
Spectral Entropies as Information-Theoretic Tools for Complex Network Comparison

Manlio De Domenico1,* and Jacob Biamonte2
1Departament d’Enginyeria Informàtica i Matemàtiques,
Universitat Rovira i Virgili, 43007 Tarragona, Spain

2Quantum Complexity Science Initiative, Department of Physics, University of Malta, Msida MSD 2080,
Malta and Institute for Quantum Computing, University of Waterloo, Waterloo, N2L 3G1 Ontario, Canada
(Received 25 August 2016; revised manuscript received 17 October 2016; published 21 December 2016)

Any physical system can be viewed from the perspective that information is implicitly represented in its
state. However, the quantification of this information when it comes to complex networks has remained
largely elusive. In this work, we use techniques inspired by quantum statistical mechanics to define an
entropy measure for complex networks and to develop a set of information-theoretic tools, based on
network spectral properties, such as Rényi q entropy, generalized Kullback-Leibler and Jensen-Shannon
divergences, the latter allowing us to define a natural distance measure between complex networks. First,
we show that by minimizing the Kullback-Leibler divergence between an observed network and a
parametric network model, inference of model parameter(s) by means of maximum-likelihood estimation
can be achieved and model selection can be performed with appropriate information criteria. Second, we
show that the information-theoretic metric quantifies the distance between pairs of networks and we can use
it, for instance, to cluster the layers of a multilayer system. By applying this framework to networks
corresponding to sites of the human microbiome, we perform hierarchical cluster analysis and recover with
high accuracy existing community-based associations. Our results imply that spectral-based statistical
inference in complex networks results in demonstrably superior performance as well as a conceptual
backbone, filling a gap towards a network information theory.
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I. INTRODUCTION

Shannon’s entropy [1] and information-theoretic-derived
measures have been successfully applied in a range of
disciplines, from revealing time scale dependence in neural
coding [2,3] to quantifying quantum information [4–6] and
the complexity of genetic sequences [7,8] or to unravel the
mesoscale organization of interconnected systems [9–12],
to cite just a few emblematic achievements. However, when
it comes to complex networks, an appropriate definition of
entropy has remained elusive—applicability being often
limited to the probability distribution of some network
descriptor (such as the normalized distribution of node
degrees).
Complex network theory dates to the discovery of several

fundamental features [13,14], and complex networks have
been widely used to model and better understand the
organization of complex systems and their dynamics
[15–20], the controllability of their constituents [21], and

their resilience to structural and dynamical perturbations
[22–27]. A recent and ongoing drive in complex networks is
to merge ideas with quantum information science, including
entangled networks for communication [28–30], develop-
ing a theory of node centrality in quantum walks on graphs
[31], and the detection of community structures formed in
quantum systems [32].
In the same spirit as the Church-Turing-Deutsch prin-

ciple [33], like all physical systems it is possible to view
complex networks in terms of information processing, in
which information changes in time from an input to an
output state of a system. This then necessitates a method to
quantify this information, its time dependence in terms of
storage and transfer of information, ideally between levels
of a multilayer system, which can further be imperfect due
to randomness or noise. A similar challenge was addressed
by quantum theorists beginning decades ago when faced
with quantifying informatic properties of quantum states
[4–6,34–37]. Indeed, the modern theory of quantum
information, as the name suggests, is fundamentally built
upon the quantification of physical information, entropic-
based quantifications of nonlocality, entanglement [35] and
the inherent complexity of the quantum model [37]. These
decades of research have placed entropic measures central
to the modern theory, leading to quantum generalizations of
Shannon’s classical information theory [4–6,34–37].
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However, for a variety of reasons, these results cannot be
applied directly to complex networks, although classical
information-theoretic tools have been successfully adopted
to solve specific problems [11,38–46].
Here, we address a similarly motivated challenge:

inspired by how entropy is calculated in quantum systems,
we define an interconnectivity-based density matrix to
calculate the von Neumann entropy of a network. We
analytically prove that our definition satisfies the desired
additivity properties similar to quantum thermodynamic
entropy—though the proof of this differs tremendously
from the quantum case—which opens the door to avoid the
shortcomings, recently pointed out in Ref. [47], imposed by
subadditivity failing, as found in past approaches.
We exploit this entropy to develop a set of informa-

tion-theoretic tools that apply to complex networks, such
as Rényi q entropy, generalized Kullback-Leibler and
Jensen-Shannon divergences, thus providing a backbone
to an information-theoretic approach to network science.
Our framework, based on spectral properties of networks,
allows one to probe contemporary problems faced in
complex network science. For instance, we show that
Kullback-Leibler minimization can be used to infer the
parameter(s) of a model aimed to fit an observed net-
work. By exploiting results of classical information
theory, we are able to introduce the spectral counterpart
of likelihood maximization and use it in practical
applications to fit network models and perform model
selection based on appropriate Akaike and Bayesian
information criteria, as well as minimum description
length. The strength of our approach relies on the fact
that it uses the network as a whole, instead of a subset of
the network’s descriptors, to attack parameter inference
and model selection problems.
Another important by-product of the proposed

information-theoretic framework is the possibility to quan-
tify the distance between complex networks. This problem
is of great interest in network science [48] and, more
specifically, in recent applications concerning multilayer
systems, such as time-varying and multiplex networks
[49–51]. This type of system consists of nodes replicated
across several networks that exhibit different types of
relationships or connectivity [52]. The possibility to com-
pare layers from an information-theoretic point of view has
been recently explored to aggregate them in order to reduce
the structure and the complexity of biological, transporta-
tion, and social multiplex networks [47]. To numerically
probe our method, we cluster the layer of an empirical
system and compare it against the existing classification.

