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The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings
require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a
continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order
with anyonic excitations. We establish a connection between these constraints and a remarkably similar set
of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on
symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework
for understanding the structure of symmetry-enriched topological phases with both translational and on-site
unitary symmetries, including the effective theory of symmetry defects. This framework places stringent
constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell
contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a
concrete application, we determine when a topological phase must possess a “spinon” excitation, even in
cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We
also describe the phenomena of “anyonic spin-orbit coupling,” which may arise from the interplay of
translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines
carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by on-
site symmetry.
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I. INTRODUCTION

The celebrated Lieb-Schultz-Mattis (LSM) theorem
[1,2], including the higher-dimensional generalizations
by Oshikawa [3] and Hastings [4], shows that translation-
ally invariant spin systems with an odd number of S ¼ 1=2
moments per unit cell cannot have a symmetric, gapped,
and nondegenerate ground state. Either some symmetries of
the system are broken spontaneously, the phase is gapless,
or there is nontrivial topological order with emergent
quasiparticle excitations having exotic exchange statistics.
The LSM theorem is remarkable because a microscopic
property, i.e., the spin within a unit cell, constrains the
universal long-wavelength physics in a nontrivial way.
Moreover, it generates powerful practical implications. For
example, experimentally ruling out symmetry breaking can
be sufficient to imply the presence of exotic spin-liquid
physics [5,6].
Spin-liquid folklore informs us that when a spin-

rotationally invariant system with an odd number of S¼1=2
moments per unit cell forms a symmetric gapped spin liquid,
it must also possess deconfined “spinon” excitations, which

are topologically nontrivial quasiparticles that carry half
integer-valued spin [5,6]. In contrast, the local excitations,
such as local spin flips, of such systems always carry integer-
valued spin.One aimof ourwork is to put this understanding
on more solid formal footing and, thereby, derive the most
general relation between the symmetry properties of the unit
cell and the fractional quantum numbers of the emergent
excitations.
Intriguingly similar constraints as those required by the

LSM theorem have recently been discovered to arise at the
surface of symmetry-protected topological (SPT) phases
[7–20]. Such phases are short-range entangled states that
cannot be adiabatically connected to a trivial product state
while preserving the symmetries of the system. An eminent
example is the 3D topological insulator (TI) protected by
time-reversal and charge conservation symmetries, which
(at least for weak interactions) has a gapless surface with a
single Dirac cone [21–23]. In general, the surface phases at
the boundary of a SPT must also be either symmetry
broken, gapless, or gapped with nontrivial “surface topo-
logical order,” mirroring the three options allowed by the
LSM theorem.
In the case where the 3D SPT phase possesses surface

topological order and preserves the symmetries, the 2D
surface states are anomalous symmetry-enriched topologi-
cal (SET) phases. Such surface states are anomalous in the
sense that they cannot be consistently realized in purely 2D
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systems when the symmetry is realized in a local manner.
Such anomalies are signaled by an object called the
“obstruction class” having nontrivial values (in the corre-
sponding cohomology group) [8,18]. The anomalous sur-
face SET can provide a nonperturbative characterization of
the bulk SPTorder, as the symmetry action in the SET must
have exactly the right type of “gauge anomaly” required by
the nontrivial SPT bulk.
In this paper, we develop a new perspective on the LSM

theorem by exploiting a relation to the surface of SPT
states. A crucial role is played by “weak” SPT phases,
which are SPT phases protected by translational symmetry
[7,22]. We argue that the LSM constraints are, in a precise
sense, a special case of the constraints at the surface of
weak SPTs. For example, a 2D spin system with S ¼ 1=2
per unit cell can be thought of as the boundary of a 3D
Affleck-Kennedy-Lieb-Tasaki (AKLT) model on a cubic
lattice with S ¼ 3 per unit cell [24], which is an example of
a 3D weak SPT.
More specifically, we posit a bulk-boundary “anomaly

matching” condition when a 2D SET phase is the gapped
and symmetric surface state realized on the boundary
of a 3D SPT phase. This bulk-boundary correspondence
requires that the components of the 2D SET obstruction
class match the corresponding bulk 3D SPT invariants. This
anomaly matching allows us to precisely formulate a
restriction on what kind of SET order can exist at the
surface of such a given 3D SPT. A consequence of this
bulk-boundary correspondence is that the physical proper-
ties associated with the 3D SPT invariants, namely the
nature of the emergent boundary modes, imply which SET
obstruction classes can be physically realized in purely 2D
systems in a local and symmetry preserving manner. In
particular, the SET obstruction classes permitted in purely
2D systems correspond to SPT phases whose boundary
structure is, at most, a nontrivial projective representation
of the on-site symmetry per unit cell. This provides an
understanding of the effective theory of symmetry defects
in purely 2D SET phases with translational and on-site
unitary symmetries, and it requires the SET obstruction
class to match the projective representation characterizing
the transformation of each unit cell under the on-site
symmetry. As such, we obtain constraints on the type of
SET order that can be realized in purely 2D systems from
the manner in which the microscopic degrees of freedom
transform under the symmetry, in particular, from the
projective representation per unit cell. These arguments
are summarized in Fig. 1.
This point of view immediately provides a simple

physical “derivation” of the LSM theorem. Namely, the
bulk-boundary correspondence tells us that if the boundary
of a nontrivial 3D SPT phase is gapped and preserves the
symmetry, then it must also realize nontrivial topological
order. This further implies that a purely 2D gapped and
symmetric phase must have nontrivial topological order

when the microscopic degrees of freedom transform as a
nontrivial projective representation of the on-site symmetry
for each unit cell. More significantly, our arguments lead to
a far more general and constraining version of the LSM
theorem. It applies to arbitrary on-site unitary symmetries,
including discrete symmetries, which cannot be probed by
the adiabatic flux insertion arguments utilized by Oshikawa
and Hastings. Moreover, it also provides sharper restric-
tions on the type of 2D SET order allowed.
As a concrete application, we address the following

question: under what general conditions must a SET phase
possess a “spinon” excitation? We define a spinon to be an
excitation which either (a) transforms with the same
projective representation as the unit cell or (b) carries
the same fractional U(1) charge as the particle filling
ν ¼ p=q. For example, the spinon of a spin liquid in an
S ¼ 1=2 magnet carries S ¼ 1=2, while the Laughlin-type
quasiparticles (generated by threading a unit quanta of flux)
of the ν ¼ p=q fractional quantum Hall (FQH) effect carry
the fractional charge e� ¼ ðp=qÞe. This question was
partially addressed in Ref. [25], which left the question
open for certain exotic fractionalization patterns of trans-
lation symmetry. We find that a spinon is required if either
(1) the on-site symmetry group is continuous and con-
nected or (2) the anyons are not permuted by the symmetry
and there is a point-group symmetry that can relate the two
directions of the lattice, such as C3, C4, or C6 lattice
rotations, or certain reflections. We also examine counter-
examples in which either of the conditions is violated.

FIG. 1. A 3D system of integer spins can enter a weak SPT
phase equivalent to stacking together 1D AKLT chains
(as indicated on the left). The weak SPT phase is characterized
by a particular element of the cohomology class Ωweak ∈
H4½Z3

trans × SOð3Þint;Uð1Þ�. Since each AKLT chain has degen-
erate emergent S ¼ 1=2 edge states, the effective Hilbert space of
the 2D surface of the 3D SPT phase behaves like a S ¼ 1=2
magnet: it will have a projective (half-integral) representation of
SO(3) in each unit cell. Thus, studying surface phases of the 3D
weak SPT is equivalent to studying a 2D S ¼ 1=2 magnet. Given
a proposal for the braiding, statistics, and symmetry fractionali-
zation of the 2D magnet, there is a procedure to calculate an
obstruction class O ∈ H4½Z2

trans × SOð3Þint;Uð1Þ�, associated
with defining an effective theory of the symmetry defects. The
bulk-boundary correspondence requires O of the boundary and
Ωweak of the bulk to be compatible, constraining the allowed 2D
SET orders.
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The work is organized as follows. In Sec. II, we outline
the logical structure of the argument. In Sec. III, we review
the classification of 3D SPT phases and describe the
Künneth formula decomposition of the SPT class in terms
of invariants associated with stacking, packing, and filling
of lower-dimensional SPT phases. In Sec. IV, we review the
theory and classification of symmetry fractionalization in
symmetric 2D topological phases, explaining the notion of
anyons carrying localized fractional charge and projective
representations. We discuss the inclusion of translational
symmetry and the decomposition of the symmetry frac-
tionalization classes in terms of anyonic flux per unit cell,
anyonic spin-orbit coupling, and on-site symmetry frac-
tionalization. In Sec. V, we review the algebraic theory of
symmetry defects for 2D SET phases with on-site sym-
metry and their possible obstructions. We discuss the case
of topological phases with symmetries that do not permute
anyon types in greater detail. In Sec. VI, we discuss the
bulk-boundary correspondence and anomaly matching in
detail and formulate an understanding of the theory of
defects and their obstruction classes for 2D SET phases
with translational and on-site unitary symmetries. We
consider such 2D SETs in systems with projective repre-
sentations per unit cell and fractional charge per unit cell in
detail. We also describe in detail the phenomena of “any-
onic spin-orbit coupling,” and a number of resulting
physical consequences. In Sec. VII, we conclude with a
discussion of further directions and open questions.

II. OVERVIEW OF THE ARGUMENT

Our starting point is a translationally invariant lattice
Hamiltonian in two spatial dimensions, with an internal
(on-site) symmetry group G and translational symmetry
group Z2. We denote the total symmetry group as
G ¼ Z2 × G. It is not only important to know the symmetry
group G, but also the particular way in which the micro-
scopic degrees of freedom transform underG. For example,
a fully spin-rotationally invariant magnet has G ¼ SOð3Þ,
but it may be composed of integer or half-integer moments
per unit cell. Likewise, a number conserving system with
corresponding symmetry group G ¼ Uð1Þ has a well-
defined charge density. These microscopic details can
constrain the emergent long wavelength physics in impor-
tant ways. There are two scenarios (exemplified by these
two examples) in which the microscopic degrees of free-
dom in a unit cell transform “fractionally” under the
symmetries: (1) when each unit cell transforms as a
projective representation of the on-site symmetry and
(2) when the charge per unit cell of a U(1) symmetry is
fractional. We analyze the consequences of having projec-
tive representations per unit cell and fractional filling
separately.
Given a symmetry G, the microscopic degrees of free-

dom within a unit cell transform under some representation

R of G. R can be either a linear or projective representation
of G. For example, spin S ¼ 1 corresponds to a linear
representation of SO(3), while S ¼ 1=2 corresponds to
a projective representation of SO(3) (a 2π rotation
results in −1). In general, the possible projective repre-
sentations of a group G are classified by elements of the
cohomology class H2½G;Uð1Þ�, where linear representa-
tions correspond to the trivial element ½1�. For example,
half-integer spins correspond to the nontrivial element in
H2½SOð3Þ;Uð1Þ� ¼ Z2.
For a system with U(1) charge conservation (such as

particle number or magnetization), the average charge
ν ¼ ðp=qÞ per unit cell defines the filling fraction. In some
cases, the representation R of G is enough to specify the
fractional part of the filling with respect to a U(1) subgroup
of G. For example, in an SO(3) invariant S ¼ 1=2 system,
the zero magnetization corresponds to ν ¼ 1=2 filling of
any U(1) subgroup of SO(3). In other cases, ν may be the
only relevant quantity, such as when G ¼ Uð1Þ [because
H2½Uð1Þ;Uð1Þ� is trivial].
In order to develop the outline of the argument, we

briefly review SETs. Since anyons are topological objects,
they may transform in a fractional manner under G, where
“fractional” means as compared with the quantum numbers
carried by local operators. Note that even in an S ¼ 1=2
magnet, local operators (and, hence, excitations) carry
integral representations of SO(3). For example, in a
quantum spin liquid, all local operators correspond to spin
flips and carry integer-valued spin, whereas the topologi-
cally nontrivial spinon excitations carry half-integer spin.
In fractional quantum Hall states, all local operators are
composed of electron operators and therefore carry integer-
valued electric charge, while the quasiparticle excitations
can carry fractional electric charge.
Thus, in addition to the fusion and braiding statistics

specified by the topological order, SET phases are char-
acterized by a pattern of “symmetry fractionalization.” We
review this structure later, but for now the reader can take
for granted the existence of mathematical objects ρ and ½w�
describing this pattern. Careful examination [18,26] reveals
that not all choices of ρ and ½w� allow for a well-defined
SET phase in 2D, as certain choices may be anomalous.
Mathematically, the anomaly is encoded in an obstruction
class ½O�, which is an element of the cohomology class
H4½G;Uð1Þ�. Given the objects ρ and ½w� for a proposed
symmetry fractionalization pattern, there is a well-defined
procedure to obtain ½O� from the properties of the topo-
logical phase [18,26,27], schematically represented by a
grinder in Fig. 1. Note that if there are no anyonic
excitations, the fractionalization pattern is necessarily
trivial (i.e., ρ ¼ 1 and ½w� ¼ ½I�), and whenever the
fractionalization pattern is trivial, so is the obstruction
class ½O� ¼ ½1�.
Since 3D SPT phases are also classified by the

elements ½Ω� ∈ H4½G;Uð1Þ�, this naturally suggests that
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a fractionalization pattern given by ρ and ½w� with a
nontrivial obstruction ½O� can occur only at the surface
of a 3D SPT state with ½Ω� ¼ ½O�. In particular, for a
nontrivial SPT phase with ½Ω� ≠ ½1�, we can only find a
matching nontrivial obstruction class ½O� ≠ ½1� if the SET
fractionalization class is also nontrivial ½w� ≠ ½I�, which
(as previously mentioned) requires there to be nontrivial
anyonic excitations. Thus, a gapped, symmetric surface of a
nontrivial SPT must be topologically ordered.
Thus far in this overview section, the theory of SET

phases and their obstructions that we have described
assumes that the microscopic symmetry G is an internal
(on-site) symmetry. We need to generalize this theory to
include translational symmetries. For symmetry fraction-
alization, the generalization is straightforward and still
encoded by ρ and ½w�. The full extension of the SET theory,
which includes symmetry defects and their obstructions, is
less clear. For this, we use the bulk-boundary correspon-
dence between 3D SPT phases and 2D SET phases that
exist on their boundaries. Applying the obstruction theory
of 2D SET phases for systems with translational symmetry
in the same way as for on-site symmetry, we find that we
must have a rather different interpretation of the resulting
obstruction class. For this, we must first review 3D SPT
phases with translational symmetry.
A SPT phase protected by translational symmetry is

called a “weak” SPT phase. The canonical example is a
weak 3D TI, which arises by vertically stacking 2D TIs.
More generally, a d-dimensional weak SPT phase protected
by the on-site symmetry groupG and the Zd−k translational
symmetry group can be obtained by “stacking” copies
of a k-dimensional SPT phase in a (d − k)-dimensional
lattice, where 0 ≤ k ≤ d. As we show, weak SPT phases
can be classified by incorporating translational symmetry
in the same manner as internal symmetries, that is, by
Hdþ1½Zd ×G;Uð1Þ�.
The most relevant SPT phases for our discussion are 3D

weak SPT phases that consist of packing together an array
of 1D SPT phases, as illustrated in Fig. 1. At the end of each
1D chain in a SPT phase, there is a degenerate boundary
state which transforms as a projective representation under
G, characterized by ½νyx�. On a surface perpendicular to the
direction of the packed 1D chains of SPT phases, we have
precisely a 2D system with the projective representation
½νyx� per unit cell. The interpretation is a bit different than
the on-site case, since such a surface can be physically
realized in a strictly 2D system. In particular, one can
simply construct the system from microscopic degrees of
freedom in such a way that each unit cell transforms as a
projective representation ½νyx�. However, as the obstruction
matching condition is still expected to hold, this becomes a
powerful constraint on the possible SET orders that can
occur in such a 2D system. To be more precise, we will later
show that given ρ and ½w� for the enlarged symmetry group
G ¼ Z2 × G, we can determine the obstruction class ½O�,

and, by matching ½O� with the weak 3D SPT phase
corresponding to packing together type ½νyx� 1D chains
of SPT phases, we derive stringent constraints on the 2D
SET phase. For instance, we can rule out the double-semion
model in a time-reversal invariant S ¼ 1=2 magnet.
Unfortunately, the above argument does not apply to

G ¼ Uð1Þ, which does not have projective representations.
Nevertheless, the constraints are rather simple (and well
known) for this case, and we can treat them by formalizing
flux-threading type arguments within the SET formalism.
Before presenting our results, we introduce the relevant

structures on either side of the bulk-boundary mapping: 3D
SPT phases and 2D SET phases. While much of this
material is discussed elsewhere [7,26,28–30], our treatment
of translational invariance is novel.

