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Brownian clocks are biomolecular networks that can count time. A paradigmatic example are proteins
that go through a cycle, thus regulating some oscillatory behavior in a living system. Typically, such a cycle
requires free energy often provided by ATP hydrolysis. We investigate the relation between the precision of
such a clock and its thermodynamic costs. For clocks driven by a constant thermodynamic force, a given
precision requires a minimal cost that diverges as the uncertainty of the clock vanishes. In marked contrast,
we show that a clock driven by a periodic variation of an external protocol can achieve arbitrary precision at
arbitrarily low cost. This result constitutes a fundamental difference between processes driven by a fixed
thermodynamic force and those driven periodically. As a main technical tool, we map a periodically driven
system with a deterministic protocol to one subject to an external protocol that changes in stochastic time
intervals, which simplifies calculations significantly. In the nonequilibrium steady state of the resulting
bipartite Markov process, the uncertainty of the clock can be deduced from the calculable dispersion of a
corresponding current.
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I. INTRODUCTION

Periodic behavior is ubiquitous in living systems, from
neural oscillations [1] to circadian cycles [2,3]. An
example of a well-studied biochemical oscillation is the
phosphorylation-dephosphorylation cycle of the KaiC pro-
tein [3–7]. This phosphorylation-dephosphorylation cycle
functions as a circadian clock allowing a cyanobacterium to
tell time [4], i.e., to oscillate in synchrony with day-night
changes. Another example of a biochemical oscillation that
is related to a phosphorylation-dephosphorylation cycle of
a protein happens in the activator-inhibitor model recently
analyzed in Ref. [8]. More generally, biochemical oscil-
lations are typically associated with a protein that goes
through a cyclic sequence of states. Any such protein can
be taken as an example of a Brownian clock.
Brownian clocks are stochastic and, therefore, some

uncertainty must be associated with them [9]. Quite
generally, uncertainty related to stochastic changes at the
molecular level is an important issue in biophysics. For
example, the Berg and Purcell limit on the maximal
precision of a receptor that measures an external ligand
concentration is such a fundamental result [10–16]. The
relation between precision of some kind and energy
dissipation in biophysics has become an active area of
research [8,17–29], often using concepts from stochastic

thermodynamics [30]. Specific examples include a relation
between energy dissipation and adaptation error in chemo-
taxis [18], bounds on the precision of estimating an external
ligand concentration by a receptor related to energy
consumption [19], a relation between energy dissipation
and accuracy in biochemical oscillations [8], and the
relation between information-theoretical quantities and
entropy production in biophysically inspired models
[25,26,28,29]. This last example is also related to the
growing field of information and thermodynamics [31–42].
The question we investigate in this paper concerns the

relation between precision and dissipation in Brownian
clocks. Given that the clock should have a certain precision,
what is the minimal energy budget required to run a clock
with this precision?
We model a Brownian clock as an inhomogeneous

biased random walk on a ring. The different states of
the clock can be interpreted as different states of a protein
that influences a biochemical oscillation; changes in these
states would correspond to, e.g., conformational changes or
phosphorylation steps. We consider two classes of clocks.
First, we analyze a clock driven by a constant thermody-
namic force that can be generated by, for example, ATP. For
this class, the general thermodynamic uncertainty relation
we obtained in Ref. [43] (see also Refs. [44–48]) estab-
lishes the best precision that can be obtained given a certain
energy budget. Within this class, a precise clock requires a
minimal energy dissipation.
The second class is represented by a clock that is driven

by a periodic external protocol. Systems driven by such
protocols reach a periodic steady state and are known as
“stochastic pumps” [49–59]. Experimental examples of
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such systems are the generation of rotational motion in an
artificial molecular motor driven by an external protocol
[60] and the pumping of ions across membranes in red
blood cells driven by an oscillating electric field [61]. We
show that a clock in this class can achieve high precision
with an arbitrarily small energy budget. Hence, a clock in
this second class is fundamentally different from a clock
driven by a fixed thermodynamic force.
The mathematical treatment of systems that reach a

periodic steady state, which are driven by deterministic
protocols, is typically difficult. In particular, calculating the
dispersion associated with the clock can be quite challeng-
ing [62]. For our investigation on the fundamental
differences between the two classes, we consider a generic
theoretical framework for which the protocol changes at
random time intervals [63]. Such protocols have been
realized in experiments [64,65]. Within this theoretical
framework, the system, i.e., the clock, and the external
protocol together form a bipartite Markov process
[20,36,37,66,67]. This property considerably simplifies
calculations; in particular, it allows us to analytically
calculate the dispersion of the clock. Using these analytical
tools, we find the optimal parameters that lead to a clock
that can achieve high precision with arbitrarily low dis-
sipation. With this proper tuning in hands, we confirm
numerically that the corresponding clock with a determin-
istic protocol can also achieve high precision with vanish-
ing dissipation.
For protocols that change at stochastic times, we prove

that given a periodic steady state with a certain probability
distribution, it is always possible to build a steady state
of a bipartite Markov process, which comprises the system
and the external protocol, that has the same probability
distribution.
This paper is organized as follows. In Sec. II, we discuss

a clock driven by a fixed thermodynamic force. Our main
result comes in Sec. III, where we show that a clock driven
by an external protocol can combine high precision
with arbitrarily low dissipation. We conclude in Sec. IV.
Appendix A contains the thermodynamics of systems
driven by external stochastic protocols. In Appendix B,
we prove the equivalence between a periodic steady state
and a steady state of a bipartite process composed of both
system and external protocol. More details for the model
analyzed in Sec. III are given in Appendix C.