II. VON NEUMANN ENTROPY
OF A COMPLEX NETWORK

In quantum mechanics, probability distributions are
encoded by density matrices. A density matrix ρ is a
Hermitian and positive semidefinite matrix, with trace

equal to unity, which is used to represent both mixed
and pure quantum states. A system is in a pure state jψi if
and only if the bound Trρ2 ≤ 1 is saturated. The density
matrix admits a spectral decomposition as

ρ ¼
XN
i¼1

λijϕiihϕij ð1Þ

for an orthonormal basis fjϕiig, where λi are non-negative
eigenvalues that sum up to 1.
The density matrix allows one to define the von

Neumann entropy by

SðρÞ ¼ −Trðρlog2ρÞ ¼ −
XN
i¼1

λilog2λi; ð2Þ

i.e., it is equal to the Shannon entropy of the eigenvalues of
the density matrix, where by convention 0 log2 0 ≔ 0.
In this work, we are not limited in having a quantum

setup where the matrix ρ can be called a “density matrix” in
the physical sense, but instead we build on this idea to
define a matrix from a network that satisfies the same
mathematical properties of a density matrix.
First, such a density matrix should be positive semi-

definite and symmetric; therefore, ρ ¼ Z−1e−βH, with H a
symmetric matrix with non-negative eigenvalues and Z and
β real numbers, is a suitable candidate. Second, the
eigenvalues of ρ must sum to unity, thus imposing the
constraint Z ¼ Tre−βH.
If β parametrizes the temperature of a quantum system

with Hamiltonian H and Z ¼ Tre−βH, ρ would provide the
Gibbs state of the system in equilibrium at finite temper-
ature. In this scenario, a case corresponding to negative
temperatures, more specifically, when β ¼ −1, has been
considered. By neglecting the normalizing factor Z (i.e., by
imposing Z ¼ 1) and considering H ¼ A, the resulting
operator becomes the communicability matrix introduced
by Estrada [53–58] (see Ref. [59] for a thorough review).
The concept of communicability has been introduced to

provide a quantitative measure of correlation and flow
between different parts of a system. Despite the different
definitions available in the literature [59], the common
rationale is to exploit how information diffuses through a
network, beyond the classical shortest-path paradigm. In
fact, the communicability matrix is built by considering all
possible topological routes between any pairs of nodes in
the network and by assigning appropriate (smaller) weights
to longer ones.
It has been shown that this approach provides insights

about the structure and the function of a system. In fact,
communicability can be better understood when modeling
a network as a system of classical or quantum oscillators
[59] and it is related to the walk entropy used to character-
ize graphs using statistical-mechanical concepts [60,61].
In this work, we address the problem of defining an

information-theoretic framework for complex networks
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and, to this aim, we focus on how information diffuses
through a network. It is straightforward to show that, if pð0Þ
is a vector encoding the amount of information in one ormore
nodes of the system at time τ ¼ 0, its evolution across time is
given by pðτÞ ¼ e−τLpð0Þ, where L ¼ D −A denotes the
combinatorial graph Laplacian, withA the adjacency matrix
of the network and D the diagonal matrix of node degrees.
Here, e−τL is the diffusion propagator at time τ.
This propagator exhibits some interesting properties that

make it a suitable candidate for a density matrix. Despite
the fact that its eigenvalues do not sum to unity, the
eigenvalues of the matrix

ρ ¼ e−τL

Z
; Z ¼ Tre−τL ð3Þ

satisfy this fundamental property. Therefore, we define the
density matrix in terms of the normalized diffusion propa-
gator described above, where β ¼ τ > 0 is interpreted as a
parameter playing the role of time. This choice has the
advantage of allowing a multiresolution analysis of a
system, in the same spirit of recent studies that make
use of synchronization dynamics to detect topological
scales [62] and Markov processes to unravel the mesoscale
organization of complex networks [9,11,12,63–65]. In this
framework, it is worth mentioning that Z ¼ P

N
i¼1 e

−λiτ is
proportional to the average return probability, i.e., the
probability that a walker starting at any node i will return
to its origin at time τ. In the following, we use β and τ
interchangeably.
In Ref. [66], a matrix is built in such a way that its

mathematical properties satisfy the requirements of a
density matrix. For an undirected complex network, L is
symmetric and positive semidefinite, but its eigenvalues do
not sum to unity. However, the eigenvalues of the proposed
matrix, defined by ρBGS ¼ L=TrL, evidently do, therefore
ρBGS is a mathematically suitable density matrix [38,66]
and, hence, Eq. (2) can in principle be applied. This
approach has been recently generalized to the case of
multilayer systems [52], composite networks where units
exhibit different types of relationships that are generally
modeled as different layers and used to reduce their
structure [47].
However, it has been recently found that the von

Neumann entropy calculated from the rescaled Laplacian
ρBGS does not satisfy the subadditivity property in some
critical circumstances [47]. For instance, let ρBGS be the
rescaled Laplacian matrix of a network with N nodes and
jEj ≫ 1 edges, let σBGS be the rescaled Laplacian matrix of
a network with N nodes and just one (undirected) edge, and
let τBGS be the rescaled Laplacian of the network obtained
by summing up, entry wise, the corresponding adjacency
matrices of the previous two networks. Since SðσBGSÞ ¼ 0,
the subadditivity property SðτBGSÞ ≤ SðρBGSÞ þ SðσBGSÞ is
not always satisfied because, as we see later, SðτBGSÞ ≥
SðρBGSÞ very often.

While this peculiar behavior can in fact be exploited in
certain situations [47], one is interested in preserving
subadditivity, because in general it is expected that the
entropy of a composite system Aþ B is equal to or smaller
than the sum of the entropy of A and B. In the case of
complex networks, it seems intuitively reasonable but has
remained to be proven, see Appendix A, that the aggre-
gation of two graphs is expected to have lower entropy than
the sum of the entropy of each graph separately. The
entropy of the density matrix introduced to complex
networks in this work—which we call spectral entropy
—presents some interesting features that we discuss later. A
visualization of the density matrix corresponding to differ-
ent network models is shown in Fig. 1.

