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We present neutron scattering measurements on powder samples of the spinel FeSc2S4 that reveal a
previously unobserved magnetic ordering transition occurring at 11.8(2) K. Magnetic ordering occurs
subsequent to a subtle cubic-to-tetragonal structural transition that distorts Fe coordinating sulfur tetrahedra
and lifts the orbital degeneracy. The orbital ordering is not truly long ranged, but occurs over finite-sized
domains that limit magnetic correlation lengths. The application of 1 GPa hydrostatic pressure appears to
destabilize this Néel state, reducing the transition temperature to 8.6(8) K and redistributing magnetic
spectral weight to higher energies. The relative magnitudes of ordered hmi2 ¼ 3.1ð2Þ μ2B and fluctuating
moments hδmi ¼ 13ð1Þ μ2B show that the magnetically ordered state of FeSc2S4 is drastically renormalized
and close to criticality.
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I. INTRODUCTION

In a quantum spin liquid, quantum fluctuations over-
come the development of any long-range magnetic order
resulting in a dynamic state that breaks no symmetries at
T ¼ 0. The search for this precarious state of matter in a
real material is a decade’s-old quest of condensed matter
physics [1]. Geometrically frustrated magnetic materials
are a focal point. Their competing exchange interactions
can produce an extensive degeneracy that promotes quan-
tum fluctuations and precludes the development of a
staggered magnetization [2]. But spin frustrations is not
the only mechanism to destabilize magnetic order. Orbital
degeneracy that influences the spin sector through spin-
orbit coupling and impacts exchange interactions can
enhance spin fluctuations and suppress magnetic order
[3]. Orbital degrees of freedom may even form a quantum
fluid in the presence of a staggered magnetization [4–6],
or both spins and orbital sector can form a combined spin-
orbital liquid state [7,8].

Spinel compounds, AB2X4, with magnetic ions occupy-
ing the A-site diamond sublattice form a simple, and
therefore important, three-dimensional lattice with com-
peting exchange interactions that frustrate the development
of long-range magnetic order [9–13]. Amongst the A-site
spinels, FeSc2S4 holds a special place as the Fe2þ (3d6)
ions have both spin and orbital degrees of freedom. The
tetrahedral crystal field of the A-site environment splits the
Fe 3d manifold into a lower e doublet and higher-energy t2
triplet, from which Hund’s coupling yields a high-spin
(S ¼ 2) configuration. Because a single hole occupies
the e doublet, Fe2þ is Jahn-Teller active, yet, surprisingly,
there have been no reported observations of any structural
distortion or magnetic ordering down to 50 mK. In
particular, while the magnetic susceptibility exhibits
Curie-Weiss-like behavior with θCW ¼ −45 K [14,15],
there is no clear indication of a phase transition in the
low-temperature susceptibility data and the specific heat
exhibits only a broad peak centered at 8 K rather than a
sharp anomaly typically associated with symmetry break-
ing. In accordance with this, neutron scattering measure-
ments on polycrystalline samples have so far not provided
evidence for magnetic ordering. The data show dispersive
spin excitations emerging from momentum transfer
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corresponding to the cubic Q ¼ ð100Þ position with an
apparent excitation gap of ∼0.2 meV [16].
Based on these experimental observations, it was pro-

posed that FeSc2S4 is a spin-orbital liquid arising from
competition between on-site spin-orbit coupling and
Kugel-Khomskii exchange [17] in the Fe diamond sub-
lattice [18,19]. While spin and orbital ordering is favored
by the intersite interactions, atomic spin-orbit coupling
favors local spin-orbital singlets. Consequently, FeSc2S4 is
predicted to lie near the quantum critical point separating
the spin-orbital singlet phase from a magnetically and
orbitally ordered state. This hypothesis appears supported
by other neutron measurements that show a shift of the
low-energy magnetic scattering to higher energies upon
application of a magnetic field [20]. Also, terahertz and far-
infrared optical spectroscopy measurements have revealed
low-energy (4.5 meV) excitations consistent with a so-
called spin orbiton [21–23], an excitation of entangled spin
and orbital degrees of freedom. In this scenario, varying the
magnetic exchange interactions relative to the spin-orbit
coupling via the application of hydrostatic pressure might
drive FeSc2S4 through the quantum critical point to
antiferromagnetism [18].
Here, we show that FeSc2S4 is near but on the ordered

side of this spin-orbital quantum critical point. Our mea-
surements on a high-quality polycrystalline sample reveal
that FeSc2S4 undergoes a magnetic ordering transition near
the broad maximum in the specific heat. Our data also
indicate a subtle tetragonal, Jahn-Teller-like, distortion that
lifts the orbital degeneracy at high temperatures so the low-
temperature state can be described in terms of a spin-only
Hamiltonian. Rather than inducing order, the application of
hydrostatic pressure of 1 GPa reduces the magnetic order-
ing temperature and shifts inelastic spectral weight to
higher energies, apparently destabilizing the ordered state.
The Néel state in FeSc2S4 is strongly renormalized with a
sublattice magnetization that is reduced to 44(1)% of the
full saturation moment. Correspondingly, 40(2)% of the
inelastic spectral weight is associated with non-spin-wave
fluctuations. In conjunction, these results show FeSc2S4 is
magnetically ordered, but in close proximity to a spin-
orbital quantum critical point.

II. METHODS

Powder samples of FeSc2S4 are synthesized by solid-
state reaction of elemental Fe, Sc, and S in an evacuated
quartz tube. Residual oxygen contamination is minimized
through the use of high-purity elemental materials, includ-
ing vacuum remelted Fe and distilled dendritic Sc, while
maintaining strict air-free synthesis conditions. Details of
the sample synthesis are contained in Ref. [24]. The sample
is initially characterized by powder x-ray diffraction at
300 K using a Cu-Kα x-ray source. Additional high-
resolution synchrotron x-ray diffraction measurements
are acquired at T ¼ 100 K using the powder diffractometer

11-BM located at the Advanced Photon Source as
described in Appendix A 1.
Specific heat and bulk magnetization measurements are

carried out on a cold-pressed pellet of FeSc2S4 using a
Quantum Designs PPMS. The MACS spectrometer at the
NIST center for Neutron Research is used for neutron
scattering measurements. For measurements at ambient
pressures, the 0.8 g sample of FeSc2S4 is mounted in an Al
sample can. Measurements under hydrostatic pressure are
conducted with the sample loaded into a stainless steel
pressure cell and pressurized to 1 GPa with He gas. The
lattice parameter of a pyrolytic graphite standard loaded
into the pressure cell immediately above the sample is used
to monitor the quasihydrostatic pressure at low temper-
ature. MACS was operated with a fixed final neutron
energy of either 3.7 or 2.4 meV with appropriate combi-
nations of Be and BeO filters before and after the sample to
suppress higher-order neutron contamination. No incident
beam filter is used for measurements with incident energies
above 5 meV, and data for these energies are corrected to
account for contributions to the monitor count rate from
higher-order neutrons [25]. Data collected in the neutron
attenuating pressure cell are corrected for the measured
energy-dependent neutron transmission of the cell. Neutron
diffraction measurements on the same sample are per-
formed on BT-1 at NIST utilizing a Cu(311) monochro-
mator, neutron wavelength 1.54 Å, and 600 collimation
before the monochromator. A set of high-resolution neutron
scattering measurements are conducted on the CNCS
spectrometer located at the Spallation Neutron Source at
Oak Ridge National Lab [26]. For these measurements, a
separate 0.45-g powder sample is prepared and CNCS is
operated with a fixed incident neutron energy of 1.55 meV
and a resulting elastic energy resolution of 0.034 meV
(FWHM). For all scattering measurements background
signal contributions from the sample environment are
subtracted and signal count rates are converted to absolute
values of the scattering cross section using the integrated
intensity from nuclear Bragg reflections [27].
We explicitly define the normalized magnetic

neutron scattering intensity as used in this work to enable
accurate discussion of sum rules. The magnetic neutron
scattering cross section for a powder sample as a function
of momentum transfer Q and energy transfer E is
expressed as

d2σ
dΩdE0 ¼ N

kf
ki

r20e
−2WðQÞ

��� g
2
fðQÞ

���22 ~SðQ;EÞ; ð1Þ

where N is the number of iron atoms, ki and kf are the
incident and final neutron wave vectors, respectively, r0 ¼
0.539 × 10−12 cm is the magnetic scattering length, and
e−2WðQÞ is the Debye-Waller factor, which we set to unity
for low temperature and low Q. The spherically averaged
dynamic structure factor is given by
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~SðQ;EÞ ¼
Z

dΩQ

4π

1

2

X
αβ

ðδαβ − Q̂αQ̂βÞSαβðQ; EÞ; ð2Þ

where g is the Landé g factor, fðQÞ is the magnetic form
factor, and the dynamic structure factor is defined as

SαβðQ; EÞ ¼ 1

2πℏ

Z
dte−iEt=ℏ

×
1

N

X
r;r0

hSαrð0ÞSβr0 ðtÞie−iQ·ðr−r0Þ; ð3Þ

where Sαr is the α component of the effective spin operator.
In this work, we report the normalized inelastic neutron
scattering intensity per Fe:

~IðQ;EÞ ¼ 1

N
ki
kf

d2σ
dΩdE0 : ð4Þ

Rietveld refinement of neutron and synchrotron diffrac-
tion data is carried out using the general structure analysis
system (GSAS) complimented with the SARAh program
for magnetic symmetry analysis [28].

