ð49Þ

This form of the modified second law allows us to draw the
important conclusion that the stream of units in its most
general sense is nothing but a resource of nonequilibrium
free energy.

D. Steady-state regime

We derived our modified laws of thermodynamics for an
arbitrary initial system state over a single interaction
interval. To treat many interaction intervals, we have to
link the (thermo)dynamics between successive interaction
intervals; i.e., the final system state ρSðnτÞ of the nth
interaction interval has to be taken as the initial condition
for the (nþ 1)th interval. Because the incoming units are
statistically independent and identically prepared, we can
treat each interaction interval as above.
A particularly important case is the limit of multiple

interactions where it is reasonable to assume that the system
will eventually reach a stroboscopic steady state, given that
the time dependence (if any) of the system Hamiltonian
HSðtÞ and of the interaction Hamiltonian HXRðtÞ with the
heat reservoir is also τ periodic. We often resort to this
steady-state assumption for the applications considered in
this article, which reads

ρSð0Þ ¼ ρSðτÞ ð50Þ

and implies ΔES ¼ 0 and ΔSS ¼ 0. Then, the laws of
thermodynamics simplify to

0 ¼ W þQ − ΔEU; ð51Þ

ΣS ¼ βðW − ΔFUÞ ≥ IS∶UðτÞ ≥ 0: ð52Þ

To justify this steady-state assumption, we assume that
the reservoir is always in the same initial state at the
beginning of every interaction interval n so that the system
and unit evolve according to the same Kraus map ΦSU over
each interaction interval. Physically, this means that the
reservoir remains virtually unaffected by the interactions
with the system and unit. This assumption is, for instance,
implicit if the system-unit dynamics is described by a ME.
Without this reservoir resetting assumption, justifying the
existence of the steady-state regime is a much harder task.
Proceeding with this assumption, it is easy to show that
there also exists a Kraus map ΦS for the system alone,

ρSðnτ þ τÞ ¼ ΦSρSðnτÞ≡ trUfΦSUρSðnτÞρUðnτÞg: ð53Þ

Importantly, ΦS does not depend on the interaction interval
n because the initial state of the unit ρUðnτÞ is always the
same and because all relevant Hamiltonians are assumed τ
periodic. Therefore, if a unique steady state exists, it must
be τ periodic. The existence of a steady state is guaranteed
by Eqs. (10) and (12), and its uniqueness can be proven if
we have a strict inequality [74]

DðΦρ∥ΦσÞ < Dðρ∥σÞ ðfor ρ ≠ σÞ: ð54Þ

A precise mathematical condition for this strict inequality
was worked out in Ref. [75] but is hard to translate
physically. For instance, if additional symmetries are
present, or for pure dephasing interactions (commuting
with the system Hamiltonian), it is well known that there is
no unique steady state [61]. Nevertheless, for most relevant
scenarios, the strict inequality (54) will be satisfied. In
some examples to be considered below, the existence of a
unique steady state is also a well-established experimental
fact (e.g., for the micromaser treated in Sec. VI B).
Finally, let us stress that even when the steady-state

regime is guaranteed, solving the combined system-unit
dynamics exactly is often out of reach, especially when the
system and unit are complicated systems by themselves.
This is why in Sec. V we go one step further and describe
various limiting regimes [corresponding to special types of
interaction HSUðtÞ], where an effective ME can be derived
for the system alone, with its corresponding thermody-
namic interpretation.

E. Discussion

Let us summarize what we have achieved. By allowing
the system to interact with units, we showed that a new term
arises in the system energy and entropy balance, Eqs. (46)
and (48), respectively. It describes the unit energy and
entropy changes,ΔEU andΔSU, respectively, in addition to
the traditional terms describing the energy and entropy
changes in the reservoir in terms of heat. Consequently, the
entropy production ΣS, which measures the irreversible
losses in the system dynamics, now displays a new term
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which is given by the free-energy change of the unit ΔFU.
This term enables new transformations that would have
been impossible without the units. From an operational
perspective, evaluating this free energy requires preparing
the units in a known state before the interaction and
measuring their state after the interaction has ended. In
the next section, we examine whether ΔEU andΔSU can be
linked to traditional thermodynamic notions of work
or heat.
Since our generalized second law ΣS ≥ 0 provides a

bound on the possibility to extract work or to convert
different states into each other, it is worth mentioning that a
number of different bounds have been established recently
within the framework of resource theories [76–82]. These
studies also explicitly show ways to saturate these bounds.
While the setups they consider share some similarities with
ours, the bounds obtained are, in general, different from our
second law and are derived under additional restrictions
imposed on the setup. For instance, within the “resource
theory of thermal operations” (see Ref. [39] for an overview
about different resource theories), it is assumed that the
global time evolution commutes respectively with the bare
Hamiltonian of the system, of the unit, and of the reservoir.
This assumption is not needed within the approach pre-
sented in this section. Given that our sole restriction is to
consider initially decorrelated system-unit states, the prob-
lem of finding specific protocols that saturate the bound in
Eq. (49) is, in principle, equivalent to finding protocols
saturating the bound (24) because the former is a conse-
quence of the latter (see, e.g., Refs. [49,55–58] for such
optimal protocols). However, these optimal protocols might
correspond to highly idealized, if not unrealistic, situations.
Instead of following a resource theory strategy by imposing
restrictions from the start, we kept a general level of
discussion in this section and will consider specific
physical setups of greater experimental relevance in
Sec. VI.

IV. IMPLICATIONS

A. Thermal units and ideal heat reservoir

We consider thermal units initially prepared in an
equilibrium state at an inverse temperature β0, i.e., ρUð0Þ ¼
ρUβ0 ¼ e−β

0HU=ZU.
We say that these units behave as an ideal heat reservoir

when

ΔSU
ΔEU

¼ 1

T 0 ðideal heat reservoirÞ: ð55Þ

More insight is obtained by using an argument similar to
the one used in Sec. II B to define an ideal heat reservoir.
Using the identity

T 0D½ρUðτÞ∥ρUβ0 � ¼ ΔEU − T 0ΔSU ≥ 0; ð56Þ

we see that Eq. (55) is fulfilled when the state of the
unit remains close to thermal equilibrium after the inter-
action, i.e., when ρUðτÞ ¼ ρUβ0 þ ϵσU, where ϵ is a small
parameter and trUðσUÞ ¼ 0. Indeed, we then get that
D½ρUðτÞ∥ρUβ0 � ¼ Oðϵ2Þ, whereas ΔEU and ΔSU are, in
general, nonzero and equal to first order in ϵ. Since the unit
energy change can be interpreted as heat, ΔEU ¼ −QU, the
second law (48) becomes ΣS ≡ ΔSS − β0QU − βQ ≥ 0. We
remark that saturatingEq. (55) away from theweak-coupling
limit is, in general, nontrivial, but see Sec. VA 4 for another
class of ideal heat reservoirs.
As a simple application, we operate our setup in the

steady-state regime with hot thermal units T 0 > T. Using
Eq. (56) in Eq. (49), the entropy production bound implies

W − ð1 − T=T 0ÞΔEU ≥ TD½ρUðτÞ∥ρUβ0 � þ TIS∶UðτÞ: ð57Þ

This shows that to operate as a heat engine, where work is
extracted (W < 0), energy must be extracted from the units
(ΔEU < 0). For thermal units constituting an ideal heat
reservoir, the thermodynamic efficiency of the engine is
defined as η ¼ −W=ΔEU and is upper bounded by the
Carnot efficiency η ≤ 1 − T=T 0 because of Eq. (57), which
reduces toW − ð1 − T=T 0ÞΔEU ≥ 0 in that case. However,
nonideal thermal units decrease the efficiency bound as

η ≤ 1 −
T
T 0 − T

D½ρUðτÞ∥ρUβ0 � þ IS∶UðτÞ
−ΔEU

≤ 1 −
T
T 0 : ð58Þ

While realizing that a thermal stream of unit can behave
as an ideal reservoir is interesting, the importance of our
setup is that it allows us to treat units initially prepared out
of equilibrium. One way to do it here is to consider an
initial state ρUβ0 with negative β0. The efficiency of the heat
engine can then formally exceed 1 without violating the
second law of thermodynamics because the entropy pro-
duction (47) is still non-negative. However, in this case—as
the work output has to be compared with the total energy
put into the system—the first law of thermodynamics tells
us that a correctly defined efficiency would still be bound
by one.

B. Work reservoir

To make the units act as a work source, we should
engineer their state and interaction with the system in such
a way that only energy is exchanged but not entropy. Thus,
we define

ΔSU
ΔEU

→ 0 ðideal work reservoirÞ: ð59Þ

For finite ΔEU, this implies that the change in nonequili-
brium free energy is given by ΔFU ¼ ΔEU, and Eq. (49)
becomes, at steady state (ΔFS ¼ 0),
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ΣS ¼ βðW − ΔEUÞ ≥ IS∶UðτÞ ≥ 0: ð60Þ

This means that we can extract work from the energy
initially stored in the units, but not by extracting heat from
the reservoir since Eq. (60) implies that Q < 0 because of
the first law. Definition (59) can be fulfilled for many
different situations depending on the precise nature of the
interaction and the state and Hamiltonian of the units
(we will treat particular examples in Secs. VA 3, V C,
and VI B).
Let us note that for the special case of an ideal heat

reservoir, which is thermal before and after the interaction
(as discussed above), the form of Eqs. (59) and (60) can be
obtained by choosing T 0 → ∞ in Eq. (55) or (56) while
keeping ΔFU finite. This confirms the colloquial saying
that a work reservoir corresponds to an infinite-temperature
heat reservoir [83].
Finally, we note that the notion of work for small

systems is subtle and has been debated [6,85–92]. This
originates from the desire to explain work microscopically
in contrast to the standard approach where it is usually
incorporated “by hand” as a time-dependent part of the
system Hamiltonian. We see that the repeated interaction
framework brings an interesting perspective on this issue by
defining work as the part of the energy exchange that does
not induce any entropy change in the units. This approach
agrees with the point of view advertised in Refs. [87,88,90].
In Sec. V C, we provide an explicit model where the units
effectively mimic a time-dependent system Hamiltonian
and fulfill Eq. (59).

C. Information reservoir

We now consider the regime where the units operate as a
pure information source by demanding that the exchange of
energy ΔEU vanishes whereas the exchange of entropy
ΔSU remains finite. Thus, in contrast to Eq. (59), we
demand that

�
ΔSU
ΔEU

�
−1

→ 0 ðideal information reservoirÞ: ð61Þ

Then, ΔFU ¼ −TΔSU, and the second law of thermody-
namics (49) becomes at steady state (ΔFS ¼ 0),

ΣS ¼ βW þ ΔSU ≥ IS∶UðτÞ ≥ 0: ð62Þ

This shows that it is possible to extract work (W < 0) while
writing information to the units (ΔSU > 0) in an energy
neutral fashion (ΔEU ¼ 0). Note that for this interpretation,
we have tacitly equated the entropy of a system with its
information content in the spirit of Shannon’s fundamental
work [93]. Engines that are able to extract work only at the
expense of information are also called information-driven
engines [94].

The idea that an information reservoir represents the
opposite of a work reservoir also becomes manifest by
considering the case of an ideal heat reservoir in the limit
T 0 → 0. Rearranging Eq. (56) yields

ΔEU

T 0 ¼ ΔSU þD½ρUðτÞ∥ρUβ0 �: ð63Þ

In the limit of an ideal reservoir, the second term on the
right-hand side becomes negligibly small. However, in
order to keep ΔSU finite while T 0 → 0, we automatically
see that we obtain the requirement ΔEU → 0. This can be
achieved, for instance, by scaling the Hamiltonian of the
units as HU ¼ T 0 ~HU (note that ~HU is dimensionless now).
The same conclusion was also reached in Ref. [95].
The notion of an “information reservoir” was introduced

in a classical context by Deffner and Jarzynski in Ref. [48],
where each single informational state corresponds to a set
of microscopic states which are assumed to rapidly equili-
brate internally. If the free-energy barriers between the
different informational states are large, this enables a stable
encoding of the information. Here instead, we equate each
microstate of the unit with an informational state. In this
respect, we do not impose any stability condition on our
information, but we take all changes at the microscopic
level into account. A correspondence between the two
approaches can be established using a coarse-graining
procedure similar to Ref. [96]. Furthermore, the thermo-
dynamics of information reservoirs has attracted a lot of
attention recently as a number of model studies show
[35,36,95,97–103]. In Sec. VI A, we propose a microscopic
model for the Mandal-Jarzynski engine [35], where the
extracted work is shown to correspond to Wsw, Eq. (44).
An overview of the last three sections is represented

in Fig. 3.

