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Condensed matter physics has been driven forward by significant experimental and theoretical progress
in the study and understanding of equilibrium phase transitions based on symmetry and topology. However,
nonequilibrium phase transitions have remained a challenge, in part due to their complexity in theoretical
descriptions and the additional experimental difficulties in systematically controlling systems out of
equilibrium. Here, we study a one-dimensional chain of 72 microwave cavities, each coupled to a
superconducting qubit, and coherently drive the system into a nonequilibrium steady state. We find
experimental evidence for a dissipative phase transition in the system in which the steady state changes
dramatically as the mean photon number is increased. Near the boundary between the two observed phases,
the system demonstrates bistability, with characteristic switching times as long as 60 ms—far longer than
any of the intrinsic rates known for the system. This experiment demonstrates the power of circuit QED
systems for studying nonequilibrium condensed matter physics and paves the way for future experiments
exploring nonequilbrium physics with many-body quantum optics.
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Over the past decades, there has been remarkable progress
in studying both real and synthetic quantum materials.
Advances in nanoscale fabrication and cryogenics, for
instance, have allowed for exquisite control of electronic
systems—unlocking strongly correlated electronic states and
topological materials [1]. Simultaneously, the ability to
model desired Hamiltonians with ultracold Fermi and
Bose gases has allowed unprecedented access to synthetic
material properties [2]. As awhole, much of the development
of condensed matter physics has focused on the study of
(quasi)equilibrium physics, which is more accessible both
experimentally and theoretically. However, the constant
presence of dissipation, noise, and decoherence belie the
fact that, ultimately, the world is nonequilibrium.
Aphase transition indicates a sometimes suddenchange in

the physical properties of a system as a function of some
external system parameter. Thermal phase transitions are
well understood in the context of statistical mechanics and
occur when the free energy of the system becomes nonana-
lytic. At zero temperature, the role of quantum fluctuations
gives rise to a new set of quantum phase transitions that
involvea suddenchange in thegroundstateof aHamiltonian;
a phase transition occurs when the gap between the first
excited state and the ground state closes. These concepts
need to be extended to consider nonequilibrium steady

states, as the system is no longer in its ground state but
rather in a state that balances drive and dissipation. In a
dissipative phase transition, the steady state abruptly
changes as a system parameter is varied [3]. Whenever
the system is describable in terms of a Lindblad master
equation [4], _ρ ¼ Lρ, where ρ is the density matrix, such a
transition is signaled by the closing of the lowest excitation
gap in the spectrum of the Liouvillian superoperator L.
In recent years, interacting photons have emerged as an

excellent candidate for studying nonequilibrium condensed
matter physics due to the lack of particle number con-
servation [5,6]. In cavity quantum electrodynamics, strong
coupling between atoms and a cavity can mediate effective
photon-photon interactions [7–9]. Arrays of coupled micro-
wave [10] or optical [11] cavities can be fabricated by
conventional lithographic techniques, and the competition
between on-site interactions and hopping between neigh-
boring cavities can give rise to quantum phase transitions of
light [12–14]. A wide range of many-body effects have
been predicted in these systems, including a Mott insulator-
superfluid phase transition [12–14] and fractional quantum
Hall-like states of light [15–17]. Experiments on small
systems have demonstrated low-disorder lattices [10], a
dynamical quantum phase transition in a cavity dimer [18],
and chiral ground state currents in a cavity trimer [19].
Circuit quantum electrodynamics (cQED) lattices are
inherently open systems, with dissipation an ever-present
force that leads to both qubit relaxation as well as the
inevitable loss of photons from microwave cavities. While
dissipation presents an obstacle for quantum information
processing, it is of fundamental interest in the study of
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nonequilibrium phase transitions. Just as excitations inevi-
tably leak from the system, it is easy to add photons back
and to drive the system into a steady state, making these
systems particularly amenable to the study of dissipative
phase transitions.
In this paper, we present experimental evidence for a

dissipative phase transition in a cQED lattice. We observe
that at drive frequencies between the low-power resonance
frequencies of the system, there exists a region of hysteresis
and bistability where the steady state of the system switches
stochastically between two states ρ1 and ρ2. By determin-
ing the corresponding switching rates, we can obtain the so-
called asymptotic decay rate, which characterizes the
closing of the spectral gap of the Liouvillian L. At the
transition between the two states, the characteristic switch-
ing times become exceptionally long, a key characteristic of
a dissipative phase transition. A similar observation has
recently been made in a single-cavity system with multiple
qubits [20].