III. RESULTS

Our main experimental finding is presented in Fig. 1(a),
which displays a false-color map of the elastic neutron
scattering cross section for FeSc2S4 as a function of temper-
ature (T) and momentum transfer (Q). While the most
prominent features are two structural Bragg peaks at Q ¼
1.03 and 1.69 Å−1 that saturate the color scale and are
independent of temperature below 20K, the high-sensitivity
measurement also reveals five temperature-dependent
Bragg reflections located at 0.6, 0.84, 1.33, 1.46, and
1.77 Å−1. Not previously reported, these peaks emerge in
unison below 12 K. At T ¼ 1.6 K, the peak intensity of
the strongest magnetic Bragg peak atQ ¼ 0.6 Å−1 amounts
to 20% of the strongest nuclear Bragg peak intensity at
Q ¼ 1.69 Å−1. In the following, we argue that these
Bragg peaks arise from a magnetic ordering transition
that is enabled by a higher-temperature orbital ordering
transition. Details of the lowestQmagnetic Bragg reflection
are shown in Figs. 1(b) and 1(c). We fit the high-resolution
data using a Lorentzian profile convolved with a Gaussian
instrumental resolution of 0.045 Å−1 FWHM. This
analysis reveals an intrinsic Lorentzian half width at half
maximum of κ ¼ 0.019ð6Þ Å−1, which corresponds to a
correlation length of ξ ¼ κ−1 ¼ 53ð16Þ Å. Similarly, the
energy dependence of the Q-integrated peak is fit to a
quasielastic Lorentzian profile convolved with the Gaussian
instrumental resolution to yield a lower bound on the
correlation time of τ > 0.4 ns. We argue below that the
finite magnetic correlation length is a result of exchange
disorder built into the system at the higher-temperature
orbital occupational ordering transition. The absence of

previous reports of magnetic order is consistent with an
extreme sensitivity of the ground state of FeSc2S4 to
chemical and/or crystalline defects, as might be expected
near quantum criticality.

A. Bulk magnetization

The temperature dependence of the bulk magnetic
susceptibility of FeSc2S4 is shown in Fig. 2. The high-
temperature susceptibility displays Curie-Weiss behavior
with a paramagnetic moment of 5.1(1) μB and Curie-Weiss
temperature θCW ¼ −40.1ð5Þ K, fully consistent with ear-
lier reports [14]. However, at lower temperatures our data
exhibit a broad turnover at ∼10 K, where previous reports
have a strong Curie tail [14]. The turnover observed in our
samples is identical to the local susceptibility extracted
from Sc nuclear magnetic resonance (NMR) Knight shift
measurements [15,29]. The NMR Knight shift probes the
intrinsic local spin susceptibility, independent of any Curie
tail contribution from small amounts of impurities that may
dominate the bulk susceptibility at low temperatures.

(a)

(b) (c)

FIG. 1. (a) Overview of the temperature-dependent neutron
diffraction intensity in FeSc2S4 as measured onMACS. Data were
acquired for a fixed monitor count (mon). (b) Magnetic Bragg
reflection measured on CNCS integrated between −0.018 <
E < 0.018 meV. An identical constant background has been
subtracted from low- and high-temperature data sets. (c) Energy
dependence of magnetic Bragg reflection integrated over
0.52 < Q < 0.72 Å−1. Horizontal bars in (b) and (c) indicate
the instrumental resolution as determined from corresponding cuts
through the nuclear (111) Bragg peak at 1.04 Å−1. Error bars
represent 1 standard deviation.
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Agreement between the measured bulk susceptibility of our
samples and NMR Knight shift measurements indicates an
association between high chemical purity and magnetic
ordering in FeSc2S4.

B. Specific heat

While the T dependence of the specific heat of our
powder samples shown in Fig. 3 has qualitative similarities
to previous reports, there are quantitative differences
[14,15]. No sharp anomaly signifying a phase transition
is visible near the 12 K onset temperature for the low-T
Bragg peaks. However, the broad maximum in C=T at 8 K
occurs at a higher temperature than the 6 K maximum
reported in earlier studies [14,15]. The turnover at 8 K is
also considerably sharper in temperature. Both of these
observations are consistent with reduced disorder in our
samples. Phonon contributions to the specific heat are
estimated by appropriately scaling the measured specific
heat of the nonmagnetic isostructural compound CdIn2S4
as described in Appendix A 2. The phonon contribution,
shown as a dashed line in Fig. 3(a), is subtracted from the
total specific heat to yield the magnetic component. From
this we infer the magnetic entropy Sm shown in Fig. 3(b).
Rather than exceeding the R lnð5Þ entropy available for a
S ¼ 2 system, the magnetic entropy plateaus at approx-
imately 70% of the available spin entropy, approaching

R lnð5Þ at 80 K. Only above 80 K does the entropy begin to
recover the additional R lnð2Þ associated with the twofold
orbital degeneracy. Thus, our specific heat data and
analysis indicates that the orbital sector in FeSc2S4 is
quenched for temperatures below ∼80 K.

C. Orbital degeneracy breaking

An orbitally nondegenerate state at low temperatures is at
odds with the previously accepted crystal structure for
FeSc2S4; we shall thus first reexamine the low-temperature
crystal structure. The T ¼ 20 K neutron diffraction pattern
of FeSc2S4 is shown in Fig. 4(a). All peaks can be indexed in
the cubicFd3̄m space group and no peak splitting character-
istic of a symmetry lowering structural distortion is appar-
ent. Nonetheless, Rietveld refinement of our diffraction data
within the Fd3̄m space group is not satisfactory, as it yields
a systematic discrepancy between measured and calculated
peak intensities. Amongst the maximal subgroups ofFd3̄m,
we find a significantly improved description of the data
using the tetragonal I4̄m2 space group. Specifically, and as
described more fully in Appendix B 1, the goodness of fit χ2

is reduced from 1.87 to 1.30 in going from Fd3̄m to I4̄m2.
Figure 4(b) shows the new unit cell, the resulting Rietveld
refinement is shown in Fig. 4(a), and details of the refine-
ment are presented in Table I.
Within our measurement resolution the FeSc2S4 unit cell

maintains its cubic metric so that any tetragonal distortion
is limited to Δa=a ¼ 0.002ð2Þ. The I4̄m2 unit cell contains
two crystallographically distinct Fe sites, each forming a

FIG. 2. Magnetic susceptibility of FeSc2S4. The low- temper-
ature susceptibility is shown in the main panel. A temperature -
independent contribution of χ0 ¼ 0.03 emu=mol resulting
from ≤0.05% residual FeS has been subtracted. Open circles
are the susceptibility measured on our sample, dashed line is
bulk susceptibility data from Fritsch et al. [14], and triangles
show the NMR Knight shift data from Ref. [15]. Inset:
Inverse susceptibility, where the solid line is a linear fit to a
Curie-Weiss law.