III. TRANSLATIONALLY INVARIANT
SPT PHASES

A. Strong SPT phases

We first briefly review bosonic SPT phases protected by
unitary on-site symmetries (like a spin rotation). It was
proposed that, in the absence of topological order, gapped
G-symmetric phases in d spatial dimensions are classified
by an element of the group cohomology Hdþ1½G;Uð1Þ�
[7,28,29]. By this, we mean that each distinct phase of this
type in the parameter space of generic G-symmetric
Hamiltonians can be uniquely labeled by some element
of the Abelian group Hdþ1½G;Uð1Þ�. The identity element
of this group is identified with the trivial phase, which can
be thought of as the universality class of an unentangled
product state.
The physics of this classification is most transparent for

1D chains. While a SPT phase has a unique, gapped ground
state on a ring, an open segment may have degenerate states
associated with its end points. The degeneracy of these
boundary states is protected by their local transformation
properties under g ∈ G. The action of a global symmetry
operation Rg on a ground state of the open chain can be
localized to the boundaries. For any ground state jΨi, this
takes the form

RgjΨi ¼ Uð1Þ
g Uð2Þ

g jΨi; ð1Þ

where UðjÞ
g are unitary operators whose nontrivial action is

localized near the two ends of the chain, labeled j¼1 and 2.

The operators UðjÞ
g do not depend on which of the

degenerate ground states they are acting upon.
It is clear from Eq. (1) that, even if Rg is a linear

representation of G (obeying RgRh ¼ Rgh), the localized

symmetry actions UðjÞ
g may take the form of projective

representations of G. In particular, they only must respect
group multiplication up to U(1) phases, i.e.,
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UðjÞ
g UðjÞ

h ¼ ωjðg;hÞUðjÞ
gh; ð2Þ

as long as the phases ωjðg;hÞ ∈ Uð1Þ obey the constraint
ω1ðg;hÞω2ðg;hÞ ¼ 1 (assuming the Rg is a linear repre-
sentation). Of course, multiplication of these local oper-

atorsUðjÞ
g must be associative, which requires the projective

phases to satisfy the “2-cocycle condition”

ωjðg;hÞωjðgh;kÞ ¼ ωjðg;hkÞωjðh;kÞ: ð3Þ

(The projective phases are also known as the “factor set”
characterizing a projective representation.)
Additionally, one can always trivially redefine the local

operators by a phase ~UðjÞ
g ¼ ζjðgÞUðjÞ

g , as long as the
phases ζjðgÞ ∈ Uð1Þ satisfy ζ1ðgÞζ2ðgÞ ¼ 1. The corre-
spondingly redefined projective phases are, thus, given by
~ωjðg;hÞ ¼ ðζjðgÞζjðhÞ=ζjðghÞÞωjðg;hÞ. A combination
of phase factors of the form ðζjðgÞζjðhÞ=ζjðghÞÞ is
known as a “2-coboundary.” Hence, one should view
different choices of projective phases that are related by
2-coboundaries as physically equivalent.
Mathematically, taking the quotient of the set of 2-

cocycles by the set of 2-coboundaries (i.e., forming
equivalence classes of cocycles related by coboundaries)
yields the second cohomology group H2½G;Uð1Þ�. (See
Appendix A for a brief review of group cohomology.) We
denote the equivalence class that contains the cocycle ω as
the cohomology class [ω]. In this way, H2½G;Uð1Þ�
classifies the possible types of projective representations
of G, with the trivial cohomology class ½1� ∈ H2½G;Uð1Þ�
corresponding to linear representations.
We note that the constraints relating the phase factors

associated with the two end points, i.e., ω1ðg;hÞ ¼
ω2ðg;hÞ−1 and ζ1ðgÞ ¼ ζ2ðgÞ−1, may be viewed as topo-
logical. This is because they are imposed by the topological
properties of the system, in this case being that a line
segment has precisely two end points. The consequence of
these constraints is that there is a correlation between the
projective representations localized at the end points of the
chain, specifically ½ω1� ¼ ½ω2�−1, and, hence, the possible
gapped phases of the system are classified by a single copy
of H2½G;Uð1Þ�. We emphasize that, when the cohomology
class is nontrivial, the corresponding projective represen-
tations are necessarily multidimensional, and, hence, there
is a protected degeneracy of the boundary states.
In higher dimensions, the role of projective representa-

tions is played by higher cohomology classes. SPT phases
in d spatial dimensions may be characterized by the
(dþ 1)th cohomology group Hdþ1½G;Uð1Þ� [7].

B. Weak SPT phases

A weak SPT phase is a phase protected by translational
symmetry in addition to on-site symmetry. For example, 3D

TIs have three weak indices νi ∈ Z2 for i ¼ x, y, z
corresponding to stacking 2D TIs along the î direction
[22]. Translational invariance is crucial here; otherwise,
neighboring layers can dimerize and leave the state trivial.
More generally, there are additional weak invariants. For
instance, we can also pack together 1D SPT phases. This
leads to the following hierarchy of weak invariants in 3D,
depicted schematically in Fig. 2.
(a) νijk, the 0D SPT per unit volume.—A 0D SPT phase

is simply a charge, since H1½G;Uð1Þ� is the group of U(1)
(unitary, Abelian) representations ofG. Filling volume with
0D SPT phases amounts to a charge density given by the
index ½νxyz� ∈ H1½G;Uð1Þ�.
(b) νij, the 1D SPT per unit area.—Packing 1D SPT

phases of index νij perpendicular to the ij plane, for
i; j ¼ x, y, z, is encoded in three indices, ½νxy�; ½νyz�;
½νzx� ∈ H2½G;Uð1Þ�.
(c) νi the 2D SPT per unit length.—Stacking 2D SPT

phases of index νi along the î direction for i ¼ x, y, z is
encoded in three indices, ½νx�; ½νy�; ½νz� ∈ H3½G;Uð1Þ�.
We find that the weak invariants can be elegantly

incorporated into the cohomology formulation. Assuming
the full symmetry group takes the form G ¼ Zd

trans ×Gint for

FIG. 2. The types of 3D weak SPT phases. (a) Filling 0D SPT
phases (charge density), νxyz. (b) Packing 1D SPT phases, νxy.
(c) Stacking 2D SPT phases, νz.
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a system with d spatial dimensions, we use the Künneth
formula [7,31] to compute Hdþ1½G;Uð1Þ� and find

Hdþ1½Zd ×G;Uð1Þ� ¼
Yd
r¼0

ðHrþ1½G;Uð1Þ�ÞðdrÞ: ð4Þ

(See Appendix B for details.) Since ðdrÞ ¼ ðd!=r!ðd − rÞ!Þ is
the number of perpendicular r planes ind space, this formula
is the obvious generalization of the stacking picture in
arbitrary dimensions. In 3D, we have

H4½Z3×G;Uð1Þ� ¼H4½G;Uð1Þ�× (H3½G;Uð1Þ�)3
×(H2½G;Uð1Þ�)3×H1½G;Uð1Þ�: ð5Þ

As such, the SPT classes ½Ω� ∈ H4½Z3 ×G;Uð1Þ� naturally
decompose into octuples as ½Ω� ¼ f½ν�; ½νi�; ½νij�; ½νijk�g,
where ½ν� ∈ H4½G;Uð1Þ� is the strong SPT invariant men-
tioned in Sec. III A, and ½νi�, ½νij�, and ½νijk� are the weak
invariants discussed above.
In this paper, the most significant weak SPT invariant is

the 1D SPT per unit area, characterized by ½νij�. As
discussed, a 1D SPT phase has degenerate boundary states
that transform under G with a projective representation
encoded by the index ½νij� ∈ H2½G;Uð1Þ� that classifies the
phase. Consequently, at a boundary surface along the ij
plane, there will be a finite density (one per unit area) of
low-energy edge states whose fate is determined by the
surface interactions. Each unit cell of the effective Hilbert
space at the surface will thus transform under G as a
projective representation labeled by ½νij�.

1. Example: AKLT spin system

For concreteness, consider a spin system with
G ¼ SOð3Þ. The second cohomology group (which clas-
sifies projective representations) is H2½SOð3Þ;Uð1Þ� ¼ Z2,
the trivial element of which corresponds to the integer spin
representations and the nontrivial element of which corre-
sponds to the half-integer spin representations. A well-
known example of a nontrivial strong 1D SPT phase is
the S ¼ 1 AKLT chain, which has twofold degenerate
S ¼ 1=2 edge states [24]. Packing AKLT chains along the z
axis at finite density of one per xy unit cell, we trivially
obtain a νxy ¼ −1 weak SPT whose surface theory will
behave like an S ¼ 1=2 square-lattice magnet. A more
familiar model is the 3D cubic S ¼ 3 AKLT model; in this
case, νxy ¼ νyz ¼ νzx ¼ −1. However, since we analyze
only one surface at a time, the latter two invariants are
irrelevant.

C. Computing the weak invariants
from the slant product

Given a 4-cocycle Ωðg1;g2;g3;g4Þ, there is a computa-
tional procedure for finding the invariants fν; νi; νij; νijkg

appearing in the Künneth decomposition. The reader is free
to treat the procedure as a “black box,” but for complete-
ness, the key tool is the “slant product,” which we define in
Eq. (A7). The slant product induces a homomorphism
that maps n-cohomology classes to (n − 1)-cohomology
classes:

ιg∶ Hn½G;Uð1Þ� → Hn−1½G;Uð1Þ�
½ω� ↦ ½ιgω�: ð6Þ

More explicitly, for elements p ∈ ZðGÞ in the center of G,
the slant product acting on 2-, 3-, and 4-cocycles gives

ιpωðgÞ ¼
ωðg;pÞ
ωðp;gÞ ; ð7Þ

ιpωðg;hÞ ¼
ωðp;g;hÞωðg;h;pÞ

ωðg;p;hÞ ; ð8Þ

ιpωðg;h;kÞ ¼
ωðg;p;h;kÞωðg;h;k;pÞ
ωðp;g;h;kÞωðg;h;p;kÞ : ð9Þ

The slant product can also be applied in succession.
When p;q ∈ ZðGÞ, one finds the (cohomological) equiv-
alence for applying the slant product in different orders to
be ½ιpιqω� ¼ ½ιqιpω�−1.
If Ti is the group element that generates translations

along the î direction, the 4-tuple of invariants can be
recovered by successive application of the slant products ιTi

followed by a restriction of the resulting cocycles to the on-
site symmetry group G:

νðg;h;k; lÞ ¼ Ωðg;h;k; lÞjg;h;k;l∈G; ð10Þ

νiðg;h;kÞ ¼ ιTi
Ωðg;h;kÞjg;h;k∈G; ð11Þ

νijðg;hÞ ¼ ιTi
ιTj

Ωðg;hÞjg;h∈G; ð12Þ

νijkðgÞ ¼ ιTi
ιTj

ιTk
ΩðgÞjg∈G: ð13Þ

For more details on the use of slant product in the Künneth
decomposition of cocycles, see Appendix C.

IV. SYMMETRY FRACTIONALIZATION
IN 2D TOPOLOGICAL PHASES

We now review the theory of symmetry fractionalization
in a 2D topologically ordered phase [26,30]. A topological
phase supports anyonic quasiparticle excitations whose
topologically distinct types are denoted by a; b; c;…,
which we refer to as anyons or topological charges. We
assume that the system has total symmetry group
G ¼ Z2 × G, where G is the on-site symmetry group
and Z × Z is the translational symmetry group generated
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by Tx and Ty, where x and y denote a basis for the Bravais
lattice.

A. On-site symmetries

The structure of symmetry fractionalization is organized
according to three successively finer distinctions.
First, symmetry transformations can permute anyon

types. For example, consider a bilayer of two ν ¼ 1
2
bosonic

quantum Hall states. There are two types of Laughlin
quasiparticles, s1, s2, corresponding to the two layers, as
well as their composite f ¼ s1s2. Exchanging the layers is
an on-site symmetry g (with g2 ¼ 1) of the model which
permutes the two Laughlin quasiparticle types g∶ s1 ↔ s2,
while leaving their composite invariant, g∶ f ↔ f. A less
trivial example is Wen’s plaquette model for the Z2 toric
code, where translations by one lattice spacing Ti for i ¼ x,
y exchange electric and magnetic charges, Ti∶ e ↔ m
[32,33]. In this paper, we, however, assume that the
symmetries G do not permute any of the anyon types, as
this greatly simplifies the computations.
Second, anyons can carry fractionalized symmetry

quantum numbers. To be more precise, let us prepare a
state jΨa1;…;ani with n well-separated quasiparticles, where
the jth quasiparticle carries topological charge aj. (We use
the convention where the “vacuum” topological charge is
denoted I and the “topological charge conjugate” of a is
denoted ā, which is the unique topological charge that can
fuse with a into vacuum.) We assume the overall topo-
logical charge is trivial I, so that the state can be created
from the ground state by applying local operators. (When
there are non-Abelian anyonic quasiparticles, one must
further specify the fusion channels to specify the state, but
this plays no role in our discussion, so we leave it implicit.)
We consider the global symmetry transformation Rg acting
on the state jΨfagi, where we introduce the shorthand fag
for the collection of topological charges a1;…; an carried
by the quasiparticles. Without loss of generality, we shall
assume that the system transforms as a linear representation
of G (e.g., if there is a S ¼ 1=2 spin per site, then we
require the number of sites to be even). Although anyons
are nonlocal excitations, the local properties (i.e., local
density matrix) of regions away from the positions of the
anyons remain the same as those of the ground state.
Therefore, the global symmetry transformation Rg should
have the following decomposition (when the symmetries do
not permute anyon types):

RgjΨfagi ¼
Yn
j¼1

UðjÞ
g jΨfagi: ð14Þ

Here, UðjÞ
g is a local unitary operator whose nontrivial

action is localized in the neighborhood of the jth quasi-
particle. Similar to the localized symmetry actions at end
points of 1D chains, discussed in Sec. III A, the localized

symmetry transformations UðjÞ
g only need to projectively

represent group multiplication:

UðjÞ
g UðjÞ

h jΨfagi ¼ ηajðg;hÞUðjÞ
ghjΨfagi; ð15Þ

where the projective phase ηajðg;hÞ ∈ Uð1Þ depends on
only the topological properties localized in the neighbor-
hood of the jth quasiparticle, which is just the topological
charge aj carried by this quasiparticle. Since Rg is a linear
representation, the projective phases must satisfy the
condition

Q
jηajðg;hÞ ¼ 1 [34].