II. BROWNIAN CLOCK DRIVEN BY A FIXED
THERMODYNAMIC FORCE

The simplest model of a Brownian clock is a biased
randomwalk on a ring withN, possibly different, states and
arbitrary rates [68], as illustrated in Fig. 1 for N ¼ 4. The
transition rate from state i to state iþ 1 is kþi , whereas
the transition rate from i to i − 1 is k−i . Time is counted by
the number of full revolutions of the pointer. Whenever the
pointer undergoes the transition from state N to state 1, one

unit of clock “time” has passed. Since the clock is
stochastic, a backward step from state N to state 1 could
happen. If, in the next step, the pointer moves from N to 1,
one should not attribute the passing of a second time unit to
such a sequence of events. Hence, one counts a backward
step from N to 1 as a ð−1Þ unit to prevent such over-
counting. The stochastic variable that counts time is thus
a fluctuating current X that increases by 1 if there is a
transition from N to 1, and it decreases by 1 if there is a
transition from 1 to N.
In the stationary state, the average hXi is given by the

probability current

J ≡ hXi=T ¼ kþNPN − k−1P1; ð1Þ

where the clock runs for a total time T . The inverse J−1 is
the average time for the clock to complete a cycle, which
should correspond to the average period of oscillation of
the biological function regulated by the clock. An alter-
native random variable for counting time would be the
cycle completion time which is, however, well defined only
if k−N ¼ 0 [69].
Measuring time with this clock comes with a finite

uncertainty

ϵ2 ≡ ðhX2i − hXi2Þ=hXi2 ¼ 2D=ðJ2T Þ; ð2Þ

where we have introduced the diffusion coefficient

D≡ ðhX2i − hXi2Þ=ð2T Þ: ð3Þ

The clock is driven in the clockwise direction by, for
example, a chemical potential differenceA that is related to
the transition rates by the generalized detailed balance
condition [30]. This condition for the clock reads

A ¼ lnðΓþ=Γ−Þ; ð4Þ

where Γ� ¼ Q
N
i¼1 k

�
i and we set the Boltzmann constant

kB multiplied by the temperature T to kBT ¼ 1 in the
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FIG. 1. Illustration of a Brownian clock with four states.
The pointer in state 1 moves to state 2 with rate kþ1 , or to state
4 with rate k−1 , and so on.
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equations throughout the paper. Each revolution of the
clock costs an amountA of free energy. Hence, running the
clock for a total time T costs an average free energy

C ¼ JAT ¼ hXiA: ð5Þ

The uncertainty of the clock, the cost of running it, and
its number of states, N, are constrained by a universal
thermodynamic uncertainty relation [43], which we discuss
in the following.
For a biased random walk with uniform rates kþ and k−,

the current is J ¼ ðkþ − k−Þ=N and the diffusion coeffi-
cient is D ¼ ðkþ þ k−Þ=ð2N2Þ [68]. For this case, the
cost C in Eq. (5) times ϵ2 in Eq. (2) gives Cϵ2 ¼
2DA=J ¼ ðA=NÞ coth½A=ð2NÞ�, where we used Eq. (4),
which implies A=N ¼ lnðkþ=k−Þ. It turns out that for a
fixed affinity A, this product is indeed minimized for such
uniform rates [43], leading to the uncertainty relation

Cϵ2 ≥ ðA=NÞ coth½A=ð2NÞ� ≥ maxð2;A=NÞ: ð6Þ

We note that this bound is saturated, with Cϵ2 ¼ 2, for a
clock close to equilibrium, i.e., in the linear response
regime with small A. The implications of Eq. (6) for the
design, precision, and cost of such a Brownian clock can
best be illustrated by comparing two clocks using familiar
notions. Suppose we want to measure reliably, say, with a
precision ϵ ¼ 10−2, a time of one hour with either a “slow”
clock that takes one minute for a revolution or a “fast” clock
that takes only one second. The mean of the stochastic
variable hXi will be 60 or 3600, respectively. First, the
inequality (6) with (5) implies a structural constraint on the
minimal number of states, Nmin ¼ ðϵ2hXiÞ−1, required for a
cycle, which turns out to be 167 and 3 for the slow and the
fast clocks, respectively. The crucial quantity is thus the
product NhXi, i.e., the number of elementary steps taken
for the measurement. For a precision of 10−2, a clock has to
undergo at least 104 elementary steps. A clock counting
“minutes” rather than “seconds” is not necessarily less
precise, provided its cycle consists of sufficiently many
elementary steps. Second, for a given design, i.e., N, the
affinity driving the clock has to be at least

Amin ¼ 2NarccothðhXiNϵ2Þ ≥ 2=ðhXiϵ2Þ: ð7Þ

For the slow clock, Amin ≃ 333, and for the fast one,
Amin ≃ 5.55. The overall cost of measuring one hour with
this precision is bounded by 20 000 for both types. From an
energetic point of view, neither the slow nor the fast design
is preferable.
In a biochemical network, free energy is typically

provided by ATP hydrolysis, which, in physiological
conditions, liberates approximately 20kBT. The universal
result Cϵ2 ≥ 2 implies that a small uncertainty always has
an energetic price associated with it. An uncertainty ϵ

requires the consumption of 1=ð10ϵ2Þ ATP molecules. As
we show next, the situation for a clock driven by an external
protocol is fundamentally different since, in that case, high
precision does not require a minimal energy budget.