(a)

(b)

FIG. 3. Specific heat for powder samples of FeSc2S4 used in
this work. (a) Total specific heat (gray circles) and estimated
magnetic contribution (blue triangles). Dashed yellow line is the
estimated phonon contribution. (b) Estimated magnetic entropy
of FeSc2S4.
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centered tetragonal (CT) sublattice. Importantly, the Fe-
coordinating sulfur tetrahedra for each sublattice are alter-
nately compressed and elongated along the (001) direction,
as shown in Fig. 4(b). The tetragonal distortion thus relaxes

the tetrahedral symmetry around each Fe2þ site, lifting the
orbital degeneracy of the Fe e orbital manifold so that a
hole occupies the jz2i orbital for one sublattice and the
jx2 − y2i orbitals for the other. This particular distortion
minimizes macroscopic strain while fully quenching the
orbital moment. High-resolution x-ray diffraction measure-
ments show that the average structure is cubic at least to
100 K, but reveal a large anisotropic microstrain broad-
ening of the diffraction peaks, which is consistent with an
incipient structural transition (see Appendix A 1). Further
ultrahigh-resolution neutron and x-ray diffraction experi-
ments that span the relevant temperature regime where the
structural phase transition may occur are under way.
While no deviations from cubic symmetry have been

reported thus far, the particular low-temperature structure
we report resolves a number of inconsistencies in the
literature. First, Mössbauer spectroscopy consistently indi-
cates two distinct Fe sites [30,31]. This was previously
ascribed to Fe-Sc site mixing at the level of 30% [31],
which seems implausible given the disparate ionic radii and
charges of Fe2þ and Sc3þ. This explanation is furthermore
inconsistent with our neutron diffraction data, which offer
excellent contrast between Fe and Sc. Even at room
temperature the Mössbauer spectra necessitate a second
Fe site in small fractions, and below ∼50 K the quadrupolar
splitting from each respective site diverges. Since the
Mössbauer time scale is much slower than that of thermal
fluctuations, the high-temperature quadrupolar splitting
indicates a static disorder on the Fe site, possibly resulting
from a local distortion nucleated around defects. Second,
optical measurements in the far infrared show signatures of
symmetry breaking [21,32]. Two bands around 467 cm−1

are observed in the 300 K absorption spectra, which are
forbidden in the Fd3̄m space group and have lacked a
satisfactory explanation [32]. The extra absorption bands
are consistent with a static or dynamic local distortion at
room temperature.
Any signatures of a structural distortion in our diffraction

data are subtle as the low-temperature structure remains
metrically cubic. A small distortion is, however, generally
consistent with expectations for tetrahedrally coordinated
Fe2þ. Indeed, any structural anomaly associated with
orbital ordering in the related compound FeCr2S4 is
apparent only through careful line shape analysis of
high-resolution x-ray synchrotron diffraction data [33].
We also see that for FeSc2S4 a tetragonal distortion is
essential to consistently describe both the magnetic order-
ing and the corresponding excitations within a spin-wave
picture.

D. Magnetic ordering

The magnetic peaks may be indexed in the tetragonal
unit cell using a single propagation vector of either qm ¼
ð0; 0; 1Þt or qm ¼ ð1

2
; 1
2
; 0Þt, where the subscript t explicitly

(a)

(b)

FIG. 4. (a) Neutron powder diffraction pattern for FeSc2S4
measured on BT-1 at 20 K. Open symbols are observed intensities
and solid red line is a Rietveld refinement of the nuclear structure
to the I4̄m2 space group. Inset: Goodness-of-fit parameter
(χ2) versus the Fe-Sc antisite inversion. (b) Proposed I4̄m2
crystal structure of FeSc2S4. The refined lattice parameters are
a ¼ 7.434ð1Þ Å and c ¼ 10.493ð1Þ Å. The parent cubic cell is
shown as a light gray dashed outline. There are two crystallo-
graphically distinct sulfur sites, labeled S(1) and S(2), resulting in
two different Fe2þ coordinating tetrahedra alternately expanded
and contracted along the tetragonal (001) direction. The corre-
sponding Fe2þ (3d6) orbital states for small distortions of the S
tetrahedra are shown on the right.

TABLE I. Atomic parameters for the proposed low-
temperature tetragonal structure of FeSc2S4 at 20 K. The space
group is I4̄m2 (119) with lattice parameters a ¼ 7.434ð1Þ Å and
c ¼ 10.493ð1Þ Å. Reitveld refinements result in a χ2 of 1.33 and
RBragg ¼ 5.25%. All site occupancies (Occ) refined to 1. Includ-
ing Fe-Sc antisite inversion of 3% reduces χ2 to 1.31.

Atom Wyckoff site x y z Occ Biso

Fe(1) 2a 0.0000 0.0000 0.0000 1.0 0.183(4)
Fe(2) 2c 0.0000 0.5000 0.2500 1.0 0.183(4)
S(1) 8i 0.2618(3) 0.0000 0.1283(8) 1.0 0.216(4)
S(2) 8i 0.2434(8) 0.0000 0.6207(8) 1.0 0.216(4)
Sc 8i 0.7541(3) 0.0000 0.3741(6) 1.0 0.188(4)
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indicates the tetragonal cell. The resulting magnetic struc-
ture and refinement are shown in Figs. 5(a) and 5(b).
Refinements for magnetic models using a propagation
vector of either ð0; 0; 1Þt or ð12 ; 12 ; 0Þt are indistinguishable
so that, with the present resolution, a unique solution
cannot be determined from powder diffraction alone.
However, as we discuss below, the powder-averaged
inelastic magnetic neutron scattering cross section is best
accounted for based on the ð1

2
; 1
2
; 0Þt propagation vector.

Various models for the magnetic ordering in FeSc2S4 are
discussed in Appendix B 2. The resulting magnetic struc-
ture is a collinear antiferromagnet with all moments either
lying in the ab plane along (110)-type directions [Fig. 5(c)]
or parallel to the c axis [Fig. 11(e)]. Because the ð1

2
; 1
2
; 0Þt-

and ð0; 0; 1Þt-type magnetic Bragg peaks of the centered
tetragonal cell are coincident within the resolution of our
measurement, the moment direction cannot be uniquely
determined from the powder diffraction data. Nevertheless,
refinements for each model give an identical ordered
moment of hmi ¼ 1.76ð5Þ μB at 1.6 K. Assuming the
ordered state is homogeneous throughout the sample, this is
44(1)% of the 4 μB saturation magnetization for the fully
localized high-spin state of Fe2þ and g ¼ 2. The anoma-
lously low ordered moment is not uncommon for insulating
A-site spinels [34,35] and may result from geometric

frustration and orbital disorder [36]. Indeed, the collinear
antiferromagnetic ordering we observe is a highly frus-
trated ground state in the CT lattice of Fig. 5. The structure
satisfies only antiferromagnetic next-nearest-neighbor
(NNN) exchange interactions J2. Both the nearest-neighbor
(NN) J1 and NNN interplanar J02 exchange terms compete
with J2, and cancel at the mean-field level. The result is a
spin system that lowers its energy mainly through inter-
actions within the tetragonal basal plane.
We now examine the thermal phase transition to this

ordered state. Figure 6(a) shows the temperature-dependent
magnetic moment obtained from Rietveld refinements of
full diffraction patterns. There is a smooth increase in the
ordered moment upon cooling below a critical temperature

(a)

(b)

FIG. 5. (a) Neutron powder diffraction collected on MACS at
1.6 K. Open symbols are observed intensities, solid line is the
calculated intensity for the magnetic structure shown in (b), and
dashed green line is background. (b) Proposed magnetic structure
of FeSc2S4 shown in perspective view and projected along the
ð110Þt, and ð001Þt directions of the tetragonal cell. Identical
moments on crystallographically distinct Fe sites are drawn in
light and dark gray to highlight the two CT sublattices.