The constraints on the projective phases here provide a
richer structure than we observed for 1D SPTs. In particu-
lar, this condition is equivalent to the condition that
ηaðg;hÞηbðg;hÞ ¼ ηcðg;hÞ whenever the topological
charge c is a permissible fusion channel of the topological
charges a and b (i.e., whenever Nc

ab ≠ 0). It follows that
ηaðg;hÞ must take the form [26]

ηaðg;hÞ ¼ Ma;wðg;hÞ; ð16Þ

where wðg;hÞ is an Abelian anyon and Ma;wðg;hÞ is the
mutual braiding statistics between anyons a and wðg;hÞ.
Associativity of the localized operators gives the

condition

ηaðg;hÞηaðgh;kÞ ¼ ηaðg;hkÞηaðh;kÞ; ð17Þ

for all a, which translates into

wðg;hÞ ×wðgh;kÞ ¼ wðg;hkÞ ×wðh;kÞ: ð18Þ

This is precisely the 2-cocycle condition, though not for
elements in U(1), but rather for elements in A, the group
whose elements are the Abelian anyons, with group
multiplication defined by fusion of anyons.
There is also freedom to trivially redefine the localized

symmetry transformations by local operators ~UðjÞ
g ¼

ZðjÞ
g UðjÞ

g , whose action on the state is ZðjÞ
g jΨfagi ¼

ζajðgÞjΨfagi, where the phases ζajðgÞ ∈ Uð1Þ satisfyQ
jζajðgÞ ¼ 1. This, similarly, generates a map between

these phases and anyons, with the relation ζaðgÞ ¼ Ma;zðgÞ,
where zðgÞ is an Abelian anyon. This translates the trivial
redefinitions of the local operators into the redefinition
~wðg;hÞ ¼ zðgÞ × zðghÞ × zðhÞ ×wðg;hÞ. This is pre-
cisely redefinition by an A 2-coboundary zðgÞ×
zðghÞ × zðhÞ.
The result is a classification [26] by the Abelian anyon-

valued second cohomology group H2½G;A�. In particular,
we form equivalence classes of A 2-cocycles that are
related to each other by A 2-coboundaries. A given
equivalence class ½w� ∈ H2½G;A� completely specifies
the symmetry fractionalization of the system; i.e., the local
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projective phases ηaðg;hÞ are given by Eq. (16) for all
anyon types. Thus, we call these cohomology classes the
“symmetry fractionalization classes.”
The manifestation of symmetry fractionalization for the

anyonsmay exhibit two characteristic properties: (1) anyons
can carry a fractional charge (like the Laughlin quasipar-
ticles) and (2) anyons can carry a localized projective
representation of the symmetry group G, i.e., they have an
internal degeneracy (like spin), which transforms projec-
tively under G. We can determine these symmetry frac-
tionalization properties for an anyon of topological charge
a by examining the corresponding local projective phases
ηaðg;hÞ, as we now explain in more detail.
(1) An anyon a can carry fractional charge under some

subgroup H < G. We first consider the group
H ¼ Uð1Þ. The transformation of an object of
charge Q corresponding to eiθ ∈ Uð1Þ is eiθQ.
The total charge in the system (and local excitations)
must be an integer, so that the state is left invariant
when θ goes from 0 to 2π; i.e., jΨi →
ei2πQjΨi ¼ jΨi. Topologically nontrivial quasipar-
ticles may carry fractional charge, as long as the sum
of the charges of all quasiparticles in a system adds
up to an integer. In other words, the fractional charge
assignments must be compatible with the fusion
rules, which is the condition imposed by the frac-
tionalization class. One might, thus, write the action

of the localized symmetry operation as UðjÞ
θ jΨfagi ¼

eiθQaj jΨfagi, where Qa is the (possibly) fractional
U(1) charge carried by anyons with topological
charge a. Of course, this is not gauge invariant
for arbitrary θ, but, rather, only when one has wound

the angle by 2π, giving UðjÞ
2π jΨfagi ¼ ei2πQaj jΨfagi.

Strictly speaking, we have defined θ ∈ ½0; 2πÞ, so
this expression is interpreted to mean that we wind θ
by 2π. We can make this notion well defined by
writing it as

UðjÞ
θ UðjÞ

2π−θjΨfagi ¼ ei2πQaj jΨfagi: ð19Þ

In this way, the fractional charge is given in terms of
the projective phases as

ei2πQa ¼ ηaðθ; 2π − θÞ: ð20Þ

Alternatively, we can discretize the process into N
steps and write it as

½UðjÞ
2π=N �N jΨfagi ¼ ei2πQaj jΨfagi; ð21Þ

in which case the fractional charge can be written as
ei2πQa ¼ Q

N−1
k¼0 ηð2π=N; 2πk=NÞ [35].

(ii) When the symmetries do not permute anyon types,
the local projective phases ηaðg;hÞ satisfy the

conditions of a U(1) 2-cocycle. Thus, ηaðg;hÞ
may be viewed as a representative element of the
U(1) 2-cohomology class ½ηa� ∈ H2½G;Uð1Þ�. As
previously discussed, H2½G;Uð1Þ� classifies projec-
tive representations of G. Hence, when ½ηaj � is a
nontrivial element of H2½G;Uð1Þ�, the local unitary
operators UðjÞ

g acting in the neighborhood of the jth
quasiparticle (which has topological charge aj) form
a projective representation ofG [36]. In this case, the

UðjÞ
g must be acting on a multidimensional Hilbert

space. In other words, there is a symmetry-protected
local degeneracy associated with anyons of topo-
logical charge aj. Thus, when ½ηa� is a nontrivial
element of H2½G;Uð1Þ�, we say that a carries a
localized projective representation of G.

Famously, property (1) is exhibited by symmetry frac-
tionalization in the ν ¼ 1=m Laughlin fractional quantum
Hall states, where the Laughlin quasiparticles carry 1=m
electric charge of the U(1) symmetry. When G ¼ Uð1Þ and
Zm < A, the possibility of charge fractionalization is
captured by the symmetry fractionalization class in
H2½Uð1Þ;Zm� ¼ Zm. On the other hand, for U(1) coho-
mology, we have H2½Uð1Þ;Uð1Þ� ¼ Z1, indicating that
nontrivial projective representations do not even exist.
Hence, quasiparticles in the Laughlin FQH state can have
no internal degeneracy.
A well-known example of property (2) is a Z2 spin

liquid with G ¼ SOð3Þ, where spinon excitations carry
spin-1=2 projective representations of G. Mathematically,
we have H2½SOð3Þ;Z2� ¼ H2½SOð3Þ;Uð1Þ� ¼ Z2, for
which the trivial group element corresponds to integer
representations and the nontrivial group element corre-
sponds to half-integer representations of SO(3).
The third level of SET structure is that of the extrinsic

symmetry defects (fluxes) [26]. In fact, given the symmetry
action ρ and a symmetry fractionalization class ½w�, it is not
necessarily the case that a consistent structure can be
defined for the defects in purely 2D systems. There is
an object ½O� ∈ H4½G;Uð1Þ�, which is uniquely defined in
terms of the topological order ρ and ½w�. This object ½O�
indicates whether or not a consistent 2D defect theory is
possible, depending on whether or not it is a trivial element
of H4½G;Uð1Þ�, and so it is called the obstruction class.
When ½O� is a nontrivial, the symmetry fractionalization
class is anomalous and it can appear only as the surface
termination of a 3D SPT phase [8,18]. We discuss this in
more detail later in the paper.

B. Incorporating translational symmetry

The analysis of symmetry fractionalization can be
generalized to translational symmetry. In 2D, lattice trans-
lations form a Z × Z group. For the generators Ti of
translation in the i ¼ x and y directions, the decomposition
of the action of the symmetry (again assuming the
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symmetries do not permute anyon types) is generalized
to [26]

RTi
jΨfagi ¼

Yn
j¼1

UTiðjÞ
Ti

jΨTifagi; ð22Þ

where Tifag is used here to indicate that the location of the
quasiparticles have all been translated by Ti, and TiðjÞ is
used to indicate that the neighborhood in which the

corresponding local operator UTiðjÞ
Ti

acts nontrivially has
also been translated by Ti [37]. We can then repeat the
entire analysis and arrive at essentially the same classi-
fication, but now including the translational symmetries.
It is very instructive to study the fractionalization classes

in H2½Z2 ×G;A� in greater detail. Using the Künneth
formula for group cohomology, we have

H2½Z2 ×G;A� ¼ H2½Z2;A� × ðH1½G;A�Þ2
×H2½G;A�; ð23Þ

where we have used the fact that H1½G;H1½Z2;A�� ¼
H1½G;A2� ¼ ðH1½G;A�Þ2. We note that H2½Z2;A� ¼ A
and that H1½G;A� is just the (group formed by the)
homomorphisms from G to A.
In order to understand the terms in this decomposition, it

is useful to consider the symmetry localization of the
operations of the form R−1

g R−1
h RgRh, where the group

elements g and h commute. In this case, the localized
operators give

ρh½Uh̄ðjÞ
g �−1ρ−1h ½UðjÞ

h �−1UðjÞ
g ρgU

ḡðjÞ
h ρ−1g jΨfagi

¼ ηajðg;hÞ
ηajðh;gÞ

jΨfagi; ð24Þ

where ρg here is an operator on the physical Hilbert space
that acts precisely as the symmetry action does on the
topological state space; i.e., it acts on the topological
quantum numbers of the physical states. (See Ref. [26]
for more details.) For our purposes here, it has the effect of
translating the locations of quasiparticles only when g is a
translational symmetry group element.
We define

bðg;hÞ ¼ bðh;gÞ ¼ wðg;hÞ × wðh;gÞ; ð25Þ

for g;h ∈ G ¼ Z2 × G, which takes values in the set of
Abelian anyons A. We note that, when gh ¼ hg, the
quantity bðg;hÞ is gauge invariant; i.e., it does not change
when wðg;hÞ is modified by a 2-coboundary.
Then, in the gauge where ηaðg;hÞ ¼ Ma;wðg;hÞ, we can

write the ratio of projective phases as

ηaðg;hÞ
ηaðh;gÞ

¼ Ma;bðg;hÞ: ð26Þ

A representative 2-cocycle of a fractionalization class in
H2½Z2 ×G;A� can be chosen to take the form

wðTmx
x T

my
y g; Tnx

x T
ny
y hÞ ¼ ½bðTy; TxÞ�mynx × ½bðTx;hÞ�mx

× ½bðTy;hÞ�my ×wðg;hÞ; ð27Þ

for g;h ∈ G ¼ G. It it straightforward to see that this is
indeed a 2-cocycle, as long as

bðTi;gÞ × bðTi;hÞ ¼ bðTi;ghÞ; ð28Þ

for i ¼ x, y. These conditions are just the requirement
that bðTi;gÞ are group homomorphism from G to A, i.e.,
that bðTi;gÞ ∈ H1½G;A�.
The terms in the decompositions of Eqs. (23) and (27)

can now be understood physically as follows.
(1) bðTy; TxÞ the “anyonic flux per unit cell.”—The

first term, H2½Z2;A� ¼ A, in the Künneth formula
decomposition of Eq. (23) is characterized by the
gauge invariant quantity bðTy; TxÞ ∈ A, which
we can interpret as the background topological
flux through each unit cell (as depicted in Fig. 3)
in the following way. The symmetry operation
T−1
y T−1

x TyTx is a sequence of translations corre-
sponding to a path that encloses one unit cell in a
counterclockwise fashion. From Eq. (24), we see
that this operation has the corresponding local
projective phase factor of Ma;bðTy;TxÞ for quasipar-
ticles of topological charge a. (See also Ref. [25] for
an operational definition.) This phase Ma;bðTy;TxÞ is
the mutual braiding statistics associated with an
anyon a encircling an anyon bðTy; TxÞ in a counter-
clockwise fashion. Thus, we can picture this type of
symmetry fractionalization as being generated by an
Abelian anyon bðTy; TxÞ sitting in each unit cell, as
shown in Fig. 3. This behavior is familiar from
“odd” gauge theories [38,39].

(2) bðTi;gÞ the “anyonic spin-orbit coupling” in the î
direction for g ∈ G.—The two factors in the second
term, ðH1½G;A�Þ2, in Eq. (23) are characterized by

FIG. 3. Anyonic flux per unit cell bðTy; TxÞ.
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the two gauge invariant quantities bðTx;gÞ and
bðTy;gÞ, respectively. These encode the possible
noncommutativity between the localized operators
for translations and on-site symmetries acting on
anyons. In other words, moving an anyon in the î
direction can change its symmetry charge under
g ∈ G. For this reason, we think of it as a sort of
anyonic spin-orbit coupling, which couples the
internal quantum numbers of an anyon with its
motion.
An operational definition of bðTi;gÞ may be

given as follows. Consider a state jΨa;āi with a pair
of well-separated anyons a and ā localized at r and
r0. We now move the anyon a by one lattice spacing
ei while holding the other anyon fixed, and denote
the resulting state by jΨ0

a;āi. By translational invari-
ance, the local density matrices in a region centered
at a (but far away from ā) for jΨa;āi and jΨ0

a;āi
should be identical, as they are related by a spatial
translation. We then compute the g charge on the
two states

hΨa;ājRgjΨa;āi
hΨ0

a;ājRgjΨ0
a;āi

≈
ηaðTi;gÞ
ηaðg; TiÞ

¼ Ma;bðTi;gÞ: ð29Þ

When Ma;bðTi;gÞ ≠ 1, moving the anyon a changes
the g charge it carries. Thus, the local operators and
processes which move anyons by one lattice spacing
are necessarily “charged” under the on-site sym-
metry. Equivalently, one can view this as there being
an integral symmetry charge (linear representation)
per directed unit length of the quasiparticle string
operators (Wilson lines), potentially with a different
value of symmetry charge per directed length in the
two different directions. A consequence of this
property is that, when Ma;bðTi;gÞ ≠ 1, it is not
possible to transport a quasiparticle carrying topo-
logical charge a in the î direction via a process that is
both adiabatic and g symmetric.
Note that if G is continuous and connected [e.g.,

G ¼ Uð1Þ or G ¼ SOð3Þ], the spin-orbit fraction-
alization H1½G;A� is always trivial. This is because
H1½G;A� consists of all group homomorphisms
from G to A, so the image of the identity element
1 in G is the trivial anyon I in A. When G is
continuous, continuity is also required of the co-
chain CnðG;AÞ. This forces the image of every
element in the connected component of the identity
of G to equal I, since A is discrete. Thus, if G is
continuous and connected, H1½G;A� ¼ Z1 and
bðTi;gÞ ¼ I. On the other hand, if G has multiple
connected components, e.g., all discrete nontrivial G
or G ¼ Oð2Þ ¼ Uð1Þ⋊Z2, it can have nontrivial
anyonic spin-orbit coupling.

(3) wðg;hÞ the on-site fractionalization class, for
g;h ∈ G.—The third term, H2½G;A�, in Eq. (23)
is just the previously discussed symmetry fraction-
alization for the on-site symmetries G.

C. Examples

We now illustrate symmetry fractionalization for systems
with translational symmetry using three concrete examples.

1. Laughlin states

The first example is the ν ¼ 1=m Laughlin fractional
quantum Hall states [40] with (magnetic) translational
symmetry and U(1) charge conservation. It has been known
since Laughlin’s seminal work that the fundamental quasi-
holes (quasiparticles corresponding to a 2π vortex) in these
states carry fractional electric charge 1=m (where the
electron carries charge −1).
These states support m anyon types, all of which are

Abelian [41]. Let us associate the label ϕ with the anyon
type of the fundamental quasihole, i.e., a vortex obtained by
threading 2π flux. The anyons are then given by
A ¼ fI;ϕ;ϕ2;…;ϕm−1g, where the corresponding fusion
rules are given by ϕj × ϕk ¼ ϕ½jþk�m. In other words,
A ¼ Zm. The mutual braiding statistics of anyons ϕj

and ϕk (corresponding to taking one around another in a
counterclockwise fashion) is given by the phase Mϕj;ϕk ¼
ei2πjk=m [42].
In the presence of a magnetic field, translations obey a

magnetic algebra: T−δyT−δxTδyTδx ¼ exp½−iðδxδy=l2
BÞN̂�.