Our device, shown in Fig. 1(a), consists of a linear
chain of 72 lattice sites. Each site comprises a coplanar-
waveguide resonator with fundamental-mode frequency
ωc=2π ¼ 7.6ð2Þ GHz, coupled to a transmon qubit [21]
[Fig. 1(b)] placed at one of the resonator’s voltage
antinodes, and each site is coupled to neighboring sites
with a hopping rate t=2π ¼ 80ð10Þ MHz. Variations in
transmon qubit frequencies in fabrication are a likely
source of uncontrolled disorder that is difficult to compen-
sate for in our lattice, because tuning of individual qubits is
infeasible. Instead, we randomize qubit frequencies inten-
tionally to ensure that features of interest are universal to
the system rather than artifacts of a particular instance of
disorder. To do this, each qubit is fabricated with a SQUID
loop of random area, meaning that as a global magnetic
field is tuned, the qubit frequencies can be randomized. By
using an asymmetric SQUID design [22], we can limit
qubit frequencies to a finite range and avoid degeneracies
with the resonator array [see Fig. 1(g)]. Because of

FIG. 1. 72-site circuit QED lattice. (a) Coplanar waveguide resonators, each with a bare cavity frequency ωc=2π ¼ 7.6ð2Þ GHz, are
capacitively coupled to form a linear chain on a 35 × 35 mm2 chip. Each resonator is coupled to its neighboring resonators with a
hopping rate t=2π ¼ 80ð10Þ MHz and each low-power eigenmode as a measured average photon loss rate of κ=2π ¼ 1.6ð5Þ MHz. At
three intermediate chain sites, three-way coupling capacitors provide ports for secondary input and output lines (arrows on sides), which
allow further characterization of the device. (b),(c) A transmon qubit is capacitively coupled to the center pin near the edge of each
resonator in the lattice, ensuring strong coupling to the fundamental mode of each resonator. The coupled resonator-qubit system forms
the fundamental unit cell of the lattice. (d) The circuit can be modeled as a linear chain of coupled oscillators, each dispersively coupled
to a weakly anharmonic multilevel system. Transmission (S21) as a function of external magnetic field (B) as measured experimentally
(e) and predicted theoretically (f). Numerical simulations reveal qualitative agreement between theory and experiment for
experimentally relevant parameters, ωc=2π ¼ 7.6 GHz, tunable qubit frequency, Ω=2π ∈ ½12.7; 13.9� GHz, single-junction qubit
frequency, ΩSJ=2π ¼ 9.5 GHz, g=2π ¼ 410 MHz (on resonance with ωc), transmon charging energy, Ec=h ¼ 350 MHz, and
t=2π ¼ 90 MHz. By changing the strength of the external magnetic field, the tunable qubit frequencies are continuously changed
and produce nonperiodic dispersive shifts due to the random areas of the transmon SQUID loops. (g) The blue rectangles indicate the
frequency range of the photonic modes, with the dark blue rectangle indicating the range of frequencies shown in (e) and (f) and the
green line indicating the bare cavity frequency. The gray shaded region reflects the predicted uncertainty range of the qubit frequencies
(including potential single-junction qubits) and curves represent the qubit frequencies as a function of external magnetic field.
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fabrication challenges, roughly 20% of the qubits have only
a single junction (see Supplemental Material, Sec. I, for
details [23]). We observe qualitative agreement between
measured [Fig. 1(e)] and simulated [Fig. 1(f)] low-power
transmission as a function of external magnetic field B for
parameters specified in the caption of Fig. 1. A graphical
representation of the relevant system frequencies as a
function of magnetic field is shown in Fig. 1(g).
To experimentally study the nonequilibrium behavior of