(a)

(b)

(c)

FIG. 6. (a) Temperature and pressure dependence of the ordered
magnetic moment in FeSc2S4, solid lines are a fit to magnetic order
parameterwithβ ¼ 0.54ð4Þ, saturatedmoment of 1.9(1)μB, andTc
of 11.8(2) and 8.6(8) K for 0 and 10 kbar, respectively. Inset:
Background subtracted magnetic Bragg peak measured under
0 and 10 kbar hydrostatic pressure. Horizontal line indicates
instrumental resolution. Error bars represent 1 standard deviation.
(b) Temperature -dependent low-energy inelastic scattering
around the critical wave vector measured on CNCS integrated
over 0.52 < Q < 0.72 Å−1. (c) Low -energy integrated inelastic
scattering around the critical wave vector integrated over
0.52 < Q < 0.72 Å−1 and 0.018 < E < 0.35 meV.
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of Tc ¼ 11.8ð2Þ K, which at ambient pressure can be
described as M0ð1 − T=TcÞβ, with β ¼ 0.54ð4Þ and M0 ¼
1.9ð1Þ μB. A similar temperature dependence is observed
under 10-kbar hydrostatic pressure, though with a reduced
transition temperature Tc ¼ 8.6ð8Þ K. The inset of Fig. 6
shows that the magnetic correlation length [ξ ¼ 56ð16Þ Å]
is unaffected by pressure to within error.
The development of magnetic order in FeSc2S4 is

remarkable by both the absence of critical behavior in
the specific heat Fig. 3, and in the low temperature
dependence of the inelastic scattering at the critical
wave vector of 0.6 Å−1, and for energy transfer E ≪ kbT
[Figs. 6(b) and 6(c)]. Rather than a sharp divergence as
expected for critical scattering, only a small increase in
low-energy inelastic spectral weight around Tc resembling
a truncated divergence is observed. This is followed by
gradual buildup of inelastic spectral weight, concentrated
around energy transfers of ∼1.5 meV. The mean-field-like
exponent characterizing the T dependence of the staggered
magnetization also indicates a transition devoid of critical
fluctuations. A possible explanation is that this is not a
thermodynamic phase transition but instead a crossover in a
finite-sized system, with the length set by the orbitally
defined tetragonal domain size. In the frustrated pyrochlore
ZnCr2O4, a first-order transition abruptly selects an ordered
magnetic state out of a highly degenerate manifold of states
[37]. In contrast, for FeSc2S4 the structural, and in this case
also orbital, phase transition occurs at a substantially higher
temperature than the magnetic transition. The curious
noncritical development of staggered magnetization may
be understood if the orbital transition produces small
domains that effectively truncate magnetic criticality and
preclude an actual phase transition. A strong sensitivity of

the extent of orbital ordering to sample purity might explain
why this magnetic order was not previously reported: The
correlation length of the orbital ordering may be shorter in
samples with greater chemical disorder, as indicated by a
large Curie tail in the low-T susceptibility. This, in turn,
could lead to a shorter magnetic correlation length, a
broader magnetic crossover regime, and broader magnetic
peaks that could go undetected.

E. Magnetic excitations

We now discuss magnetic excitations in FeSc2S4. An
overview of the normalized inelastic neutron scattering
intensity ~IðQ;EÞ is presented in Figs. 7(a) and 7(b) for 0
and 10 kbar hydrostatic pressures, respectively. The exci-
tation spectrum is consistent with previous reports [16] and,
we see, can be qualitatively accounted for by spin-wave
excitations from an ordered antiferromagnet in the tetrago-
nal cell. There are intense, dispersive magnetic excitations
emanating from Q ¼ 0.6 Å−1 with spectral weight extend-
ing to ∼5.5 meV. At low energies and in the neighborhood
of the critical wave vector (0.6 Å−1) the intensity contin-
uously decreases with decreasing energy below ∼1 meV to
a level just above background. Based on this, one may be
tempted to implicate a gap in the excitation spectrum [16].
However, for a polycrystalline sample, the inelastic neutron
intensity reflects the average intensity on the Ewald sphere,
which can decrease rapidly with energy for dispersive,
correlated systems even though the excitations may be
gapless. A gap in the excitation spectrum is signaled by the
complete absence of spectral weight at low energies around
the critical wave vector. In contrast, for FeSc2S4 the high-
resolution data in Fig. 7(d) show intensity, albeit weak,
down to 0.05 meV, so that any energy gap in the excitation

(a) (b) (c) (d)

(e)

FIG. 7. (a),(b) Powder-averaged inelastic neutron scattering cross section for FeSc2S4 measured at 1.6 K and 0 kbar (a) and 10 kbar
(b). The cross section is placed into absolute units by calibrating against the integrated intensity from structural Bragg reflections.
(c) Calculated powder-averaged neutron scattering intensity for spin waves in the collinear magnetic structure shown in Figs. 5(b)
and 5(c). (d) Low-energy inelastic neutron scattering measured on CNCS. In (e) the elastic scattering is shown with magnetic diffraction
peaks highlighted in light blue. Inelastic intensity is conspicuously absent near the ð110Þc-type magnetic Bragg peaks, indexed in the
cubic cell.
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spectrum must be smaller than this. A finite orbital domain
size that limits the magnetic correlation length would also
introduce a domain-size-dependent energy gap in the
excitation spectrum. In this case, the low-energy spectrum
would reflect a potentially inhomogeneous domain size
distribution.
Although directional information is degraded by powder

averaging, ~IðQ;EÞ holds valuable information that corre-
lates scalar lengths and energy scales. We first extract the
normalized powder-averaged dynamical spin correlation
function from the neutron intensity ðg=2Þ2 ~SðQ;EÞ ¼
1=2~IðQ;EÞ=jr0fðQÞj2. Here, we use the dipole approxi-
mation for the Fe2þ (3d6) form factor. To determine the
dominant correlation length scales independent of any
model Hamiltonian, we compare the energy-integrated
inelastic signal to the spherically averaged equal time
structure factor,

~SðQÞ ¼
Z

6

0.2

~SðQ;EÞdE

¼ 1

3

�
hðS0Þ2i þ

X
d

hS0 · Sdi
sin ðQdÞ

Qd

�
; ð5Þ

where hS0 · Sdi is the average spin-spin correlator between
sites separated by the distance d. Information regarding the
magnetic bond energies may be extracted from the first
moment sum rule [38,39]. For the following Heisenberg
Hamiltonian including a single ion anisotropy term,

H ¼
X
j;j0

Jjj0Sj · Sj0 þ
X
j

DjðSzjÞ2; ð6Þ

the powder-averaged first moment sum rule yields

hEiQ ¼
Z

6

0.2
E × ~SðQ;EÞdE

¼ −
1

3

X
d

Bd

�
1 −

sin ðQdÞ
Qd

�
þD; ð7Þ

where Bd ¼ zJdhS0 · Sdi, is the total magnetic bond energy
for a superexchange interaction J across z bonds at distance
d, and the constant D ¼ 1

N

P
jDj½SðSþ 1Þ − 3hðSzjÞ2i� is

related to the sum over single-site anisotropy energies.
The measured energy-integrated inelastic intensity and

first moment are shown in Figs. 8(a) and 8(b), respectively.
Because of the kinematic limit for inelastic neutron
scattering, the data only sample the full spectrum for
Q > 0.65 Å−1. The kinematic restrictions are especially
severe for the first moment; because this quantity heavily
weights higher-energy spectral weight, the first moment
can be accurately extracted from our data only for
Q > 0.7 Å−1. While the static structure factor exhibits
well-defined peaks distinguishing length scales that

dominate the magnetic correlations, the first moment is
relatively featureless and flat as a function of momentum
transfer. A momentum-independent first moment implies
the ground-state energy is dominated either by a local
energy scale through D or by competing interactions
covering a range of length scales [40]. The two contribu-
tions are clearly distinguished in the Q ¼ 0 limit where
magnetic bond energy terms in Eq. (7) vanish. Because of
the kinematic limits for inelastic neutron scattering, a fit of
Eq. (7) to the neutron scattering data alone is insufficient to
constrainD. However, at Q ¼ 0 the first moment and static
structure factor are related as follows: hEiQ¼0 ¼ D ¼
hℏωi0 ~Sð0Þ, where hℏωi0 is the energy averaged over the
fluctuation spectrum at Q ¼ 0. Time-domain terahertz
spectroscopy has shown there to be a single well-defined
mode at ℏω ¼ 4.5 meV that dominates the dynamic
susceptibility at Q ¼ 0 [22]. Using this result, we may
apply a single-mode approximation to obtain a lower bound

(a)

(b)

(c)