FIG. 3. Venn diagram of the thermodynamic role of the stream
of units. In general, the interaction can be arbitrary, but if the
initial state of the units is thermal, they can mimic an ideal heat
reservoir when they fulfill the Clausius equality (55). In the
limiting case where T 0 → ∞, we obtain a work reservoir
(Sec. IV B). The converse is not true; i.e., not every work
reservoir can be obtained as a limiting case of a heat reservoir.
Similarly, we can obtain an information reservoir (Sec. IV C) out
of a heat reservoir for T 0 → 0, but again the converse is not true.
We note that some setups do not fit in any of the three categories.
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D. Landauer’s principle

Landauer’s principle colloquially states that logically
irreversible computation—more specifically, the erasure of
a bit—has a fundamental work cost. This result was first
derived for a particular model by Landauer in 1961 [104].
Since then, many groups made this statement more precise
by deriving it from a more general context, partly also
within a repeated interaction framework, and by extending
it to finite-time operations [17,20,49,50,55,105–115]. The
modern understanding is that this principle immediately
follows from the nonequilibrium version of the second law
as we will show below. There is also growing experimental
evidence in favor of it [116–122]. Nevertheless, this
principle remains under debate [123].
Within our framework, Landauer’s principle can be

formulated as follows: Changing the information content
(that is to say, the Shannon or von Neumann entropy) of a
unit by −ΔSU > 0 requires a work expenditure of at least

βðW − ΔEUÞ ≥ −ΔSU > 0: ð64Þ

This statement immediately follows from our generalized
second law (49), where ΔES ¼ 0 because we focus on the
steady-state regime. Note that, since −ΔSU ¼ SUð0Þ−
SUðτÞ > 0, we are indeed erasing information; i.e., we
lower the Shannon or von Neumann entropy of the unit.
Furthermore, we recover the standard statement βW ≥
−ΔSU for ΔEU ¼ 0, which is automatically fulfilled if
the states of the units are energetically degenerate, as is
usually assumed (treatments including energetic changes
can be found in Refs. [55,110] and are in agreement with
our result and were also confirmed experimentally in
Ref. [122]).
We emphasize that the initial product state of the system

and unit, ρXð0Þ ¼ ρSð0ÞρUð0Þ, is essential for deriving
Landauer’s bound. In fact, we regard the unit (functioning
as a memory in this case) as an auxiliary system to which
the experimenter has free access. If the memory was
initially correlated with the system, it should be treated
as part of the system instead [45]. In the presence of initial
correlations, it is well known that Landauer’s bound does
not hold [49,124,125].
We end with some remarks. As pointed out in Ref. [20],

erasing information is not necessarily a thermodynamically
irreversible process because when reaching the equality in
Eq. (64), the process becomes thermodynamically revers-
ible (i.e., with no entropy production). The inverse oper-
ation of erasure corresponds to a randomization of the
memory back to its initial state while absorbing heat from
the reservoir. This can be viewed as creating information in
the sense of Shannon. However, it is not a computational
process, i.e., a deterministic operation on the set of logical
states which cannot increase the Shannon entropy of the
state during computation [126]. It is only in this sense that a
logically irreversible computer can be said to produce

irretrievable losses of energy. In fact, the information-
driven engines introduced in Sec. IV C can be seen as an
implementation of the reverse process. The duality between
work extraction and information erasure was also noticed in
Refs. [35,36,48,95,98,100–103].

E. Second law of thermodynamics
for discrete feedback control

Feedback control describes setups where one manipu-
lates the dynamics of a system based on the information
that one obtains by measuring it. Several groups have
established that for a system undergoing feedback control
in contact with a thermal reservoir at inverse temperature β,
the amount of extractable work Wfb is bounded by (details
about the assumptions are stated below) [56,127–138]

−βWfb ≤ Ims
S∶U; ð65Þ

where Ims
S∶U is the classical mutual information [which can

be obtained from Eq. (11) by replacing the von Neumann
by the Shannon entropy] between the system and the
memory in which the measurement result is stored after
the measurement. Equation (65) is also called the second
law of thermodynamics for discrete feedback control. It
was confirmed experimentally in Refs. [139–141].
To be more specific, the inequality (65) holds under

special conditions. For instance, the bound is known to be
different for quantum systems [56], and even classically,
additional requirements are imposed on the measurement
which are seldom stated explicitly. Within our framework,
we show that we are able to provide a very transparent and
clean proof of Eq. (65).
The memory used to store the measurement of the

system will be a unit in our setup. The assumption of an
initially decorrelated system-memory state complies with
the notion of a memory used in Sec. IV D. We assume that
the Hamiltonian HU of the memory is completely degen-
erate so that the change in energy of the memory is always
zero, ΔEU ¼ 0. The stream of memories can thus be
viewed as the information reservoir introduced in
Sec. IV C. Including changes in the energy of the memory
poses no fundamental challenge but would just lengthen the
equations below.
We now divide the interaction interval in two parts,

½0; τÞ ¼ ½0; tmsÞ∪½tms; τÞ with tms ∈ ð0; τÞ, as illustrated in
Fig. 4. The measurement is performed during ½0; tmsÞ,
whereas the feedback step is performed during ½tms; τÞ.
One possibility is to treat an instantaneous measurement,

tms → 0. In this case, the measurement consists of a delta-
function time dependence of the interaction Hamiltonian,
HSUðtÞ ¼ δðtÞVms

SU, which generates a sudden unitary
operation Ums acting on the joint system-memory space.
The state of the system and memory after such a meas-
urement reads
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ρms
SU ¼ UmsρSð0ÞρUU†

ms; ð66Þ

where Ums ¼ expð−iVms
SUÞ and ρms

SU will, in general, be
correlated. During this short time window, the system and
memory are effectively decoupled from the reservoir and
the measurement acts in an entropy-preserving fashion. As
a result, during ½0; tmsÞ, the first and second laws respec-
tively read

ΔEms
S ¼ Wms; ð67Þ

Σms ¼ ΔSms
SU ¼ ΔSms

S þ ΔSms
U − Ims

S∶U ¼ 0: ð68Þ

The non-negative mutual information that has been created
during the measurement step, Ims

S∶U, will constitute the
resource during the feedback step.
On the other hand, if the measurement time tms remains

finite, we are effectively implementing an “environmentally
assisted measurement.” If LmsðtÞ denotes the superoperator
governing the time evolution of the system and memory in
weak contact with the reservoir during ½0; tmsÞ, then their
initial state will be mapped into the generically correlated
state [see Eq. (29)]

ρms
SU ¼

�
T þ exp

Z
tms

0

dsLmsðsÞ
�
ρSð0ÞρU: ð69Þ

In this case, heat exchanges with the reservoir Qms will
occur, and the first and second laws respectively read

ΔEms
S ¼ Wms þQms; ð70Þ

Σms ¼ ΔSms
SU − βQms

¼ ΔSms
S þ ΔSms

U − Ims
S∶U − βQms ≥ 0: ð71Þ

By combining these two laws, we find that the measure-
ment work is bounded by

−βWms ≤ −βΔFms
S þ ΔSms

U − Ims
S∶U: ð72Þ

A reversible implementation of the measurement, Σms ¼ 0,
is possible in the limit tms → ∞ as examined explicitly by
Bennett and others [17,94,105,106].
We remark that from the system’s perspective, the

measurement simply changes its state from ρSð0Þ to
ρms
S ¼ trUðρms

SUÞ≡Φms
S ρSð0Þ, where Φms

S denotes the
Kraus map of the measurement. So far, our approach is
very general since it includes any kind of measurement
scenario (including measurements on classical systems)
compatible with an initially decorrelated system-memory
state [43,45].
We now turn to the feedback step. In a macroscopic

setting, the observer would make a projective measurement
of the memory in the computational basis joiU. After
reading the outcome o of the measurement, the observer
would subsequently perform a feedback step by accord-
ingly changing the system Hamiltonian and/or the system-
reservoir coupling. In the inclusive approach which we now
follow, invoking a macroscopic agent is not necessary since
the same resulting dynamics can be obtained by using a
total Hamiltonian of the form [142]

HfbðtÞ ¼
X
o

Πo ⊗ ½HðoÞ
S ðtÞ þHðoÞ

SR � þHR: ð73Þ

Here, Πo ¼ joiUhoj denotes the projector onto the unit
subspace corresponding to outcome o. The unit plays the
role of a minimal description of the external agent or
feedback controller. We note that the idea of describing a
measured and feedback-controlled system in a larger space
without having to rely on explicit measurements is not new
and is at the heart of coherent or autonomous feedback in
quantum mechanics [143–145]. It also works classically
[146]. More details on such descriptions and on strategies
to optimize work extraction can be found in Ref. [56]. We
now proceed with the first and second laws of thermody-
namics during the feedback step, which take the form
(independently of the measurement scheme) [147]

ΔEfb
S ¼ Wfb þQfb; ð74Þ

Σfb
S ¼ ΔSfbS þ ΔSfbU − βQfb þ Ims

S∶U ≥ IfbS∶U ≥ 0; ð75Þ

where Ims
S∶U is the system-memory mutual information at the

end of the measurement interval while IfbS∶U ≡ IS∶UðτÞ is the
remaining mutual information at the end of the entire
interval. We note that this latter resource is left out and will
always diminish the amount of extractable work. By
combining Eq. (75) with Eq. (74), we get

−βWfb ≤ −βΔFfb
S þ ΔSfbU þ Ims

S∶U: ð76Þ

Assuming now that we operate in the steady-state regime
where ΔFS ¼ ΔFms

S þ ΔFfb
S ¼ 0, Eq. (76) becomes

FIG. 4. Overview of the various quantities involved during the
measurement and feedback step in the steady-state regime.
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−βWfb ≤ βΔFms
S þ ΔSfbU þ Ims

S∶U: ð77Þ

This result can be regarded as the generalized second law
for discrete feedback control.
To recover Eq. (65) from Eq. (77), one needs to consider

a nondisturbing classical measurement in which the state of
the system before and after the measurement is the same
[45] and the information stored in the memory is classical.
These assumptions have been used implicitly or explicitly
in the classical context [127–129,131–138], whereas for
quantum treatments only the information stored in the
memory was treated classically [56,130]. Indeed, the first
property of a nondisturbing measurement implies that
ΔFms

S ¼ 0, while the assumption of a classical memory
implies that, after the measurement, the memory is diagonal
in its computational basis joiU. Therefore, the evolution
caused by the Hamiltonian (73) will leave the entropy of the
memory constant, i.e., ΔSfbU ¼ 0. Hence, we recover
Eq. (65), having clearly identified the necessary additional
assumptions. It is worth pointing out that even classical
measurements can be disturbing [45] as, in fact, any real
measurement is. Then, ΔFms

S ≠ 0, and the amount of
extractable work changes.
We conclude this section by noting that Eq. (77) gives a

bound on the extractable work during the feedback process
but neglects the work invested during the measurement step
(which, however, can be zero). When adding Eq. (77) to
Eq. (72), we find that the total extractable work is bounded
by minus the entropy change in the unit

βW ¼ βðWms þWfbÞ ≥ −ΔSU: ð78Þ

This result is equivalent to Eq. (62) and shows that our
feedback control scheme (implemented by a stream of
memories) is equivalent to the information reservoir
described in Sec. IV C. This connection between feedback
control and information-driven engines was debated in
Refs. [102,148–150] but is unambiguous here.
A summary of the thermodynamics of feedback control

within our framework is given in Fig. 4. A model-system
application will also be provided in Sec. VI D.