the device, we monitor the transmission (S21) across the
lattice while varying the drive frequency and scanning
the drive power over more than 5 orders of magnitude
[Fig. 2(a)]. At low drive powers, we find the expected
discrete transmission peaks associated with the interaction-
shifted eigenmode frequencies of the resonator lattice. As
we vary the mean photon number in the system by
increasing the strength of the drive, we observe that a
sudden change in system behavior occurs: transmission
peaks split and then, at around −95 dBm of drive power,
abruptly give way to a region of strongly suppressed
transmission. In this high-power region, peaklike features
are completely absent.
The transition between the low- and high-power phases

can be more thoroughly explored by measuring the trans-
mission at a single drive frequency while sweeping the
drive power either from low to high [Fig. 2(c)] or from
high to low [Fig. 2(d)]. Doing so reveals a significant
region exhibiting hysteresis, which is located at the top of
the low-power lobes where the transition to the high-power

phase occurs. Subtracting the transmission signals for the
two different sweep directions clearly marks the hysteretic
regime, as shown in Fig. 2(e).
To gain insight into this behavior, we model the system

as a one-dimensional chain of identical cQED elements, as
illustrated in Fig. 1(d). The corresponding Hamiltonian,

H ¼
X
j

ðHr
j þHq

j þHrq
j Þ þ

X
hj;j0i

Hhop
j;j0 þHd; ð1Þ

includes terms for the resonator Hr
j, qubit H

q
j , and the

resonator-qubit coupling on each site j, Hrq
j , as well as

hopping of photons between nearest-neighbor resonators
Hhop

j;j0 , and a coherent drive (acting only on site 1) Hd.
Each resonator contributes a single harmonic mode,
Hr

j ¼ ℏωca
†
jaj, where a†j and aj are the creation and

annihilation operators for photons on site j and ωc is the
fundamental frequency of the resonator. The low-lying
transmon levels are described as an anharmonic oscillator
Hq

j ¼ PNðℏΩjb
†
jbj þ 1

2
Ub†jb

†
jbjbjÞPN , with negative

Hubbard or Kerr interaction U ¼ −Ec. The projectors
PN truncate the Hilbert space to levels N ≲ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EJ;j=2Ec
p

within the transmons’ cosine wells, and the operators b†j , bj
create and annihilate qubit excitations. Ec and EJ;j are the
single-electron charging energy and the effective Josephson
energies of the transmon qubit. In our model, we
include the frequency difference between single-junction

FIG. 2. Microwave transmission (S21) as a function of power, exhibiting an abrupt transition to a suppressed transmission regime and a
region of bistability. (a) Dispersively shifted transmission peaks show nonlinear splitting at increased power and give rise to a region of
strongly suppressed transmission without resonance peaks. Data are acquired using frequency sweeps at constant power.
(b) Corresponding mean-field results for transmission through a 72-site lattice, showing features qualitatively consistent with the
experiment, where ϵ is the drive power and κ is the dissipation rate (qubit and cavity) (c) Zoom into one lobe of the experimental data,
showing the sharp transition to a state of suppressed transmission as the drive power is swept from low to high power using constant-
frequency, linear power sweep over a 31.95-ms period. (d) Same region as in (c), but sweeping power in the opposite direction (high to
low) over the same time period as (c). The transition now occurs at lower power. (e) The difference Δ in the data shown in (c) and
(d) uncovers the large region of hysteresis in between two distinct states ① and ②.
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and tunable qubits, but neglect disorder otherwise. Qubit-
resonator coupling andphoton hopping take the simple forms
Hrq

j ¼ℏgjðajb†jþH:c:Þ and Hhop
j;j0 ¼ℏtðaja†j0 þH:c:Þ, where

gj and t are the resonator-qubit coupling rate and photon
hopping rate, respectively. Within rotating-wave approxi-
mation, the microwave drive acting on site 1 is given by
Hd ¼ ℏϵðtÞa1eiωdt þ H:c:, where ϵ is the drive strength and
ωd is the drive frequency. In our model, we account for qubit
relaxation and intrinsic photon loss (at rates Γ and κ,
respectively) by employing the standard Lindblad master
equation formalism for the reduced density matrix,