FIG. 8. (a) Static structure factor ~SðQÞ obtained by correcting
for the Fe2þ form factor and integrating the measured intensity
between 0.2 < E < 6 meV. Solid lines are a fit to a powder-
averaged structure factor as described in the text. (b) First
moment of the neutron scattering intensity integrated between
0.2 < E < 6 meV. The gray star indicates the Q ¼ 0 first
moment as extrapolated from terahertz measurements and
the static structure factor. Solid lines are a fit to the powder-
averaged first moment sum rule described in the text. Gray
dashed lines in (a) and (b) are the estimated phonon contribution.
(c) Momentum-integrated inelastic scattering, integrated between
0.45 < Q < 1.6Å−1. Error bars representing 1 standard deviation
are smaller than the symbol size.
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on the anisotropy energy D ¼ 4.5 meV × ~SðQ ¼ 0Þ. The
correspondingly constrained fits to the static structure
factor and first moment are shown in Fig. 8. We allow
for a Q2-dependent background in each of the fits, which
accounts for phonon contributions to the background
signal. The extracted correlators and bond energies are
listed in Table II.
From the static structure factor fit we find

ðg=2Þ2hðS0Þ2i ¼ 3.3ð3Þ, and ðg=2Þ2D ¼ 5.0ð8Þ meV at 0
and 10 kbar. Given their similar ranges, magnetic inter-
actions labeled Ji and J0i in Figs. 5(b) and 5(c) cannot be
distinguished and so are represented by their average.
Consistent with the reductions in Tc, the application of
10 kbar hydrostatic pressure appears to slightly reduce the
overall magnetic correlations, although any differences in
the magnetic correlators and bond energies between the
0- and 10-kbar data are difficult to discern because of the
increased background scattering from the stainless steel
pressure vessel.
The sign and magnitude of spin correlators we extract

are consistent with the collinear magnetic order shown in
Fig. 5(a) and support a model where NNN interactions (J2)
dominate. This analysis suggests that, at least in terms of
the magnetic correlations, Fe spins in FeSc2S4 form two
interpenetrating CT sublattices, where J2 couples spins on
the same sublattice and J1 fails to produce significant
intersublattice correlations. Fits to the first-moment data
converge, including only contributions from bonds J1 and
J2 as well as D, and we report only this minimal parameter
set here. Interestingly, D emerges as the dominant energy
scale. Such a large single-ion anisotropy scale indicates
proximity of the magnetically ordered state to local singlet
formation.
Figure 8(c) shows the momentum-averaged inelastic

intensity that approximates the magnetic density of states.
The effect of 10 kbar hydrostatic pressure is a slight transfer
of spectral weight from around 1 meV to energies between
5 and 6 meV.
Integrating the total measured dynamical spin

correlation function over the region 0.2 < E < 6 meV

and 0.45 < Q < 1.6 Å−1, we obtain an approximation
to the total inelastic spectral weight hδm2i¼
3ðgμBÞ2

R R
Q2 ~SðQ;EÞdQdE=

R
Q2dQ¼13ð1Þ μ2B at 0 kbar

and hδm2i ¼ 12ð1Þ μ2B at 10 kbar. Adding the static (elastic)
and dynamic (inelastic) contributions yields a total
moment of m2

tot ¼ hmi2 þ hδm2i ¼ 16ð3Þ μ2B, which is less
than g2SðSþ 1Þ ¼ 24 μ2B expected for S ¼ 2 and g ¼ 2.
There are several non-mutually-exclusive explanations for
this shortfall: (i) significant inelastic spectral weight exists
beyond the 6-meV range of the experiment, (ii) the orbital
component of the magnetism is not fully quenched, so the g
factor is less than the spin-only value of 2, (iii) static
magnetic disorder transfers a portion of the magnetic
scattering cross section to elastic diffuse magnetic scatter-
ing that is masked by strong incoherent nuclear scattering
from Sc (σinc ¼ 4.5 b). The count rate expected for addi-
tional spectral weight required to satisfy the sum rule
distributed over a broad (10°) scattering angle is less than
0.1 counts=s on the scale of Fig. 5(a), which is below the
sensitivity of our measurements. Any or all of the above
three scenarios could account for the shortfall in magnetic
spectral weight.
Surprisingly, for such a large spin (S ¼ 2) antiferromag-

net, the inelastic scattering dominates the spectral weight,
contributing over 4 times that of the static portion. For a
fully spin-polarized ground state, the magnetic inelastic
scattering consists entirely of spin excitations that are
transverse to the ordered moment direction (spin waves)
and have an available spectral weight of g2SðSþ 1Þ−
g2S2 ¼ g2S ≈ 8, when g ¼ 2. For comparison, the observed
inelastic spectral weight for FeSc2S4 is hδm2i ¼ 13ð1Þ,
which implies that the Néel state in FeSc2S4 is strongly
renormalized by quantum fluctuations, as anticipated near a
quantum phase transition. Quantum fluctuations, which
reduce the ordered moment, allow for spin excitations that
are longitudinal fluctuations and an associated increase of
inelastic spectral weight.

F. Spin-wave model

Having identified pertinent magnetic interactions in
FeSc2S4, we now compare the measured excitation spec-
trum with a minimal effective spin Heisenberg model.
While one may contest the validity of a spin-wave
expansion for such a strongly renormalized state as in
FeSc2S4 with hðδmÞ2i ¼ 13 > g2S ¼ 8, the semiclassical
description might provide a reasonable account of long-
wavelength dispersive transverse components of the mag-
netic excitation spectrum. Figures 7(d) and 7(e) juxtapose
the low-energy inelastic neutron scattering signal with the
elastic signal in the neighborhood of the first two magnetic
Bragg peaks, indexed in the cubic unit cell as ð100Þc and
ð110Þc, respectively. A comparison of the elastic and
inelastic intensities in this region immediately reveals an
important clue that proves essential to determining the

TABLE II. Exchange interactions and spin-spin correlations for
distinct spin pairs in FeSc2S4 extracted from fits to experimental
data. Bonds are labeled according to Figs. 5(b) and 5(c).
Magnetic interactions labeled Ji and J0i cannot be distinguished
and so are represented by their average. The factors
ðg=2Þ2hðS0Þ2i ¼ 3.3ð3Þ and ðg=2Þ2D ¼ 5.0ð8Þ meV are also
extracted from these fits at both 0 and 10 kbar.

ðg=2Þ2hS0 · Sdi ðg=2Þ2Bd (meV)

d (Å) 0 kbar 10 kbar 0 kbar 10 kbar

J1 4.55 0.1(4) −0.4ð3Þ −1.4ð3Þ −1.2ð6Þ
J2 7.43 −2.7ð2Þ −2.0ð2Þ −0.3ð2Þ −0.2ð1Þ
J3 8.70 −0.6ð2Þ −0.4ð2Þ � � � � � �
J4 10.51 0.6(3) 0.6(3) � � � � � �
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magnetic order in FeSc2S4. While there is strong elastic
scattering around both ð100Þc and ð110Þc, inelastic scatter-
ing is found only around ð100Þc (0.6 Å−1). Since ð100Þc
and ð110Þc are equivalent by symmetry, the energy eigen-
values of magnetic excitations must be identical at these
wave vectors. The absence of powder-averaged inelastic
scattering near ð110Þc must then reflect different matrix
elements forQ ¼ 0.6 Å−1 and 0.84 Å−1. In the low-energy
long-wavelength limit the inelastic magnetic intensity
~IðQ;EÞ scales with the elastic scattering except for the
polarization factor, which extinguishes scattering associ-
ated with spin components along wave vector transfer Q.
For magnetic structures that are consistent with the
observed diffraction pattern in the cubic cell, the polari-
zation factor can at most extinguish only half of the spectral
weight at ð110Þc compared to ð100Þc. The suppression
observed experimentally is, however, more than a factor of
4, so that indexing of the magnetic structure with a cubic
unit cell must be rejected. It is this feature of the inelastic
scattering that identifies the magnetic wave vector qm ¼
ð1
2
; 1
2
; 0Þt and the magnetic order shown in Fig. 5. With

qm ¼ ð1
2
; 1
2
; 0Þt, the magnetic Bragg peaks at 0.6 and

0.84 Å−1 correspond to distinct points in the Brillouin
zone, ð1

2
; 1
2
; 0Þt and ð1

2
; 1
2
; 1Þt, that can have different

excitation spectra. While this conclusion does not rely
on a spin-wave expansion, we now show that spin waves in
a qm ¼ ð1