III. VON NEUMANN ENTROPY OF
STANDARD NETWORK MODELS

For simplicity, in the following we use ρ ¼ ρG, where
there will be no ambiguity about which density matrix is
under consideration. Indeed, we also use the notation
SðGÞ ¼ SðρGÞ to indicate the entropy of network G.
From the eigendecomposition of the Laplacian

matrix L ¼ QΛQ−1, where Λ is the diagonal matrix of
Laplacian’s eigenvalues, it is straightforward to show that

Z ¼
XN
i¼1

e−βλiðLÞ; ð4Þ

FIG. 1. Density matrix of a complex network. Network (top)
and corresponding density matrix (bottom) from (a) a stochastic
block model and (b) Watts-Strogats networks, for β ¼ 3.16.
Colors in the networks indicate nodes belonging to the same
community, whereas colors in the density matrices indicate the
magnitude of the corresponding entry. Networks with N ¼ 200
nodes are shown.
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where λiðLÞ indicates the ith eigenvalue of L. In our
framework, the timelike parameter β cannot take
negative values. For β ¼ −1, this normalization factor
gives the Laplacian Estrada index of a network, which
has found applications in graph theory and network science
[59,67,68].
The spectral entropy of ρ can be rewritten as

SðρÞ ¼ −
XN
i¼1

λiðρÞ log2 λiðρÞ: ð5Þ

It follows that

λiðρÞ ¼ Z−1e−βλiðLÞ ð6Þ
provides the relationship between the eigenvalues of the
density and the Laplacian matrices. Using Eq. (6), the
spectral entropy of the network G reduces to

SðGÞ ¼ 1

Z ln 2

XN
i¼1

e−βλiðLÞ½lnZ þ βλiðLÞ�

¼ log2 Z − β
∂ log2 Z

∂β ¼ log2 Z þ β

ln 2
Tr½Lρ�: ð7Þ

A similar result, where the negative adjacency matrix
−A of the graph is used instead of the combinatorial
Laplacian, has been obtained from a statistical-mechanical
approach to subgraph centrality in complex networks [69].
It is worth remarking that in that context, the parameter β
played the role of an inverse temperature, with the operative
meaning of rescaling all nodes’ interconnections by a
factor β.
A possible interpretation of this entropy is given later.

Here, it is worth discussing some very special cases, where
the spectral entropy following from our definition provides
very different results from BGS [SBGS ¼ SðρBGSÞ].
Networks of isolated nodes.—First, let us consider

the case of a network with no links among nodes.
The eigenvalues of the combinatorial Laplacian are all 0,
Z ¼ N, and S ¼ log2 N; i.e., the entropy is maximum
regardless of β, whereas SBGS is not defined.
Single-link networks.—Let us consider a network with

only one link between node i and node j; i.e.,
A ¼ EðijÞ þEðjiÞ, with EðijÞ the canonical matrix with
all zero entries except in ith–jth component. It is straight-
forward to show that the eigenvalues of the combinatorial
Laplacian are all 0 except the one whose value is 2. While
SBGS ¼ 0, it follows that

S ¼ log2 Z þ 2βe−2β

Z ln 2
; ð8Þ

where Z ¼ N − 1þ e−2β and the asymptotic behavior is
log2N for any β. Our spectral entropy scales with the size
of the network when only one directed link is present.

Lattice graphs.—Squared lattice graphs with N nodes,
a special case of lattices, can be obtained from the product
of two path graphs with

ffiffiffiffi
N

p
nodes. Therefore, the spectrum

of the Laplacian matrix is given by the sum of the
eigenvalues of the path graphs and are given by λl;m ¼
4fsin2½πl=ð2 ffiffiffiffi

N
p Þ� þ sin2½πm=ð2 ffiffiffiffi

N
p Þ�g

(l; m ¼ 0; 1; 2;…;
ffiffiffiffi
N

p
− 1). In this case,

Z ¼
XffiffiffiNp

l;m¼1

e−4β½sin2ðπl=2
ffiffiffi
N

p Þþsin2ðπm=2
ffiffiffi
N

p Þ� ð9Þ

and

S ¼ log2 Z −
β

Z ln 2
∂Z
∂β : ð10Þ

Complete networks.—In the case of the clique network,
there are N − 1 eigenvalues equal to N, from which

S ¼ log2 Z þ βNðZ − 1Þ
Z ln 2

; ð11Þ

where Z ¼ 1þ ðN − 1Þe−βN and the asymptotic behavior
is log2N for small β and 0 for large β.
Complex network models.—We show in the top panels of

Fig. 2 the von Neumann entropy as a function of 1=β for
Erdös-Rényi [70], Watts-Strogatz [14], and K-regular net-
works, for different values of their parameters, the link
probability plink, the rewiring probability prew, and the
number K of node neighbors, respectively. In all three
network types, when β is high, the entropy tends to zero,
whereas it approaches the theoretical limit log2 N when β is
small enough. In the bottom panels of Fig. 2, we show the
value of the spectral gap as a function of 1=β. Intriguingly,
the value of β, where the spectral gap is maximum,
corresponds to the value where a knee is observed in the
spectral entropy (see Appendix B for further details).
Subadditivity of spectral entropy.—Let us consider an

undirected network G of N nodes changing over time, with
adjacency matrix Að0Þ at time t ¼ 0. At each time step t a
pair of two nodes, chosen uniformly randomly and not yet
connected, is linked by one undirected link. This is
equivalent to having another network G0ðtÞ consisting of
just one link and N − 2 isolated nodes, whose adjacency
matrix A0ðtÞ is summed up to Aðt − 1Þ such that
AðtÞ ¼ Aðt − 1Þ þA0ðtÞ. If Gðt − 1Þ and G0ðtÞ have no
edges in common, the above operation is equivalent to the
union of the two graphs, another typical approach to
aggregate networks.
One immediately asks if the spectral entropy defined in

this work and the BGS entropy satisfy the subadditivity
property such that

S(GðtÞ) ≤ S(Gðt − 1Þ)þ S(G0ðtÞ): ð12Þ
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We show in Fig. 3 the distribution of ΔS ¼ S(GðtÞ) −
½S(Gðt − 1Þ)þ S(G0ðtÞ)� obtained by calculating both
quantum and BGS entropy for an ensemble of Erdös-
Rényi networks. Similar results are obtained by using
ensembles of Watts-Strogatz and K-regular networks.
As proven in the Appendix A, the spectral entropy does

not violate the subadditivity property regardless of the
value of β, whereas the SBGS often violates these sensible
additivity requirement. See Appendix A for further details.