_ρ ¼ −
i
ℏ
½H; ρ� þ κ

X
j

D½aj�ρþ Γ
X
j

D½bj�ρ; ð2Þ

whereD½L�ρ ¼ LρL† − 1
2
fL†L; ρg is the usual action of the

Lindblad damping operator.
The experimentally observed transition is qualitatively

captured by simple, quasiclassical mean-field theory that
decouples the sites, but allows for mean-field parameters to
differ from site to site. Allowing for site-dependent param-
eters is particularly relevant for our case, in which the drive
acts on only one end of the resonator chain, rather than on
every site. Within the quasiclassical treatment [24], the
quadrature amplitudes αj ¼ haji and βj ¼ hbji play the
role of mean-field parameters and obey the system of 144
nonlinear coupled equations:

i _αj ¼
�
ωc − ωp − i

κ

2

�
αj þ gjβj þ tðαj−1 þ αjþ1Þ þ ϵδj;1;

i _βj ¼
�
Ωj − ωp − i

Γ
2

�
βj þ

U
ℏ
jβjj2βj þ gjαj: ð3Þ

From these equations, we obtain the steady-state trans-
mission signal S21 ∼ haji and the second-order coherence

function gð2Þð0Þ ¼ ha†ja†jajaji=jha†jajij2, choosing j as the
label of the output port resonator (see the Methods section).
The mean-field steady-state transmission [Fig. 2(b)]

reproduces the qualitative features of the experimental
data. We find that higher transmon levels are a crucial
ingredient to the model, as calculations based on the
simpler Jaynes-Cummings lattice do not yield results
consistent with experiment. Figure 1(g) indicates that the
lowest frequency transition of the transmons Ω0→1 is well
above the photonic modes of the system. However, the
transmon energy level structure is known to have a negative
anharmonicity [25], which implies that the transition
frequencies between adjacent transmon levels become
smaller for higher levels. From numerical simulations,
we find that when the transmon level n is predicted to
have large occupation in the high-power state, the transition
frequency between n and nþ 1,Ωn→nþ1, is (quasi)resonant

with the set of photonic modes. This means that after
crossing into the high-power state, photons in the lattice can
resonantly exchange excitations with the transmons—
introducing strong effective photon-photon interactions.
Interactions of this type are likely to explain the scattering
observed in the power spectrum we show below (and see
Fig. 6 in the Supplemental Material [23]). In addition, the
drop in transmission in the high-power phase exhibits
chaotic dynamics which resembles results previously
obtained for a driven, dissipative Bose-Hubbard chain [24].
It is important to note that bistability has recently been

predicting in other driven-dissipative photonic lattices [26],
smaller nonlinear systems such as single-site circuit QED
systems [27], and Duffing oscillators [28]. For the latter
system, nonequilibrium physics and bistability can be
rigorously analyzed by studying minima of the quasienergy
potential in a rotating frame, as well as the processes
leading to switching between minima [28,29]. This type of
analysis, however, becomes very challenging once multiple
nonlinear oscillators are coupled together. The low operat-
ing temperature of the device, as well as definite deviations
between experimental data and the quasiclassical mean-
field treatment, may indicate the importance of quantum
effects. Our observed switching rates, shown in Fig. 3, are
many orders of magnitude slower than switching rates of
other single-site bistable cQED devices, such as Josephson
bifurcation amplifiers [27], pointing to the suppression of
switching due to collective effects in our cQED chain.
Bistability and hysteresis can further be produced dynami-
cally in a Bose-Hubbard dimer, as discussed by Drummond
and Walls [30] and recently by Casteels et al. [31]. As
shown in Ref. [31], hysteresis arises from parameter
sweeps across a point where the spectral gap of the
Liouvillian superoperator L (nearly) closes, in a manner
analogous to the Kibble-Zurek mechanism [32]. Similar to
the case studied by Casteels et al., we find that mean-field
theory can capture certain qualitative aspects of the bist-
ability and hysteresis, but cannot capture the dependence of
switching rates on sweep times or effects from quantum
fluctuations.
The dramatic suppression of transmission and loss of all