2
; 1
2
; 0Þt structure can account for these unusual

low-energy features of FeSc2S4, and indeed they account
for the full inelastic magnetic neutron scattering cross
section.
Within the tetragonal structure there are at least seven

magnetic exchange pathways identified in Figs. 5(b)
and 5(c) that must be considered in a simple spin-wave
model. Additionally, the two Fe2þ sites in the unit cell have
distinct tetragonal environments, permitting two distinct
single-ion anisotropy terms in the magnetic Hamiltonian.
Dzyaloshinksii exchange terms are also symmetry allowed
for all spin pairs in the tetragonal cell. The powder-
averaged inelastic magnetic neutron scattering cross section
was computed within linear spin-wave theory (LSWT) as
implemented in the SpinW program [41] for the minimal
Hamiltonian in Eq. (6). For simplicity, we include only
Heisenberg exchange terms, which are labeled in Figs. 5(b)
and 5(c) and listed in Table II, plus distinct single-ion easy-
plane anisotropy terms on the two distinct Fe2þ sites.
Guided by the static structure factor and first moment sum
rule analysis, we adjust the exchange constants to obtain
the best qualitative agreement between the measured
and calculated spectra. The results of this calculation are
shown in Fig. 7(c) for the exchange interactions detailed in
Table II and single-ion easy-plane anisotropy energies
Dab ¼ 0.10ð5Þ meV and D0

ab ¼ 0.05ð4Þ meV. We may
combine the anisotropy energies with the measured total
and ordered moments to gives ðg=2Þ2DSW ¼ 4ð2Þ meV. To

aid meaningful comparison of the LSWT-derived exchange
constants and magnetic bond energies in the strongly
fluctuating Néel state of FeSc2S4, LSWT exchange con-
stants in Table III have been renormalized by the reduced
ordered moment hmi=gS ¼ 1.76=4. It is encouraging that
the magnitudes of these exchange parameters are generally
consistent with band structure calculations for FeSc2S4,
which give J1 ¼ 0.01 meV and J2 ¼ 0.37 meV [42].
While the powder-averaged neutron scattering data do

not contain sufficient information to constrain the seven
exchange and two anisotropy parameters, the purpose of
the spin-wave calculation we present here is to show that
the character particularly of low-energy spin excitations in
FeSc2S4 can be accounted for with the proposed qm ¼
ð1
2
; 1
2
; 0Þt wave vector within space group I4̄m2. Indeed, the

spin-wave model captures the general intensity distribution
including the concentration of high-energy spectral weight
around Q ≈ 1 Å−1 and the inelastic intensity differences
around the ð1

2
; 1
2
; 0Þt and ð1

2
; 1
2
; 1Þt magnetic reflections. In

fact, the pattern of inelastic magnetic scattering is quite
restrictive and appears to be consistent with only a
magnetic propagation vector qm ¼ ð1

2
; 1
2
; 0Þt in the tetrago-

nal cell and the particular magnetic ordering pattern shown
in Fig. 5(b). To make this point, a comparison of the
calculated linear spin wave neutron intensity for different
models of magnetic ordering in FeSc2S4 is presented in
Appendix B 3. The weak scattering intensity around
ð1
2
; 1
2
; 1Þt is a consequence of the highly frustrated nature

of the magnetic ordering in the tetragonal cell. For the
collinear ordering, the dominant exchange interactions,
which have a component along the c axis (J02 and J1),
are frustrated and cancel at the mean-field level. The result
is dimensional reduction through frustration. A conse-
quence of this frustration is softening of magnetic excita-
tions around ð1

2
; 1
2
; 1Þt, which manifests as weak diffuse

scattering intensity near 0.85 Å−1 in the powder-averaged
spectrum.
Comparison with the spin-wave expansion yields further

important insight. The inclusion of easy-plane anisotropy
terms are essential to stabilize the magnetic structure and
for agreement between model and data. These terms gap
only transverse excitations which are spin fluctuations
out of the a-b plane. At the level of linear spin-wave
theory, there is always a gapless transverse fluctuation
within the a-b plane. Thus, inasmuch as the spin-wave
expansion accurately accounts for long-wavelength

TABLE III. Renormalized exchange interactions used in the
linear spin-wave model in units of meV, bonds are labeled
according to Fig. 5. The values reported here are renormalized
by the reduced ordered moment Z ¼ hmi=gS ¼ 1.76=4.

J1 J2 J02 J3 J03 J4 J04
−0.14ð8Þ 0.7(1) 0.6(6) 0.02(2) 0.02(2) −0.09ð7Þ −0.09ð7Þ
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magnetic excitations in FeSc2S4, the data are consistent
with a gapless excitation spectrum.
While the spin-wave model appears to capture most

features of the excitation spectrum, we do not claim it to be
unique. Furthermore, it is not clear that a spin-wave
expansion should be relevant for the highly renormalized
Néel state of FeSc2S4. Discrepancies of the spin-wave
model are particularly apparent at energies, above 2 meV,
where longitudinal and multimagnon excitations that
are not accounted for in the 1=S expansion may be
expected to play an important role. The spectral weight
available for two-magnon (longitudinal) scattering
hδm2

2Mi ¼ ΔSðΔSþ 1Þ is directly related to the reduction
in sublattice magnetization, hmi2 ¼ ðS − ΔSÞ2, and
ΔS ¼ S − hSzi. Assuming the moment reduction is entirely
a consequence of quantum fluctuations, the total fraction of
spectral weight observed that results from non-spin-wave
excitations is ΔSðΔSþ 1Þ=SðSþ 1Þ ¼ 2.391=6 ¼ 40%.

IV. DISCUSSION

Our measurements show that the putative spin-orbital
liquid FeSc2S4, in fact, has a magnetically ordered ground
state. Furthermore, we present evidence that this order
arises from a centered tetragonal structure with two
crystallographically distinct low-symmetry sites. Static
and dynamic magnetic correlations can be understood only
within the tetragonal unit cell with a magnetic propagation
vector qm ¼ ð1

2
; 1
2
; 0Þt. Although the chemical unit cell

remains metrically cubic, the alternating compression
and expansion of the coordinating sulfur tetrahedra lift
the orbital degeneracy of the ideal tetrahedral coordination.
In concordance with these results, the weak Q dependence
of the first moment is a clear indication of the correspond-
ing anisotropic spin Hamiltonian.
The nature of the thermal transition leading to this

strongly fluctuating Néel state is rather peculiar. It is
already apparent from the absence of a sharp specific heat
anomaly that the magnetic ordering transition is not a phase
transition in the thermodynamic limit but a crossover in a
finite-sized system. The relevant length scale of this system
may be the 53(6) Å correlation length that we detect for the
magnetic ordering. An obvious scenario to consider but one
that we shall ultimately reject is that both this finite
correlation length and the reduced staggered magnetization
are a result of chemical inhomogeneity in the sample. The
effect of such inhomogeneity would be to nucleate small
volume fractions of magnetic order around chemical
impurities or structural defects. The diamond lattice
antiferromagnet is known to be particularly sensitive to
defect-induced magnetism through the order-by-quenched-
disorder mechanism [43]. Further, since the neutron signal
is sensitive only to the product of the ordered moment and
volume fraction of the ordered phase, diffraction cannot
distinguish between a homogeneous state with a small

ordered moment and a finite correlation length and an
inhomogeneous state with a large ordered moment.
However, the fact that the inelastic magnetic scattering

can be described by spin waves in an ordered, renormal-
ized, antiferromagnet favors a homogeneous picture.
Synthesized with special attention to eliminating residual
oxygen contamination, our samples furthermore appear
cleaner than those typically reported in literature where
magnetic ordering has not been reported. Structural refine-
ments at 100 K definitively exclude any nonstoichiometries
beyond a ∼1% limit of detection, and also tightly constrain
any Fe:Sc mixing to 3(1)% (See Appendix A 1). From the
antisite defect concentration we may extract an average
spacing between site inversion defects of 17(2) Å, roughly
one-third of the magnetic correlation length we measure, so
that the magnetic correlations appear to be limited by some
other effect.
Comparison of thermodynamic measurements on our

samples and those of previous reports indicate that the
defect concentration in the present samples is lower than in
previous studies. The low-temperature maximum of our
measured specific heat both occurs at a higher temperature
and is sharper in temperature than previously reported [14].
Bulk magnetic susceptibility of our powder samples shows
a turnover at ∼10 K closely resembling the local suscep-
tibility obtained from NMR Knight shift measurements
[15,29]. This indicates a reduced concentration of magnetic
impurities or orphan spins in our samples, as these lead to a
low-temperature Curie tail that was observed in previous
reports though not in our sample [14,15].
The magnetic order we report here is a stable character-