IV. RÉNYI ENTROPY OF COMPLEX NETWORKS

ThevonNeumann entropy is just a special case of themore
general Rényi entropy of a quantum system, defined by [36]

Sq ¼
1

1 − q
log2Trρq ¼

1

1 − q
log2

XN
i¼1

λiðρÞq: ð13Þ

FIG. 2. von Neumann entropy of complex network models. Top panels: Spectral entropy as a function of 1=β for Erdös-Rényi
networks (left), Watts-Strogatz’s small-world networks (center), and K-regular lattices (right). Color encodes realizations obtained by
varying the parameter of the network model, i.e., the probability plink of a link between two nodes, the rewiring probability prew, and the
number of neighbors K, respectively. In all cases, networks with N ¼ 200 are considered. Bottom panels: Spectral gap as a function of
1=β. Note that the value of β where it is maximum corresponds to the value where a knee is observed in the spectral entropy (see
Appendix B for further details).

FIG. 3. Subadditivity of spectral entropy. Distribution of en-
tropy variation (see the text) for an Erdös-Rényi network with
plink ¼ 0.01 and N ¼ 100. The results for the quantum entropy
defined in this work (left-hand panel) and the BGS entropy
(right-hand panel) are shown. Quantum entropy never violates
subadditivity, regardless of the β parameter, whereas the BGS
entropy significantly violates subadditivity.

SPECTRAL ENTROPIES AS INFORMATION-THEORETIC … PHYS. REV. X 6, 041062 (2016)

041062-5



It is widely used in quantum information theory and quantum
computing to quantify entanglement [71] and correlations in
physical systems [72], it can be expressed as families of tensor
network contractions [73], and it has been found to share a
close relationship to free energy [74].
By using Eq. (6), the Rényi spectral entropy of a

complex network is therefore given by

Sq ¼
1

1 − q
ln
XN
i¼1

Z−qe−qβλiðLÞ; ð14Þ

in terms of the eigenvalues of the Laplacian matrix. In fact,
this entropy generalizes other entropic measures. As q
approaches 0, Sq increasingly weights all eigenvalues more
equally, approaching the Hartley entropy. In the limit of
q → 1, Rényi entropy approaches the spectral entropy.
As q approaches ∞, Sq becomes dominated by the high-
probability events and it converges to the min entropy. The
case with q ¼ 2 recovers the collision entropy—in the case
of quantum systems, this is connected to the purity of the
system. In fact, S2 identically vanishes for ρ2 ¼ ρ, i.e., for
pure states.
In Fig. 4, we show entropy as a function of q at different

values of β for Erdös-Rényi, Watts-Strogatz, and K-regular
networks, respectively, for different values of their param-
eters. It is common to assess that the Watts-Strogatz
network reduces to a K-regular graph for prew ¼ 0 and
approaches an Erdös-Rényi network for pres ¼ 1. However,
the behavior of Rényi entropy as a function of q shows that
there are some significant differences at least in the latter
case, where the entropy is considerably larger for the Watts-
Strogatz model than for the Erdös-Rényi one.

V. GENERALIZED QUANTUM DIVERGENCES
BETWEEN TWO COMPLEX NETWORKS

One of the main goals of information theory is to
quantify the amount of information about a probability
distribution—generally obtained from empirical measure-
ments—provided that one has full information about
another probability distribution, e.g., the model. This goal
is achieved by introducing relative entropies or, equiva-
lently, information divergences.
Similarly, the introduction of divergences (also known as

quantum relative entropy) in quantum information theory is
foundational to the quest to understand differences between
quantum states, quantum and classical information, the
quantification of the thermodynamic cost of communica-
tion, as well as optimal protocols to transfer information;
see, e.g., the reviews [6,75].
The quantum Rényi entropy can be used to define the

quantum Rényi divergence, also known as q-relative Rényi
entropy, by

DqðρjjσÞ ¼
1

q − 1
log2Trðρqσ1−qÞ; ð15Þ

which is defined for q > 0 and reduces to the quantum
Kullback-Leibler divergence (or, equivalently, the quantum
relative entropy),

D1ðρjjσÞ ¼ Tr½ρðlog2 ρ − log2 σÞ�; ð16Þ

for q → 1.
In general, such divergences are not symmetric and

bounded, making difficult certain comparisons. An alter-
native measure is the quantum q-Jensen-Shannon diver-
gence [76],

FIG. 4. Rényi entropy of complex network models. Entropy as a function of qwith β ¼ 1=15.8 for Erdös-Rényi networks (left), Watts-
Strogatz’s small-world networks (center), and K-regular lattices (right). Color encodes realizations obtained by varying the parameter of
the network model, i.e., the probability plink of a link between two nodes, the rewiring probability prew, and the number of neighbors K,
respectively. In all cases, networks with N ¼ 200 are considered.
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J qðρjjσÞ ¼ Sq

�
ρþ σ
2

�
−
1

2
½SqðρÞ þ SqðσÞ�; ð17Þ

where μ ¼ ðρþ σ=2Þ is usually called the mixture matrix.
It can be proven that J 1=2

q defines a true metric for 0 ≤
q < 2 [76–78] and can be used as a measure of distinguish-
ability [47] or similarity [79].
Our formalism allows us to use the family of q-quantum

divergences to compare two networks, and this opens up a
new approach to attack two fundamental problems in
network science.

A. Maximum-likelihood estimation and model selection

For a given model and its corresponding set of param-
eters, the likelihood function measures the probability of
observing the data according to the model parameters.
Therefore, it is sufficient to perform a maximum-likelihood
estimation to obtain the parameters of the model that better
reproduce the data, according to the model.
While it is straightforward to define the likelihood

function for probability distributions, it is challenging to
define a similar concept in the context of density matrices.
In the case of complex networks the challenge is compli-
cated by the lack of an appropriate probability distribution.
In fact, one usually designs a model, or a set of models, to
reproduce only some salient features of an observed
complex network, often limiting the comparison between
model and data to a few descriptors, such as degree
distribution, degree correlations, clustering, or path
statistics.
Quantum divergences provide a grounded and unifying

approach to this problem. Let us start from the classical
problem where an empirical probability distribution PðxÞ is
obtained from observing the N outcomes fxig
(i ¼ 1; 2;…; N) of a stochastic variable X . Let Qðx;ΘÞ
be a model to approximate PðxÞ, which depends on one (or
more) parameter(s), here indicated byΘ. In this context, the
Kullback-Leibler divergence measures the information gain
when the model Qðx;ΘÞ is used to explain the observation
PðxÞ, and it can be written as