It would be interesting to study this more general symmetry
group involving continuous translations. However, for our
purposes, we consider only a discrete subset of the trans-
lations generated by the “unit” translations Tx and Ty,
which are chosen to define a unit cell with area 2πl2

B. This
corresponds to one flux quanta enclosed in each unit cell
and TxTy ¼ TyTx. The corresponding symmetry group is
thus G ¼ Z2 × Uð1Þ, as discussed. No anyons are permuted
by symmetry; i.e., ρgðaÞ ¼ a). The cohomology classes
decomposing the classification of the possible symmetry
fractionalization [as in Eq. (23)] for this topological order
and symmetry group are H2½Z2;A� ¼ Zm, H1½Uð1Þ;A� ¼
Z1, and H2½Uð1Þ;A� ¼ Zm.
The symmetry fractionalizations of the Laughlin states

are described by

wðTj
x; Tk

yÞ ¼ ϕ½jk�m; ð30Þ

wðTj
y; Tk

xÞ ¼ I; ð31Þ

wðTj
i ; θÞ ¼ wðθ; Tj

iÞ ¼ I; ð32Þ

wðθ; θ0Þ ¼ ϕðθþθ0−½θþθ0�2πÞ=2π: ð33Þ
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Here, θ; θ0 ∈ ½0; 2πÞ label the elements of U(1), and ½�x
denotes modulo x. Let us unravel the physics of this
fractionalization class.
In order to determine the fractional U(1) charge of ϕ,

consider the localized action of U(1) rotations on ϕ. From
Eq. (19), we find that ei2πQϕ ¼ Mϕ;ϕ ¼ ei2π=m, indicating a
fractional charge of Qϕ ¼ ð1=mÞ. Similarly, the anyons ϕk

have fractional U(1) charge Qϕk ¼ k=m.
The anyonic flux per unit cell for this fractionalization

class is bðTy; TxÞ ¼ ϕ̄ ¼ ϕm−1. The system is at filling ν ¼
1=m electrons per unit cell. Since anyons of topological
charge ϕ̄ carry fractional U(1) charge Qϕ̄ ¼ −1=m, it
appears as if the electric charge density of the quantum
Hall liquid arises from the finite density of such anyons ϕ̄
(one per unit cell). Furthermore, it is known that if a
quasiparticle of charge Q adiabatically moves along a path
that encloses a region of area A (containing no quasipar-
ticles), it will accumulate an Aharanov-Bohm phase of
γ ¼ e−iQA=l2B [42]. Restricting to areas enclosing n flux
quanta, i.e., A ¼ n · 2πl2

B, we have γ ¼ e−i2πQn. Local
excitations have chargeQ ∈ Z and so accumulate no phase
from encircling n flux quanta. However, a quasiparticle
excitation with topological charge ϕk will accumulate an
Aharonov-Bohm phase of γ ¼ e−i2πnk=m when encircling
n flux quanta. On the other hand, the mutual statistics
between bðTy; TxÞ ¼ ϕ̄ and ϕk is Mϕ̄;ϕk ¼ e−i2πk=m. Thus,
the Aharonov-Bohm phase γ can equivalently be inter-
preted as the statistics between quasiparticles and the n
anyons per unit cell ϕ̄ within the encircled region (con-
taining n flux quanta).

2. Z2 spin liquid

Our second example is translationally invariant Z2 spin
liquids, with G ¼ SOð3Þ. For clarity, we only explicitly
write the cocycles for the Z2 × Z2 ¼ f1; X; Y; Zg sub-
group of SO(3), consisting of the three π rotations about the
x, y, and z axes. We consider phases with topological order
of the Z2 toric code type, i.e., Z2 spin liquids. Trial wave
functions of such states can be constructed by Gutzwiller
projection of a noninteracting Schwinger fermion or boson
mean-field ansatz [43–45]. We denote the bosonic spinons
by e, the fermionic spinons by ψ, and the Z2 flux [46,47]
(also known as a “vison” [38]) by m. All anyons are
Abelian, defining the group A ¼ fI; e; m;ψg with fusion
algebra Z2 × Z2.
In the familiar Z2 spin liquid, the spinons e and ψ

carry S ¼ 1=2 under SO(3) while the vison m does not
carry spin. This fixes the fractionalization of the on-site
symmetry G to be the following, in a gauge where
wð1;gÞ ¼ I:

wðX;XÞ ¼ wðY; YÞ ¼ wðZ; ZÞ ¼ m;

bðX; YÞ ¼ bðY; ZÞ ¼ bðX; ZÞ ¼ m: ð34Þ

To see why, consider, for example, the local operation of
two π rotations about the x axis for some anyon a. The
corresponding projective phase is

ηaðX;XÞ ¼ Ma;wðX;XÞ ¼ �1; ð35Þ

where þ1 corresponds to a carrying trivial spin and −1
corresponds to a carrying spin S ¼ 1=2. Since Me;m ¼
Mψ ;m ¼ −1 and Mm;m ¼ 1, and the theory is modular, the
unique choice consistent with our assignment of spin is
wðX;XÞ ¼ m. Similar arguments yield the other terms of
the fractionalization class.
If we consider any U(1) subgroup of the SO(3), for

example, rotations about the x axis, we can determine the
corresponding fractional charge carried by quasiparticles.
From Eq. (19), we find that ei2πQa ¼ Ma;m, which indicates
that the quasiparticle types have rotational U(1) fractional
charge values of QI ¼ Qm ¼ 0 and Qe ¼ Qψ ¼ 1

2
. These,

of course, simply match the corresponding SO(3) projec-
tive representations (integer or half-integer spin values)
carried by the quasiparticles, in this case.
For the translational symmetry, the fact that there is a

slave particle sitting at each site in the mean-field ansatz
leads to the following fractionalization:

bðTy; TxÞ ¼ e or ψ : ð36Þ

Which of these two options is actually realized depends on
whether one uses a Schwinger boson or fermion construc-
tion, as well as the chosen mean-field ansatz (0 or π flux per
plaquette in the band structure). Note that in the PSG
language, bðTy; TxÞ determines the PSG of the anyons via
ηaðTy; TxÞ=ηaðTx; TyÞ ¼ Ma;bðTy;TxÞ ¼ �1, for the phase
factor in Eq. (24).
Since G is connected, the spin-orbit fractionalization is

trivial, bðTi;gÞ ¼ I.

3. Unconventional symmetry for the toric code

An example that realizes a nontrivial anyonic spin-orbit
fractionalization class is due to Hermele [48]. We begin
with Kitaev’s Z2 toric code model [49], where qubits live
on the bonds of a square lattice. The Hamiltonian of the
model is

H ¼ −
X
v

Av −
X
p

Bp: ð37Þ

Here, Av ¼
Q

j∈vσ
x
j and Bp ¼ Q

j∈pσ
z
j, where the products

are over the four bonds meeting at vertex v or forming the
plaquette p, respectively. Notice that there are two qubits
per unit cell.
We now define a global G ¼ Z2 × Z2 ¼ f1; X; Z; XZg

symmetry with a peculiar representation that acts only on
the vertical (y) bonds. Let the set of all vertical bonds in the
system be denoted Cy and define the operators
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RX ¼
Y
j∈Cy

σxj ; RZ ¼
Y
j∈Cy

σzj: ð38Þ

It is straightforward to check that ½H;RX� ¼ ½H;RZ� ¼ 0,
so these operators are symmetries of the system. However,
this peculiar choice of operators forms a projective
representation of Z2 × Z2, since only the vertical links
transform under the symmetry. In particular, we have
RXRZ ¼ ð−1ÞLxLyRZRX, where Lx and Ly is the linear
size of the system in the x̂ and ŷ directions, respectively.
Moreover, each unit cell locally transforms under the
Z2 × Z2 symmetry as a projective representation, since
there is one vertical bond in each unit cell.
As usual, the e and m excitations correspond to

violations of the vertex terms (i.e., Av) and plaquette terms
(i.e., Bp), respectively. The usual definition of the toric-
code string operators implies that neither anyon carries a
projective representation of G, so wðg;hÞ ¼ I for
g;h ∈ G. Furthermore, our choice of Hamiltonian implies
trivial anyonic flux per unit cell, so bðTy; TxÞ ¼ I.
On the other hand, the interplay of G and translational

symmetries is more interesting and gives nontrivial anyonic
spin-orbit coupling. We can move an e anyon by applying a
string of σz operators along a path in the lattice. Similarly,
we can move anm anyon by applying a string of σx along a
path in the dual lattice. As can be seen from Fig. 4, when we
move e along the ŷ direction by one lattice spacing, the
extra σz that extends the string operator does not commute
with RX. Nothing interesting happens, however, when we
move m along the ŷ direction. Thus, we find

bðTy; XÞ ¼ bðTy; XZÞ ¼ m;

bðTy; ZÞ ¼ I: ð39Þ

Similarly, when we movem along the x̂ direction, the string
operator is extended by an extra σx factor for each step,
which implies

bðTx; XÞ ¼ I;

bðTx; ZÞ ¼ bðTx; XZÞ ¼ e: ð40Þ

An interesting feature of the model is that the definition of
the symmetry breaks the C4 lattice rotation symmetry. We
see later that this is unavoidable in such cases.
We can interpret the anyonic spin-orbit coupling another

way. Recall that an e-string operator applies
Q

j∈Pσ
z
j to the

sites contained in a path P running along links between
vertices, and that such an operator creates e quasiparticles
at the end points of an open path P, while it commutes with
the Hamiltonian away from the end points (or it commutes
everywhere if P is a closed path). Moreover, applying an
open e-string operator with one of the path’s end points at
the site of an e quasiparticle will move that quasiparticle to
the position of the other end point of P. The global
symmetry operator RZ is precisely the product of densely
packed e-string operators running in the ŷ direction. This is
why bðTx; ZÞ ¼ e; growing the lattice by one unit of Tx
adds one more of these e-string operators, so ZTx and TxZ
differ by the addition of one e string. Similarly, RX can be
interpreted as the product of densely packed m strings
running in the x̂ direction.

V. SYMMETRYDEFECTSANDH4 OBSTRUCTION

Not every fractionalization class ½w� of a given topo-
logical phase and symmetry can be realizable in a strictly
2D system, as some of them may be anomalous. For an on-
site, unitary symmetry G, one can determine whether ½w� is
anomalous by considering the inclusion of symmetry
defects, which are extrinsic objects carrying symmetry
fluxes. When anyons are transported around the defects
they are transformed by the corresponding local group
actions. There is an algebraic theory of the fusion and
braiding of defects [26] captured by topological data
similar to the F symbols and R symbols of anyon models.
Importantly, there are consistency conditions that this
topological data must satisfy. It was shown mathematically
in Ref. [27] that the sufficient and necessary condition for
the solvability of the consistency equations is that a certain
object ½O� be the trivial cohomology class in H4½G;Uð1Þ�.
If this object is nontrivial, it indicates the presence of an
obstruction, meaning that a consistent 2D theory of
symmetry defects does not exist. This can be interpreted
as an indicator of an anomaly, since symmetry defects can
always be introduced explicitly for any 2D theory realized
in a lattice model. Given the topological order (i.e., the F

FIG. 4. The toric code with an unconventional Z2 × Z2

symmetry that exhibits “anyonic spin-orbit coupling.” Dots
represent qubits on each bond; the dark blue ones transform
as projective representations of the global Z2 × Z2 symmetry,
while the light dots do not. The string operators that move the e
particles vertically (thick black line) and m particles horizontally
(dashed black line) involve operators on vertical links, so are
charged under the symmetry operations.
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and R symbols of the anyons), the symmetry group G,
the symmetry action ρ on the topological degrees of
freedom, and the symmetry fractionalization class ½w�,
the corresponding obstruction class ½O� ∈ H4½G;Uð1Þ� is
uniquely determined and there is a concrete procedure for
computing it.
We now briefly review the theory of defects in a

topological phase C with symmetry group G that does
not permute anyon types [26]. We first define an Abelian
group A whose elements are the Abelian topological
charges of C with multiplication given by the fusion rules.
Given a fractionalization class ½w� ∈ H2½G;A� of the
symmetry G acting on the topological phase C, we choose
a representative w of the class. One can then proceed to
write down the different types of G defects and their fusion
rules. As established in Ref. [26], for each g ∈ G there are
jCj topologically distinct types of g defects (i.e., defects that
carry a symmetry flux of g), and they are all related to each
other by fusion with anyons. We can label the defect types
by arbitrarily picking one Abelian defect type for each g
that we label Ig and treat as a reference point within each g
sector. It follows that all other g-defect types can be labeled
as ag ¼ a × Ig, where a ∈ C are the labels of all the anyon
types. The fusion rules then read

ag × bh ¼
X
c∈C

Nc
ab½c ×wðg;hÞ�gh; ð41Þ

where Nc
ab are the fusion coefficients of the anyons in C.

We notice that the fusion rules of defects also encode
the symmetry actions on defect labels by the so-called
G-crossed braiding. Let us denote the h ∈ G action on the
defect charge ag as ρhðagÞ. The action can be physically
realized by transporting ag across the branch cut of an h
defect, say Ih, which amounts to a braiding exchange. Since
the total topological charge in the region containing both
defects cannot change, and the relative positions of the
defects is interchanged, we must have

Ih × ag ¼ ρhðagÞ × Ih: ð42Þ

This implies

ρhðagÞ ¼ ½wðh;gÞ ×wðhgh−1;hÞ × a�hgh−1 : ð43Þ

In particular, if gh ¼ hg and wðg;hÞ ≠ wðh;gÞ, then the
two different types of g defects, ag and bðh;gÞ × ag, are
related to each other by the symmetry action of h. As such,
ag and ½bðh;gÞ × a�g must be energetically degenerate.
Given the topological data of the anyon model (i.e., F

and R symbols), the symmetry fractionalization class ½w�,
and the fusion rules in Eq. (41), one can then solve the
G-crossed consistency equations for the topological data
(i.e., F, R, U, and η symbols) of the G-crossed defect
theory. In doing so, one finds that consistent solutions
exist if and only if the obstruction class ½O� ¼ ½1� is trivial,
where (a representative of) the obstruction class is found
to be

Oðg;h;k; lÞ ¼ Fwðg;hÞwðk;lÞwðgh;klÞFwðk;lÞwðh;klÞwðg;hklÞFwðh;kÞwðg;hkÞwðghk;lÞ

Fwðg;hÞwðgh;kÞwðghk;lÞFwðk;lÞwðg;hÞwðgh;klÞFwðh;kÞwðhk;lÞwðg;hklÞ R
wðg;hÞ;wðk;lÞ; ð44Þ

which can be shown to be a 4-cocycle. (In this paper, the
braiding R symbols are written with two superscript
topological charge labels, in contrast to the global sym-
metry operators Rg, which are written with a subscript
group element.) We emphasize that Eq. (44) depends only
on the symmetry fractionalization class and the F and R
symbols of the Abelian anyons in C. For a derivation of the
result, we refer the readers to Refs. [18,26].
In the case of topological orders in which the (non-

vanishing) F symbols involving only Abelian anyons can
be set to 1 by a choice of gauge (using vertex basis gauge
freedom), the expression for the obstruction significantly
simplifies to

½Oðg;h;k; lÞ� ¼ ½Rwðg;hÞ;wðk;lÞ�: ð45Þ

In other words, Oðg;h;k; lÞ ¼ Rwðg;hÞ;wðk;lÞ is a repre-
sentative of the obstruction class for such topological
orders.