V. EFFECTIVE MASTER EQUATIONS

The thermodynamic framework introduced in Sec. III is
very general, and it allowed us to derive important exact
identities. But in practice, it can only be used if one is able
to solve the reduced dynamics of the joint system-unit
complex. This is usually not an easy task. Our goal in this
section will be to derive a closed reduced description for the
system only, which includes its dynamics and thermody-
namics. We derive effective MEs for the system which do
not rely on the weak-coupling approximation, contrary to
the results of Sec. II C. These MEs often have an apparent
nonthermal character. For instance, they do not obey the
condition (31). Establishing a consistent thermodynamics

for these MEs, when solely considered as mathematical
objects, can thus be challenging and often requires the
ad hoc introduction of effective new quantities, which lack
a solid physical interpretation [151–154]. Progress has been
achieved when the MEs result from the coarse graining of a
larger network of states which originally obeys a thermo-
dynamically consistent ME, especially if the network is
bipartite [96,155–159], or for particular information-driven
engines [102] and “boundary-driven”MEs [160–163]. Our
approach is similar in spirit since we derive effective MEs
starting from the framework of repeated interactions for
which we established a consistent thermodynamics.
In this section, the energy and entropy of the system at

the effective level will always be given by

ESðtÞ ¼ trSfHSðtÞρSðtÞg; ð79Þ

SSðtÞ ¼ −trSfρSðtÞ ln ρSðtÞg: ð80Þ

We also allow the time interval τ between successive
system-unit interactions to fluctuate according to the
waiting time distribution wðτÞ. The duration of the inter-
action itself τ0 ≤ τ will be specified on a case-by-case basis.
The time evolution of the system over an interval τ is given
by some generic Kraus map ΦSðτÞ. We introduce the

conditional density matrix ρðnÞS ðtÞ, which describes the
system density matrix conditioned on the fact that n

interactions with the units occurred so far. Then, ρðnÞS ðtÞ
is related to ρðn−1ÞS ðt − τÞ at an earlier time τ > 0 by

ρðnÞS ðtÞ ¼
Z

t−t0

0

dτwðτÞΦSðτÞρðn−1ÞS ðt − τÞ; ð81Þ

where t0 < t is an arbitrary initial time. The unconditional
state of the system is recovered by summing over

n: ρSðtÞ ¼
P

nρ
ðnÞ
S ðtÞ.

A. Poisson-distributed interaction times

1. Setup

In this subsection, we consider an exponential waiting
time distribution wðτÞ ¼ γe−γτ. This means that the number
N of units with which the system interacts during a fixed
time window T is Poisson distributed, i.e., PNðTÞ ¼
½ðγTÞN=N!�e−γT . The average time between successive
interactions is therefore

R
∞
0 τwðτÞdτ ¼ γ−1.

Furthermore, we assume that the system-unit interactions
are very strong and short but happen very rarely. In this
way, we can assure that the units have a finite influence on
the evolution of the density matrix. More specifically, if the
random times at which a new unit interaction occur are
denoted tn (n ¼ 0; 1; 2;…), the system-unit interaction
Hamiltonian is a sum of delta kicks,
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HSUðtÞ ¼
X
n

δðt − tnÞVSU; ð82Þ

as sketched in Fig. 5. This interaction creates an instanta-
neous unitary operation U at times t ¼ tn such that the
system-unit state right after an interaction reads

ρ0SUðtÞ ¼ UρSðtÞ ⊗ ρUU†; U ¼ e−iVSU : ð83Þ

Putting aside the brief system-unit interactions, most of
the time the system will evolve in weak contact with a large
thermal reservoir at inverse temperature β. Its dynamics
will thus obey a ME of the form (25)

dtρSðtÞ ¼ L0ρSðtÞ≡ −i½HSðtÞ; ρSðtÞ� þ LβρSðtÞ; ð84Þ

where Lβ is the standard dissipator caused by the thermal
reservoir. For notational simplicity, we keep the time
dependence of superoperators implicit, L ¼ LðtÞ.
Similar interaction scenarios have been considered

in the past but for different purposes. See, e.g.,
Refs. [32,102,148,164–167].
Overall, the system evolution over an entire interval τ is

given by the Kraus map

ΦSðτÞρS ¼ eL0τJ SρS; ð85Þ

where

J SρSðtÞ≡ trUfUρSðtÞ ⊗ ρUU†g: ð86Þ

Thus, Eq. (85) describes the short kick felt by the system
due to the interaction with the unit (J S) followed by the
dissipative evolution of the system in contact with the
reservoir (eL0τ). If L0 is time dependent, we have to replace
eL0τ by the corresponding time-ordered generator; see
Eq. (29). For later convenience, we also introduce the
superoperator describing the effect of a system-unit inter-
action on the unit

J UρU ≡ trSfUρSðtÞ ⊗ ρUU†g: ð87Þ
Note that J U ¼ J UðtÞ might be time dependent if ρSðtÞ
has not yet reached its steady state, but J S is not.
Using Eq. (85) in Eq. (81) and substituting τ ¼ t − t0 to

make the dependence on the actual time t explicit, we
obtain

ρðnÞS ðtÞ ¼
Z

t

t0

dt0γe−γðt−t0ÞeL0ðt−t0ÞJ Sρ
ðn−1Þ
S ðt0Þ: ð88Þ

By taking the time derivative, we find

dtρ
ðnÞ
S ðtÞ ¼ −γρðnÞS ðtÞ þ L0ρ

ðnÞ
S ðtÞ þ γJ Sρ

ðn−1Þ
S ðtÞ; ð89Þ

and by summing over n, we finally obtain the effective ME
ruling the averaged time evolution of the system,

dtρSðtÞ ¼ L0ρSðtÞ þ γðJ S − 1ÞρSðtÞ: ð90Þ
We can make the new part γðJ S − 1Þ of the ME (90)

more explicit by writing the initial state of the unit as

ρU ¼
X
k

pkjkiUhkj; ð91Þ

where fjkiUg is an arbitrary set of eigenstates of ρU (not
necessarily energy eigenstates of HU). Then, we see that

J SρSðtÞ ¼
X
k;l

AklρSðtÞA†
kl ð92Þ

has the form of a Kraus map (4) where the system operators
defined as Akl ≡ ffiffiffiffiffi

pk
p hljUjkiU fulfill the completeness

relation
P

k;lA
†
klAkl ¼ 1S. Therefore, we can write

LnewρSðtÞ≡ γðJ S − 1ÞρSðtÞ ¼ γ
X
k;l

D½Akl�ρSðtÞ; ð93Þ

whereD½A�ρ≡ AρA† − 1
2
fA†A; ρg, thus explicitly showing

that Lnew is of Lindblad form [61,69,70]. By choosing ρU
and VSU appropriately, we can create arbitrary Akl’s as long
as they fulfill the completeness relation. Note that the class
of generators Lnew created this way is not equivalent to the
class of thermal generators (26). In general, relation (30)
or (31) will not be fulfilled for Lnew. Furthermore, we
remark that including multiple independent streams of units
can be easily done within this scenario because the
probability of a simultaneous interaction with more than
one unit is negligible.
In summary, the new ME (90) can be written as

dtρSðtÞ ¼ −i½HSðtÞ; ρSðtÞ� þ LβρSðtÞ þ LnewρSðtÞ: ð94Þ

2. Thermodynamics

We now turn to the thermodynamic description corre-
sponding to the setup above.

FIG. 5. Sketch of the Poisson-distributed regime: The system
evolves freely most of the time but, once in a while, undergoes a
short (τ0 → 0) and strong (HSU ∼ τ0−1) interaction with a unit
where τ0 denotes the duration of the interaction as in Sec. III. The
duration τ between successive system-unit interactions fluctuates
according to an exponential time distribution with average
duration γ−1.
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We start by considering energy and entropy changes in
the units. During a short time interval dt, the probability
that a unit interacts (resp. does not interact) is given by
γdt ≪ 1 (resp. 1 − γdt). In the former case, the unit state
changes from ρU to J UρU, while it remains in ρU in the
latter case. Since an energy and entropy change in the unit
only occurs when an interaction takes place, the rates of
unit energy and entropy change are given by

dtEUðtÞ ¼ γðtrUfHUJ UρUg − trUfHUρUgÞ; ð95Þ

dtSUðtÞ ¼ γð−trUfðJ UρUÞ lnðJ UρUÞg
þ trUfρU ln ρUgÞ: ð96Þ

We now turn to the rate of work injected in the joint
system unit, which we again split into two parts:

_W ¼ _WS þ _WSU; ð97Þ

where

_WS ¼ trSfρSðtÞdtHSðtÞg; ð98Þ

_WSU ¼ γtrSUf½HSðtÞ þHU�½UρSðtÞρUU† − ρSðtÞρU�g
¼ γtrSfHSðtÞðJ S − 1ÞρSðtÞg
þ γtrUfHUðJ U − 1ÞρUg: ð99Þ

The first part is the work due to the time dependence in the
system Hamiltonian HSðtÞ, while the second part is due to
the system-unit interaction when it occurs. Since this latter
gives rise to a unitary dynamics in the system-unit space
which produces no heat, it is given by the energy change in
the system and unit due to the system-unit interaction.
The overall change in the energy of the system is

naturally given by

dtESðtÞ ¼ dttrSfHSðtÞρSðtÞg; ð100Þ

and the heat entering the system from the reservoir is

_QðtÞ ¼ trSfHSðtÞLβρSðtÞg
¼ −β−1trSf½LβρSðtÞ� ln ρSβðtÞg: ð101Þ

Noting that _WSUðtÞ − dtEUðtÞ ¼ γtrSfHSðtÞLnewρSðtÞg,
we obtain the first law of thermodynamics,

dtESðtÞ ¼ _QðtÞ þ _WðtÞ − dtEUðtÞ; ð102Þ

which constitutes the differential version of the general
result Eq. (46).
We now proceed to show that the differential version of

the generalized second law (48),

_ΣSðtÞ ¼ dtSSðtÞ þ dtSUðtÞ − β _Q ≥ 0; ð103Þ

also holds and that its non-negativity is ensured. Using the
fact that dtSSðtÞ ¼ −trf½dtρSðtÞ� ln ρSðtÞg together with
(90), we find that

dtSSðtÞ ¼ −trSf½LβρSðtÞ� ln ρSðtÞg
− γtrSf½ðJ S − 1ÞρSðtÞ� ln ρSðtÞg: ð104Þ

Combining this with Eq. (101), we can rewrite Eq. (103) as

_ΣSðtÞ ¼ −trSfLβρSðtÞ½ln ρSðtÞ − ln ρSβðtÞ�g
− γtrSf½ðJ S − 1ÞρSðtÞ� ln ρSðtÞg þ dtSUðtÞ

≥ −γtrSf½ðJ S − 1ÞρSðtÞ� ln ρSðtÞg þ dtSUðtÞ;

where we used Spohn’s inequality (36) at the end. Using
Eq. (96), the remaining part can be expressed as

_ΣSðtÞ
γ

≥ −trSf½J SρSðtÞ� ln½J SρSðtÞ�g þD½J SρSðtÞ∥ρSðtÞ�

− trSfρSðtÞ ln ρSðtÞg − trUfðJ UρUÞ lnðJ UρUÞg
þ trUfρU ln ρUg: ð105Þ

Now using the fact that entropy does not change under
unitary transformation so that

S½ρSðtÞ� þ S½ρU� ¼ S½ρSðtÞ ⊗ ρU�
¼ S½UρSðtÞ ⊗ ρUU†�
¼ S½J SρSðtÞ� þ S½J UρU�
− IS∶U½UρSðtÞρUU†�; ð106Þ

we can prove the non-negativity of _ΣSðtÞ since
_ΣSðtÞ
γ

≥ D½J SρSðtÞ∥ρSðtÞ� þ IS∶U½UρSðtÞρUU†� ≥ 0:

ð107Þ

The present analysis underlines that our generalized
thermodynamic framework of repeated interactions can
be carried over to the limiting situation considered in this
section of very short and Poisson-distributed system-unit
interactions. The resulting description is closed in terms of
the system density matrix obeying the dynamics (94), and
the non-negativity of the differential form of the second law
(103) is a stronger result than the original integrated
one (47).
A crucial point to emphasize is that knowing the physical

mechanism underlying a ME dynamics such as Eq. (94)
is essential to establish its correct thermodynamics.
Indeed, without the additional information about the
units at hand, the thermodynamic analysis would be very
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different. Presupposing that we were able to disentangle the
two dissipative mechanisms caused by Lβ and Lnew, we
would need to define an effective heat flow _QeffðtÞ≡
trfHSLnewρSðtÞg to explain the discrepancy in the first law.
From our inclusive approach above, however, we know that
_QeffðtÞ ¼ _WSUðtÞ − dtEUðtÞ. The effect on the second law
would be even more drastic. Using Spohn’s inequality (36),
we know that the quantity

_Σeff
S ≡ −trf½L0ρSðtÞ�½ln ρSðtÞ − ln ρSβðtÞ�g

−trf½LnewρSðtÞ�½ln ρSðtÞ − ln ρ̄new�g ð108Þ

would always be non-negative as a sum of two non-
negative terms. Here, ρ̄new denotes the steady state of
Lnew, i.e., Lnewρ̄new ¼ 0. In fact, if Lnew corresponds to the
dissipator caused by a standard thermal reservoir, Eq. (108)
would correspond to the standard entropy production.
However, this is not the case; thus, _Σeff

S is not only
numerically different from _ΣS, but it also lacks any a priori
thermodynamic interpretation.