resonance peaks beyond a certain drive power threshold are
indicative of a dissipative phase transition, arising from the
intricate interplay of dissipation, driving, and nonlinearity
of the system. The crucial quantity for such a transition is
the gap in the spectrum of the Lindblad superoperator L.
Once the real part of one of its eigenvalues approaches zero,
deviations of the steady state along the “direction” of the
corresponding L eigenstate become increasingly long-lived
and ultimately allow for a new steady state to emerge. The
negative real part of the eigenvalue λ closest to zero, −Reλ,
is known as the asymptotic decay rate (ADR) [3]. An
approximation for the ADR can be extracted by single-shot
measurements of the dynamics in the bistable region as
follows.
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In the region of bistability, we apply a drivewith constant
frequency and amplitude, and record single-shot time traces
of the homodyne amplitude and phase. Our measurements
show that the system undergoes switching between two
metastable states on time scales large compared to system-
intrinsic time scales (τ ∼ μs) [Fig. 3(a)]. The state of the
system at each point along a single-shot trajectory is
classified as either ρ1 or ρ2, and characteristic dwell times
are extracted. The statistics acquired from many single-shot
trajectories allow us to extract average rates γ1→2, γ2→1 for

the switching between the two metastable states ρ1 and ρ2
observed at low power and high power, respectively
(labeled as ① and ② in the figure).
The extracted switching rates allow us to estimate

the asymptotic decay rate by adopting a simplified rate-
equation model [33] describing the probabilities p1 and p2

for the system to be in metastable state ρ1 or ρ2 (see the
Methods section for details):

d
dt

�
p1

p2

�
¼

�−γ1→2 γ2→1

γ1→2 −γ2→1

��
p1

p2

�
: ð4Þ

Diagonalization of this system yields the stationary eigen-
mode ρs ¼ ðγ2→1ρ1 þ γ1→2ρ2Þ=γΣ and the purely decaying
eigenmode ρADR ¼ γ2→1ρ1 − γ1→2ρ2 with corresponding
eigenvalues zero and λADR ¼ −γΣ ¼ −ðγ1→2 þ γ2→1Þ.
Hence, this simplified model predicts an asymptotic decay
rate of −ReλADR ¼ γΣ.
Remarkably, the asymptotic decay rate, shown in

Figs. 3(b) and 3(c), reaches a minimum value as low as
∼10 Hz, which is 5 orders of magnitude lower than the
rates set by photon decay and transmon relaxation in our
system. This vast time scale discrepancy delivers strong
evidence for the onset of a dissipative phase transition.
Similar to the situation of equilibrium phase transitions, it
is only in the thermodynamic limit that the spectral gap
can fully close and turn the crossover between two steady-
state phases into a phase transition in the strict sense [34].
We gather additional evidence for the approach to a

dissipative phase transition by measuring fluorescence
power spectra and second-order coherence functions in
our system. To this end, two different driving pulse shapes,
Figs. 4(a) and 4(b), are used to access the distinct states of
the system. Within the region of bistability, we can perform
state initialization either in the low-power phase ① or the
high-power phase ② by approaching the final drive ampli-
tude ξ either from a lower or a higher drive amplitude,
respectively. After this initialization period, the two pulses
maintain the constant drive amplitude ξ, during which time
the transmitted signal is detected using heterodyne detec-
tion with a 32-MHz intermediate frequency. The power
spectrum is then obtained by performing a Fourier trans-
form on the heterodyne signal. The second-order correla-
tion function gð2Þð0Þ is measured using techniques outlined
inRef. [35]. Figure 4 indicates that the low-power state canbe
characterized by a single, coherent drive tone [gð2Þð0Þ ¼ 1]
and that the high-power state can be characterized by
broadband and multimode (see Supplemental Material,
Sec. IV [23]) emission and bunching [gð2Þð0Þ ≈ 2]. In
addition, the onset of the high-power state has a stark
linewidth broadening of the drive tone and a region of strong
bunching gð2Þð0Þ ≈ 5 for the down pulse as the system
transitions to the high-power state. Mean-field results for
gð2Þ are in reasonable agreement with the experimental