Generally speaking, if a d-dimensional system exhibits
gauge anomaly, it can only exist at the boundary of a
(dþ 1)-dimensional system, where there is an “anomaly
inflow” from the bulk to cancel the gauge anomaly on the
boundary [50]. This also shows that the bulk cannot be
adiabatically connected to a trivial product state while the
symmetry is preserved and it is therefore a nontrivial SPT
phase. Recently, it has been shown that in low dimensions
(d ≤ 3), SPT phases with a unitary symmetry G are
completely classified by Hdþ1½G;Uð1Þ�. In particular, 3D
SPT phases are classified by H4½G;Uð1Þ�, which is the
same cohomology group to which the obstruction classes
belong. This is not a coincidence. In fact, the obstruction
class precisely determines the bulk SPT phase that is
needed to cancel the gauge anomaly of the boundary
SET phase, a novel kind of bulk-boundary correspondence.
This bulk-boundary correspondence has been established
for Abelian topological phases with on-site symmetries that
do not permute the particle types [18], and is expected to
hold more generally, as well.
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VI. INCORPORATING TRANSLATIONAL
SYMMETRY IN SET PHASES

We would like to consider the theory of defects and
obstructions for 2D SET phases in which there is transla-
tional symmetry, as well as on-site symmetry, i.e., with
symmetry group G ¼ Z2 ×G. Strictly speaking, the theory
of the symmetry defects described by G-crossed modular
tensor categories in Ref. [26] is understood to apply to on-
site symmetries G. For translational symmetry, we under-
stand how symmetry fractionalization occurs [26], as we
discuss in Sec. IV B. However, it is not clear, in general,
how to properly define and interpret the algebraic theory of
translational symmetry defects (i.e., dislocations or
“movons”). The naive application of the G-crossed con-
sistency conditions of Ref. [26] to examples of purely 2D
systems with projective representations of the on-site
symmetry per unit cell, such as certain spin-liquid states,
gives rise to nontrivial obstruction classes ½O�. This means
that, in contrast to the case of purely on-site symmetries, the
inclusion of translational symmetry for systems with
projective representations of the on-site symmetry per unit
cell requires a refined interpretation of these obstruction
classes. In the following, we develop such a refined
interpretation.
In order to make progress, we develop our understanding

from the following conjecture.
Given a 3D SPTwith translational and on-site symmetry

Z3
trans ×Gint and linear representations of Gint per unit cell,

if the boundary is gapped and symmetric, it manifests a 2D
boundary SET with symmetry G ¼ Z2

trans ×Gint whose
defects are described by the G-crossed theory, as described
in Ref. [26], with anomaly matching between the 3D bulk
SPT indices and the 2D boundary SET obstruction class.
In order to understand the statement of anomaly match-

ing in this conjecture, we first notice that the cohomology
group H4½Z2 ×G;Uð1Þ�, to which the 2D SET obstruction
class ½O� belongs, can be decomposed using the Künneth
formula to give

H4½Z2 ×G;Uð1Þ� ¼ H4½G;Uð1Þ� × (H3½G;Uð1Þ�)2
×H2½G;Uð1Þ�: ð46Þ

The elements of this cohomology group can be similarly
decomposed using the slant product (as we have done
before). In particular, we can write the 2D SET obstruction
class in this decomposition as ½O� ¼ f½o�; ½ox�; ½oy�; ½oyx�g,
where (for a given representative O of the cohomology
class) we define

oðg;h;k; lÞ ¼ Oðg;h;k; lÞjg;h;k;l∈G; ð47Þ

oxðg;h;kÞ ¼ ιTx
Oðg;h;kÞjg;h;k∈G; ð48Þ

oyðg;h;kÞ ¼ ιTy
Oðg;h;kÞjg;h;k∈G; ð49Þ

oyxðg;hÞ ¼ ιTy
ιTx

Oðg;hÞjg;h∈G: ð50Þ

We can now precisely state the anomaly matching
condition between the 3D bulk SPT phase characterized
by ½Ω� ¼ f½ν�; ½νi�; ½νij�; ½νijk�g ∈ H4½Z3 × G;Uð1Þ� and
the 2D boundary SET phase with corresponding obstruc-
tion class ½O� ¼ f½o�; ½ox�; ½oy�; ½oyx�g ∈ H4½Z2 ×G;Uð1Þ�
to be the requirement that

½ν� ¼ ½o�; ½νx� ¼ ½ox�;
½νy� ¼ ½oy�; ½νyx� ¼ ½oyx�: ð51Þ

This assumes the 2D boundary in question is along the xy
plane. The remaining terms ½νz�, ½νxz�, ½νyz�, and ½νxyz�
characterizing the 3D SPT phase are not involved in
matching the bulk and surface states of boundaries along
the xy plane, though they will be involved in constraints
associated with boundaries in the other directions.
It is worth considering the different terms in the Künneth

decomposition of the SET obstruction in more detail. The
term ½o� ∈ H4½G;Uð1Þ� is simply the obstruction class
associated with the on-site symmetries G. The terms
½ox�; ½oy� ∈ H3½G;Uð1Þ� are associated with the interplay
between the on-site symmetry fractionalization and the
anyonic spin-orbit coupling in the x̂ and ŷ directions,
respectively. The term ½oyx� ∈ H2½G;Uð1Þ� is associated
with the interplay between the on-site symmetry fraction-
alization, the anyonic spin-orbit coupling, and the anyonic
flux per unit cell. (We note that ½oxy� ¼ ½oyx�−1.)
The ½ox� and ½oy� components of the obstruction class are

automatically trivial if either the on-site symmetry frac-
tionalization class or the anyonic spin-orbit coupling class
is trivial [51]. In particular, when G is continuous and
connected, e.g., G ¼ Uð1Þ or SO(3), the anyonic spin-orbit
coupling is necessarily trivial, and, hence, so is ½oi�.
Conversely, nontrivial ½oi� can arise only for a noncon-
nected (e.g., discrete) on-site symmetry groupG. Examples
of such anomalous SET phases occurring at the boundary
of a 3D system formed by stacking 2D topological
insulators has been considered in Ref. [52].
Next, we make the following observations regarding the

properties of SPT phases. The boundary structure of a
nontrivial d-dimensional strong SPT phase cannot be
physically realized in a local manner as a purely (d − 1)-
dimensional system for d ≥ 2; i.e., it cannot be realized
without the corresponding d-dimensional bulk. On the
other hand, the boundary structure of 0D and 1D strong
SPT phases can be physically realized in a local manner
without their corresponding d-dimensional bulk system.
In particular, the boundary of a 0D SPT phase is trivial,
while the boundary of a 1D SPT phase characterized by
the index ½ω� ∈ H2½G;Uð1Þ� gives rise to an emergent
projective representation [ω] of the on-site symmetry group
G. Projective representations can obviously exist as
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independent objects (i.e., without the support of a corre-
sponding 1D bulk system) within systems of any
dimensionality.
In the context of a 3D SPT with symmetry Z3

trans ×Gint,
these observations imply the following properties. (1) The
boundary structure corresponding to nontrivial [ν] requires
the 3D bulk to exist, so it cannot be physically realized in a
purely 2D system in a local manner that preserves sym-
metry. (2) The boundary structure corresponding to non-
trivial ½νi� requires the array of 2D SPT phases (stacked in
the 3D bulk, as explained in Sec. III B) to exist, so it cannot
be physically realized in a purely 2D system in a local
manner that preserves symmetry. (3) The boundary struc-
ture corresponding to nontrivial ½νyx� can be physically
realized in a purely 2D system. Specifically, this class
manifests emergent degrees of freedom on the boundary
of the 3D system, which transform under G such that each
2D unit cell on the surface transforms as the projective
representation ½νyx� of G. This structure can instead be
physically realized in a purely 2D system by constructing it
from physical degrees of freedom that transform underG in
such a way that each unit cell transforms as the projective
representation ½νyx� of G.
Finally, we make the observation that any purely 2D SET

phase (i.e., one that can be physically realized in a strictly
2D system in a local manner) can be realized on the
boundary of a 3D SPT. Combining these observations with
the conjectured bulk-boundary correspondence leads to the
following understanding of the 2D SET obstruction class
when translational symmetry is included.
The obstruction class ½O� ¼ f½o�; ½ox�; ½oy�; ½oyx�g of a

purely 2D SET phase with symmetry G ¼ Z2
trans ×Gint

must have trivial components ½o� ¼ ½ox� ¼ ½oy� ¼ ½1�,
while the component ½oyx� must equal the projective
representation of G per unit cell of the 2D system. If each
unit cell of the system transforms locally as a linear
representation under the on-site symmetries G, then we
must have ½oyx� ¼ ½1�.
If these conditions on ½O� of the 2D SET phase are not

satisfied, i.e., if [o], ½ox�, or ½oy� are nontrivial or if ½oyx� is
not equal to the projective representation of G per unit cell,
then the SET cannot be physically realized as a strictly 2D
system. We emphasize that this gives an interpretation of
the obstruction class that differs from the interpretation
when there is only on-site symmetry. In particular, a
nontrivial obstruction class component ½oyx� does not rule
out physical realization of the system in purely 2D, but
rather requires that each 2D unit cell transforms as the
projective representation ½oyx�. This result provides con-
straints on the allowed SET order of a given 2D system.

A. Projective representation per unit cell

We are finally prepared to analyze LSM-type constraints
for a 2D system with a projective representation per unit

cell, such as a S ¼ 1=2 magnet, by imposing the constraint
that ½oyx� must be equal to the projective representation per
unit cell for purely 2D SET phases. For this, we consider
the properties of ½oyx� in more detail and examine several
special cases.
In the following, we focus on topological orders in

which the F symbols involving only Abelian anyons can be
set to 1 by an appropriate gauge choice, and symmetry
G ¼ Z2 × G that does not permute the anyon types. In this
case, the obstruction class is given by Eq. (45), and we,
thus, have

oyxðg;hÞ ¼ Mwðg;hÞ;bðTy;TxÞ
RbðTx;gÞ;bðTy;hÞ

RbðTy;gÞ;bðTx;hÞ ; ð52Þ

for g;h ∈ G.
For anyon models with nontrivial F symbols, Eq. (52)

acquires an additional contribution ~oyxfFg, which is a
combination of several F symbols (see Appendix D for
details). However, we have verified that if either (a) G is
Abelian, (b)G is connected and continuous, or (c) there is a
point-group symmetry relating Tx to Ty, then ½ ~oyxfFg�¼½1�.
In other words, for these cases, the modification of oyx is
simply a 2-coboundary, and we can still use Eq. (52) as a
representative of the cohomology class ½oyx�.
It is sometimes useful to consider quantities constructed

from the cocycles, such as

oyxðg;hÞ
oyxðh;gÞ

¼ Mbðg;hÞ;bðTy;TxÞ
MbðTx;gÞ;bðTy;hÞ
MbðTy;gÞ;bðTx;hÞ

; ð53Þ

which is gauge invariant when gh ¼ hg, and thus may
readily indicate when the cohomology class is nontrivial.

1. Trivial topological order

A gapped topological phase with trivial topological
order, for example, a featureless paramagnet or insulator,
will necessarily have a vanishing obstruction class
½O� ¼ ½1�. Consequently, the above interpretation of the
obstruction class implies that it is forbidden for such phases
to occur in a model with a nontrivial projective represen-
tation of G per unit cell. This is the result of the (higher-
dimensional) LSM theorem, but now generalized to the
case of arbitrary on-site unitary symmetries G, including
discrete symmetries.

2. Trivial contribution to ½oyx� from anyonic
spin-orbit coupling

We now consider the case when the anyonic spin-orbit
coupling symmetry fractionalization class gives trivial
contribution to ½oyx�, so that Eq. (52) reduces to

½oyxðg;hÞ� ¼ ½Mwðg;hÞ;bðTy;TxÞ� ¼ ½ηbðTy;TxÞðg;hÞ�: ð54Þ
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There are a number of scenarios in which this may occur,
including (a) the anyonic spin-orbit coupling class is trivial,
i.e., bðTi;gÞ ¼ I for i ¼ x, y (as previously mentioned, this
is automatically the case when the on-site symmetry group
G is continuous and connected) and (b) the anyonic spin-
orbit coupling classes are equal in the two directions, i.e.,
bðTx;gÞ ¼ bðTy;gÞ for all g (this will occur when the
system preserves a point-group symmetry that relates the x̂
and ŷ directions, for example, C3, C4, C6 lattice rotations,
or reflections that interchange x and y).
Recalling the discussion from Sec. IV B, we know that

½ηbðTy;TxÞðg;hÞ� is the projective representation of G carried
by the anyon bðTy; TxÞ, which is the anyonic flux per unit
cell. In other words, Eq. (54) implies that, for purely 2D
SET phases with such anyonic spin-orbit coupling, the
projective representation of G carried by the anyonic flux
per unit cell must be precisely equivalent to the projective
representation describing the local symmetry action of each
unit cell (i.e., of the microscopic degrees of freedom). In
this sense, the anyonic flux per unit cell, bðTy; TxÞ, is a
spinon which screens the projective representation per unit
cell. Indeed, this is precisely how the S ¼ 1=2 parton
construction works, as there is a density of one parton
(spinon) per S ¼ 1=2 moment.
We may also be interested in quasiparticles that play a

role similar to that of the vison in a Z2 spin liquid. For this,
we consider

oyxðg;hÞ
oyxðh;gÞ

¼ Mbðg;hÞ;bðTy;TxÞ ¼
ηbðg;hÞðTy; TxÞ
ηbðg;hÞðTx; TyÞ

; ð55Þ

which is gauge invariant when gh ¼ hg. When this
quantity is nontrivial (i.e., not equal to 1), the anyon
bðg;hÞ has nontrivial mutual statistics with the anyonic
flux per unit cell, i.e., the spinon, and, hence, transforms
projectively under T−1

y T−1
x TyTx. In this sense, bðg;hÞ is

similar to a vison excitation. In particular, for the Z2 spin
liquid, one finds

oyxðX; ZÞ
oyxðZ; XÞ

¼ MbðX;ZÞ;bðTy;TxÞ ¼ Mm;e=ψ ¼ −1; ð56Þ

where bðX; ZÞ ¼ m is the vison.
We can understand Eq. (54) when the anyonic spin-orbit

coupling is trivial through the following heuristic
flux-insertion type argument. First, create a g-defect and
ḡ-defect pair from vacuum, say, carrying labels Ig and Ig,
respectively. Next, adiabatically transport the Ig defect
along a path enclosing one unit cell in a counterclockwise
fashion. Finally, annihilate the pair of defects into vacuum,
returning the system to the ground state. This process can
be thought of as applying the g symmetry transformation
locally to a unit cell. We schematically denote the g action
on the local degrees of freedom by Ug. Such local actions

form a projective representation of G, with multiplication
given by

UgUh ¼ oyxðg;hÞUgh: ð57Þ

In other words, the successive applications of this pro-
cedure with Ig and Ih defects is related to an application of
the procedure with an Igh by the phase oyxðg;hÞ.
On the other hand, we can arrange the processes involved

in successively applying the local actions for g and h in a
slightly different order. First, create both the Ig and Ig pair
from vacuum and also the Ih and Ih pair from vacuum.
Next, fuse Ig and Ih, which results in ½wðg;hÞ�gh ¼
wðg;hÞ × Igh. Then, adiabatically transport ½wðg;hÞ�gh
around a unit cell in a counterclockwise fashion. Finally,
annihilate all the defects to vacuum. Transporting
½wðg;hÞ�gh around the unit cell acquires an extra phase
Mwðg;hÞ;bðTy;TxÞ relative to transporting Igh around the unit
cell, because of the extra topological charge wðg;hÞ that is
being transported around the anyonic flux per unit cell
bðTy; TxÞ. Comparing the two results produces Eq. (54).
In summary, we have derived the following sufficient

conditions for the existence of a spinon.
If (i) anyons are not permuted by the symmetries and

(ii) either G is continuous and connected or the system has
a point-group symmetry such as C3, C4, C6 or a reflection
that relates x to y, then quasiparticles that carry the
topological charge bðTy; TxÞ are spinons, as they carry
the same projective representation ½oyx� of G that is carried
by each unit cell.

3. Nontrivial contribution to ½oyx� from anyonic
spin-orbit coupling

We now examine a situation where the system need
not have a spinon, even though it has a nontrivial projective
representation per unit cell. Let us consider the case
where the anyonic spin-orbit coupling is nontrivial, i.e.,
bðTi;gÞ ≠ I, and the relevant point-group symmetry is
broken explicitly or spontaneously (e.g., by a nematic
order parameter). In this case, it is possible to satisfy the
condition for a purely 2D SET phase that oyx in Eq. (52)
matches the projective representation per unit cell, even
when the on-site symmetry fractionalization class is trivial,
i.e., ½w� ¼ ½I�, and the anyonic flux per unit cell is trivial,
i.e., bðTy; TxÞ ¼ I. In such a situation, none of the anyons
carry a nontrivial projective representation ofG and there is
no background anyonic flux. This yields

oyxðg;hÞ ¼
RbðTx;gÞ;bðTy;hÞ

RbðTy;gÞ;bðTx;hÞ ; ð58Þ

so ½oyx� can still match a nontrivial projective representation
per unit cell, but it requires a rather unconventional way of
doing so.
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The toric code with unconventional symmetry model
described in Sec. IV C 3 realizes this scenario. In particular,
we see that

oyxðX; ZÞ
oyxðZ; XÞ

¼ MbðTx;XÞ;bðTy;ZÞ
MbðTx;ZÞ;bðTy;XÞ

¼ Mm;e ¼ −1; ð59Þ

which indicates that ½oyx� is the nontrivial element in
H2½Z2

2;Uð1Þ� ¼ Z2. This model breaks C4 symmetry, as
the symmetry was defined to act nontrivially only on the
vertical bonds.