DðPjjQÞ ¼
Z

dxPðxÞ log2
PðxÞ

Qðx;ΘÞ
¼ −SðPÞ −

Z
dxPðxÞ log2 Qðx;ΘÞ: ð18Þ

If the model Q is plausible, there exists a value Θ⋆ such
that the divergence is minimum, and we are interested in
finding such a value by minimizing the divergence with
respect to Θ. We notice that the first term in the right-hand
side of Eq. (18) does not depend on Θ and, therefore, plays
no role in the minimization procedure. By noticing that

PðxÞ ¼ 1

N

XN
i¼1

δðx − xiÞ;

where δ is the Dirac function, the second term in the right-
hand side of Eq. (18) reduces to

Z
dxPðxÞ log2Qðx;ΘÞ ¼ 1

N

XN
i¼1

log2Qðxi;ΘÞ; ð19Þ

which is proportional to the negative log-likelihood func-
tion. Here, the prefactor can be safely neglected during the
minimization procedure. Therefore, by minimizing the
Kullback-Leibler divergence, one effectively maximizes
the log-likelihood function:

min
Θ

fDðPjjQÞg ¼ max
Θ

flog2Lðx;ΘÞg: ð20Þ

We use the proposed framework to achieve a similar
result in the case of density matrices. Let ρ be the density
matrix of an empirical network and let σðΘÞ be a model for
such a network, depending on one (or more) parameter(s),
here indicated by Θ. By starting from Eq. (16), and by
arguments similar to the classical case, it is straightforward
to show that

min
Θ

fDðρjjσÞg ¼ max
Θ

fTr½ρlog2σðΘÞ�g: ð21Þ

By comparing the right-hand side of Eqs. (20) and (21), we
define the network log-likelihood function by

log2LðΘÞ ¼ Tr½ρlog2σðΘÞ�; ð22Þ

where the likelihood function can be calculated by exploit-
ing the properties of the matrix exponential as

LðΘÞ ¼ eTr½ρ lnσðΘÞ�

¼ detðeρ lnσðΘÞÞ: ð23Þ

This result allows us to obtain a maximum-likelihood
estimation of parameter(s) Θ ¼ fθ1; θ2;…; θdg by mini-
mizing the Kullback-Leibler divergence between networks.
The covariance matrix corresponding to this estimation is
the Fisher information matrix (see Appendix C), whose
classical counterpart is equivalent to the Hessian of the
Kullback-Leibler divergence and it is used to assess the
quality of the spectral likelihood estimate. If Θ⋆ is an
unbiased estimator of Θ, the associated covariance matrix
satisfies the Cramer-Rao bound:

covðΘ⋆Þ ≥ I−1ðΘ⋆Þ: ð24Þ

An alternative measure is the Bures-Helstrom metric
[80,81], which is proportional to the quantum Fisher
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information metric (see Appendix C for the spectral version
in the case of complex networks) and can be calculated with
a closed expression in terms of eigenvalues and eigenvec-
tors of the density matrix [82].
We can exploit this finding to go beyond model fitting,

defining an operative procedure for model selection.
In fact, generally more than one model is used to

understand the data, and a fundamental problem in data
analysis, known as model selection, is to quantify which
model out of a set of candidates is the best one in
reproducing the data. One solution to this problem has
been given by Akaike, who proposed an information
criterion (AIC) for this purpose [83], by showing that
the expected value of the relative cross-entropy term in the
Kullback-Leibler divergence equals the log-likelihood of
the model given the data plus a penalizing constant term
that accounts for the number of free parameters. The AIC is
given by

AIC ¼ 2k − 2 log2 LðΘ⋆Þ; ð25Þ

where k is the number of parameters of the model and
we plug Eq. (22) into Eq. (25) for applications to
complex networks. In practice, given a set of models
M ¼ fM1;M2;…;Mng, with a number of parameters
k1; k2;…; kn and likelihood L1;L2;…;Ln, respectively,
the most suitable candidate to explain the data is the one
being a trade-off between having as small as possible
divergence from the data and as small as possible number
of parameters, i.e., the one such that AIC is minimum.
Similarly, other model selection criteria can be extended

from information theory to the complex network frame-
work. This is the case of Bayesian information criterion
(BIC) defined by

BIC ¼ k log2N − 2 log2 LðΘ⋆Þ ð26Þ

and Fisher information approximation (FIA) defined by

FIA ¼ k
2
log2

N
2π

− log2LðΘ⋆Þ

þ log2

�Z
dΘ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detIðΘÞ

p �
; ð27Þ

where the last term penalizes a model because of its
geometric complexity [84,85], a typical concept in infor-
mation geometry [86]. In classical statistical inference, it
has been shown [85] that the FIA quantifies the length of
the shorted description of the data given the model and, as a
consequence, its minimization corresponds to finding the
minimum description length of the network. The minimum
description length principle [87], also known as a formali-
zation of Occam’s razor, represents data and models as
codes to be compressed, where the model better com-
presses data to provide its best description. This principle is

one of the most important concepts in information theory
and its interpretation, in our context, opens the door for
future studies.
To probe the power of the proposed method, we perform

several tests on synthetic networks. We generate a network
from a specific model with a given value of the para-
meter(s), assuming it is the observed network, and a set
of networks from the same model by varying the value of
the parameter(s). Therefore, we perform a maximum-
likelihood parameter estimation based on Kullback-
Leibler minimization to find the value of the parameter
(s) that better fits the observation.
In Fig. 5(a), we consider the case of an Erdös-Rényi

network model (N ¼ 200), with the link probability plink
the parameter to fit and p⋆

link ¼ 0.05 its expected value. By
scanning over the range allowed for plink, we sample an
ensemble of 100 realizations for each value of the link
probability and compare each network against the observed
one to calculate the average Kullback-Leibler divergence.
In principle, the procedure depends on the value of β;
therefore, we perform the analysis for different values of
this parameter in order to understand which value (or range
of values) provides the best fit. We consider specific values
of β for this purpose; more specifically, we calculate the β⋆
such that the entropy normalized to its maximum value, i.e.,
log2N, gets a specific real value cðβ⋆Þ between 0 and 1. We
choose values for cðβ⋆Þ ranging between 0.01 and 0.9, and
the results show that the global minima correspond to or are
very close to the expected value, for cðβ⋆Þ ≤ 0.5. The best
performance is obtained for cðβ⋆Þ < 0.1. This analysis
suggests a rule of thumb to choose a specific value of β for
fitting purposes: the region close to the critical point—
where entropy changes from 0 to a positive value provides
the most performant range for β.
In Fig. 5(b), we show the Kullback-Leibler divergence of