III. BROWNIAN CLOCK DRIVEN BY AN
EXTERNAL PROTOCOL

A. Model definition

For a Brownian clock driven by an external time-
dependent protocol, we also consider a ring geometry
with N states. The forward transition rates ki;iþ1ðtÞ and
the backward transition rates ki;i−1ðtÞ depend on the time t
with a period τ. The energy of site i is denoted EiðtÞ,
whereas the energy barrier between sites i and iþ 1 is
BiðtÞ. Using the parameters

ϵiðtÞ≡ eEiðtÞ and χiðtÞ≡ e−BiðtÞ; ð8Þ

we fix the rates as

ki;iþ1ðtÞ ¼ χiðtÞϵiðtÞ and ki;i−1ðtÞ ¼ χi−1ðtÞϵiðtÞ: ð9Þ

For fixed t, the rates fulfill detailed balance. Hence, if the
rates are time independent, there is no probability current in
the ring, and the clock cannot count time. A current can be
generated by a periodic variation of both the energies Ei
and the energy barriers Bi. A simple and symmetric choice
for such a protocol is as follows (see Fig. 2). The full period
of the external protocol τ is divided into N parts. In the first
part of the period from t ¼ 0 to t ¼ τ=N, the transition
rate from state i to state iþ 1 is ki;iþ1ðtÞ ¼ kþi ≡ χiϵi,
and the transition rate from state i to state i − 1 is
ki;i−1ðtÞ ¼ k−i ≡ χi−1ϵi. In the second part of the period,
from t ¼ τ=N to t ¼ 2τ=N, the energies and energy barriers
are shifted one step in the clockwise direction; i.e., the rates
change to ki;iþ1ðtÞ ¼ kþi−1 and ki;i−1ðtÞ ¼ k−i−1, where, for
the variable labeling a state i, we assume that a sum iþ j is
modulo N. In general, the transition rates for t ∈ ½0; τ� are
given by

ki;iþ1ðtÞ ¼ kþi−j for t ∈ ½jτ=N; ðjþ 1Þτ=N� ð10Þ

and

ki;i−1ðtÞ ¼ k−i−j for t ∈ ½jτ=N; ðjþ 1Þτ=N�: ð11Þ

Besides the variable i ¼ 1; 2;…; N, we also consider a
variable α ¼ 1; 2;…; N, which is convenient for our
calculations. Whereas the variable i marks a position in
the clock, the variable α is determined by the energy of the
state Eα. If the external protocol changes during the period,
for the variable i the transition rates rotate in the clockwise
direction, whereas the variable α undergoes an effective
backward transition, as illustrated in Fig. 2.
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The random variable X is the same as for the previous
clock: X counts the number of transitions between i ¼ N
and i ¼ 1 in the clockwise direction minus the number of
transitions in the anticlockwise direction. It turns out that
analytical calculations with the above model that reaches a
periodic steady state are complicated. In particular, a
method to calculate the diffusion coefficient (3) for
arbitrary N is not available. However, if we consider a
protocol that changes at stochastic times with a rate
γ ¼ N=τ, analytical calculations become simpler. In
Appendix A, we explain a general theory for such
stochastic protocols, along the lines of Ref. [63]. We
show that an analytical expression for the diffusion
constant D can be obtained in this case. Furthermore,
in Appendix B, we show that given a periodic steady state
arising from a continuous deterministic periodic protocol,
it is always possible to build a bipartite process compris-
ing the system and the stochastic protocol that has the
same probability distribution as the periodic steady
state [71].
For the clock with stochastic protocol, the energies and

energy barriers change at stochastic times, with a rate
γ ¼ N=τ. The precise definition of the model for general
N is presented in Appendix C. Here, in the main text, we
discuss the caseN ¼ 4 that is represented in Fig. 3. It turns
out that the full bipartite process can be reduced to a
Markov process with four states only. In this reduced

description, we use the variable α. The transition rates γ
are related to one rotation of the transition rates.
Effectively, such a rotation corresponds to a backward
jump of this α variable, as illustrated for the deterministic
protocol in Fig. 2 and explained in more detail in
Appendix C.

B. Optimal time scales and energy barriers

As explained in Appendix C, we can calculate current J,
entropy production rate σ, and diffusion constant D
analytically for this clock with the stochastic protocol,
which leads to the product Cϵ2 ¼ 2Dσ=J2 as a function of
the transition rates. The entropy production is equal to the
rate of work done on the system due to the periodic
variation of the external protocol. Similar to the previous
clock driven by a fixed thermodynamic force, if this clock
runs for a time T , the energetic cost is C ¼ σT and the
uncertainty is ϵ2 ¼ 2D=ðJ2T Þ.
For the simplest clock with N ¼ 3, the minimum value

of the product turns out to be Cϵ2 ≃ 1.33651, which is
smaller than the universal limit 2 for systems driven by a
fixed thermodynamic force. We have obtained this product
as a function of the transition rates up to N ¼ 6.
Minimizing Cϵ2 numerically, we find that the minimum
decreases with N, and that the transition rates at the
minimum have the properties χ1 ¼ χ2 ¼ … ¼ χN−1 ¼ χ ≫
γ and ðχNÞ−1 → 0. Thus, in this limit, the energy barrier
between states N and 1 becomes infinite, effectively
blocking transitions between these states. Moreover, the
internal transitions are much faster than changes in the
protocol; i.e., the system equilibrates before the next
change in the external protocol happens, which is common
in studies about periodically driven systems [49–52]. For
this clock, the product Cϵ2 is minimized in the far-from-
equilibrium regime, in contrast to the clock from Sec. II, for
which the minimum occurs in the linear response regime.
In this limit, the expressions for current J and diffusion

coefficient D become
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FIG. 3. Effective network for a clock driven by an external
protocol that changes at stochastic times with N ¼ 4 states. The
green backward arrows represent a jump with rate γ ¼ N=τ. A
backward jump is equivalent to a forward rotation of the rates
represented in Fig. 2.
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J ¼ γZ−1N−1
�XN