B. Physics of the anyonic spin-orbit coupling

While the physics of the anyonic flux per unit cell
bðTy; TxÞ is straightforward and has been understood quite
well in the context of quantum Hall states and topological
spin liquids, the anyonic spin-orbit coupling has received
much less attention. In Sec. IV B, we discuss the physics of
anyonic spin-orbit coupling fractionalization classes with
respect to quasiparticles, which yield the interpretation that
quasiparticle string operators (Wilson lines) carry sym-
metry charge per directed unit length. In this section, we
examine in more detail the properties of symmetry defects
when there is anyonic spin-orbit coupling symmetry
fractionalization.
We know that the application of the translational

symmetry action to an on-site symmetry g defect (sym-
metry flux) carrying topological charge ag transforms the
topological charge value to ρTi

ðagÞ ¼ ½bðTi;gÞ × a�g. In
other words, the translational symmetry action changes the
topological charge of a g defect by bðTi;gÞ. Naively, it
might seem that the implication of such a translational
symmetry action would be that g defects cannot be
adiabatically transported in the î direction, since the
topological charge value carried by the defect must change
when it moves. Indeed, it is not possible to adiabatically
transport the position of the defect in a manner where the
Hamiltonian of the defect is simply translated, as this would
either involve a level crossing or violate conservation of
topological charge. However, it is possible to adiabatically
transport a g defect by suitably changing the form of the
defect Hamiltonian to favor a different value of topological
charge localized at the end point of the defect branch line.
In particular, for a g defect carrying the energetically

favored topological charge of ag, adiabatically transporting
the defect by one unit length in the î direction involves
extending the defect branch line by one unit length and
ending with a Hamiltonian that energetically favors topo-
logical charge ½bðTi;gÞ × a�g at the new end point of the
branch line [53]. This can be interpreted to mean that
g-defect branch lines carry topological charge bðTi;gÞ per
unit length in the î direction. Thus, adiabatically trans-
porting a g defect by a unit length in the î direction involves

creating a bðTi;gÞ − bðTi;gÞ pair, leaving bðTi;gÞ on
the new segment of defect branch line, and compounding
the bðTi;gÞ topological charge with the defect to change
its topological charge value. An additional implication
is then that we cannot adiabatically transport a g defect
in the î direction while respecting h symmetry when
MbðTi;gÞ;bðTi;hÞ ≠ 1.
One way to verify this interpretation is to braid a

quasiparticle of topological charge c0 around a unit seg-
ment of the defect branch line in a counterclockwise
fashion, as shown in Fig. 5(a). Since crossing the defect
branch line applies the symmetry action to the object
crossing the branch, this has the same effect as the local
action of R−1

Ti
R−1
g RTi

Rg on the anyon c0, which is to say it
generates a phase equal to ðηc0ðTi;gÞ=ηc0ðg; TiÞÞ ¼
Mc0;bðTi;gÞ. As this holds for arbitrary topological charge

c0, it implies that a unit length in the î direction of g-defect
branch line carries topological charge bðTi;gÞ.
Note that the vertical height of the loop in Fig. 5(a)

should be taken to be much larger than the width of the g-
defect branch line, which is set by the correlation length of
the system. In some cases, the g-defect branch line is not
localized, e.g., if the g defect results from a lattice
dislocation [54,55] or if the G symmetry results from
spontaneously breaking a larger continuous symmetry. In
this case, one can instead compare the result of braiding c0
along two paths enclosing the defect, one of which is
translated along the î direction relative to the other, as
shown in Fig. 5(b).
Another way to verify this is to adiabatically transport a

defect carrying topological charge ag around a dislocation,
i.e., a translational symmetry defect (movon). As shown in
Fig. 6, if a g-defect branch line carries topological charge
bðTi;gÞ per unit length in the î direction, then the total

g

c0

Tx

T−1
x

g
g−1 g

c0

Tx

(a) (b)

FIG. 5. (a) Braiding an anyon c0 around a unit length of
g-defect branch line is equivalent to the local action of
R−1
Ti
R−1
g RTi

Rg on the anyon (shown here for i ¼ x). This implies
that g-defect branch lines carry topological charge bðTi;gÞ per
unit length in the î direction. (b) The same result is obtained by
comparing the results of braiding c0 around two loops, each of
which encloses the g defect, and where one is translated relative
to the other in the î direction. This alternative derivation allows a
generalization to the case where the g-defect branch line is not
localized.
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topological charge of the g-defect branch line loop left
encircling the Ti defect will equal bðTi;gÞ. [This g-defect
branch line loop can be shrunk onto the Ti defect and
removed, leaving behind an extra topological charge of
bðTi;gÞ on the Ti defect.] By conservation of topological
charge, the topological charge of the g defect must change
from ag to ½bðTi;gÞ × a�g as a result of the braiding
process. This is consistent with the fact that transporting
an object around a defect effects the symmetry action upon
that object, i.e., transporting ag around a Ti defect yields
ρTi

ðagÞ ¼ ½bðTi;gÞ × a�g. Note that this is also consistent
with the g symmetry action on Ti defects; i.e., ρgðaTi

Þ ¼
½bðTi;gÞ × a�Ti

.
It is worth considering the on-site symmetry defects

of the toric code with unconventional Z2 × Z2 symmetry
(introduced in Sec. IV C 3) in detail. The defect branch
lines for this example can be drawn along the links of
the lattice in the x̂ direction and across the middle of
plaquettes in the ŷ direction [56]. Following the prescrip-
tion described in Ref. [26], g defects are included by
modifying the Hamiltonian in the following way: for each
term in the Hamiltonian that straddles the defect branch
line, denote the sites on the right-hand side of the directed
branch line as Cr, and conjugate the corresponding term in

the Hamiltonian by the operator
Q

k∈Cr
RðkÞ
g , i.e., apply the

symmetry transformation to only the sites on one side of the
branch line. The Hamiltonian at the end points is ambigu-
ous under this prescription, and may possibly be chosen to
favor localization of different topological charge values.
Let us focus on a Z-defect branch line along the x̂

direction in this example and apply this defect construction.

The on-site symmetry operator corresponds to RðkÞ
Z ¼ σzk.

Conjugating plaquette terms −Bp by σzk obviously leaves it
invariant (which is why we are free to draw the branch line

along the links in the x̂ direction). For vertex terms −Av that
straddle the branch line, we conjugate by σzk for the site k on
the vertical bond on the right-hand side of the branch line,
which gives the replacement −Av ↦ þAv. In other words,
we modify the Hamiltonian to energetically favor an e
quasiparticle at each vertex v along the Z-defect branch line
running in the x̂ direction, as shown in Fig. 7(a). This is
consistent with the interpretation of the Z-defect branch
line carrying topological charge bðTx; ZÞ ¼ e per unit
length in the x̂ direction. If we apply a translation RTx

to the system, the positions of the flipped vertex terms are
simply moved by one lattice spacing in the x̂ direction, as
shown in Fig. 7(b). Locally, the form of the Hamiltonian at
the translated defect (branch line end point) does not
change; i.e., it energetically favors the same value of
topological charge and the local density matrix around
the defect is related to the previous one by translation.
However, we cannot reach such a configuration from the
initial state by adiabatically transporting the defect, since it
would violate topological charge conservation (e anyons
must be created or annihilated in pairs).
In order to adiabatically transport the defect by one

lattice spacing in the x̂ direction, we adiabatically change
−Av ↦ þAv for the vertex immediately to the right of the
defect, but must also modify the Hamiltonian in the vicinity
of the defect (branch line end point) in a way that conserves
topological charge. For example, if we wish to move a
defect with topological charge IZ by one lattice spacing in
the x̂ direction, we can conserve topological charge by
adiabatically changing −Av ↦ þAv for the two vertices to
the right of the defect, as shown in Fig. 7(c). This creates
two new e anyons: the first e anyon is interpreted as being
the unit length extension of the Z-defect branch line in the x̂
direction, and the second e anyon is interpreted as being
associated with the Z-defect itself, modifying its topologi-
cal charge from IZ to eZ. If we subsequently adiabatically
transport the defect a second time in the x̂ direction, we
could do so by simply leaving the Hamiltonian unchanged
and subsequently interpreting the second e anyon as being
the second unit length extension of the Z-defect branch line
in the x̂ direction, as shown in Fig. 7(d). If, instead, we had
subsequently adiabatically transported the defect in the ŷ
direction, the second e anyon would be transported in the ŷ
direction along with the defect branch line end point (while
the first e anyon remains fixed at its location), as shown in
Fig. 7(e).
Returning to the general case, we can use the interpre-

tation of the defect branch line carrying topological charge
per directed unit length to reexamine the heuristic argument
in Sec. VI A 2 explaining the physical meaning of the
obstruction matching condition for the case when there is
anyonic spin-orbit coupling. In particular, we consider the
local g action, denoted Ug, on a unit cell by pair creating a
g-ḡ defect pair, adiabatically transporting the g defect
around a path enclosing one unit cell in a counterclockwise

FIG. 6. Braiding a g defect around an î dislocation (Ti defect)
leaves a g-defect branch line loop encircling the dislocation. If g-
defect branch lines carry bðTi;gÞ per unit length, the branch line
loop carries a total topological charge of bðTi;gÞ. The topological
charge of the g defect will change by bðTi;gÞ, which matches the
translational symmetry action ρTi

ðagÞ ¼ ½bðTi;gÞ × a�g. Here,
we display a Tx defect with a g-defect loop encircling it,
explicitly labeling the bðTx;gÞ topological charge per directed
unit length of the g-defect branch line [bðTy;gÞ labels are left
implicit].
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fashion, and then pair annihilating the defects. To be more
concrete (without any loss of generality), let us choose the
path to be r → r − ŷ → r − ŷþ x̂ → rþ x̂ → r. Keeping
track of the topological charge creation and annihilation
due to the adiabatic transportation of the g defect creating a
loop of defect branch line, we have (1) r → r − ŷ creates
topological charge bðTy;gÞ on the left segment of defect
branch line, (2) r − ŷ → r − ŷþ x̂ creates topological
charge bðTx;gÞ on the lower segment of defect branch
line, (3) r − ŷþ x̂ → rþ x̂ creates topological charge
bðTy;gÞ on the right segment of defect branch line, and

(4) rþ x̂ → r creates topological charge bðTx;gÞ on the
upper segment of defect branch line. The corresponding
configuration of topological charges for this g-defect
branch loop is illustrated in Fig. 8(a). One can think of
these topological charge values as anyons connected by
anyonic string operators (Wilson lines) of the correspond-
ing types, which can be deformed to the configuration of

(a)

(b)

(c)

(d)

(e)

FIG. 7. (a) In the toric code with unconventional symmetry, Z
defects exist at the end points of a defect branch line (indicated
by the dashed line), which is produced by conjugating the spins
on the vertical links on one side of the branch line by σz for terms
in the Hamiltonian that straddle the branch line. This changes
−Av ↦ þAv for vertex terms straddling the branch line, ener-
getically favoring an e quasiparticle (indicated by solid black
dots) at those vertices. (b) The configuration obtained from that in
(a) by acting on the system with the translation operator RTx

.
(c) The configuration obtained from (a) by adiabatically trans-
porting the defect in the x̂ direction by one lattice spacing. In this
case, the topological charge of the defect must change from IZ to
eZ. (d) The configuration obtained from that in (c) by adiabati-
cally transporting the defect in the x̂ direction by one lattice
spacing. In this case, the configuration of the physical system is
unchanged, but is interpreted differently. (e) The configuration
obtained from that in (c) by adiabatically transporting the defect
in the ŷ direction by one lattice spacing.

(a) (b)

(c) (d)

FIG. 8. Physical interpretation of the contribution to the
obstruction from the anyonic spin-orbit coupling from topological
charge per directed unit length of defect branch lines. (a) Pair
creating a g-ḡ defect pair, adiabatically transporting the g defect
counterclockwise along a path enclosing a unit cell, and then
annihilating the defects generates a loop of g-defect branch line
encircling the unit cell (dashed blue line). This applies local g
action Ug on the unit cell. Each edge of the unit cell can then be
associated with a topological charge, as indicated in the figure.
(b) The topological charges associated with each edge of the unit
cell can be obtained by applying Wilson lines in the horizontal
and vertical directions, as shown. The precise manner in which
the crossing point is resolved does not affect the final result.
(c) The configuration of anyon strings associated to the process
UgUh. Solid lines correspond to the Ug process and dashed lines
to the Uh process. (d) The configuration of anyon strings
associated to the process UhUg.
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anyonic string operators shown in Fig. 8(b). [The inter-
section of anyonic string operators WbðTx;gÞ and WbðTy;gÞ in
Fig. 8(b) must be resolved to provide a proper definition,
but the details of how they are resolved does not affect the
quantities of interest to us, so we simply leave it drawn as
an intersection.]
We can now compare the corresponding anyonic string

operator configurations that arise from successive applica-
tions of g and h symmetry actions and vice versa, i.e.,
UgUh and UhUg, which are shown in Figs. 8(c) and 8(d),
respectively. Using the relation for Abelian anyonic string
operators

ð60Þ

we find that these two configurations are equivalent up to
appropriate phase factors obtained from passing the string
operators for Ug through those of Uh. Specifically, we find

UgUhU−1
g U−1

h ¼ MbðTx;gÞ;bðTy;hÞ
MbðTy;gÞ;bðTx;hÞ

¼ oyxðg;hÞ
oyxðh;gÞ

: ð61Þ

This is the desired obstruction matching condition.
Finally, let us mention another interesting manifestation

of anyonic spin-orbit coupling. Consider applying an on-
site symmetry action to a translational symmetry defect
(i.e., a dislocation), which gives ρgðaTi

Þ ¼ ½bðTi;gÞ × a�Ti
,

changing the topological charge of a translational sym-
metry defect (movon) by bðTi;gÞ. Since the two types of
translational symmetry defect topological charges are
related by symmetry transformations, they must be ener-
getically degenerate. We can see this explicitly in the
example of the toric code model with unconventional
symmetry. In Fig. 9, we show an x̂ dislocation (associated
with the pentagonal plaquette), and on the dislocation there

is one vertex site with three edges. The vertex term at this
site σx1σ

x
2σ

x
3 breaks the Z symmetry and, therefore, must

have its coefficient set to zero. This results in a degeneracy
at the dislocation labeled by the stabilizer σx1σ

x
2σ

x
3 ¼ �1,

which can be interpreted as the two degenerate topological
charge values of the translational symmetry defect, differ-
ing from each other by bðTx; ZÞ ¼ e.