istic of a new generation of samples. In particular, we
observe the magnetic Bragg reflections in three different
samples each having undergone a different thermal
processing schedule. While the maximum temperature
during synthesis differs by as much as 400 °C between
samples, the relative integrated intensity of the magnetic
ð100Þc and nuclear ð111Þc Bragg reflections varies only
between 0.17 and 0.2 across all measurements. Rather than
being set by any chemical inhomogeneity, we propose
that the relevant length scale for the magnetic order in
FeSc2S4 is the orbital domain size established at a higher-
temperature first-order cubic-to-tetragonal transition that
lifts the orbital degeneracy.
The ordering phenomenon we report for FeSc2S4 has

similarities with another A-site magnetic spinel CoAl2O4

[34], where neutron scattering measurements on single
crystals show signatures of antiferromagnetic domains
developing across an arrested first-order, order-by-disorder,
magnetic transition [13]. Magnetic domain formation in
CoAl2O4 is, however, proposed to be a result of geometric
frustration [13]. In FeSc2S4, the weak tetragonal distortion
we observe points towards another mechanism for disorder
and domain formation: in the tetragonal cell there is an
alternating compression and elongation of the Fe
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coordinating S tetrahedron, though the diffraction meas-
urement does not uniquely identify which iron site has the
compressed and which has the elongated tetrahedral
environment. If the tetrahedral distortion is not coherent
between many unit cells, the result will be static orbital
disorder and concomitant exchange disorder. There would
also be disorder in the distribution of single-ion anisotropy
terms. Since the tetragonal distortion associated with this
structural transition is so small (Δa=a < 0.2%) a signifi-
cant density of such quenched disorder that would limit the
magnetic correlation length is plausible. Monte Carlo
simulations of the order-by-disorder transition in the
face-centered-cubic lattice show that magnetic domains
engender thermally excited defects and domain walls that
reduce the sublattice magnetization [44]. Hence, the pres-
ence of magnetic domains may account for the missing
magnetic spectral weight and the finite magnetic correla-
tion length in FeSc2S4.
It is apparent that in FeSc2S4 many energy scales,

including crystal field splitting, spin-orbit coupling, and
frustrated magnetic exchange interactions compete and
conspire to produce very rich physics. The 0.2% upper
bound we place on a tetragonal distortion in FeSc2S4
admits proximity to spin-orbital quantum criticality. In the
mean-field phase diagram proposed by Chen et al. [18], the
critical point occurs at xc ¼ ðJ2=λÞ ¼ 1

16
. Using the exper-

imentally determined value for the spin-orbit coupling
constant λ ¼ 1.57ð25Þ meV [22] and the unrenormalized
magnetic exchange J2 used in the spin-wave model, we
estimate that ðJ2=λÞ > 0.20, which places FeSc2S4 within
the magnetic and orbitally ordered regime. While our
detection of magnetic Bragg peaks corresponding to spin
order with a 57 Å correlation length would appear to put an
end to the idea that FeSc2S4 is a spin-orbital liquid, the
strongly enhanced fluctuations we observe are a direct
manifestation of proximity to a critical point. The dominant
single-ion anisotropy energy scale we extract is a further
indication of proximity to a local singlet phase. This
implies it may be possible to drive FeSc2S4 through the
quantum phase transition and stabilize the spin-orbital
liquid ground state by application of a suitable perturbation
[19,23]. We find a reduced staggered magnetization and
shift of spectral weight towards higher energies under a
hydrostatic pressure of 10 kbar. This suggests we should
look to hydrostatic pressure beyond 10 kbar for access to
the spin-orbital quantum critical point in FeSc2S4.
Magnetic order, on the other hand, might be enhanced
through uniaxial stress or annealing of the cubic-to-
tetragonal phase transition.
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APPENDIX A: SAMPLE CHARACTERIZATION

1. Synchrotron powder diffraction

The T ¼ 100 K synchrotron powder diffraction data
pattern collected on 11-BM and the corresponding
Rietveld refinement is shown in Fig. 9. All diffraction
peaks are indexed within the cubic Fd3̄m unit cell and we
find a good refinement to the 100 K diffraction data using
the reported structure for FeSc2S4. However, significant
microstrain broadening of the diffraction peaks is apparent
in the peak shapes. An isotropic strain broadening in the
cubic cell is accounted for in GSAS utilizing the semi-
empirical Stephens peak shape [45] with cubic strains of
S400 ¼ 0.19%, S200 ¼ 0.01%. The large difference between
the two symmetry allowed strain parameters is consistent
with an incipient structural transition. Our x-ray powder

FIG. 9. Rietveld analysis of high-resolution synchrotron x-ray
data collected on 11-BM at 100 K. Blue circles are measured
data, red line is the calculated diffraction pattern, and red vertical
bars indicate the positions of nuclear reflections in the Fd3̄m
space group. There is also a contribution from a 0.15% Sc2O3

contamination phase. The difference between calculated and
measured data is shown in the lower panel. Inset: Goodness-
of-fit parameter (χ2) versus the Fe-Sc antisite inversion. The
Sc2O3 contamination phase is not included in refinements used to
determine the site inversion.
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diffraction data additionally show the presence of a minor
(0.15%) contamination phase of Sc2O3 in our sample,
below the limit of detection in our neutron diffraction
measurements.
The magnetic properties of A-site spinel compounds are

highly sensitive to the degree of chemical disorder resulting
from inversion between atomic species occupying theA and
B sites of the spinel structure [34,46]. To quantify any
inversion present in our sample, we refine out synchrotron
data allowing for antisite disorder as described by
ðFe1−xScxÞ½Sc2−xFex�S4. The inset of Fig. 9 shows the
goodness-of-fit parameter versus the site inversion x, which
indicates a small amount of site inversion x ¼ 0.03ð1Þ in our
sample. The site inversion is further constrained by refine-
ment of neutron powder diffraction data described in
Appendix B 1. The value of χ2 in the inset of Fig. 9 is
larger than reported for the full Rietveld refinement because
only a single phase was included in Rietveld refinements
used to estimate the site inversion.We have checked that the
inclusion of the contamination phase does not affect the
conclusion of the site-mixing analysis. Rietveld refinement
parameters are listed in Table IV.

2. Phonon contribution to specific heat

Phonon contributions to the specific heat of FeSc2S4 are
estimated by scaling the measured specific heat of the
nonmagnetic analog spinel compound CdIn2S4. The mea-
sured specific heat for CdIn2S4 is extracted from Ref. [14].
To estimate the phonon contribution to the specific heat of
FeSc2S4, this must be scaled by the relative Debye temper-
atures Θ of the two compounds,

Θ3
CdIn2S4

Θ3
FeSc2S4

¼
�
mFe þ 2mSc þ 4mS

mCd þ 2mIn þ 4mS

�
3=2

; ðA1Þ

where mx is the atomic mass of element x. The rescaled
temperature for the phonon specific heat is then given by

TFeSc2S4 ¼
ΘCdIn2S4

ΘFeSc2S4

TCdIn2S4 ; ðA2Þ

and the rescaled lattice contribution is given by

CFeSc2S4 ¼
Θ3

CdIn2S4

Θ3
FeSc2S4

CCdIn2S4 : ðA3Þ

The scaled phonon contribution to the specific heat of
FeSc2S4 is shown as a red dashed line in Fig. 3.

APPENDIX B: STRUCTURAL
AND MAGNETIC MODELS

1. Low-temperature structural refinements

Neutron powder diffraction measurements collected on
BT-1 at 20 K are shown in Fig. 10. The four panels display
identical diffraction data but with Rietveld refinements
corresponding to different structural models for FeSc2S4.
Details of each refinement are listed in Table V. Note that
Fe:Sc site mixing is not included in these refinements, but
we check that the conclusions are not affected by this.
The tetragonal lattice parameter at is simply related to

the cubic cell by at ¼ ac=
ffiffiffi
2

p
. Refinements for each

structural model show that the lattice remains metrically
cubic in that ðac − cÞ=ac < 0.2%. While there are no
obvious qualitative differences between the refinements
for each structural model, close quantitative comparison
reveals a significant improvement in the quality of fit for the
tetragonal unit cell and space group I4̄m2.