α¼2

e−Eα − ðN − 1Þe−E1

�
ð12Þ

and

D ¼ 1

2
γZ−1N−2

�XN
α¼2

e−Eα þ ðN − 1Þ2e−E1

�
; ð13Þ

where Z≡P
N
α¼1 e

−Eα . These expressions can be obtained
by mapping the model in this special limit onto a biased
random walk, as explained in Appendix C. The basic idea
behind this mapping is to consider the position of the
particle, i.e., the state of the clock, in relation to the barrier.
If the barrier moves and the particle is in state α ¼ 1, then
the particle crosses the barrier and moves to state α ¼ N,
corresponding to a backward step of size N − 1 of the
random walk. Otherwise, the particle moves one step closer
to the barrier, i.e., from state α to α − 1, corresponding to a
forward step of size 1.
The entropy production σ is calculated with the expres-

sion in Eq. (A12), which gives

σ ¼ γZ−1
�XN

α¼1

e−EαðEα−1 − EαÞ
�
: ð14Þ

This expression for the entropy production, which is the
rate of work done on the system, can be understood as
follows. If there is a jump that changes the external
protocol, the work done on the system is given by the
energy change of the system after the jump. If the system is
in a state α, this energy change is Eα−1 − Eα. Therefore, the
rate of work done on the system in Eq. (14) is γ times a sum
over all of state α of this energy difference multiplied by the
probability of the system being in state α before an external
jump, which is Z−1e−Eα . In marked contrast to the clock
driven by a fixed thermodynamic force, the cost C ¼ σT
for this periodically driven clock is, in general, not propor-
tional to the current J that is given in Eq. (12).

C. Dissipationless clock I: Simple profile

Before discussing the optimal energy profile that min-
imizes the product Cϵ2, we consider the simple profile

Eα ¼ Eδα;1; ð15Þ

where δα;1 is the Kronecker delta. In this case, using
Eqs. (12)–(14), the product Cϵ2 ¼ 2Dσ=J2 becomes

Cϵ2 ¼ ½1þ e−EðN − 1Þ�E
ðN − 1Þð1 − e−EÞ : ð16Þ

This expression implies a fundamental difference between
the two kinds of clocks. If we choose the parameters E and
N in such a way that eE ≫ N ≫ E, the product (16) can

reach an arbitrarily small value. For example, for N ¼ 64

and E ¼ 5.7, we obtain Cϵ2 ≃ 0.11. The fact that it is
possible to build a clock that has small uncertainty and
dissipates arbitrarily low energy is the main result of this
paper. Such a dissipationless clock is in stark contrast with
a clock driven by a fixed thermodynamic force, which is
constrained by the thermodynamic uncertainty relation
Cϵ2 ≥ 2.
A physical explanation for this result is as follows. Let us

consider the case where E is large enough so that the
particle is practically never at position α ¼ 1 when the
barrier moves forward. This condition amounts to eE ≫ N.
In this case, the position of the particle with respect to the
energy barrier always diminishes by 1 when the barrier
moves. The current is then given by the velocity of the
barrier J ≃ γ=N, and the dispersion isD≃ γ=ð2N2Þ, which
is the dispersion of the random walk performed by the
barrier that has only forward transitions with rate γ. Work is
done on the system only if the particle is at state α ¼ 2
when the barrier moves, which happens with probability
1=ðN − 1Þ. For large N, the entropy production is then
given by σ ≃ γE=N. The product of cost and uncertainty
becomes Cϵ2 ¼ 2Dσ=J2 ≃ E=N. The condition N ≫ E
guarantees a small dissipation, leading to a product Cϵ2

that can be arbitrarily close to 0. The mechanism that allows
for this scaling of the product Cϵ2 withN is the large energy
barrier that determines the current J and the dispersion D.
Such a mechanism cannot be realized with the clock driven
by a fixed thermodynamic force from Sec. II.

D. Dissipationless clock II: Optimal profile

In the limit where the expressions (12)–(14) are valid, the
minimum of Cϵ2 is achieved with an optimal energy profile
fEαg that depends on N, as shown in Fig. 4. The negative
value of the minimum of this energy profile grows with N2,
and for larger N, the profile becomes flatter in the middle.
Hence, for large N, the probability P1 to be in the state
with highest energy goes to zero and, from expressions (12)