C. Fractional U(1) charge per unit cell

The higher-dimensional LSM theorem also holds for
U(1)-symmetric translationally invariant systems with frac-
tional charge density ν ¼ p=q per unit cell [57]. Since the
U(1) grouphas noprojective representations, there are no3D
weak SPT phases with nontrivial νxy invariants, nor 2D SET
phases with nontrivial oyx, and our previous argument does
not apply. Proceeding more heuristically than in the projec-
tive case, our goal is to establish the following well-known
claims [3,4,58], within the language of the SET formalism.
(1) Adiabatically threading 2π flux results in an anyonic

excitation called the “vison” v. The mutual statistics
between v and an excitation carrying topological charge
a determines the fractional U(1) chargeQa of a through the
relation ei2πQa ¼ Mv;a.
(2) There is an anyon bðTy; TxÞ per unit cell whose

fractional U(1) charge is equal to the filling QbðTy;TxÞ ¼ ν

(mod integers). Quasiparticles that carry topological charge
bðTy; TxÞ are called “spinons.”
(3) The Hall conductance satisfies ei2πσH ¼ Mv;v.
Consider a translationally invariant system with a non-

integer filling fraction ν of some U(1) charge, so
G ¼ Z2 × Uð1Þ. According to the results in Sec. IV B,
we can completely specify the symmetry fractionalization
class by the following data:

bðTy; TxÞ ¼ wðTy; TxÞ ×wðTx; TyÞ; ð62Þ

wðθ; θ0Þ ¼ vð1=2πÞðθþθ0−½θþθ0�2πÞ; ð63Þ

where these are all elements in the set of Abelian anyonsA.
Here, we label the U(1) group elements by an angle
θ ∈ ½0; 2πÞ. The second line serves as the definition of
the vison excitation v ∈ A. (As described in Sec. IV C 1,
the corresponding excitation in a fractional quantum Hall
state is the Laughlin-type fundamental quasihole ϕ.)
Physically, one can argue that v is the anyon nucleated
by adiabatically threading 2π U(1) flux as follows.
Threading flux θ into the system (e.g., into a plaquette)
results in a defect Iθ. If we nucleate another defect Iθ0
nearby and then fuse them, we obtain

Iθ × Iθ0 ¼ ½wðθ; θ0Þ�½θþθ0�2π ¼ wðθ; θ0Þ × I½θþθ0�2π : ð64Þ

If we let θ0 ¼ 2π − θ, this gives Iθ × I2π−θ ¼ v. Similarly, if
we did this repeatedly with θ ¼ 2π=N, we would find

1
2

3

FIG. 9. An x̂ dislocation in the toric code model. When the
unconventional Z2 × Z2 symmetry is imposed, the coefficient of
the vertex term σx1σ

x
2σ

x
3 must be set to zero to respect the Z

symmetry. This results in a degeneracy between topological
charge values of the translational symmetry defect that differ by
bðTx; ZÞ ¼ e.
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ðI2π=NÞN ¼ v (where N is chosen to be a multiple of jAj).
Since U(1) is continuous (and we can take the limit
N → ∞), these give the same result as adiabatically
creating a defect Iθ and increasing θ from 0 to 2π.
Thus, the vison v is the result of 2π-flux insertion. Note
that H2½Uð1Þ;A� ¼ A, which is consistent with this physi-
cal interpretation.
Next, let us suppose that a vison v is adiabatically

transported around a path that encloses an anyon a in a
counterclockwise fashion. On one hand, it will accumulate
the mutual statistics phase Mv;a due to v encircling the
anyon a. On the other hand, this process is equivalent to a
2π flux encircling the anyon a, and the Aharonov-Bohm
effect indicates that it should acquire the phase ei2πQa due to
the flux 2π encircling a charge Qa. Equating the two gives
the relation

ei2πQa ¼ Mv;a: ð65Þ

We also consider letting v be transported along a path
that encloses a unit cell that is in the vacuum state. Similar
to above, transporting a 2π flux around a unit cell measures
the total charge enclosed by the path, which is precisely the
fractional U(1) charge ν per unit cell, giving the accumu-
lated phase ei2πν. We can also view this process as the
braiding between the vison v and the anyon bðTy; TxÞ per
unit cell, which gives the phase Mv;bðTy;TxÞ. Equating the
two phases, we have the relation

ei2πν ¼ Mv;bðTy;TxÞ ¼ ei2πQbðTy;TxÞ : ð66Þ

The implication is twofold. (1) bðTy; TxÞ should carry a
fractional U(1) charge ν (mod 1). (2) The vison v has
nontrivial braiding statistics with bðTy; TxÞ, given by ei2πν.
(We note that, with this definition of filling, the Laughlin
states have filling ν ¼ −1=m, corresponding to a density of
1=m charge −1 electrons per unit cell.)
Finally, the Hall conductance, which is equal to the U(1)

charge moved into a region by threading a 2π flux through
it, is simply equal to the charge Qv of the vison, since v is
the anyon that results from threading the 2π flux. Thus, we
have the relation

ei2πσH ¼ ei2πQv ¼ Mv;v: ð67Þ

We again emphasize that these relations can be viewed as
imposing sharp constraints on the SET orders allowed in a
system. For example, a fractional Hall conductance
requires the existence of anyons with matching statistics,
i.e., there must be an Abelian anyon v with topological
twist θv ¼ �eiπσH , which characterizes the U(1) symmetry
fractionalization associated with winding the phase by 2π
and is the anyon created by threading a 2π flux.

VII. DISCUSSION

A. Symmetries that permute the anyon types

In this paper, we focus on SET phases in which no anyon
types are permuted by the symmetries. Here, we briefly
discuss the case when there are permutations.
If G is continuous and connected (so that G cannot

permute anyon types), it was argued in Ref. [25] that there
must be a spinon regardless of whether translations permute
anyon types. This is not surprising, as the Oshikawa flux-
threading arguments should apply. Presumably, this result
can be derived from the obstruction theory, but the
calculation of ½O� seems to be so involved that we do
not attempt doing so in this paper.
If G is discrete, we first consider the case where

translations permute the anyon types (while G does not).
In this case, the LSM constraint can be satisfied without
spinons, if the on-site symmetry group G is not connected
and continuous. One example is Wen’s plaquette model on
a square lattice, as defined in Ref. [32] and discussed in this
context in Ref. [25]. In this model, the e and m anyons are
violations of single plaquette terms of the Hamiltonian on
the two sublattices, so translations by one lattice spacing
permute the two types of anyons: ρTi

∶ e ↔ m for i ¼ x, y.
We also define a global Z2 × Z2 symmetry generated by
the operators RX ¼ Q

rσ
x
r and RZ ¼ Q

rσ
z
r. Apparently,

there is a projective representation of the Z2 × Z2 sym-
metry on each site. Therefore, we would expect that the
symmetry fractionalization class should give the obstruc-
tion class consistent with the nontrivial weak SPT order in
3D. With anyon permutation, the classification of sym-
metry fractionalization is now given by the second coho-
mology group H2

ρðG;Z2 × Z2Þ.
We can determine the fractionalization class in this

example. It is easy to see that the on-site symmetry does
not fractionalize at all, so there are no spinons. However,
the fractionalization class corresponding to noncommuta-
tivity between the on-site symmetriesG and the translations
gives a nontrivial anyonic spin-orbit coupling. In particular,
a ψ fermion can be created by a string of σy, which
anticommutes with both σx and σz. Thus, we have

ηψ ðTi; XÞ
ηψ ðX; TiÞ

¼ ηψ ðTi; ZÞ
ηψ ðZ; TiÞ

¼ −1; ð68Þ

for i ¼ x, y. This gives bðTi; XÞ ¼ bðTi; ZÞ ¼ e orm (these
two values are gauge equivalent).
On the other hand, one may consider the case when only

the on-site symmetries in G can permute the anyon types.
When the anyonic spin-orbit fractionalization is trivial, one
can apply the heuristic argument given in Sec. VI A, since
the adiabatic processes of moving on-site symmetry defects
(which may be non-Abelian) remain well defined as long
as the on-site symmetry defects are not permuted under
translations. The heuristic argument strongly suggests the
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existence of spinon per unit cell. Again, this can presum-
ably be resolved by calculating the obstruction in this most
general case.

B. Constraints from additional symmetries

Our results can be further strengthened when combined
with other symmetries. For example, we have shown that,
for G ¼ SOð3Þ, the anyonic flux per unit cell bðTy; TxÞ
must be a spinon. Now consider some other symmetry
element h which commutes with all elements of G. Since
the anyonic flux per unit cell bðTy; TxÞ is physically well
defined and gauge invariant, it must be invariant under h:
ρh(bðTy; TxÞ) ¼ bðTy; TxÞ. If h is an antiunitary (i.e., time-
reversing) or spatial parity reflecting symmetry, the topo-
logical twist is complex conjugated under the action of the
symmetry; i.e., θρhðaÞ ¼ θ�a [26]. Thus, anyons that are left
invariant under h must have θa ¼ �1. In particular, this
would require that bðTx; TyÞ is a boson or a fermion.
This fact excludes the double-semion topological order

from possessing a spinon. Recall that the double-semion
model has four types of anyons, fI; s; s0; b ¼ s × s0g,
where s and s0 are, respectively, semions of opposite
chirality (i.e., θs ¼ i and θs0 ¼ −i). The only nontrivial
boson or fermion is b, the boson formed by fusing (or
forming a bound state) of s and s0. Time reversal inter-
changes s and s0, while leaving b invariant. As such, s and
s0 must have conjugate representations of G (i.e., they must
map to each other under time reversal), so the bound state b
must carry a trivial representation of G, and, hence, cannot
be a spinon. This is the “no-go” theorem proved in
Ref. [25].

C. Relation to cylinder arguments

We can make connections with the arguments in
Ref. [25] that demonstrated the existence of a spinon by
considering the action of symmetries on the degenerate
ground states of an “infinite cylinder.” When a topological
phase is put on an infinitely long cylinder, the ground state
degeneracy is the same as that of the torus, which is one
ground state per topologically distinct anyon type a. In the
“minimally entangled state” (MES) basis for the ground
state manifold, each basis state can thus be labeled by an
anyon types as jai. More generally, we can thread sym-
metry flux g through the cylinder by twisting the boundary
condition. It is natural to assume that the ground states are
now labeled by the defect sectors jagi. In either case, the
labeling of the MES basis is presumably ambiguous up to
fusion with an Abelian anyon, just like the defect sectors;
i.e., the MES basis is a torsor over A.
To incorporate translational symmetry into this picture,

we assert that a cylinder of circumference Ly corresponds
to defect sector aTy

Ly . After all, a cylinder can be viewed as

an infinite plane with a T
Ly
y defect running along the x axis;

when an object crosses the defect line, it is acted on by T
Ly
y ,

transporting it forward, which is equivalent to periodic
boundary conditions.
When a model with fractional symmetry charge per

unit cell is placed on a cylinder with circumference Ly odd
(or,moregenerally, a circumference incommensuratewith the
fractional filling), the ground states break translational
symmetry in a subtle fashion. This is most familiar in the
thin-torus limit of the FQH effect, where the orbital occupa-
tions become charge-density wave patterns � � � 0101 � � �,
breaking Tx translational symmetry. Note that according to
Eq. (43), when Tx acts on the defect it transforms as

ρTx
ðaTy

Ly Þ ¼ bðTx; TyÞLy × aTy
Ly : ð69Þ

When bðTx; TyÞLy ≠ I, this implies that the MES jaTy
Ly i

breaks translational symmetry, in which case it is actually
permuted into another MES. This is precisely the increase in
the unit cell expected of a phase at fractional filling.
It is also clear why a nontrivial anyonic spin-orbit

coupling fractionalization class can result in an exception
to the cylinder argument for the existence of a spinon.
The cylinder argument requires that some MES of an odd-
circumference cylinder is invariant under the on-site
symmetry group G. However, the defect type transforms
under an on-site symmetry as

ρgðaTy
Ly Þ ¼ bðg; TyÞLy × aTy

Ly : ð70Þ

When bðg; TyÞLy ≠ I, the MESs are permuted by the
symmetry, and it is impossible to define the symmetry
properties of the entanglement spectrum as was required in
the cylinder argument.
We can also understand the argument why a spinon must

exist when a rotation relates Tx and Ty, even in the presence
of a nontrivial anyonic spin-orbit coupling fractionalization
class. In this case, one can change the basis of the Bravais
lattice to x̂ and ŷ0 ¼ ŷ − x̂. We then have bðg; Ty0 Þ ¼ I, so if
we compactify the lattice along the ŷ0 direction into a
cylinder (while still being extended in the x̂ direction), the
MESs are now invariant under all g and we can apply the
argument to prove the existence of a spinon per unit cell.

D. Possible generalizations

Finally, we speculate on some future directions.

1. Time-reversal symmetry

In the presence of spin-orbit coupling, the symmetry of a
spin system is broken down to time reversal. In a Mott
insulator, each unit cell contains a Kramers doublet with
T 2 ¼ −1. Thus, there is a projective representation of T in
each unit cell, and an extension of our result should hold.
Indeed, it was argued in Ref. [25] that when translations do
not permute anyons, there is a spinon excitation in each unit
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cell carrying T 2 ¼ −1. However, at present we cannot
address the exotic cases, i.e., when anyons are permuted by
translations or there is anyonic spin-orbit coupling between
T and Ti. The issue is that, while the fractionalization of T
can easily be incorporated into theH2

ρ classification, we do
not know how to define a defect theory or the correct
conditions for computing an obstruction O.

2. Nonsymmorphic symmetries
and magnetic translation algebras

A series of works have shown that translations can be
supplemented by nonsymmorphic glide symmetries in
order to get tighter LSM-type filling bounds [59–61]. It
would be interesting to understand the corresponding
generalization of this work [62]. However, it is not
completely known how glides can be incorporated into
the SET formalism. In the least, glides will quite generi-
cally permute anyon types as they conjugate topological
spin.
Another interesting case is the magnetic algebra

T−1
y T−1

x TyTx ¼ ei2πϕN̂ , particularly in lattice-type models
used to generate Chern bands. For ϕ ¼ a=b, we can apply
our results at the cost of considering a magnetic unit cell (as
we do for the example of FQH states), but there may be
stronger constraints (perhaps “b times”more powerful) that
arise from considering the full algebra.

3. Itinerant systems

An S ¼ 1=2 magnet is ultimately composed of spinful
fermions, which have some residual charge fluctuations.
Thus, the true on-site symmetry group is not a projective
representation of SO(3), but is instead a linear representa-
tion of U(2) [a central extension of SO(3) by U(1)]. More
generally, we can consider models in which some U(1)
conserved particles at integer filling ν carry a projective
representation [ω]. Intuitively, it seems that we should be
able to take a limit where charge fluctuations freeze out and
consider an effective model with representation ½ω�ν per
unit cell. In 1D, it was shown that a LSM-type result of this
form indeed holds (though there are important differences
in the itinerant case when LSM is further extended to
include point-group symmetries) [61].
We can speculate about what version of our story we

expect to hold in 2D for itinerant systems. All local
excitations carry charge Q ¼ 1 and a projective represen-
tation [ω]. The relevant form of symmetry fractionalization
is representation-charge separation. In other words, there
may be anyons that carry projective representations [ω], but
no charge Q ¼ 0, or anyons that carry charge Q ¼ 1, but
only linear representations [1]. Such anyons may differ
only by a local excitation. These are the “spinons” and
holons; presumably they play the same role as the spinon in
our previous discussions. We leave the full structure of the
itinerant case to future work.