the Watts-Strogatz network model (N ¼ 200) for different
values of the parameters K and prew against a Watts-
Strogatz network with K⋆ ¼ 6 and p⋆

rew ¼ 0.2, assumed to
be the empirical data. The result shows that the most likely
region of the parameter space, i.e., the one where the model
is more informative about the data, is successfully identi-
fied by the Kullback-Leibler minimization procedure pre-
viously described. The result is very interesting because
only a single realization of the model, instead of an
ensemble as in the previous case, has been used for each
pair of parameters, suggesting that the procedure is robust
against sample size while reducing the computational cost
of the calculation.
Figure 5(c) shows the Kullback-Leibler divergence of a

stochastic block model [88] (N ¼ 200) for different values
of the intra- and intercommunity probability parameters,
pintra and pinter, and number of equally sized blocks against
a network obtained from the same model with 8 blocks,
p⋆
intra ¼ 0.5 and p⋆

inter ¼ 0.05, assumed to be the empirical
data. As for the Erdös-Rényi case, we sample an ensemble
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FIG. 5. Maximum-likelihood parameter estimation based on Kullback-Leibler (KL) minimization. (a) Erdös-Rényi network model
(N ¼ 200) for different values of the link probability plink against an Erdös-Rényi network with p⋆

link ¼ 0.05, assumed to be the data to
fit. The vertical dashed line indicates the true value of the parameter. Each curve corresponds to a value β⋆ of β such that
S½ρðβ⋆Þ�=log2N ¼ cðβ⋆Þ, with c a real number between 0 and 1. Global minima are expected around the true value. (b) Watts-Strogatz’s
network model (N ¼ 200) for different values of the parameters K and prew against a Watts-Strogatz network with K⋆ ¼ 6 and
p⋆
rew ¼ 0.2, assumed to be the data to fit. The white dot indicates the true value and it falls in the iso-likelihood region with smallest

Kullback-Leibler divergence (encoded by color in log scale). (c) Stochastic block model (N ¼ 200) for different values of the intra- and
intercommunity probability parameters, pintra and pinter, and number of equally sized blocks against a network obtained from the same
model with 8 blocks, p⋆

intra ¼ 0.5 and p⋆
inter ¼ 0.05, assumed to be the data to fit.
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of 100 realizations for each triad of parameters to calculate
the average Kullback-Leibler divergence between model
and an observation. We show the results for different block
sizes, and the overall minimum is found for 8 blocks,
pintra ¼ 0.6 and pinter ¼ 0.05, in excellent agreement with
expectation.

B. Clustering layers of multilayer systems

The second application concerns the more recent prob-
lem of identifying layers of a multiplex network or snap-
shots of a time-varying network [52] that provide redundant
information about the system and that might be aggregated
to reduce the complexity of the system [47]. In this case, by
using appropriate quantum divergences, it is possible to
calculate a distance between layers or snapshots and devise
exact or heuristics procedures to cluster them. With the
recent rise of interest in multilayer systems [49–51], this
problem became very relevant for practical applications,
e.g., to demonstrate the validity of a multilayer approach to
modeling complex systems such as the human brain [89] or
to reveal the interplay between collaboration networks and
the organization of knowledge in physics [90], with new
approaches to cluster, aggregate, or interconnect layers
proposed more recently [90–92].
Here, we use the networks built from analysis of the

structure and function of the humanmicrobiome, consisting
of 18 layers of a multiplex network, each one corresponding
to a body site. Recently, such layers have been partitioned
into community types, by using Dirichlet multinomial
mixture models, that may be associated with complex
diseases [53]. We use the same data and calculate the
Jensen-Shannon distance between each pair of layers for
different values of the β parameter. We show in Fig. 6 the

resulting hierarchical clustering of the layers, in good
agreement with the result reported in Ref. [53]. A more
quantitative comparison against the results in Ref. [53] is
difficult because only p-value upper bounds are reported in
the study for community-type associations. Nevertheless,
our method is able to correctly reproduce the clustering of
sites within certain body regions: for instance, the commu-
nity consisting of hard palate, tongue dorsum, saliva,
palatine tonsils, and throat, as well as the community made
by vaginal introitus, mid vagina, and posterior fornix, and
the smaller ones made by sub- and supragingival plaque and
left or right retroauricular crease. For ranges of β within 1
order of magnitude, the differences between hierarchies are
small and not significant. Here, we show the results for β ¼
0.1 and β ¼ 10, with cophenetic distance equal to 0.84 and
Baker’s gamma correlation coefficient equal to 0.68. By
performing the same analysis on hierarchieswhere labels are
reshuffled uniformly random, we reject the null hypothesis
that the two dendrograms are uncorrelated (P < 0.001),
supporting the fact that the result is robust to the choice of β.

VI. DISCUSSION

The use of von Neumann entropy is central to modern
quantum information theory, with many new insights, uses,
and interpretations arising often. In the context of complex
networks, spectral entropy might be considered as a
measure of the information content of the system, although
this interpretation is not easy to accept without the
appropriate formalization typical of classical and quantum
information theory.
Here, we observe that networks of isolated nodes (which

challenge the notion of a network itself) and fully con-
nected networks, i.e., cliques, have maximal entropy (the