3. Heat, work, and information-dominated interactions

Following the line of Secs. IVA–IV C, we now consider
specific scenarios that have a clear thermodynamic
interpretation.
We start by studying the case of initially thermal units at

inverse temperature β0 as in Sec. IVA. Then, using
Eqs. (95) and (96), we deduce, in accordance with
Eq. (56), that

dtSUðtÞ ¼ β0dtEUðtÞ − γDðJ UρU∥ρUÞ: ð109Þ

Thus, in contrast to a weakly coupled macroscopic reser-
voir, the units, in general, do not mimic an ideal heat
reservoir unless additional assumptions are used, as we will
see in Sec. VA 4.
The difference between the effective ME (90) and

the weak-coupling ME from Sec. II C also becomes
apparent by noting that the generator Lnew is not of the
form of Lβ in Eq. (26). Thus, initially thermal units will
typically not imply that Lnewρ

S
β0 ðtÞ ¼ 0. One very specific

way to enforce it is to assume that the units and the system
have identical Hamiltonians, HS ¼

P
kEkjEkiShEkj and

HU ¼ P
kEkjEkiUhEkj, and that their delta kick inter-

action gives rise to a unitary evolution of the form
U ¼ P

k;ljEkiShElj ⊗ jEliUhEkj, which swaps energy
between the system and the unit.
For the work reservoir, we require that dtSU ¼ 0 while

dtEU ≠ 0. For initially thermal units, this can again be
ensured by choosing β0 → 0 as in Sec. IV B. But, in
general, to ensure that the entropy of the unit remains
constant while its energy can change, the effective unit
dynamics should be given by a unitary operator UU,

J UρU ¼ UUρUU
†
U. Besides the trivial choice

U ¼ US ⊗ UU, finding such conditions might not be easy.
In turn, the limit of an information reservoir where

dtEU ¼ 0 and dtSUðtÞ ≠ 0 can be easily achieved for any
interaction by considering a fully degenerate unit
Hamiltonian,

HU ∼ 1U ðideal information reservoirÞ; ð110Þ

naturally always implying dtEU ¼ 0.
A last important class of interactions are those generated

by the unitary operator

U ¼
X
k

UðkÞ
S ⊗ jkiUhkj; ð111Þ

where UðkÞ
S is an arbitrary unitary operator in the

system Hilbert space whereas jkiU denotes the eigenvectors
of ρU, Eq. (91). One easily verifies that the unit state
does not change during the interaction, ρU ¼ J UρU, and
hence its energy and entropy also stay constant,
dtEU ¼ 0; dtSU ¼ 0. In this case, the units are neither a
work nor an information reservoir. Instead, the system state
changes according to

J SρS ¼
X
k

pkU
ðkÞ
S ρSðUðkÞ

S Þ†; ð112Þ

where pk ¼ hkjρUjki. This interaction will therefore, in
general, inject energy as well as entropy into the system.
Using Eq. (106), we see that the change in the system
entropy caused by such a system-unit interaction is given
by the mutual information established between the system
and the unit after the interaction,

S½J SρSðtÞ� − S½ρSðtÞ� ¼ IS∶U½UρSðtÞρUU†�: ð113Þ

Thus, the interaction (111) can be seen as a measurement of
the unit by the system. Indeed, depending on the unit state
jkiU, the system will, in general, change its state to

UðkÞ
S ρSðUðkÞ

S Þ†. Vice versa, by exchanging the labels U
and S above, we can also implement a measurement of the
system by the units. This will be used in Sec. VI D.

4. Ensemble of units and ideal heat reservoir

In Sec. VA 2, we considered the energy and entropy
changes of those units which interacted with the system. An
interesting alternative approach consists in evaluating
energy and entropy changes with respect to a statistical
ensemble composed of both the units that did and those that
did not interact. One physically relevant scenario for this is
the case where units are frequently sent to the system, but
only a small Poisson-distributed fraction of them interact
whereas the rest remain unchanged.
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Mathematically, let us assume that every time step dt, a
unit passes the system with certainty but only interacts with
it with probability γdt ≪ 1, which is assumed to be
infinitesimal such that the average evolution of the system
is still differentiable and coincides with Eq. (94). If we do
not record the precise interaction times, each outgoing unit
ρ0U must be described by the state

ρ0U ¼ ð1 − γdtÞρU þ γdtJ UρU; ð114Þ

where ρU describes the initial state as usual. The change in
unit entropy per time step dt then becomes

dtS̄UðtÞ≡ lim
dt→0

Sðρ0UÞ − SðρUÞ
dt

¼ −γtrf½ðJ U − 1ÞρU� ln ρUg: ð115Þ

Here, we used a bar to distinguish this definition from the
previous case, Eq. (104), in which every unit passing the
system also interacts with the system. The difference
between both is exactly

dtS̄UðtÞ − dtSUðtÞ ¼ γDðJ UρU∥ρUÞ ≥ 0; ð116Þ

which can be interpreted as the entropy increase caused by
mixing the units that interacted with the system with those
that did not. In contrast, since the energy EUðtÞ of the units
is a linear functional of ρUðtÞ, we easily deduce that
dtĒUðtÞ ¼ dtEUðtÞ. In other words, while the entropy
balance differs between the two approaches, the energy
balance remains the same. Since heat is also unaffected,
the difference in entropy production between the two
approaches reads

_̄ΣSðtÞ ¼ _ΣS þ γDðJ UρU∥ρUÞ ≥ 0: ð117Þ

An important implication of the present approach is that
when considering units that are initially thermal ρU ¼ ρUβ0 ,
we find that

dtS̄UðtÞ ¼ β0dtĒUðtÞ; ð118Þ

in contrast to Eq. (109). Thus, the notion of an ideal heat
reservoir requires one to not only focus on those units that
interacted but to consider the statistical mixture of units that
did and did not interact. This picture is also supported by an
alternative approach.
Consider a reservoir made of an initial population of

N0 ≫ 1 identical and independent units. Let us assume that
the particle content of the reservoir decays exponentially,
Nt ¼ N0e−γt, and produces the sequence of units that all
eventually interact with the system. In contrast to the case
in Sec. VA 2, after they interact, we send the units back to
the reservoir and let them mix with the remaining Nt fresh
units. The mixed state of this reservoir can be described as

~ρUðtÞ ¼
N0 − Nt

N0

J UρU þ Nt

N0

ρU; ð119Þ

where we assumed that J U is time independent for
simplicity. For such a process, we have dtNt ¼ −γNt,
and thus

dt ~ρUðtÞ ¼ γ
Nt

N0

ðJ U − 1ÞρU: ð120Þ

Considering times over which Nt ≈ N0, to remain consis-
tent with the assumption that only fresh units interact with
the system, it is possible to recover the same mathematical
results as above. Thus, physically separating the units from
the system and dividing them into an incoming and
outgoing stream is not essential in this picture. One could
equally well consider a gas of noninteracting units sur-
rounding the system and interacting with it at Poisson
random times.

B. Regular and frequent interaction intervals

1. Setup

There is another class of the repeated interaction
framework that has often been considered to derive MEs
[160–163,166,168,169]. Its thermodynamics has been con-
sidered as well [160–163]. In this scenario, the duration
between two consecutive system-unit interactions τ is taken
to be constant, as in Sec. III, and equal to the duration of the
system-unit interaction τ0. Furthermore, the duration is
short, and τ0 ¼ τ≡ δt is used as a small expansion
parameter, where the interaction is assumed to be of the
form

HSUðtÞ ¼
X
n

Θðt − nδtÞΘðnδtþ δt − tÞ
~Vffiffiffiffi
δt

p : ð121Þ

This Hamiltonian models very short but permanent and
strong interactions. The fact that every unit is replaced after
a time δt implies Markovianity. Furthermore, for a clean
derivation of the ME, in this setting one has to assume no
coupling to a thermal reservoir. Therefore, the system and
unit evolve unitarily over one period via the operator

UðδtÞ ¼ exp f−iδt½HSðtÞ þHU þ ~V=
ffiffiffiffi
δt

p
�g; ð122Þ

where it is further assumed that δt is much smaller than
the rate of change of HSðtÞ. Finally, one needs to expand
the evolution of ρSðtÞ up to first order in δt under the
assumption that trf ~VρUg ¼ 0.
Instead of following such a derivation, which is pre-

sented elsewhere [160–163,166,168,169], we follow an
alternative route by considering the setup of Sec. VA in the
limit of an infinitely fast Poisson process. This procedure
yields identical mathematical results. More specifically, we
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consider the limit where the Poisson rate scales as γ ¼ ϵ−1

while at the same time assuming that the unitary interaction
(83) scales as U ¼ expð−i ffiffiffi

ϵ
p

~VÞ, i.e., VSU ¼ ffiffiffi
ϵ

p
~V in

Eq. (82). Furthermore, we explicitly neglect the reservoir;
i.e., we set Lβ ¼ 0 in the results of Sec. VA. The Kraus
map (85) then reads ΦSðτÞρS ¼ e−iHSðtÞτ½J SρS�eiHSðtÞτ. Our
goal now is to derive an effective ME in the limit ϵ → 0.
We start with Eq. (86) by expanding UρSðtÞρUU† in

powers of
ffiffiffi
ϵ

p
. This yields

J SρSðtÞ ¼ ρSðtÞ − i
ffiffiffi
ϵ

p
trUf½ ~V; ρSðtÞρU�g

−
ϵ

2
trUf½ ~V; ½ ~V; ρSðtÞρU��g þ… ð123Þ

In order to derive a meaningful differential equation, we
now also have to demand that the interaction ~V or the initial
unit state ρU is chosen such that trUf ~VρUg ¼ 0, which
removes the term proportional to

ffiffiffi
ϵ

p
. Then, we consider

Eq. (93), which becomes

LnewρSðtÞ¼
1

ϵ

�
ρSðtÞ−

ϵ

2
trUf½ ~V;½ ~V;ρSðtÞρU��gþ���−ρSðtÞ

�

¼1

2
trUf½ ~V;½ ~V;ρSðtÞρU��gþOð ffiffiffi

ϵ
p Þ: ð124Þ

We can make this effective ME more explicit by writing
~V ¼ P

kAk ⊗ Bk, where Ak and Bk are arbitrary operators
in the system and unit space such that ~V is Hermitian. Then,
after taking into account the influence of the possibly time-
dependent system Hamiltonian, from Eq. (94) we get, with
Lβ ¼ 0, our final ME:

dtρSðtÞ ¼ −i½HSðtÞ; ρSðtÞ�

þ
X
k;l

hBlBkiU
�
AkρSðtÞAl −

1

2
fAlAk; ρSðtÞg

�
;

ð125Þ

where we defined hBlBkiU ≡ trUfBlBkρUg. This result
agrees with Refs. [160–162,166,168] and will be further
used in Sec. VI C. Treating multiple streams of units can
also be easily done within this setup. We finally note that
this ME is very similar (but not identical) to the singular
coupling ME [61].