2. Candidate magnetic structures

Irreducible representations and their basis vectors for
each crystal symmetry and magnetic ordering wave vector
in FeSc2S4 are calculated using the SARAh program
[28]. Here, we outline each of the candidate magnetic
structures consistent with the neutron diffraction data in the
parent cubic Fd3̄m unit cell and the proposed tetragonal
I4̄m2 cell.
In the cubic spinel structure all magnetic peaks are

indexed with a propagation vector of k ¼ ð001Þ. The
decomposition of the magnetic representation for the Fe
site (0.125,0.125,0.125) is Γmag ¼ Γ2

1 þ Γ2
2 þ 2Γ2

4, and the
irreducible representations and associated basis vectors are
detailed in Table VI. Satisfactory magnetic refinements in
the Fd3̄m structural space group are only possible includ-
ing one equally weighted basis vector from each of the two
irreducible representations Γ1 and Γ2: either ψ1 and ψ3 or
ψ2 and ψ4. The two structures are simply related by a π=2
rotation of all spins and are indistinguishable in powder
diffraction data. The resulting magnetic structure and
refinements are shown in Fig. 11(a).
For the tetragonal I4̄m2 cell the magnetic Bragg peaks

may all be indexed with magnetic propagation vectors k1 ¼
ð001Þ or k2 ¼ ð1

2
1
2
0Þ. There are two Fe sites in the primitive

basis. For Fe1 at (0,0,0) the decomposition of the magnetic
representation is Γmag ¼ Γ1

2 þ Γ2
5 for k1 and Γmag ¼ Γ1

2 þ
Γ1
3 þ Γ1

4 for k2. For Fe2 at (0,0.5,0.25), the decomposition
of the magnetic representation is Γmag ¼ Γ1

4 þ Γ2
5 for k1

TABLE IV. Atomic parameters obtained from Reitveld refine-
ments of synchrotron x-ray diffraction data at 100 K for FeSc2S4
samples used in this work. The space group is Fd̄32 (227) and the
lattice parameter is refined to a ¼ 10.51115ð1Þ Å. Reitveld
refinements result in χ2 ¼ 2.83 and RBragg ¼ 5.59%.

Atom Site x y z Occ Biso

Fe 8a 0.125 0.125 0.125 0.94 0.313(2)
Sc 8a 0.125 0.125 0.125 0.06 0.311(2)
Fe 16d 0.500 0.500 0.500 0.03 0.313(2)
Sc 16d 0.500 0.500 0.500 0.97 0.311(2)
S 32e 0.2556(1) 0.2556(1) 0.2556(1) 1.00 0.352(2)
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and Γmag ¼ Γ1
1 þ Γ1

2 þ Γ1
4 for k1. Irreducible representa-

tions (Irrep.) and associated basis vectors for the propaga-
tion vectors k1 and k2 are detailed in Tables VII, VIII,
and IX, X, respectively.
The refined magnetic structure for k1 ¼ ð001Þ is shown

in Fig. 11(c) and is identical to that in Fig. 11(a) when
transformed into the cubic cell. This structure is described
with the irreducible representation Γ5 on both Fe sites and
equally weighted basis vectors.

When the magnetic peaks are indexed with k1 ¼ ð1
2
1
2
0Þ

many equally good solutions are permitted by the data. In
Figs. 11(e) and 11(d), we show the magnetic structure and
refinement for Γ4 on Fe1 and Γ2 on Fe2.

TABLE V. Candidate crystal structures for FeSc2S4 at 20 K.

Symmtery
Space group

Cubic
Fd3̄m

Tetragonal
I41=amd

Tetragonal
I4̄m2

Orthorhombic
Fddd

a (Å) 10.507(1) 7.437(1) 7.434(1) 10.514(1)
b (Å) � � � � � � � � � 10.514(1)
c (Å) � � � 10.495(1) 10.493(1) 10.491(1)
c=ac 1 0.998 0.998 0.998
χ2 1.87 1.46 1.33 1.35
Rwp (%) 7.92 6.99 6.68 6.71
RBragg (%) 6.73 5.57 5.25 5.13

(a) (b)

(c) (d)

FIG. 10. Structural models for FeSc2S4. (a)–(d) Rietveld analysis of neutron powder diffraction measured on BT-1 at 20 K. Blue
circles are measured data, red line is the calculated diffraction pattern, and red vertical bars indicate the positions of nuclear reflections in
the respective space group. Contributions from the aluminum sample environment are indicated by blue vertical bars. The difference
between calculated and measured data is shown in the lower panel for (a)–(d). Inset in (a) shows the goodness-of-fit parameter (χ2)
versus the Fe-Sc antisite inversion in the cubic model.

TABLE VI. Basis vectors for the space group Fd3̄m with
k ¼ ð001Þ.
Irrep. Basis vector Atom m∥a m∥b m∥c

Γ1 ψ1 1 0 4 0
2 −4 0 0

ψ2 1 4 0 0
2 0 −4 0

Γ2 ψ3 1 4 0 0
2 0 4 0

ψ4 1 0 −4 0
2 −4 0 0

Γ4 ψ5 1 0 0 8
2 0 0 0

ψ6 1 0 0 0
2 0 0 −8
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The collinear magnetic structure shown in Figs. 5(b)
and 5(d) includes irreducible representations Γ3 on Fe1 and
Γ1 on Fe2.

3. Magnetic excitations and spin-wave models

The powder-averaged magnetic excitation spectra is com-
puted for eachmagnetic candidate structure inFeSc2S4within
linear spin-wave theory as implemented in the SpinW
program [41]. For each model, the inelastic magnetic neutron

scattering intensity from spin waves is calculated using a
simple model Hamiltonian, including only Heisenberg-type
exchange terms labeled in Fig. 5(b) as well as single-ion
anisotropy terms on each Fe2þ. For the cubic structure, a
symmetry-disallowed easy-plane anisotropy term is included
to stabilize the magnetic structure, while the tetragonal
structures allow for two distinct single-ion anisotropy terms,
one per crystallographic Fe site. These are included as easy-
plan anisotropies for models 2 and 4, and an easy-axis

FIG. 11. Candidate magnetic structures in FeSc2S4. (a),(b) Magnetic structure and corresponding Rietveld refinement for the Fd3̄m
structural space group and magnetic peaks indexed with a k ¼ ð001Þ propagation vector. (c),(d) Magnetic structure and corresponding
Rietveld refinement for the I4̄m2 structural space group and magnetic peaks indexed with a k ¼ ð0; 0; 1Þ propagation vector. The
resulting magnetic structure is identical to that in (a) when transformed to the cubic cell. (e),(f) Alternative magnetic structure and
corresponding Rietveld refinement for the I4̄m2 structural space group and magnetic peaks indexed with a k ¼ ð1=2; 1=2; 0Þ
propagation vector.

(a) (b) (c) (d)

FIG. 12. Spin-wave excitations in candidate magnetic structures for FeSc2S4. (a) Measured powder-averaged inelastic neutron
scattering spectra at 1.6 K and ambient pressure. (b)–(d) Calculated powder-averaged neutron scattering intensity from spin-wave
excitations for possible magnetic structures in FeSc2S4. Heisenberg exchange interactions for each model are listed in Table XI.
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anisotropy for model 3. Models 1–3 are shown in Fig. 11 and
model 4 is presented in the main text. Guided by the relative
strength of spin correlators and magnetic bond energies
extracted from the static structure factor and first moment
sum rule analysis, the magnetic exchange interactions are
chosen to provide the best qualitative match of the data with
the simplest combination of exchange terms. Exchange
constants used for each respective spin-wave calculation
are detailed in Table XI. The calculated powder-averaged
neutron scattering intensity for spin-wave excitations in each
model are shown in Fig. 12.
The ground-state energy of each magnetic structure is as

follows:

model 1∶ E1 ¼ 0J1 − 8J2 − 4J4;

model 2∶ E2 ¼ 2 × ð0J1 þ 4J2 − 8J02 − 2J4Þ;
model 3∶ E3 ¼ 2 × ð0J1 − 4J2 þ 0J02 − 2J4Þ:

Ground-state energies of models 3 and 4 are identical. For
these models, Heisenberg NN (J1) and out-of-plane NNN
(J02) exchange terms cancel at the mean-field level and the
system is effectively a two-dimensional Heisenberg square
lattice. For models 1 and 2, the NN spins are orthogonal, so
the Heisenberg terms vanish.
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