FIG. 6. Hierarchical clustering of human microbiome sites. The Jensen-Shannon distance matrices with (a) β ¼ 0.1 and (b) β ¼ 10 are
shown, together with their (c) tantlegram, i.e., a visual analysis of their differences. Cophenetic distance and Baker’s gamma correlation
coefficient, quantifying the correlation between the two dendrograms, are reported.
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latter when considered at small values of diffusion time).
When diffusion time is large enough, the entropy of cliques
goes to 0, suggesting that fully connected systems are the
most ordered (or least uncertain). We investigate several
alternative explanations for the entropy proposed in this
work, but the most promising one is based on the number of
possible configurations obtained by reshuffling the con-
nections among nodes, which is equivalent to randomly
reshuffling the entries of the adjacency matrix. In fact, all
possible reshuffled configurations of both the network of
isolated nodes and the clique network do not alter the
system. In other words, the graph isomorphism problem
becomes trivial, as all possible networks are not distin-
guishable from each other, thus maximizing the uncertainty
about the system and, consequently, the entropy. In the case
of K-regular networks, the situation is a bit different,
because not all reshuffled configurations will keep them
unaltered; therefore, such networks are expected to exhibit
lower entropy than log2N. The case of an Erdös-Rényi
network, which is characterized by stochastically homo-
geneous connectivity, is interesting. The entropy for this
type of network is almost always zero or log2N, except for
a narrow range of β. This is compatible with our inter-
pretation, because on average almost any reshuffled con-
figuration of this type of network will resemble the original.
According to this interpretation, extremely sparse networks
and extremely dense networks should exhibit almost
maximum entropy (the latter for insufficient diffusion
time). We perform additional numerical experiments and
theoretical analysis of toy models (path graphs, lattices,
etc.) and we verify our expectation.
The proposed framework is entirely based on the

computation of eigenvalues of density matrices and their
products. The computational complexity of such an oper-
ation is generally expected to be polynomial and to scale as
OðnγÞ, with 2 < γ < 2.4, making challenging calculations
for networks with hundreds of thousands of nodes.
However, recent advances in parallel operations on dense
symmetric matrices make it possible to solve eigenvalue
problems for matrices with size of the order of 105 in less
than 5 min on standard computers [93].

VII. CONCLUSIONS AND OUTLOOK

The concept of thermodynamic entropy has been crucial
to understanding the structure and the dynamics of complex
systems. The generalization of this concept to quantum
mechanics by von Neumann was a milestone in the field,
allowing us, among other applications, to characterize the
mixedness of quantum states.
An appropriate definition of entropy has been lacking in

the field of complex networks, mainly because there is no
simple way to define a probability distribution able to
represent, without loss of information, the network.
Previous attempts to define the entropy of a complex
network were mainly based on the calculation of

Shannon entropy of the probability distribution of some
descriptor(s), while neglecting other information.
More recently, the idea that a quantumlike entropy might

be introduced for complex networks has been explored.
Here, we demonstrate that previous attempts fail in pre-
serving fundamental properties of entropy, like subaddi-
tivity. Motivated by this finding, we propose a density
matrix closely related to how information diffuses through
a network, which nontrivially depends on the correspond-
ing combinatorial Laplacian matrix. One of the main
advantages of this approach, rooted in spectral theory, is
that the resulting entropy does not depend on the distri-
bution of a specific network descriptor, but it depends on
the network as a whole.
In this study, we show, analytically and numerically, that

our density matrix allows us to preserve the basic properties
of an entropy. More specifically, we demonstrate that the
entropy of the system obtained by aggregating two different
networks must be equal to or smaller than the sum of the
entropy of the two nonaggregated networks.
This definition of entropy allows us to define Rényi

spectral entropy and generalize relative entropies, also
known as quantum divergences. By using Kullback-
Leibler divergence and well-known results in classical
information theory, we devise a maximum-likelihood
approach to model fitting, entirely based on the eigenvalue
spectra of density matrices. Our numerical experiments
confirm that by minimizing the Kullback-Leibler diver-
gence between observed network and models, we obtain
the maximum spectral likelihood estimation of parameters.
This result might be of special interest for applications
devoted to unraveling the mesoscale organization of a
network, among others.
Finally, by using the Jensen-Shannon divergence, whose

square root provides a metric, we show that our framework
can be applied to quantify the spectral distance between
two networks. More specifically, this result is of interest for
applications in multilayer network research, where the
distance among layers can be measured and used to
hierarchically cluster them. As a representative example
of the power of our methodology, we show that this
approach recovers with excellent accuracy the commu-
nity-based classification of human microbiome sites.
This study opens interesting perspectives on futureworks.

For instance,while our inference procedure does not provide
the community label to assign to each node, as in commu-
nity-detection methods based on stochastic block modeling
[94–100], it provides a fast way, based on a network’s
spectral properties, to explore the parameter space in order to
identify the most informative region about the data. An
intriguing possibility to explore is how this result can
complement existing network inference approaches [101].
A future application of our framework—of great interest

for the community of network scientists—is the quantifi-
cation of how much information is needed for correctly
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learning the parameters of a model, which should not be
confused with the Cramer-Rao bound. This represents a
crucial issue in network science: connectivity of empirical
networks is often sampled through ad hoc algorithms, as in
the case of virtual social systems, the internet or the world
wide web. Quantifying to what extent it is possible to learn
the parameter(s) of a network model in the absence of
partial connectivity information is a tantalizing possibility,
expected to deepen our understanding of networked
systems.
The information-theoretic quantities we introduce in this

work open the intriguing possibility to extend information
geometry to complex networks. In information geometry
parametric statistical models define a Riemannian manifold
endowed with a Fisher information matrix as a metric
tensor [102,103]. The importance of information manifolds
for statistical inference is well established and has found
applications to machine learning [86,104,105] and phase
transitions in quantum systems [106–111]. It will be
interesting to explore to what extent the success of
information geometry can be ported to statistical inference
of complex networks, where the metric tensor of the
underlying information manifold is given by the spectral
Fisher information matrix.
The potential of the proposed methodologies goes

beyond network science and we envision important con-
tributions to biology—where it has been shown that net-
work entropy can be used to identify lethal proteins [112],
reveal cancer system hallmarks [113], and characterize
aging and cancer progression [114]—and to quantum
physics—especially to the emergent field of Hamiltonian
learning [115,116] and inference of quantum complex
network models based on qubit entanglement [29,30].
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APPENDIX A: SUBADDITIVITY OF THE VON
NEUMANN ENTROPY FOR AGGREGATE

NETWORKS

Let A and B be the adjacency matrices of two networks
GA and GB, respectively, with N nodes. Let C ¼ AþB be
the adjacency matrix obtained by their sum, which repre-
sents a new network GC obtained by aggregating GA and
GB. In the following, we show that SðGCÞ ≤ SðGAÞþ
SðGBÞ, i.e., that the subadditivity property of the entropy
is always satisfied. For the sake of simplicity, we use the
notation SX ¼ SðGXÞ.