(b)

(a)

(c)

FIG. 3. Asymptotic decay rate in the transition region.
(a) Single-shot time trace of the homodyne phase in the hysteretic
region for constant drive amplitude. Data show stochastic
switching between two distinct metastable states ① and ② on
time scales vastly exceeding those intrinsic to the system.
(b) Asymptotic decay rate obtained from the sum of the
characteristic switching times γ1→2 þ γ2→1 as a function of drive
frequency and power. (c) ADR for a drive frequency of
7.6059 GHz is plotted as a function of power. κ and γ are
included for reference to indicate that ADR can be as large as 5
orders of magnitude slower than relevant time scales of the
device. When either γ1→2 or γ2→1 are slower than the duration of
the measurement pulse τm, we cannot reliably extract a character-
istic switch rate. In these cases, we select the smallest extracted
switching time, which is larger than 1=τm. Upward- (downward-)
pointing triangles indicate when γ1→2 (γ2→1) are less than 1=τm,
circles indicate when both rates are used.
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measurement data of gð2Þ in the region below and well above
the regime of bistability [Figs. 4(e) and 4(f)]. However,
mean-field theory fails to predict experimental results within
the region of bistability itself, thus pointing to the possible
relevance of quantum effects beyond the quasiclassical

description. Based on our modeling, the experiment involves
both large numbers of photons and excitations of higher
transmon levels, and, hence, may indeed approach the
thermodynamic limit necessary for the observation of a
dissipative phase transition.
This work demonstrates the exciting capacity of circuit

QED lattices to act as a controllable platform guiding
deeper theoretical and experimental understanding of non-
equilibrium condensed matter physics. A number of inter-
esting experiments are on the immediate horizon, and even
more are easily envisioned as long-term objectives. For
instance, Hamiltonian tomography of medium-size lattices
[36] can be used to gather detailed information on resonator
frequencies and hopping elements. Once combined with
active tuning of individual qubits, disorder can be elimi-
nated or added in a systematic manner. In this way, qubits
can further be brought into exact resonance with cavities or
cavity modes, thus increasing the strength of interactions
and lowering the power at which phase transitions are
anticipated to occur. With the utilization of readily available
parametric amplifiers, correlation-function measurements
can be performed systematically and harnessed to inves-
tigate the importance of quantum effects. Two-point corre-
lators across the lattice could probe long-range coherence
or entanglement. Furthermore, a recent paper suggests that
our system also undergoes a dissipative phase transition
when tuning the photon hopping strength [26], which can
be tuned with SQUID-based resonator couplers [37].
In the longer term, this platform can also be harnessed

for preparation and stabilization of exotic many-body states
of photons. One outstanding challenge of interest is
preparation and stabilization of interesting many-body
states. In these photonics lattices, the equilibrium phase
diagram is rarely of interest as the ground states corre-
sponds to the vacuum state unless we are approaching the
ultrastrong coupling limit of circuit QED. In this work,
we begin to investigate the nonequilibrium steady state of
the system, and it would be interesting to make connections
between this approach and the ground state of an equilib-
rium system. One can also stabilize interesting many-body
states with clever reservoir engineering [38,39] or the
introduction of an artificially generated chemical potential
[40]. Finally, among the host of theory proposals, a
particularly exciting future direction is that of breaking
time-reversal symmetry in photonic lattices and realizing
fractional quantum Hall states of bosons [15–17].
Methods: Experimental methods.—The cavities of the

circuit QED lattice are etched using standard optical
lithography and plasma etching techniques from a 200-
nm-thick Nb film on a 500-μm-thick, 35 × 35 mm2 sap-
phire substrate. Transmon qubits are designed to have
Josephson junctions with dimensions 200 × 180 nm2 and
450 × 450 nm2 and are fabricated according to the
“Manhattan” technique outlined by Potts et al. [41], using
electron beam lithography and aluminum evaporation.