2. Thermodynamics

A thermodynamic analysis of such “boundary-driven
MEs” (125) was given in Ref. [162] for the case of initially
thermal units ρU ¼ ρUβ . We now approach this problem
from our perspective, demonstrating that the thermody-
namic framework in Ref. [162] is consistent but over-
estimates the entropy production.

For trUf ~VρUg ¼ 0, it follows immediately that (in the
following, we consider only the leading-order terms)

J SρSðtÞ ¼ ρSðtÞ −
ϵ

2
trUf½ ~V; ½ ~V; ρSðtÞρU��g; ð126Þ

J UρU ¼ ρUðtÞ − i
ffiffiffi
ϵ

p
trSf½ ~V; ρSðtÞρU�g

−
ϵ

2
trSf½ ~V; ½ ~V; ρSðtÞρU��g: ð127Þ

Thus, it is clear that all thermodynamic quantities defined
in Sec. VA for the system [i.e., dtESðtÞ and dtSSðtÞ] are
well behaved (i.e., do not diverge for ϵ → 0), but for the
unit, this is less clear.
We start by looking at unit-related quantities in the first

law. For instance, for Eq. (95) [the same terms appear in
_WSUðtÞ, too],

dtEUðtÞ ¼ γtrUfHUðJ U − 1ÞρUg

¼ −i
1ffiffiffi
ϵ

p trSUfHU½ ~V; ρSðtÞρU�g

−
1

2
trSUfHU½ ~V; ½ ~V; ρSðtÞρU��g; ð128Þ

where we replaced γ ¼ ϵ−1 and used Eq. (127). Thus, the
first term will diverge as ϵ → 0 unless ½HU; ~V� ¼ 0 or
½HU; ρU� ¼ 0. Note, however, that the divergences cancel
out if we consider the first law (102) for the system.
Furthermore, within the framework of Ref. [162], we
indeed have ½HU; ρU� ¼ 0 since ρU ¼ ρUβ ; hence,

dtEUðtÞ ¼ −
1

2
trSUfHU½ ~V; ½ ~V; ρSðtÞρU��g; ð129Þ

_WSUðtÞ ¼ −
1

2
trSUfðHS þHUÞ½ ~V; ½ ~V; ρSðtÞρU��g; ð130Þ

demonstrating that dtEUðtÞ and _WSUðtÞ remain well
behaved. Furthermore, we can identify _WSUðtÞ ¼ _WswðtÞ
by using definition (44) and some straightforward algebraic
manipulations.
Turning to the entropy change, we see from our result

(109) that the only term that could cause a divergence is
ϵ−1DðJ UρU∥ρUÞ. However, with the use of footnote [52]
and Eq. (127), we find that DðJ UρU∥ρUÞ ¼ OðϵÞ; thus,
the entropy change of the units is also well behaved.
In total, the first and second laws derived in Sec. VA

become, for this setup,

dtESðtÞ ¼ _WSðtÞ þ _WswðtÞ þ dtEUðtÞ; ð131Þ

_ΣSðtÞ ¼ dtSSðtÞ þ β0dtEUðtÞ − γDðJ UρU∥ρUÞ ≥ 0:

ð132Þ
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To compare our results with Ref. [162], we set _WSðtÞ ¼ 0.
In this reference, the change in the unit energy is identified
with heat, _QUðtÞ≡ dtEUðtÞ. The first law is the same as
ours, but the second law reads dtSSðtÞ þ β0 _QUðtÞ ≥ 0.
Interestingly, this is the result obtained in Sec. VA 4, when
the ensemble considered is not only that of the units that
interacted but the entire set of units. As we have seen, it
overestimates our entropy production by a mixing
term γDðJ UρU∥ρUÞ.
Finally, this example also illustrates that—although the

dynamics in the joint space of the system and all units is
unitary (and thus reversible)—the dynamics of the system
is irreversible precisely because we impose a unidirectional
movement of the units. If we time reverse the global
evolution, we would recover the initial system state.
This can also be seen in the system-specific entropy
production, which can be rewritten as [see also Eq. (9)]
_ΣSðtÞ ¼ dtIS∶UðtÞ; i.e., for the entropy production rate of
system and unit [compare with Eq. (47)], we have _Σ ¼ 0.

C. Mimicking time-dependent Hamiltonians

1. Setup

In the last part of this section, we show that the stream of
units can be engineered in a way that will effectively
generate a time-dependent system Hamiltonian of the form

HSðtÞ ¼ H0 þ fðtÞA; ð133Þ

where fðtÞ is an arbitrary real-valued and differentiable
function and A an arbitrary Hermitian system operator. We
will further show that this stream of units acts as a work
source, thereby providing an alternative justification for
treating time-dependent Hamiltonians as work sources as
done in standard quantum thermodynamics [1,3,60]. We
note that research in the direction of obtaining a time-
dependent Hamiltonian out of a time-independent one has
been carried out for different settings in Refs. [89,170,171].
The idea is that an arbitrary drive fðtÞ can be effectively

generated by a stream of units with system-unit interactions
of the form A ⊗ F, where so far F is an unspecified
Hermitian unit operator. As in the previous subsection, we
consider short and repeated interactions: τ0 ¼ τ≡ δt. We
also consider no reservoir at the moment. However, since
fðtÞ can be arbitrary, one must relax the assumption that the
units are prepared in the same initial state. Thus, only in this
subsection, we allow ρUn

ðnδtÞ ≠ ρUm
ðmδtÞ for n ≠ m [we

set the initial time to be zero such that ρUn
ðnδtÞ denotes the

initial state of the unit just before the interaction]. The
incoming units are, however, still assumed to be decorre-
lated. The time evolution of the system is given by

ρSðnδtþ δtÞ ¼ trU½e−iðH0þAFþHUÞδtρSðnδtÞρUn
ðnδtÞ

× eiðH0þAFþHUÞδt�: ð134Þ

By expanding Eq. (134) to first order in δt, we arrive at

ρSðnδtþ δtÞ ¼ ρSðnδtÞ − iδt½H0 þ hFiUn
ðnδtÞA; ρSðnδtÞ�:

ð135Þ

We now choose the state of the unit such that

hFiUn
ðnδtÞ≡ trUn

fFρUn
ðnδtÞg ¼ fðnδtÞ: ð136Þ

Under these circumstances, we obtain from Eq. (135), after
rearranging the terms in the limit δt → 0,

dtρSðtÞ ¼ −i½H0 þ fðtÞA; ρSðtÞ�; ð137Þ

which is the desired evolution according to the
Hamiltonian (133).
In fact, if δt is chosen small enough compared to any

other time scales, one could even include an additional
reservoir in the description. In this case, the Hamiltonian to
be simulated becomes

HSRðtÞ ¼ H0 þ fðtÞAþ VSR þHR; ð138Þ

and the joint system-reservoir state evolves according to

dtρSRðtÞ ¼ −i½HSRðtÞ; ρSRðtÞ�: ð139Þ

2. Thermodynamics

In order to establish the thermodynamics of the present
setup, we need to consider how the units change over time.
Similarly as for Eqs. (134) and (135), we deduce that

ρUn
ðnδtþ δtÞ ¼ ρUn

ðnδtÞ − iδt½HU

þ hAiSðnδtÞF; ρUn
ðnδtÞ�: ð140Þ

Since the unit state changes unitarily, the entropy change of
the units is zero, dtSUn

ðtÞ ¼ 0, and hence, according to the
classification schemes from Sec. IV, the stream of units
may behave as a work reservoir.
To confirm it, we now consider energy balances. First,

the change in unit energy is given by

dtEUn
¼ δt−1trUn

fHU½ρUn
ðnδtþ δtÞ − ρUn

ðnδtÞ�g
¼ ihAinStrUn

f½F;HU�ρnUn
g: ð141Þ

For the last line, we used Eq. (140). Second, we need to
consider the switching work stemming from the time-
dependent coupling of the system and unit. However, we
have to remember that the units change for each interval.
Naively applying the definition (44) forWsw, which is only
valid for identical units, would yield a wrong result.
Considering the interval starting in nδt and lasting δt,
we find that
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δt _Wsw ¼ trSUnþ1
fAFρSðnδtþ δtÞρUnþ1

ðnδtþ δtÞg
− trSUn

fAFρSUn
ðnδtþ δtÞg: ð142Þ

This quantity represents the work required to switch on the
interaction for the next unit state ρUnþ1

ðnδtþ δtÞ minus the
work required to switch off the interaction for the actual
unit state ρUn

ðnδtþ δtÞ at the end of the interval. To
evaluate it, we use Eq. (140) and

ρSUn
ðnδtþ δtÞ ¼ ρSðnδtÞρUn

ðnδtÞ
− iδt½HS þHU þ AF; ρSðnδtÞρUn

ðnδtÞ�
− iδttrRf½VSR; ρSRðnδtÞ�gρUn

ðnδtÞ;
ð143Þ

ρSðnδtþ δtÞ ¼ ρSðnδtÞ − iδt½HS þ fðnδtÞA; ρSðnδtÞ�
− iδttrRf½VSR; ρSRðnδtÞ�g; ð144Þ

which follow from the Liouville–von Neumann equation
for a time step δt. After a straightforward but tedious
calculation, we arrive at (to first order in δt)

_Wsw ¼ f0ðnδtÞhAiSðnδtÞ
þ ihAiSðnδtÞtrUn

f½F;HU�ρUn
ðnδtÞg: ð145Þ

Here, we introduced the discretized derivative of fðtÞ as

f0ðnδtÞ≡ fðnδtþ δtÞ − fðnδtÞ
δt

; ð146Þ

which is well behaved because we assumed fðtÞ to be
differentiable. Since the units act as a pure work reservoir,
the total rate of work done on the system can be defined as

_W ≡ _Wsw − dtEUn
¼ f0ðnδtÞhAiSðnδtÞ: ð147Þ

Finally, let us compare this result with our general
treatment from Sec. II A, where we found that for a
time-dependent Hamiltonian of the form (138), the rate
of work done on the system is [compare with Eq. (6)]

_WðtÞ ¼ trSRfρSRðtÞdtHtotðtÞg ¼ dfðtÞ
dt

trSfAρSðtÞg: ð148Þ

This expression exactly coincides for t ¼ nδt with
Eq. (147). This confirms that there is a clean (but somewhat
artificial) way to simulate a driven system by a stream of
units and to justify that the driving corresponds to a pure
work source.

VI. APPLICATIONS

In this section, we demonstrate the use of the repeated
interaction framework that we have developed in the

previous sections by considering specific examples. We
mostly emphasize the way in which the setups can be
analyzed from our thermodynamic perspective and refer to
the original literature for more details. Many more setups—
e.g., the measurement and feedback scheme realized in
Ref. [34], the squeezed reservoirs of Ref. [27], the coherent
states of Ref. [25], or the entangled unit states of
Ref. [23,172]—can be analyzed within our framework
but will not be considered here for brevity.