Let us indicate with LA, LB, and LC the Laplacian
matrices of GA, GB, and GC, respectively, and let ρA, ρB,
and ρC indicate the corresponding density matrices defined
as in Eq. (3). In the following, we wwork in nat units,
instead of bits.
The Kullback-Leibler divergence of two density matrices

is always non-negative, as a consequence of Klein’s
inequality with fðXÞ ¼ X lnX. Therefore,

DðρCjjρAÞ ¼ −SC − Tr½ρC ln ρA�
¼ −SC þ βTr½LAρC� þ lnZA ≥ 0; ðA1Þ

and similarly for DðρCjjρBÞ. As LA, LB, ρA, and ρB are
positive semidefinite, from their Cholesky factorization it is
straightforward to show that

Tr½LXρX� ¼ Tr½ðDD†ÞðQQ†�Þ
¼ Tr½ðQ†DÞðQ†DÞ†� ≥ 0: ðA2Þ

Moreover, it is possible to show that lnZX ≥ 0. In fact,
ZX ¼ P

N
i¼1 e

−βλiðLXÞ, and λ1ðLXÞ ¼ 0, because of the
Perron-Frobenius theorem. Therefore,

ZX ¼ 1þ
XN
i¼2

e−βλiðLXÞ ≥ 1; ðA3Þ

from which lnZX ≥ 0.
By summing up such non-negative terms, the following

inequality,

DðρCjjρAÞ þDðρCjjρBÞ
þ βTr½LAρA� þ βTr½LBρB� þ lnZC ≥ 0; ðA4Þ

holds. The above inequality can be expanded into

− SC þ βTr½LAρC� þ lnZA

þ −SC þ βTr½LBρC� þ lnZB

þ βTr½LAρA� þ βTr½LBρB� þ lnZC ≥ 0: ðA5Þ

By exploiting the fact that the von Neumann entropy is
given by

SðρXÞ ¼ βTr½LXρX� þ lnZX ðA6Þ

and LC ¼ LA þLB, it follows that

SA þ SB − 2SC þ lnZC þ βTr½LCρC� ≥ 0;

which leads to SA þ SB ≥ SC.
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APPENDIX B: RELATIONSHIP BETWEEN
SPECTRAL ENTROPY AND SPECTRAL GAP

From the spectral decomposition of the density matrix, it
is straightforward to show that the spectral entropy of a
network can be written as [see Eq. (7)]

SðGÞ ¼ log2
XN
i¼1

e−βλiðLÞ þ β

ln 2

P
N
i¼1 λiðLÞe−βλiðLÞP

N
i¼1 e

−βλiðLÞ ; ðB1Þ

where λiðLÞ is the ith eigenvalue of the Laplacian matrix of
the network G. The spectral gap of the density matrix ρ is
given by

Δβ ¼ λ2ðρÞ − λ1ðρÞ; ðB2Þ

and the value β⋆, where it is maximum, can be calculated
(when it exists) by imposing the first derivative equal to
zero and by verifying that the second derivative in the same
point is smaller than zero. It is straightforward to show that
at β⋆ the first derivative leads to

S⋆ ¼ log2
XN
i¼1

e−β
⋆λiðLÞ

−
β⋆
ln 2

λNðLÞe−β⋆λNðLÞ − λN−1ðLÞe−β⋆λN−1ðLÞ

e−β
⋆λNðLÞ − e−β

⋆λN−1ðLÞ ;

where S⋆ is the value of the spectral entropy at β⋆, where
the spectral gap is maximum. This maximum is not
guaranteed to exist, but in all the examples we probe
numerically, it did. By indicating with Z⋆ the normalizing
factor for β ¼ β⋆, the above equation can be reduced to

S⋆ ¼ log2 Z⋆ þ β⋆
Δβ⋆ ln 2

½λNðLÞλ⋆1ðρÞ − λN−1ðLÞλ⋆2ðρÞ�:

For β < β⋆, the second term on the rhs rapidly approaches
zero, whereas log2 Z approaches log2N, i.e., the maximum
attainable entropy. Therefore, the entropy is maximum (or
close enough to its maximum value) before the spectral gap
(before and if) reaches its maximum, as a function of β.

APPENDIX C: SPECTRAL FISHER
INFORMATION MATRIX

Let ρðΘÞ be the parametric statistical model, depending
on the parameter set Θ ¼ fθ1; θ2;…; θdg, for a complex
network with density matrix ρ. In quantum physics, the
upper bound to the expected Fisher information is given by
the quantum information [81,106,117],

IαβðΘÞ ¼ EðΣðαÞ∘ΣðβÞÞ ¼ Tr½ρΣðαÞ∘ΣðβÞ�; ðC1Þ

where ΣðαÞ is the symmetric logarithmic derivative—with
respect to the αth parameter (α ¼ 1; 2;…; d)—defined by

∂
∂θα ρðΘÞ ¼ ΣðαÞ∘ρðΘÞ; ðC2Þ

and we use the symmetric product defined by

X∘Y ¼ 1

2
ðXY þ YXÞ: ðC3Þ

Let us consider the spectral decomposition of the density
matrix

ρðΘÞ ¼ ZðΘÞ−1QðΘÞe−βΛðΘÞQ−1ðΘÞ; ðC4Þ

where ΛðΘÞ is the diagonal matrix of Laplacian’s eigen-
values λiðΘÞ (i ¼ 1; 2;…; N) and the columns of the matrix
QðΘÞ are the corresponding eigenvectors, which we
indicate by qiðΘÞ. Note that we do not indicate explicitly
the dependence on L, for the sake of simplicity. In the
Laplacian eigenbasis, Eq. (C2) reads

q⊤
i ðΘÞ

∂
∂θα ρðΘÞqjðΘÞ ¼

1

2
½λiðΘÞ þ λjðΘÞ�ΣðαÞ

ij ;

from which we obtain the entries of the symmetric
logarithmic derivative [118] as

ΣðαÞ
ij ¼ 2ΦðαÞ

ij ðΘÞ
λiðΘÞ þ λjðΘÞ

; ðC5Þ

where

ΦðαÞ
ij ðΘÞ ¼ ∂

∂θα λiðΘÞδij þ ðλj − λiÞq⊤
i ðΘÞ

∂
∂θα qjðΘÞ;

and δij is the Kronecker function.
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