0 0.2 0.4 0.6 0.8 1
α/N

-15

-10

-5

0

Eα

N=64
N=128
N=256
N=512

FIG. 4. Optimal profile fEαg for which the product Cϵ2 is
minimized.
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and (13), J → γ=N and D → γ=ð2N2Þ, respectively.
Current and diffusion are then determined by the unidi-
rectional random walk performed by the barrier, as is the
case of the simple profile from Eq. (15) with a large E.
We verified numerically that for this optimal profile, the

entropy production rate behaves as σ ∼ N−2. The product
Cϵ2 ¼ 2Dσ=J2 ∼ N−2 can then become arbitrarily small for
large N. For example, for a clock with N ¼ 64 states and
with an optimal energy profile, we get Cϵ2 ≃ 0.0047.
Hence, with this clock, an uncertainty ϵ ¼ 10−2 costs
approximately 47kBT, which is much less than the minimal
cost of 20 000kBT found above for a clock with the same
precision and driven by a fixed thermodynamic force.
This clockwith an optimal energy profile also relies on the

mechanism of a large barrier that controls the dispersion and
current of the clock, with the difference that the energy
dissipation can be suppressed asN−2. There are other energy
profiles that lead to a dissipationless and precise clock.
If we choose a simple energy profile Eα ¼ −α=Nϕ, with
0 < ϕ < 1, from Eqs. (12)–(14), we obtain Cϵ2 ∼ N−ϕ.
A dissipationless and precise clock can also be obtained

with a deterministic protocol. We have confirmed with
numerical simulations up to N ¼ 8, using the optimal
energy profile from Fig. 4, that for a deterministic protocol,
J and σ are the same as given by Eqs. (12) and (14), while
D becomes smaller. Such a smaller diffusion comes from
the fact that the deterministic protocol does not have the
randomness associated with the waiting times for a change
in the protocol. Therefore, the product Cϵ2 is even smaller
in this case and also vanishes for large N.

E. Numerical case study

For illustrative purposes, we compare a specific clock
driven by an external protocol with the results for clocks
driven by a fixed thermodynamic force. In Fig. 5, we show
a contour plot of the product Cϵ2 forN ¼ 3. The energies of
the clock are set to E1 ¼ 0, E2 ¼ −1.21938, and E3 ¼
−1.43550, which is the optimal profile for N ¼ 3. The
parameters B and x determine the other transition rates in
the following way. The parameters related to the energy
barriers are set to χ1 ¼ χ2 ¼ 1 and χ3 ¼ 10−B. The rate of
change of the protocol is set to γ ¼ 10−x. Hence, for large B
and x, the product Cϵ2 reaches its minimal value for N ¼ 3,
which is Cϵ2 ≃ 1.33651.
This externally driven clock can be compared to an

optimal clock driven by a fixed thermodynamic force A
with the same number of states N ¼ 3. The product Cϵ2 for
the optimal clock driven by a fixed affinity A saturates the
inequality (6); i.e., forN ¼ 3, this optimal clock follows the
relation Cϵ2 ¼ ðA=3Þ cothðA=6Þ, which is an increasing
function of the affinity. Close to equilibrium, A → 0, the
product reaches the minimal value Cϵ2 ¼ 2. Hence, a clock
driven by a fixed thermodynamic force cannot have a better
trade-off relation between cost and precision than the

externally driven clock inside the region limited by the
line A → 0 in Fig. 5. Increasing the affinity A leads to a
larger region for which the externally driven clock has a
smaller product Cϵ2.

IV. DISCUSSION AND CONCLUSION

We have shown that a Brownian clock driven by an
external protocol can achieve small uncertainty in a
dissipationless manner. This result constitutes a fundamen-
tal difference between systems driven by a fixed thermo-
dynamic force and systems driven by an external protocol.
For the first case, small uncertainty does have a funda-
mental cost associated with it, which is determined by the
thermodynamic uncertainty relation from Ref. [43].
More realistic models related to biochemical oscillations

do not typically have a simple space of states like the ring
geometry considered in this paper. However, this feature
does not represent a limitation in our fundamental bounds.
First, the thermodynamic uncertainty relation Cϵ2 ≥ 2 is not
limited to the ring geometry but valid even for any
multicyclic networks of states [43,45]. Second, we have
shown that it is possible to reach Cϵ2 → 0 with a specific
model, which is sufficient to prove that systems driven by
an external periodic protocol can, in principle, achieve high
precision with vanishingly small dissipation.
Main features of the protocol that achieves high pre-

cision in a dissipationless manner are internal transitions
much faster than changes in the external protocol, a large
number of states, and a large energy barrier that effectively
blocks transitions between one pair of states. This third
property does not allow for cycle completions without a
change in the external protocol. It remains to be seen
whether further classes of protocols that also lead to
Cϵ2 → 0 exist. In particular, a quite different externally
driven system, known as a hidden pump, that leads to a

FIG. 5. Product Cϵ2 for a clock driven by an external protocol.
The parameters of the clock are set to χ1 ¼ χ2 ¼ 1, χ3 ¼ 10−B,
γ ¼ 10−x, E1 ¼ 0, E2 ¼ −1.21938, and E3 ¼ −1.43550. Below
the lines, the product Cϵ2 is smaller than ðA=3Þ cothðA=6Þ, which
is the optimal value of this product for a clock driven by a fixed
affinity A and N ¼ 3.
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finite current with an arbitrarily low entropy production has
been proposed in Ref. [72]. It would be worthwhile to
verify whether such hidden pumps can also be used to build
a clock that reaches a finite precision with arbitrarily low
dissipation.
The theoretical framework for systems driven by a

protocol that changes at stochastic times considered here
was crucial to obtain our main result. With this theory, the
system and external protocol together form a bipartite
Markov process, and quantities like the diffusion coeffi-
cient can be calculated with standard methods for steady
states. This option represents a major advantage in relation
to standard deterministic protocols that reach a periodic
steady state, where a similar method to calculate the
diffusion coefficient is not available.
It is possible to consider a stochastic protocol that also