A. Information reservoir: Mandal-Jarzynski engine

We start by providing a microscopic model describing
the information-driven engine first proposed by Mandal
and Jarzynski [35] and show that it falls within the class of
information reservoirs considered in Sec. IV C.
The system is modeled as a three-level system with

Hamiltonian

HS ¼ ϵSðjAihAj þ jBihBj þ jCihCjÞ; ð149Þ

and the unit is modeled by a two-level system (“bit”) with
Hamiltonian

HU ¼ ϵUðj0ih0j þ j1ih1jÞ: ð150Þ

Thus, the bare system and unit Hamiltonians are com-
pletely degenerate. The system-unit interaction is switched
on and off at the beginning and end of the full interval of
length τ, such that the time interval between the unit
interactions is infinitely short (i.e., τ0 → τ). During the
interaction, the degeneracy of the system and unit states is
lifted via

VSU ¼ Δw
ϵS

HSj1ih1j; ð151Þ

such that the energy of the system-unit states jA1i, jB1i,
jC1i becomes ϵS þ ϵU þ Δw, and the energy of the system-
unit states jA0i, jB0i, jC0i is ϵS þ ϵU.
The model is completed by adding a weakly coupled

reservoir and by assuming that it induces thermally activated
transitions between the following levels: A0 ↔ B0,
B0 ↔ C0, C0 ↔ A1, A1 ↔ B1, and B1 ↔ C1. For other
possible physical setups, see Refs. [100,102].
Note that, although we have written down the model in a

quantum mechanical way, the model in Ref. [35] is purely
classical. In this spirit, we neglect any subtleties arising
from deriving a ME for degenerate quantum systems and
use a classical rate equation where those levels that interact
with the reservoir are connected, as specified above.
Then, the ME takes the form dtpðtÞ ¼ Rp with (in suitable
units) [35]

STRASBERG, SCHALLER, BRANDES, and ESPOSITO PHYS. REV. X 7, 021003 (2017)

021003-20



pðtÞ ¼

0
BBBBBBBBB@

pA0ðtÞ
pB0ðtÞ
pC0ðtÞ
pA1ðtÞ
pB1ðtÞ
pC1ðtÞ

1
CCCCCCCCCA
; ð152Þ

R ¼

0
BBBBBBBBB@

−1 1 0 0 0 0

1 −2 1 0 0 0

0 1 −2þ ϵ 1þ ϵ 0 0

0 0 1 − ϵ −2 − ϵ 1 0

0 0 0 1 −2 1

0 0 0 0 1 −1

1
CCCCCCCCCA
: ð153Þ

The parameter ϵ ∈ ð−1; 1Þ is related toΔw by local detailed
balance [see Eq. (30)] via −βΔw ¼ ln½ð1 − ϵÞ=ð1þ ϵÞ�.
The initial state of the incoming units is given by ρUð0Þ ¼
½ð1þ δÞ=2�j0ih0j þ ½ð1 − δÞ=2�j1ih1j with δ ∈ ½−1; 1�. The
stationary solution for the system is obtained by solving
this rate equation for a time τwith an initial condition ρUð0Þ
for the units and ρSð0Þ ¼ ρSðτÞ for the system. As
demonstrated in Ref. [35], it can be solved exactly.
Our thermodynamic analysis from Sec. III now tells us

immediately that ΔES ¼ 0 and ΔEU ¼ 0 due to the
degeneracy of the bare system and unit Hamiltonian.
Since ΔEU ¼ 0, it also follows from Eq. (61) that the
stream of bits constitutes an information reservoir unless
ΔSU ¼ 0, too. Furthermore, because we have no explicit
driving, we also haveWX ¼ 0 [see Eq. (43)], and when the
system has reached its steady state, we will also have
ΔSS ¼ 0. The first law (46) then tells us that

Q ¼ −Wsw: ð154Þ

In fact, Mandal and Jarzynski imagined a little load
attached to the system such that the heat absorbed from
the system can be identified as work. Within our setup, we
indeed see that this “attaching of the load,” i.e., the
switching on and off of the system-unit interaction, is
responsible for providing that energy and has a clear
microscopic interpretation in our framework. From
Eq. (44), we can immediately compute

Wsw ¼ −Δwðh1jρUðτÞj1i − h1jρUð0Þj1iÞ: ð155Þ

This term exactly equals (minus) the work identified in
Ref. [35]. Finally, in accordance with our second law (62),
it was also shown in Ref. [35] that

βQ ¼ −βWsw ≤ ΔSU: ð156Þ

B. Work reservoir: Micromaser

The micromaser is historically, experimentally, and theo-
retically important, and its operation is based on repeated
interactions. Beyond quantum optics, it has also been used,
e.g., as a model system for transport in superconducting
single-electron transistors coupled to quantum resonators
[173], where it displays an intriguing dynamics such as self-
sustained oscillations and transitions to multistable behav-
ior. We now briefly elaborate on the fact that in its simplest
version, the micromaser can be viewed as a system interact-
ing with a stream of units that operate as a work reservoir.
Our approach will be qualitative since the detailed calcu-
lations can be found, e.g., in Refs. [32,33,165].
The system S in this case consists of a high-quality

cavity supporting a microwave field with Hamiltonian
HS ¼ Ωa†a, where a† and a are bosonic creation and
annihilation operators and Ω denotes the frequency of the
cavity. The microwave mode is coupled to an external
reservoir of electromagnetic field modes at equilibrium
with temperature β−1 and “high quality” means that the
coupling is very weak, especially such that it is negligible
on time scales when the system interacts with an atom
flying through the cavity. This atom corresponds to a unitU
and can be conveniently modeled as a two-level system
(TLS) HU ¼ ðΔ=2Þðj1ih1j − j0ih0jÞ with energy gap Δ ≈
Ω (on resonance with the cavity). Depending on the
experimental details, the units can be prepared in different
states and might arrive at the cavity at regular intervals or
Poisson distributed; see Fig. 6 for a sketch of the setup and
Ref. [34] for a recent experiment involving measurement
and feedback.
In the standard setup, the TLSs are prepared in a

statistical mixture of excited and ground states, and they
interact with the cavity during a short time (compared
to the cavity lifetime) via a Jaynes-Cummings interaction

FIG. 6. Sketch of a micromaser setup. The units are produced in
an atomic beam oven and are initialized with a velocity selector
and laser excitation. They then interact with a microwave
(“maser”) cavity (the system) before they are finally detected
and their state is read out. The figure is taken from Ref. [174],
reporting on experimental observation of sub-Poissonian photon
statistics in a micromaser.
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Hamiltonian VSU ¼ gðj0ih1ja† þ j1ih0jaÞ causing the
atom to emit or absorb photons [33]. By tuning the
interaction time (or the interaction strength g, respectively)
correctly, one can make sure that an atom initially in the
excited (ground) state will always emit (absorb) a cavity
photon. In essence, the effect of the cavity is therefore to
swap the population of the TLSs.
This implies a difference in energy between incoming

and outgoing TLSs (ΔEU ≠ 0) but not in entropy because
entropy is invariant under the exchange of state labels
(ΔSU ¼ 0). Hence, the stream of atoms acts as a pure
source of work, which builds up a photon field inside the
cavity. However, because the cavity is weakly coupled to an
outside thermal reservoir, it constantly loses photons, too.
To achieve a steady-state occupation of the cavity above the
thermal average, the incoming TLSs must be in a pop-
ulation-inverted state, i.e., have a higher probability to be
excited than in the ground state. More details, such as the
exact threshold condition for a buildup of the cavity field,
are given in Refs. [32,33,165].

C. Quantum coherence as a resource:
Lasing without inversion

As explained in the previous section, the thermodynamic
working principle (but not the physical origin) of the
micromaser can be understood within classical physics.
However, it is also possible to populate a cavity above its
thermal distribution by using a stream of atoms (units)
without population inversion. This phenomenon is known
as lasing without inversion [33] and results from a
destructive interference of the photon absorption process
due to a coherent superposition of the energy levels of the
incoming unit. Thus, lasing without inversion is a pure
quantum effect.
The idea to use quantum coherence via lasing without

inversion in order to extract more work from a heat engine
than classically possible was proposed by Scully et al. in
Ref. [22]; see also Refs. [175,176] for similar models and
Ref. [82] for a resource theory formulation of the problem.
We now briefly sketch how to treat lasing without inversion
[33] and how to rederive the results from Ref. [22] from our
results of Sec. V B.
The system we are considering is the same as for the

micromaser (i.e., a single cavity with frequency Ω). The
units are three-level systems described by

HU ¼ Eajaihaj þ Ebjbihbj þ Ecjcihcj: ð157Þ

We assume a so-called “Λ configuration” [33] where the
two states jbi and jci are nearly degenerate (Eb ≈ Ec) and
well separated from the excited state jai, which is nearly
resonant with the cavity (i.e., Ω ≈ Ea − Eb ≈ Ea − Ec).
The initial state of the units is modeled as a statistical
mixture between the energy eigenstates with an additional

coherence allowed between the near-degenerate levels jbi
and jci. Following the notation of Ref. [22], we use

ρU ¼ Pajaihaj þ Pbjbihbj þ Pcjcihcj
þ ρbcjbihcj þ ρcbjcihbj; ð158Þ

with Pa þ Pb þ Pc ¼ 1, Pa;b;c ≥ 0, and ρbc ¼ ρ�cb ∈ C.
Beyond that, the positive definiteness of ρU requires
ρbcρcb ≤ PbPc. Finally, the interaction between system
and unit is modeled by a generalized Jaynes-Cummings
Hamiltonian,

~V ¼ −g½aðjaihbj þ jaihcjÞ þ a†ðjbihaj þ jcihajÞ�; ð159Þ

where we assumed that the direct transition between jbi and
jci is dipole forbidden [33] and assumed an interaction
scenario as in Sec. V B 1. We note that in the interaction
picture with respect to HS þHU, we have

~V intðtÞ≡ eiðHSþHUÞtVSUe−iðHSþHUÞt ≈ ~V ð160Þ

because of the resonance condition.
We now assume a cavity of very high quality, neglecting

any dissipation due to the electromagnetic reservoir such
that the system interacts with many atoms coherently. This
corresponds to the stage 1 → 2 in Fig. 2 of Ref. [22]. Using
Eq. (158), it is easy to confirm that trUf ~VρUg ¼ 0. Then,
following Sec. V B, we see that Eq. (125) requires us to
compute 16 correlations functions hBlBkiU, where we
identify B1 ≡ −gjaihbj, B2 ≡ −gjaihcj, B3 ≡ −gjbihaj,
and B4 ≡ −gjcihaj. Only six are nonzero, and the ME
(125) in the interaction picture becomes

dtρSðtÞ¼γefff2PaD½a†�þðPbþPcþρbcþρcbÞD½a�gρSðtÞ;
ð161Þ

with the dissipator D defined below Eq. (93) and
some effective and, for our purposes, unimportant rate
γeff > 0. The Lindblad form is ensured by the non-
negativity of the unit density matrix, which implies
ðPb þ Pc þ ρbc þ ρcbÞ ≥ 0. Note that D½a†� describes the
absorption and D½a� the emission of a cavity photon.
If the unit is initially in a thermal state with occupations

Pa ¼ e−βΩ=2=Z and Pb ¼ Pc ¼ eβΩ=2=Z and without
coherences, ρbc ¼ ρcb ¼ 0, the rates for emission and
absorption satisfy local detailed balance and the equilib-
rium state ρSβ is the steady state of the ME.
In contrast, with coherences ρbc þ ρcb ¼ 2ℜðρbcÞ

(which can be positive as well as negative), the rate of
absorption can be decreased or increased. If 2ℜðρbcÞ < 0,
the rate of photon absorption by the units is lowered, and
lasing without inversion becomes possible. Note that,
typically, such coherences in three-level lambda systems
are created by two coherent light fields via stimulated
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Raman processes, i.e., time-dependent external lasers that
thus ultimately provide a resource of energy.
To show the equivalence of these results with those

of Ref. [22], we compute the evolution of the mean
photon occupation of the cavity NðtÞ≡ trSfa†aρSðtÞg.
Using ½a; a†� ¼ 1 and the property trfABCg ¼ trfCABg,
we obtain

dtNðtÞ¼ γefff2Pa½1þNðtÞ�− ðPbþPcþρbcþρcbÞNðtÞg;
ð162Þ

which is identical to Eq. (5) in Ref. [22] [after replacing
NðtÞ with nϕ and γeff with α] from which the results in
Ref. [22] are derived. The steady-state occupation reads

Neff ≡ lim
t→∞

NðtÞ ¼ 2Pa

Pb þ Pc − 2Pa þ 2ℜðρbcÞ
¼ ðeβΩ − 1þ eβΩ=2ZℜðρbcÞÞ−1: ð163Þ

For zero coherence, it corresponds to the (equilibrium)
Bose distribution. But for finite coherence, the cavity
population can be lowered or raised. This means that the
nonequilibrium free energy of the incoming atoms has been
converted into a nonequilibrium free energy for the cavity.
This feature alone does not yet yield a positive work output,
but a thermodynamic cycle that does so is presented in
Ref. [22]. It basically relies on the fact that the population
NðtÞ of the cavity is related to a radiation pressure P via
P ∼ NðtÞ, which can be used to drive a piston. Then, by
putting the cavity first in contact with the stream of atoms
populating it according to some effective temperature
Teff > T [which can be inferred from Eq. (163)] and
afterwards with a standard heat reservoir at temperature
T, we can extract work proportional to NTeff

− NT , where
NT denotes the Bose distribution.
The idea behind lasing without inversion thus provides

an example of how our framework can account for
coherences. Following Ref. [22], we have shown that these
latter can be used as a thermodynamic resource. During the
first part of the cycle as described above, the units do not
correspond to any limiting classification scheme introduced
in Sec. IV because the initial state of the units is not
thermal; in general, the energy as well as the entropy of the
units will change, whereas during the rest of the cycle
(where the system expands back to an equilibrium dis-
tribution), there are no units interacting with the system.