4. Gapless phases and the FL� phase

When a system with fractional symmetry charge per unit
cell is gapless, there must also be constraints on the
resulting phase. The most obvious example is Luttinger’s
theorem [63]: at filling ν, the volume of the Fermi sea is
proportional to ν. Another example is 1D spin chains with
spin-1=2 per unit cell, which can be viewed as the edge of a
2D AKLT state. The 2DAKLT state is a weak SPT, and the
bulk-boundary correspondence now implies that the edge
spin chain cannot be gapped without breaking the spin
rotation symmetry or the 1D translational symmetry. (Note
that the option of topological order is not available in 1D.)
This is, of course, the content of the original LSM theorem.
Analogously, one can further examine the symmetry action
in the gapless phase. It was argued that symmetries are
implemented in an anomalous fashion in the resulting
conformal field theory [64] of the spin chain, which is the
1D (gapless) analog of our constraint. In 2D, there can be a
combination of topological and gapless degrees of freedom.
Presumably the constraints can be accommodated in a
shared fashion between the topological and gapless degrees
of freedom, suggesting a generalized version of the FL�
scenario [65].
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APPENDIX A: REVIEW OF GROUP
COHOMOLOGY

Here, we provide a brief review of group cohomology for
finite groups. Given a finite group G, let M be an Abelian
group equipped with a G action ρ∶ G ×M → M, which is
compatible with group multiplication. In particular, for any
g ∈ G and a; b ∈ M, we have

ρgðabÞ ¼ ρgðaÞρgðbÞ: ðA1Þ

(We leave the group multiplication symbols implicit.)
Such an Abelian group M with G action ρ is called a G
module.
Let ωðg1;…;gnÞ ∈ M be a function of n group

elements gj ∈ G for j ¼ 1;…; n. Such a function is called
an n-cochain and the set of all n-cochains is denoted
as CnðG;MÞ. They naturally form a group under
multiplication,

ðω · ω0Þðg1;…;gnÞ ¼ ωðg1;…;gnÞω0ðg1;…;gnÞ; ðA2Þ
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and the identity element is the trivial cochain
ωðg1;…;gnÞ ¼ 1.
We now define the “coboundary” map d∶ CnðG;MÞ →

Cnþ1ðG;MÞ acting on cochains to be

dωðg1;…;gnþ1Þ
¼ ρg1 ½ωðg2;…;gnþ1Þ�

×
Yn
j¼1

ωð−1Þjðg1;…;gj−1;gjgjþ1;gjþ2;…;gnþ1Þ

× ωð−1Þnþ1ðg1;…;gnÞ: ðA3Þ

One can directly verify that ddω ¼ 1 for any
ω ∈ CnðG;MÞ, where 1 is the trivial cochain in
Cnþ2ðG;MÞ. This is why d is considered a “boundary
operator.”
With the coboundary map, we next define ω ∈

CnðG;MÞ to be an n-cocycle if it satisfies the condition
dω ¼ 1. We denote the set of all n-cocycles by

Zn
ρðG;MÞ ¼ fω ∈ CnðG;MÞjdω ¼ 1g: ðA4Þ

We also define ω ∈ CnðG;MÞ to be an n-coboundary
if it satisfies the condition ω ¼ dμ for some (n − 1)-
cochain μ ∈ Cn−1ðG;MÞ. We denote the set of all n-
coboundaries by

Bn
ρðG;MÞ ¼ fω ∈ CnðG;MÞj∃μ ∈ Cn−1ðG;MÞ∶ω ¼ dμg:

ðA5Þ

Clearly, Bn
ρðG;MÞ ⊂ Zn

ρðG;MÞ ⊂ CnðG;MÞ. In fact, Cn,
Zn, and Bn are all groups and the coboundary maps are
homomorphisms. It is easy to see that Bn

ρðG;MÞ is a normal
subgroup of Zn

ρðG;MÞ. Since d is a boundary map, we
think of the n-coboundaries as being trivial n-cocycles, and
it is natural to consider the quotient group

Hn
ρðG;MÞ ¼ Zn

ρðG;MÞ
Bn
ρðG;MÞ ; ðA6Þ

which is called the nth group cohomology. In other words,
Hn

ρðG;MÞ collects the equivalence classes of n-cocycles
that only differ by n-coboundaries.
The algebraic definition we give for group cohomology

is most convenient for discrete groups. For continuous
group, formally the same definition applies, but one has to
impose proper continuity conditions on the cocycle
functions.
Let us now consider M being a G module with trivial

action, and let g ∈ G be an arbitrary element. We define the
slant product ιg∶ CnðG;MÞ → Cn−1ðG;MÞ:

ιgωðg1;…;gn−1Þ

¼
Yn−1
j¼0

ωðg1;…;gj;g;gjþ1;…;gn−1Þð−1Þn−1þj
: ðA7Þ

It can be shown that dðιgωÞ ¼ ιgðdωÞ. Therefore, ιg is, in
fact, a group homomorphism:

ιg∶ HnðG;MÞ → Hn−1ðG;MÞ: ðA8Þ

APPENDIX B: KÜNNETH FORMULA

The Künneth formula for the group cohomology of the
direct product of two groups HdðG ×G0;MÞ reads:

Hd½G ×G0;M� ¼ ⨁
d

k¼0

Hk½G;Hd−k½G0;M��: ðB1Þ

Here,M is Abelian and finitely generated (e.g.,M ¼ Z or a
finite Abelian group), and we only consider M being a
trivial G ×G0 module. This formula has been derived in
Ref. [31] for finite G and G0. We shall briefly review the
relevant mathematical results and show that the formula
generally holds for discrete groups and Lie groups.
We start from the Künneth formula for topological

cohomology. Let X and X0 be two topological manifolds,
we have [31]

Hd½X × X0;M� ¼ ⨁
d

k¼0

Hk½X;Hd−k½X0;M��: ðB2Þ

Notice that Hd½X;M� is the topological cohomology of
chain complexes X with coefficient in M. Now we set
X ¼ BG and X0 ¼ BG0, i.e., the classifying spaces of
principle G and G0 bundles. In order to derive Eq. (B1)
from Eq. (B2), we need Hd½BG;M� ¼ Hd½G;M�. It is well
known that this is true for discrete G by construction.
For a compact (continuous) Lie group G, a theorem of
Wigner [66,67] shows that, if we define Hd½G;M� as the
Borel cohomology (which is exactly what we need in the
physical applications), the relation also holds. Therefore,
Eq. (B1) holds generally for discrete groups and compact
Lie groups.
We also need to establish the formula for U(1) coef-

ficients. This is achieved by making use of the following
relation:

Hd½G;Uð1Þ� ¼ Hdþ1½G;Z�: ðB3Þ

Again, when G is continuous, we should use Borel
cohomology.
We now apply the Künneth formula to compute

the decomposition of Hn½Zd ×G;Uð1Þ�. First, we can
show that
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Hn½Zd;Z� ¼
�
ZðdnÞ for 0 ≤ n ≤ d

Z1 for d < n:
ðB4Þ

To see this result, we notice that BZd ¼ Td, the d-dimensional torus, and so the right-hand side of Eq. (B4) is the well-
known (topological) cohomology of the torus. We then have

Hn½Zd ×G;Uð1Þ� ¼ Hnþ1½Zd ×G;Z�

¼
Ynþ1

k¼0

Hk½G;Hnþ1−k½Zd;Z��

¼
Ynþ1

k¼maxf1;n−dþ1g
Hk½G;Z�ð d

n−kþ1
Þ

¼
Yn

k¼maxf0;n−dg
Hk½G;Uð1Þ�ð d

n−kÞ: ðB5Þ

APPENDIX C: EXPLICIT REPRESENTATIONS OF KÜNNETH DECOMPOSITION

We now give explicit representative n-cocycles for each equivalence class in Hn½G ×H;Uð1Þ�, in terms of lower-
dimensional cohomology classes. We write an element of G ×H as ðg;hÞ. A U(1) n-cohomology class [ω] can be
represented by an n-cocycle of the form

ω(ðg1;h1Þ;…; ðgn;hnÞ) ¼
Yn
k¼0

νkðh1;h2;…;hk;gkþ1;…;gnÞ; ðC1Þ

where each νk represents a normalized n-cocycle (i.e., dνk ¼ 1). Explicitly, they must satisfy the condition

νkðfhigkþ1
i¼2 ; fgjgnþ1

j¼kþ2Þνð−1Þ
nþ1

k ðfhigki¼1; fgjgnj¼kþ1Þ
Yk
p¼1

νð−1Þ
p

k ðh1;…;hp−1;hphpþ1;hpþ2;…;hkþ1; fgjgnþ1
j¼kþ2Þ

·
Yn

q¼kþ1

νð−1Þ
q

k ðfhigki¼1;gkþ1;…;gq−1;gqgqþ1;…;gnþ1Þ ¼ 1: ðC2Þ

In this equation, if we set gkþ1 ¼ 1, we get

νkðfhigkþ1
i¼2 ; fgjgnþ1

j¼kþ2Þ
Yk
p¼1

νð−1Þ
p

k ðh1;…;hp−1;hphpþ1;hpþ2;…;hkþ1; fgjgnþ1
j¼kþ2Þ · νð−1Þ

kþ1

k ðfhigki¼1; fgjgnþ1
j¼kþ2Þ ¼ 1;

ðC3Þ

which is exactly the k-cocycle condition on H. In
other words, for fixed values of gj, the quantity νkðh1;h2;
…;hk;gkþ1;…;gnÞ is a k-cocycle in Zk½H;Uð1Þ�. If we
modify νk by a k-coboundary ofH (still fixing all the gj), it
is not difficult to see that νk as a n-cocycle of G ×H is then
modified by an n-coboundary, which is cohomologically
trivial. Therefore, we can say that νk corresponds to a
cohomology class inHk½H;Uð1Þ�. More abstractly, we can
view ½νk� as a function of (n − k) elements of G
to Hk½H;Uð1Þ�.

Now let us substitute Eq. (C3) back into Eq. (C2). We see
that, when hi are fixed, νkðh1;h2;…;hk;gkþ1;…;gnÞ is a
(n − k)-cocycle in Zn−k½G;Uð1Þ�. Combined with the
previous results, it follows that νk corresponds to a
(n − k)-cocycle in Hn−k½G;Hk½H;Uð1Þ��.
We also notice that this parametrization provides a

concrete recipe to write down a representative n-cocycle
for the cohomology classes in Hn½G ×H;Uð1Þ�, given a
cohomology class in Hn−k½G;Hk½H;Uð1Þ��.
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Furthermore, given the decomposition of Eq. (C1), one
can extract νk by applying slant products:

ið1;hkÞið1;hk−1Þ � � � ið1;h1Þω(ðgkþ1; 1Þ;…; ðgn; 1Þ)
¼

Y
p

νðhp1
;…;hpk

;gkþ1;…;gnÞσðpÞ: ðC4Þ

This follows from a straightforward application of the
definition of the slant product, so we omit the details.

APPENDIX D: SIMPLIFYING ½oyx� WHEN
THE F SYMBOLS ARE NONTRIVIAL

We simplify the expression of the obstruction class
involving nontrivial F symbols. First let us display the
full expression of the obstruction:

Oðg;h;k; lÞ ¼ Fwðg;hÞwðk;lÞwðgh;klÞFwðk;lÞwðh;klÞwðg;hklÞFwðh;kÞwðg;hkÞwðghk;lÞ

Fwðg;hÞwðgh;kÞwðghk;lÞFwðk;lÞwðg;hÞwðgh;klÞFwðh;kÞwðhk;lÞwðg;hklÞ R
wðg;hÞ;wðk;lÞ: ðD1Þ

For a derivation of the result, we refer the readers to
Refs. [18,26].
We first need to have an explicit general expression of

the F symbols. The Abelian subcategory A can always be
decomposed into cyclic groups as A ¼ Q

jZNj
, i.e., each

a ∈ A can be uniquely represented as a tuple
a ¼ ða1; a2;…Þ, where aj ∈ ZNj

. For Abelian theories,
the possible F symbols that satisfy the pentagon consis-
tency equation are classified by H3½A;Uð1Þ�. These are
further constrained by the hexagon consistency equations,
which must be satisfied by a braided theory of anyons. The
allowed F symbols can then be brought to the form

Fabc ¼ exp

�
i2π

X
j≤k

pjk

NjNk
½aj�Nj

ð½bk�

þ ½ck� − ½bk þ ck�ÞNk

�
; ðD2Þ

where pjk ∈ Z. In the nomenclature of Ref. [68], this only
involves 3-cocycles of type I and type II, as the type III
cocycles are excluded by the hexagon equations.
To shorten the expressions, we define

fða; bÞ ¼ exp

�
i2π

X
j≤k

pjk

NjNk
½aj�Nj

½bk�Nk

�
: ðD3Þ

So the F symbols can be written as

Fabc ¼ fða; bÞfða; cÞ
fða; b × cÞ : ðD4Þ

We also define for convenience

β≡ bðTx; TyÞ; xg ¼ bðg; TxÞ; yg ¼ bðg; TyÞ:
ðD5Þ

We now define ~oðg;hÞ formally as the contribution to
the slant product oyx from the F symbols, which is

neglected in the main text where we assume all F symbols
can be made trivial. We do not bother to write down the
general expression since it is too complicated and not very
enlightening. However, before we proceed to calculate
~oðg;hÞ, we first discuss how it is affected by the gauge
transformations on F and R symbols. Recall that F symbols
have the following gauge degrees of freedom:

Fabc →
uða; bÞuða × b; cÞ
uða; b × cÞuðb; cÞF

abc: ðD6Þ

Here, uða; bÞ is an arbitrary U(1)-valued function.
Mathematically, the gauge transformations modify the F
symbols by a coboundary in B3(A;Uð1Þ). Under such a
gauge transformation, one finds that

~oðg;hÞ → ~oðg;hÞ uðxg; yhÞuðxh; ygÞ
uðyg; xhÞuðyh; xgÞ

ð2 − coboundaryÞ:

ðD7Þ

When combining ~oðg;hÞ with the definition of oyx, the
extra piece ðuðxg; yhÞuðxh; ygÞ=uðyg; xhÞuðyh; xgÞÞ, which
is not generally a coboundary, will be canceled by a similar
factor coming from the R symbols, so that oðg;hÞ indeed
acquires just a coboundary.
Now let us compute ~o using the gauge choice of

Eq. (D4):

~oðg;hÞ ¼ fðβ; xghyghÞ
fðβ; xgygÞfðβ; xhyhÞ

fðxg; βygÞfðxh; βyhÞ
fðxg; βyghÞfðxh; βyghÞ

×
fðyg; xghÞfðyh; xghÞ
fðyg; xgÞfðyh; xhÞ

fðxg; yhÞfðxh; ygÞ
fðyg; xhÞfðyh; xgÞ

:

ðD8Þ

Note that xgh ¼ xhg since bð·; TxÞ ∈ H1½G;A�. It follows
that
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~oðg;hÞ
~oðh;gÞ ¼ 1: ðD9Þ

For Abelian G, Eq. (D9) is the necessary and sufficient
condition to show ~oðg;hÞ is a coboundary. One may
wonder whether this statement depends on gauge choices
for F and R symbols. But from Eq. (D7), we can be assured

that ~oðg;hÞ= ~oðg;hÞ does not depend on the gauge choice
of F and R symbols.
We now assume lattice rotational symmetry so

xg ¼ yg. Note that if G is continuous, xg ¼ yg ¼ I, and
the analysis also holds. Again, we can show ~oðg;hÞ is a
coboundary:

~oðg;hÞ ¼ fðβ; x2ghÞ
fðβ; x2gÞfðβ; x2hÞ

fðxg; βxgÞfðxh; βxhÞ
fðxgh; βxghÞ

fðxgh; xghÞ
fðxg; xgÞfðxh; xhÞ

fðxgh; βxghÞ
fðxg; βxghÞfðxh; βxghÞ

fðxg; xghÞfðxh; xghÞ
fðxgh; xghÞ

: ðD10Þ

The first three factors are exactly in the form of coboundaries. We now write out the last two more explicitly:

fðxgh; βxghÞ
fðxg; βxghÞfðxh; βxghÞ

fðxg; xghÞfðxh; xghÞ
fðxgh; xghÞ

¼ exp

�
i2π

X
j≤k

pjk

NjNk
ð½xjgh� − ½xjg� − ½xjh�ÞNj

ð½βk þ xkgh� − ½xkgh�ÞNk

�

¼ exp

�
i2π

X
j≤k

pjk

NjNk
ð½xjgh� − ½xjg� − ½xjh�ÞNj

ð½βk þ xkgh� − ½xkgh� − ½βk�ÞNk

�

× exp

�
i2π

X
j≤k

pjk

NjNk
ð½xjgh� − ½xjg� − ½xjh�ÞNj

½βk�Nk

�

¼ exp

�
i2π

X
j≤k

pjk

NjNk
ð½xjgh� − ½xjg� − ½xjh�ÞNj

½βk�Nk

�
; ðD11Þ

which is also a coboundary. From Eq. (D7), we see that
when xg ¼ yg, under the gauge transformation of F and R
symbols, ~oðg;hÞ is modified only by a coboundary, so
although we have chosen a particular gauge Eq. (D2) for
our computation, our conclusion holds generally.
In summary, we shown that if either G is Abelian, G is

continuous, or there is a rotation symmetry, then ½ ~o� ¼ ½1�
and the analysis of the main text holds.
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