has reversed jumps. In this case, the entropy production
associated with generating the external protocol is finite.
This well-defined quantity can then be taken into account in
a way consistent with thermodynamics [63]. If one chooses
to also consider the entropy production due to the changes
in the external protocol as part of the thermodynamic cost,
then the thermodynamic uncertainty relation from Sec. II is
again valid. This result follows from the fact that the
uncertainty relation from Ref. [44] is valid for any Markov
process, including the full bipartite process of system and
protocol together. From a physical perspective, this obser-
vation is not surprising. If we also take the cost of
generating the stochastic protocol into account, then our
full bipartite process is a thermodynamic system driven by
a fixed force, which obeys the thermodynamic uncertainty
relation. For example, this cost of the external protocol
would be of interest if the external protocol is driven by
some chemical reaction [73]. However, if the protocol is
directed by some truly external process, e.g., daylight
changes that influence a circadian clock or an external
field applied to a system, then the entropic cost of the
external protocol is irrelevant, independent of whether the
protocol is deterministic or stochastic. It is in this case that
our definition of cost for a system driven by an external
protocol is meaningful.
Finally, the experimental confirmation of both the

thermodynamic uncertainty relation for systems driven
by a fixed thermodynamic force and the limit of high
precision in the output with small dissipation for a system
driven by an external periodic protocol remains an open
challenge. Promising candidates for the experimental
realization of a Brownian clock are single molecules,
colloidal particles, and small electronic systems.

APPENDIX A: EXTERNAL PROTOCOLS THAT
CHANGE AT STOCHASTIC TIMES

In this appendix, we consider a theoretical framework for
systems driven by periodic protocols that change at
stochastic times.

1. Two-state model

As a simple example of a periodic steady state, we
consider a two-state system. The “lower” level has energy
0, while the “upper” level has a time-dependent periodic
energy

EðtÞ ¼ 2E0 cosðωtÞ; ðA1Þ

where τ≡ 2π=ω is the period. The transition rates fulfill the
detailed balance relation kþðtÞ=k−ðtÞ ¼ e−EðtÞ. The master
equation reads

dR
dt

ðtÞ ¼ kþðtÞ − ½kþðtÞ þ k−ðtÞ�RðtÞ; ðA2Þ

where RðtÞ is the probability that the level with energy EðtÞ
is occupied. With the particular choice kþ ¼ k−1− ¼ e−EðtÞ=2
and the initial condition Rð0Þ ¼ 0, the solution of this
equation reads

RðtÞ ¼
Z

t

0

e−E0 cosðωt0Þe−
R

t

t0 2 cosh½E0 cosðωt00Þ�dt00dt0: ðA3Þ

This solution has the property that, for large t, the system
reaches a periodic steady state independent of initial
conditions that fulfills the relation RPSðtÞ ¼ RPSðtþ τÞ.
The function RPSðtÞ in a period τ obtained from Eq. (A3) is
shown in Fig. 6.
Instead of an energy that changes continuously and

deterministically with time, we now consider discontinuous
changes that take place at random times, as shown in Fig. 7.
Particularly, the transition rates for changes in the state
of the system are now written as kn�, where n plays a
role similar to t in Eq. (A1). The detailed balance condition

0 1 2 3 4 5 6
t

0.2

0.4

0.6

0.8

R(t)

Cont
N = 8
N = 16
N = 32
N = 64

FIG. 6. Comparison between the periodic steady state obtained
with the continuous deterministic protocol from Eq. (A1) and the
steady state obtained with the stochastic protocol that jumps with
a rate γ ¼ L=τ. For the second case, the horizontal axis is
t ¼ nT=L. For the periodic steady state, we plot RPSðtÞ, and
for the steady state, we plot the conditional probability PðujnÞ
for different values of L. The parameters are set to ω ¼ 1 and
E0 ¼ 1.
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for jumps changing the state of the system reads
knþ=kn− ¼ e−E

n
. The period τ is partitioned in L pieces,

leading to En ¼ Eðt ¼ nτ=LÞ. The energy En can change
to Enþ1 with jumps that take place with a rate γ, where for
n ¼ L − 1 the jump is to Enþ1 ¼ E0. The reversed tran-
sition leading to an energy change from Enþ1 to En is not
allowed. The external protocol and the system together
form a bipartite Markov process that has 2 × L states (see
Fig. 7). Furthermore, the external protocol alone is a
unicyclic Markov process with the irreversible transitions
E0 → E1 → … → EL−1 → E0. To match with the protocol
in Eq. (A1), the rate γ is set to γ ¼ L=τ.
The full Markov process of system and protocol together

reaches a stationary state, with the joint probability that the
protocol is in state n and the system is in a generic state i
denoted by Pn

i . The marginal probability of the state of the
protocol is Pn ≡P

iP
n
i . For the present case, Pn ¼ 1=L.

Comparing the periodic steady state with the stationary
state, the quantity analogous to the probability RPSðtÞ is the
conditional probability PðujnÞ≡ Pn

u=Pn, where u denotes
the state with energy En. This conditional probability is
compared to RPSðtÞ in Fig. 6. Clearly, for larger L, the
conditional probability of the steady state tends to the
probability in the periodic steady state. More generally, in
Appendix B we prove that for any periodic steady state, it is
possible to construct a steady state of a bipartite process
with a stationary probability that converges to the proba-
bility of the periodic steady state in the limit L → ∞.
For both protocols, the system is out of equilibrium

because of the time variation of the energy levels. For the
periodic steady state, the average rate of work done on the
system is

_wPS ≡ 1

τ

Z
τ

0

RPSðtÞ _EðtÞdt: ðA4Þ

The integrand is just the probability of being in the upper
state with energy EðtÞ multiplied by the rate of energy
change _EðtÞ. The expression for the rate of work done on
the system for the model with stochastic jumps in the
protocol is