D. Measurement and feedback:
Electronic Maxwell demon

In the traditional thought-experiment of Maxwell, the
demon shuffles gas particles from a cold to a hot reservoir
with negligible consumption of energy [18,19]. In an
isothermal setup, a similar violation of the traditional
second law appears if a feedback mechanism shuffles

particles from a reservoir with low chemical potential to
a reservoir with high chemical potential. This is the central
idea of the electronic Maxwell demon, which has been
theoretically well studied for a number of different models
[102,151,155,177–182]. The setup proposed in Ref. [155]
was recently experimentally realized in Ref. [183]. Below,
we revisit one particular electronic Maxwell demon.
The system to be controlled is a conventional single-

electron transistor (SET), which consists of a single-level
quantum dot connected to two thermal reservoirs with
chemical potential μν (ν ∈ fL;Rg) at the same inverse
temperature β. The quantum dot can either be filled with an
electron of energy ϵS or empty (corresponding to a zero-
energy state). A sketch of the setup (with the feedback
mechanism described below) is shown in Fig. 7. The ME
governing the time evolution of the system in the absence
of feedback is

dtρSðtÞ ¼
X
ν

LðνÞ
β ðΓνÞρSðtÞ; ð164Þ

where the thermal generators are defined as

LðνÞ
β ðΓνÞ≡ Γνfð1 − fνÞD½jEiShFj� þ fνD½jFiShEj�g:

ð165Þ

Here, fν ¼ ðeβðϵS−μνÞ þ 1Þ−1 is the Fermi function evalu-
ated at the energy of the quantum dot, and Γν ≥ 0 is a bare
rate that depends on the details of the microscopic-coupling
Hamiltonian. Furthermore, jEiS (jFiS) denotes the empty
(filled) state of the dot and the dissipatorD is defined in the
same way as below Eq. (93).
We now engineer a demon mechanism operating a

feedback control on the system which modulates the energy
barriers of the dot (i.e., the bare rates Γν) depending on the

FIG. 7. Sketch of the electronic Maxwell demon. The system
consists of a single-level quantum dot tunnel coupled to two
electronic reservoirs with chemical potentials μL ≥ μR and
inverse temperature β. The demon mechanism is implemented
by a stream of units which monitors the state of the dot and,
depending on its state, changes the tunneling barriers Γν to make
electronic transport against the bias possible. In the absence of the
demon mechanism, the tunneling barriers would not depend on
the state of the dot, and electrons would flow from left to right.
The picture of the demon was provided courtesy of Ania
Brzezinska.
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dot state as sketched in Fig. 7. The phenomenological
description of this mechanism was done in Ref. [178] and
its thermodynamical analysis was performed in Ref. [151].
A physical mechanism autonomously implementing this
feedback was proposed in Ref. [155]. It relies on a
capacitive coupling to another single-level quantum dot
at a different temperature. This mechanism was further
analyzed in Refs. [157,182] and will also be used below for
comparison. We now propose a different mechanism,
implementing the same feedback on the system. As
sketched in Fig. 7, this one is based on repeated interactions
with a stream of units consisting of two-level systems
prepared in the state ρU ¼ ð1 − ϵÞΠ0 þ ϵΠ1, where Πi ¼
jiiUhij is the projector on the state i ∈ f0; 1g and ϵ ∈ ½0; 1�
is a free parameter quantifying the measurement error.
At the beginning of the interaction interval, we assume

that the interaction produces an instantaneous unitary
operation Ums ¼ ΠE ⊗ 1U þ ΠF ⊗ σxU, where ΠE ¼
jEiShEj and ΠF ¼ jFiShFj and σxU ¼ j0iUh1j þ j1iUh0j,
which can be interpreted as a measurement. Indeed,
considering an initial system state of the form ρSðtÞ ¼
pEðtÞΠE þ pFðtÞΠF, where pEðtÞ [pFðtÞ] is the probability
to find the system in the empty [filled] state, the post-
measurement state of the system and unit reads

ρms
SUðtÞ ¼ ð1 − ϵÞpEðtÞΠE ⊗ Π0 þ ϵpEðtÞΠE ⊗ Π1

þð1 − ϵÞpFðtÞΠF ⊗ Π1 þ ϵpFðtÞΠF ⊗ Π0:

ð166Þ

Note that ϵ ¼ 0 corresponds to a perfect measurement
in which the state of the unit after the measurement is 0
(1) if and only if the state of the system is E (F). The
reduced state of the system is always given by ρms

S ðtÞ ¼
trUfρms

SUðtÞg ¼ ρSðtÞ, which means that the measurement
does not disturb the system. This feature circumvents the
difficulty mentioned in Sec. V B 1 and allows us to consider
a continuously measured system in which δt (the waiting
time between two units) can be arbitrarily small despite the
fact that the system is still interacting with its reservoir.
Next, in the spirit of Sec. IV E and Eq. (73), we postulate

a Hamiltonian of the form Hfb ¼ ϵSjFiShFj þ Π0H
ð0Þ
SRþ

Π1H
ð1Þ
SR þHR, which acts during the remaining interaction

time δt and changes the system reservoir coupling HðiÞ
SR

according to the state i of the unit. Assuming that we can

treat HðiÞ
SR as a weak perturbation, we are effectively

changing the tunneling rates from Γν to ΓðiÞ
ν , and the time

evolution of the system and unit is then given by

ρSUðtþ δtÞ ¼
X

i∈f0;1g
exp fLðνÞ

β ðΓðiÞ
ν ÞδtgΠiρ

ms
SUðtÞΠi: ð167Þ

Tracing over the unit space and expanding this equation to
first order in δt (assuming that δt is sufficiently small)

yields an effective evolution equation for the system of the
form dtρSðtÞ ¼ LeffρSðtÞ, with

Leff ≡
X
ν

LðνÞ
eff

¼
X
ν

½ð1 − ϵÞΓð1Þ
ν þ ϵΓð0Þ

ν �ð1 − fνÞD½jEiShFj�

þ
X
ν

½ð1 − ϵÞΓð0Þ
ν þ ϵΓð1Þ

ν �fνD½jFiShEj�: ð168Þ

This equation is identical to the ME obtained for the system
when it is subjected to the capacitive demon mechanism
considered in Ref. [155], which results from coarse grain-
ing the demon dot and only retaining the SET degrees of
freedom. In the error-free case (ϵ ¼ 0), it also reduces to the
effective ME of Ref. [178], but the above procedure
constitutes an elegant way to generalize arbitrary piece-
wise-constant feedback schemes [184] to finite detection
errors.
We now turn to the thermodynamic analysis of our new

demon mechanism. First of all, we can assume that the unit
Hamiltonian HU ∼ 1U is fully degenerate. This implies
dtEU ¼ 0 at all times. Then, during the measurement step,
the system and unit correlate such that [see Eq. (68)]
Ims
S∶U ¼ dtSms

U δt, where we used the fact that dtSms
S ¼ 0

since the system density matrix is left unchanged by the
measurement. This correlation can then be exploited during
the feedback step. The second law for feedback (75) in our
situation reads, in a differential form, as

_Σfb
S ¼ βðμL − μRÞIL þ Ims

S∶U
δt

≥
IfbS∶U
δt

≥ 0; ð169Þ

where, for simplicity, we assumed that the system operates
at steady state dtSfbS ¼ 0 and where we used dtSfbU ¼ 0

because the entropy of the unit does not change during
the feedback step. Furthermore, the entropy flow reads
−β _QðLÞ − β _QðRÞ ¼ βðμL − μRÞIL, where IL is the matter
current that entered the system from the left reservoir.
Finally, IfbS∶U quantifies the remaining system-unit correla-
tions after the feedback step.
In the spirit of Eq. (47), it will turn out to be useful to

include the final correlation IfbS∶U in the second law and to
define

_Σ ¼ βðμL − μRÞIL þ I ≥ 0; I ≡ Ims
S∶U − IfbS∶U

δt
: ð170Þ

Here, the newly defined quantity I is the rate with which
we use up the correlations established during the meas-
urement. Note that I had not yet been considered in
previous works on this system. In fact, the information
current in Ref. [151] is purely phenomenological in nature,
whereas the information flow in Ref. [157] describes the
same quantity but in a bipartite setting. Note that while both
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terms ½ðIms
S∶UÞ=δt� and ½ðIfbS∶UÞ=δt� would diverge when

δt → 0, I , in general, remains finite, which motivates
the use of Eq. (170) instead of Eq. (169). More specifically,
we can compute

I ¼ ð1 − ϵÞ
X
ν

fΓð0Þ
ν fνpE þ Γð1Þ

ν ð1 − fνÞpFg ln
1 − ϵ

ϵ

− ϵ
X
ν

fΓð0Þ
ν ð1 − fνÞpF þ Γð1Þ

ν fνpEg ln
1 − ϵ

ϵ

¼ 2Γð1 − 2ϵÞ arctanð1 − 2ϵÞ

×

�
cosh δ − ð1 − 2ϵÞ sinh δ tanh βV

4

�
: ð171Þ

For the last equality, we used the steady-state solution of pE

and pF and parametrized the rates as Γð0Þ
L ≡ Γð1Þ

R ≡ Γe−δ

and Γð1Þ
L ≡ Γð0Þ

R ≡ Γeδ, such that δ ∈ R characterizes a
feedback strength. Note that I diverges for ϵ → 0. This
makes sense because if we monitor the quantum dot in an
error-free way, we can also extract an infinite amount of
work by letting δ → ∞.
It is now interesting to compare the total entropy

production generated by the two different electronic demon
mechanisms, i.e., the one due to capacitive coupling with
another quantum dot [155], denoted here as _Σcap, and the
one generated by repeated interactions considered above, _Σ.
These two entropy productions can then be compared to the
effective one _Σeff

S , obtained when the demon mechanism is
not known and the only information at hand is that of the
system’s effective description. The best one can do in this
case is derive an “effective” second law in the spirit of
Eq. (108) or of Ref. [151], which at the steady state can be
written as

_Σeff
S ≡X

ν

trSfðLðνÞ
eff ρ̄Þ ln ρ̄νg ≥ 0 ð172Þ

and is equivalent to Eq. (14) of Ref. [155]. Here, ρ̄ is the
steady state fulfilling Leff ρ̄ ¼ 0 and ρ̄ν is the steady state

with respect to reservoir ν, i.e., LðνÞ
eff ρ̄ν ¼ 0. Since this

effective approach only quantifies the demon effect on the
system and neglects the demon’s dissipation, it will
typically underestimate the true dissipation [96,155].
To make the comparison between the various dissipa-

tions meaningful, we must compare them in the regime
where they all give rise to the same effective dynamics on
the system, i.e., to the same ME (168). For the repeated
interaction mechanism, _Σ is given by Eq. (170), while the
effective dissipation _Σeff

S is given by Eq. (172). For the
capacitive mechanism, _Σcap is given by Eq. (7) in Ref. [155]
in the fast demon limit ΓD → ∞, which is required to derive
theME (168). In this limit, _Σcap also coincides with Eq. (24)
in Ref. [157] and therefore gives it an alternative

interpretation in terms of the flow of mutual information.
Note that we can link the measurement error ϵ to the
parameters used in Ref. [157] via the relation βDU ¼
2 ln½ð1 − ϵÞ=ϵ�. The comparison is done in Fig. 8. We
observe that the effective second law _Σeff

S greatly under-
estimates the true entropy production as expected, but also
that the total entropy production generated by the two
different demon mechanisms, _Σ and _Σcap, is remark-
ably close.