(a) (b)

(c) (d)

(e)

FIG. 4. State characterization. To probe properties of the states
within the region of bistability, two pulse sequences are used to
initialize the system: (a) an “up pulse” for initialization in the
high-power state and (b) a “down pulse” for initialization in the
low-power state. Both (a) and (b) return to a constant amplitude ξ.
In the region of bistability where the ADR is small, the system
can be deterministically initialized in ① or ② or 193 after which,
during the “hold and measure” segment of the pulse sequence,
properties of the emitted light can be extracted. The power
spectrum in (c) and (d) exhibits that ① and ② have drastically
different emission properties and that the two states are main-
tained by a constant, coherent tone, even in the region of
bistability [where (c) and (d) show different emission]. Similarly,
the second-order correlation function gð2Þð0Þ in (e) can be
obtained for each state independently. Results in (c)–(e) indicate
that ① can be characterized by a single, coherent [gð2Þð0Þ ¼ 1]
tone at the drive frequency, 7.606 GHz, and that ② can be
characterized by broadband emission and bunching [gð2Þð0Þ > 1]
at the drive frequency. (f) Mean-field results for the second-order
correlation function for comparison. Note that the numerical
values on the x axes cannot be compared directly for (e) and (f).
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Similar transmon qubits have coherence times T1 ¼ 1 μs, a
coupling constant of g=2π ¼ 450 MHz (on resonance with
ωc), and charging energy Ec=h ¼ 350 MHz.
Measurements are performed at a temperature of 7.5 mK

in a dilution refrigerator, and inside a superconducting
solenoid magnet controlled by a room-temperature dc
voltage source. Transmission measurements are performed
using a network analyzer, switching-rate measurements
using standard homodyne detection techniques. All power-
spectrum measurements are done by taking the Fourier
transform of a heterodyne signal, and gð2Þ measurements
are implemented using the homodyne techniques described
by Eichler et al. [35].
Numerical solution of the mean-field equations.—We

solve for the stationary state of the mean-field equations (3)
by time evolution and extracting the long-time limit, since
root-finding methods are difficult to handle for the large
system of nonlinear equations [24]. In the high-power
phase the dynamics is chaotic, so that additional time
averaging in the long-time limit is required. For instance,
the second-order coherence function is obtained by evalu-
ating gð2Þð0Þ ¼ ⟪jαðtÞj2⟫t=j⟪jαðtÞj⟫tj2, where the time
average ⟪ · ⟫t is carried out over a time interval that
excludes any initial transient behavior.
Model underlying the ADR estimate.—First, consider

stochastic switching between two pure states j1i and j2i.
The simplest description is based on a two-level
Hamiltonian H ¼ E21j2ih2j, where E21 is the energy
difference between the two states, and the master equation

_ρ ¼ −
i
ℏ
½H; ρ� þ γ1→2D½j2ih1j�ρþ γ2→1D½j1ih2j�ρ; ð5Þ

with D½L� denoting the usual Lindblad damping super-
operator for jump operator L. The resulting 4 × 4
Liouvillian L is block diagonal, where one of the two
blocks fully captures the dynamics of density matrices of
the form ρðtÞ ¼ p1ðtÞj1ih1j þ p2ðtÞj2ih2j, where the prob-
abilities p1;2 obey the rate equation (4). This model can be
extended and made more realistic by considering subsets of
pure states that make up the two metastable states ρ1 and ρ2,
which are likely to be mixed states rather than pure states.
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