_w≡ γ
X
n

Pn
uðEnþ1 − EnÞ ¼

X
n

PnPðujnÞðEnþ1 − EnÞ:

ðA5Þ

The sum in n corresponds to the integral in t in Eq. (A4),
Pn ¼ 1=L is the average fraction of time that the protocol
spends in state n during a period, PðujnÞ is equivalent to
RPSðtÞ, and Enþ1 − En is related to _EðtÞ in Eq. (A4).
In Fig. 8, we compare _wPS with _w. For large L, they

become the same, which is a consequence of the con-
vergence of the corresponding probabilities shown in
Fig. 6. Even if for smaller L the quantitative discrepancy
between _wPS and _w is noticeable, the qualitative behavior is
still similar; i.e., in all cases, the rate of work done on the
system is an increasing function of ω.

2. General theory

We now consider the general case that includes an
arbitrary network of states beyond the ring geometry of
the models in the main text, which is similar to the
framework from Ref. [63]. The system and the external
protocol together form a Markov process with states labeled
by the variables i ¼ 1; 2;…; N for the state of the system
and n ¼ 0; 1;…; L − 1 for the state of the external protocol.
This full Markov process is bipartite; i.e., a transition
changing both variables is not allowed [37]. A state of
the system i with the external protocol in state n has free
energyEn

i . The transition rates for a change in the state of the
system fulfill the generalized detailed balance relation [30]

knij
knji

¼ expfEn
i − En

j þAndijg; ðA6Þ

where An is a thermodynamic force or affinity and dij is a
generalized distance. For example, if the transition from i to
j is related to a chemical reaction, then An is the chemical
potential difference driving the reaction and dij is the
number of molecules consumed in the reaction.
A jump changing the external protocol from ði; nÞ to

ði; nþ 1Þ takes place with rate γn, while the reversed jump
is not allowed. The master equation for the full bipartite
process then reads

k n
+ k n+1

+

γ

γ
......

u u

d d
k n k n+1

− −

FIG. 7. Two-state model with a stochastic protocol. The states
of the systems d and u have energies 0 and En, respectively. The
protocol changes from n to nþ 1 with a rate γ.
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FIG. 8. Rate of work done by the external process _w as a
function of ω ¼ 2πγ=N. For the periodic steady state, this rate is
denoted by _wPS.
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d
dt0

Pn
i ðt0Þ ¼

X
j

½Pn
j ðt0Þknji − Pn

i ðt0Þknij�

þ ½γn−1Pn−1
i ðt0Þ − γnPn

i ðt0Þ�; ðA7Þ

where Pn
i ðt0Þ is the probability that the system is at state i

and the external protocol at state n at time t0. We use the
variable t0 in this master equation in order to stress the
difference with the variable t used for the periodic steady
state. In the following, we consider only the stationary
distribution, which is simply denoted Pn

i .
The entropy production, which characterizes the rate of

dissipated heat in an isothermal system, is defined as

σ ≡X
n

X
ij

Pn
i k

n
ij ln

knij
knij

≥ 0: ðA8Þ

The above inequality is demonstrated in Ref. [37]. This
entropy production does not include jumps that lead to a
change in the external protocol. The mathematical expres-
sion for the entropy production of the full Markov process
also contains a contribution that comes from these jumps.
This contribution is related to the entropy production due to
the external protocol [63] (see also Ref. [73]). As usual for
thermodynamic systems driven by an external protocol, we
do not take such a contribution, which is irrelevant for the
second law in Eq. (A8), into account.
The first law reads

_w≡ _Eþ _q; ðA9Þ

where _w is the rate of work done on the system and _E is the
rate of increase of the internal energy. Since kBT ¼ 1, the
rate of dissipated heat is _q ¼ σ. In the stationary state,

_E≡ d
dt

X
n;i

Pn
i E

n
i ¼ 0; ðA10Þ

which, with Eq. (A7), leads to the equation

X
n;ij

ðPn
j k

n
ji − Pn

i k
n
ijÞEn

i ¼
X
n;i

ðPn
i γn − Pn−1

i γn−1ÞEn
i :

ðA11Þ

In the stationary state, the first law then reads _w ¼ _q. Using
Eq. (A11), we can rewrite the entropy production (A8) in
the form

σ ¼
X
n

Pn

�X
i<j

JnijdijA
n þ γn

X
i

PðijnÞðEnþ1
i − En

i Þ
�
;

ðA12Þ

where Jnij ≡ PðijnÞknij − PðjjnÞknji is a probability current.
The second term on the right-hand side of this equation is

the work done by the external variation of the protocol. The
first term is the work related to the affinity An; this term
would be present even if the protocol was constant in time.
For the model considered in Sec. III of the main text, only
the second term is present.
We now compare expression (A12) with the expression

for entropy production for a standard periodic steady state.
The master equation for the periodic steady state is

d
dt

Ri ¼
X
j

½RjðtÞkjiðtÞ − RiðtÞkijðtÞ�; ðA13Þ

where RiðtÞ is the probability of the system being in state i
at time t. The generalized detailed balance relation (A6) in
this case reads

kijðtÞ
kjiðtÞ

¼ exp½EiðtÞ − EjðtÞ þAðtÞdij�; ðA14Þ

where the time-dependent quantities have a period τ.
We assume that for large t, Eq. (A13) reaches a periodic
steady state with the property RPS

i ðtÞ ¼ RPS
i ðtþ τÞ.