VII. DISCUSSIONS AND CONCLUSIONS

A. Connection to traditional thermodynamics

We have seen in Sec. IVA that if the units are initially
thermal, our engine cannot surpass Carnot efficiency and
deviations of the final unit state from the ideal thermal
reservoir (i.e., nonequilibrium effects) always cause an
even smaller efficiency. However, if the units are prepared
in an arbitrary state, we found that one can continuously
extract work from a single heat reservoir by lowering the
nonequilibrium free energy of the units according to
Eq. (49). We explained that this does not violate the
second law of thermodynamics because the overall entropy
does not decrease. One may nevertheless wonder if this

FIG. 8. Plot of the rate of chemical work βðμL − μRÞIL (thick
and solid black line) and of three different dissipations: the total
one generated by the repeated interaction feedback mechanism _Σ
[dotted blue line, Eq. (170)], the total one generated by the
capacitive feedback mechanism _Σcap [dashed green line,
Refs. [155,157]], and the “effective” estimate obtained in these
two cases if the demon mechanisms were not known _Σeff

S [dash-
dotted red line, Eq. (172) and Ref. [151]]. The top row shows
these quantities as a function of the bias voltage V ≡ μL − μR for
two different measurement errors ϵ. The bottom row shows them
as a function of the measurement error ϵ ∈ ½0; 1=2Þ for two
different voltages V. The region in which we extract work is
shaded in gray. Other parameters are Γ ¼ 1, δ ¼ ln 2, β ¼ 0.1,
and U ¼ 0.1, and we choose a symmetric configuration of the
bias, μL ¼ ϵS þ V=2 and μR ¼ ϵS − V=2, effectively eliminating
the dependence on ϵS in the equations.
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contradicts the classical formulation of the second law
according to Kelvin and Planck, stating the following:
“There is no cyclic process in nature whose sole result is the
conversion of heat from a single reservoir into work”.
To answer, let us close the “cycle of units” by feeding the

outgoing units back into the system S after they have
interacted with an additional system S0 in contact with the
same overall heat reservoir at temperature T, as illustrated
in Fig. 9. We assume to be at a steady state and denote the
outgoing units after the interaction with system S by U0,
which are, in turn, the incoming units for system S0.
The additional system S0 is required to reset the units U0
to the state U, which again correspond to the incoming
units of S. Then, for S and S0 we find the two separate
second laws (49),

βðW − ΔFUÞ ≥ IS∶UðτÞ ≥ 0; ð173Þ

βðW0 − ΔFU0 Þ ≥ IS0∶U0 ðτÞ ≥ 0; ð174Þ

which, when added together and using ΔFU0 ¼
FU − FU0 ¼ −ΔFU, lead to

βðW þW0Þ ≥ IS∶UðτÞ þ IS0∶U0 ðτÞ ≥ 0: ð175Þ

Hence, although W might be negative, the sum W þW0
must be non-negative in perfect agreement with the Kelvin-
Planck statement of the second law of thermodynamics.

B. Quantum vs classical thermodynamics

At this point, it is worth revisiting the debated
question of whether quantum thermodynamics offers
advantages (e.g., in terms of a higher power output or
efficiency) in comparison to classical thermodynamics.
There is ample evidence that states with quantum properties
such as entanglement, coherence, or squeezing can be
used to extract more work than from thermal states; see,
e.g., Refs. [22–25,27,28,82,175,176,185,186] (and also
Sec. VI C). However, this by no means implies that
quantum thermodynamics outperforms classical thermody-
namics. Indeed, classical nonequilibrium properties are
usually not considered, but if one only allows for

nonequilibrium properties that are of a purely quantum
origin, this amounts to an unfair competition. In the
repeated interaction framework, the nonequilibrium free
energy (23) captures both quantum and classical effects,
and we will now use it to analyze the thermodynamics of
work extraction. Note that, despite its limitations, the
framework fully captures quantum effects in the unit state
and in the system-unit interaction.
In the ideal scenario where no final system-unit corre-

lations are present (since they always degrade the amount
of extractable work) [187], the second law (49) bounds the
extractable work as

−W ≤ −ΔFU ¼ FUð0Þ − FUðτÞ: ð176Þ

The extractable work −W therefore gets maximized for a
maximum initial and minimum final nonequilibrium free
energy. The relevant question is therefore whether this
procedure can be improved because of quantum effects?
Let us consider an arbitrary unit that has N levels and a

Hamiltonian HU ¼ P
nEnjnihnj with E1 ≤ … ≤ EN . The

state with maximum free energy corresponds to a state with
maximum energy and minimum entropy as we can easily
infer from Eq. (23). This state is given by ρUð0Þ ¼ jNihNj
and thus is also an allowed classical state [188]. Finding the
state with minimum free energy is more tricky and, in
general, context dependent [189]. We can nevertheless
easily show that the state with minimum free energy must
be “classical.” For this purpose, let us define classical states
as states that are diagonal in the energy eigenbasis, i.e.,
states that can be written as ρcl ¼

P
npnjnihnj. Let us

denote by ρQM quantum states (i.e., states for which there
exists n ≠ m such that hnjρQMjmi ≠ 0) which minimize the
nonequilibrium free energy. Its corresponding classical
state (obtained by neglecting all coherences) is given by
ρcl ¼

P
nhnjρQMjnijnihnj. If we now assume that the

nonequilibrium free energy corresponding to ρQM is strictly
smaller than that of ρcl, we get

EðρQMÞ − EðρclÞ < T½SðρQMÞ − SðρclÞ�: ð177Þ

By construction, we know that the left-hand side is zero
since

EðρQMÞ ¼ trfHUρQMg ¼
X
n

EnhnjρQMjni ¼ EðρclÞ:

ð178Þ

Furthermore, since we have that SðρQMÞ < SðρclÞ
(Theorem 11.9 in [43]), Eq. (177) leads to a contradiction,
and the state of minimum free energy must necessarily be
classical.
We thus proved that within our framework, there is no

benefit in using quantum over classical “resources” in terms
of the bound dictated by the generalized second law. That is

FIG. 9. Sketch of the setup to demonstrate the Kelvin-Planck
statement of the second law: The outgoing units U0 after the
interaction with system S are reset to the state U via interaction
with a second system S0 coupled to the same thermal reservoir as S.
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to say, for any scenario where quantum effects are used to
extract work, an equivalent classical scenario can be
conceived (using classical units with the same number N
of basis states but a different interaction), which extracts at
least the same amount of work. It should be noted, however,
that we did not investigate the question of how this bound
can be reached, and there is evidence that quantum systems
can offer advantages in terms of speed, i.e., if we want to
extract work at finite power [190–195].

C. Summary and outlook

We start by summarizing the paper together with its key
results. In Sec. II, we reviewed the exact identities
describing the correlated dynamics of two interacting
systems, one of which could be considered as a reservoir
that is initially thermal. We also considered the weak-
coupling limit, which implicitly assumes macroscopic
reservoirs. In Sec. III, we extended these concepts to
describe a system that, in addition to continuously inter-
acting with an initially thermal reservoir, is subjected to
repeated interactions with identical units prepared in
arbitrary states. By establishing exact energy and entropy
balances, we showed that the stream of units can be seen as
a nonequilibrium reservoir or a resource of free energy. In
Sec. IV, we identified the limits where these units operate as
a pure work, heat, or information reservoir and also
formulated Landauer’s principle. Most importantly, we
showed that our setup can be used to formulate quantum
feedback control, derived a new generalized bound for the
extractable work, and provided a clean connection to the
theory of information reservoirs.
Up to that point, the discussion was based on exact

identities, which are conceptually powerful but of limited
practical use. In Sec. V, we started focusing on limits where
the system obeys a closed effective dynamics. We derived
effective MEs for the system and established their corre-
sponding thermodynamics: This has been done in Sec. VA
when the system weakly and continuously interacts with a
thermal reservoir while rarely interacting with units arriv-
ing at Poisson-distributed times, and in Sec. V B when the
system frequently interacts solely with the units. We also
discussed in Sec. V C the limit where a time-dependent
system Hamiltonian can be effectively mimicked by a
stream of units behaving as a pure work source.
Finally, in Sec. VI, we used our framework to analyze

important models that were previously considered for their
nonconventional thermodynamic features. In Sec. VI A, we
proposed a microscopic model effectively implementing
the Mandal-Jarzynski engine. We showed that the work
extracted from the entropy of the tape originates from the
switching on and off of the system-unit interaction. In
Sec. VI B, we used our framework to study the thermo-
dynamics of the micromaser, which is probably the most
popular setup making use of repeated interactions. Building
on an extension of this model, we showed in Sec. VI C that

work can be extracted from purely quantum features based
on the idea of “lasing without inversion.” Finally, in
Sec. VI D, we considered a Maxwell demon effect on an
electronic current crossing a single-level quantum dot that
was theoretically studied in the past and also experimen-
tally realized. We analyzed this effect thermodynamically
when the demon mechanism operates by repeated inter-
actions with a stream of units, and we showed how it differs
from the previously considered mechanisms.
The framework of repeated interactions presented in this

paper is quite general and provides a unifying picture for
many problems currently encountered in the literature. It
nevertheless has limitations. For instance, our results
crucially rely on the fact that the individual units in the
incoming stream are decorrelated. This assumption is often
justified, but recent works started to investigate the role of
correlated units, classically [196–200] as well as quantum
mechanically [201]. In general, this leads to a refined
second law with tighter bounds on the amount of extract-
able work [196,197,200]. The cost for creating these
correlated units (“patterns”) was considered in
Ref. [198], and Ref. [199] proposed a simple device to
exploit these based on techniques of predictive coding
(which is a special coding technique; see, e.g., Sec. 4.7.2 in
Ref. [94]). In turn, Ref. [201] investigated a model where
work extraction and information erasure are simultaneously
possible (and are even enhanced by quantum correlations).
It would also be interesting to investigate the role of
temporal correlations in the unit string due to nonexpo-
nential waiting time distribution.
Another limitation of our results when deriving effective

master equations is that, although system-unit interactions
can be arbitrarily strong, the system-reservoir interaction
must be weak and the resulting dynamics Markovian.
Uzdin et al. [202] recently tried to tackle this issue via
“heat exchangers” that could be strongly coupled to the
system and that are equivalent to our units. Therefore, their
work faces similar limitations as ours. Besides a few exact
identities, the correct thermodynamic description of a
system in strong contact with a continuous (perhaps
non-Markovian) reservoir is still an open and active field
of research [47,203–216].
As a final remark, let us note that connecting our present

work to the recently developed quantum resource theories
[38,39] is an interesting perspective, as already indicated in
Sec. III E. The goal of these theories is to establish an
axiomatic mathematical framework to study quantum
thermodynamics based on the study of the interconverti-
bility of states under certain constraints. In fact, if we
switch off the permanent coupling to the heat reservoir,
assume initially thermal units, and demand that
ΔES þ ΔEU ¼ 0, our framework becomes identical to
the one used in the resource theory of thermal operations
[39]. However, we have demonstrated that a consistent
thermodynamic framework can also be established for a
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much larger class of situations which are also of exper-
imental relevance. Applying the tools and results from
resource theory to such problems could prove useful.
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