From the average energy

EPSðtÞ≡X
i

RPS
i ðtÞEiðtÞ; ðA15Þ

which is also periodic, i.e.,

EPSðτÞ − EPSð0Þ ¼
Z

τ

0

_EPSðtÞdt ¼ 0; ðA16Þ

we obtain

Z
τ

0

X
ij

½RPS
i ðtÞkijðtÞ − RPS

j ðtÞkjiðtÞ�EiðtÞdt

¼
Z

τ

0

X
i

RPS
i ðtÞ _EiðtÞdt: ðA17Þ

This equation is equivalent to Eq. (A11). The standard
entropy production rate from stochastic thermodynamics
[30] for this periodic steady state is

σPS ≡ 1

τ

Z
τ

0

RPS
i ðtÞkijðtÞ ln

kijðtÞ
kjiðtÞ

dt

¼ 1

τ

Z
τ

0

�X
i<j

JijðtÞdijAðtÞ þ
X
i

RPS
i ðtÞ _EiðtÞ

�
dt;

ðA18Þ

where JijðtÞ≡ RPS
i ðtÞkijðtÞ − RPS

j kjiðtÞ. This expression is
analogous to the entropy production (A12).
The problem of determining a periodic steady-state

probability analytically is typically complicated, whereas
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finding the probability distribution of a steady state in the
case of stochastic changes in the external protocol can be
much easier. This framework should then also be useful for
the analysis of the qualitative behavior displayed by a
system driven by a deterministic external protocol that is
preserved in the case of a discretized stochastic protocol.

3. Diffusion coefficient

A main advantage of the stochastic protocols we
consider here is that we can determine the diffusion
coefficient defined in Eq. (3). For a general model defined
by the master equation (A7), we calculate the diffusion
coefficient associated with an elementary current between
states a and b: The random variable X in Eq. (3) is such that
if there is a jump from a to b, it increases by 1, and if there
is jump from b to a, it decreases by 1.
This random variable is a standard probability current

of a steady state; therefore, the method from Koza [74]
(see also Refs. [43,44]) can be used to calculate the current
and diffusion coefficient in the following way. The
N-dimensional matrix LnðzÞ, where z is a real variable,
is defined as

Ln
jiðzÞ≡

�
knije

zðδi;aδj;b−δi;bδj;aÞ if i ≠ j

−ðPl k
n
il þ γnÞ if i ¼ j:

ðA19Þ

The modified generator [74,75] associated with the current
X is a matrix with dimension N × L given by

LðzÞ≡

0
BBBBBBBB@

L0ðzÞ−Γ0 0 … ΓL−1

Γ0 L1ðzÞ−Γ1 … 0

0 Γ1 … 0

..

. ..
. . .

. ..
.

0 0 … LL−1ðzÞ−ΓL−1

1
CCCCCCCCA
;

ðA20Þ

where Γn is the identity matrix with dimension N multi-
plied by γn. As explained in Refs. [43,44], we can obtain J
and D, defined in Eqs. (1) and (3), respectively, from the
coefficients CmðzÞ of the characteristic polynomial asso-
ciated with LðzÞ, which are defined through the relation

XNL

m¼0

CmðzÞxm ≡ det½xI −LðzÞ�: ðA21Þ

The current and diffusion coefficient are given by [74]

J ¼ −C0
0=C1 ðA22Þ

and

D ¼ −ðC00
0 þ 2C0

1J þ 2C2J2Þ=2C1; ðA23Þ

where the lack of dependence in z indicates evaluation of
the function at z ¼ 0 and the primes denote derivatives with
respect to z.

APPENDIX B: PROOF OF THE EQUIVALENCE
BETWEEN A PERIODIC STEADY STATE

AND THE STEADY STATE OF
A BIPARTITE PROCESS

In this appendix, we prove that for any given periodic
steady state, it is possible to construct a bipartite process
that has a stationary distribution corresponding to the
distribution of the periodic steady state.
We consider a periodic steady state following the master

equation (A13), which can be written in the form

dRðtÞ
dt

¼ MðtÞRðtÞ; ðB1Þ

where the stochastic matrix MðtÞ has period τ, i.e.,
MðtÞ ¼ Mðtþ τÞ, and RðtÞ is the probability vector with
N states. The probability in the periodic steady state
is RPSðtÞ.
The period τ is discretized in L small intervals so that in

each time interval the transition rates can be taken as time-
independent. In the nth-time interval, the system then
follows the master equation with time-independent tran-
sition rates

dRn

dt
¼ MnRn; ðB2Þ

where Mn ≡Mðnτ=LÞ and Rn ≡RPSðnτ=LÞ. The formal
solution of this equation is

RðfÞ
n ¼ expðMnϵÞRðiÞ

n ; ðB3Þ
where ϵ≡ τ=L and the superscript i (f) denotes the initial
(final) distribution of the system in the time interval

½nτ=L; ðnþ 1Þτ=L�. Using the relation RðfÞ
n ¼ RðiÞ

nþ1, we
rewrite Eq. (B3) for nþ 1 as

expð−Mnþ1ϵÞRðfÞ
nþ1 ¼ RðfÞ

n ; ðB4Þ
where we have multiplied the equation by expð−Mnþ1ϵÞ.
Expanding to first order in ϵ, we obtain

RðfÞ
n ¼ ð1 −Mnþ1ϵÞRðfÞ

nþ1 ≡ ~Mnþ1R
ðfÞ
nþ1; ðB5Þ

which is valid for n ¼ 0; 1;…; L − 1. Because of the

periodicity for n ¼ L − 1, this equation reads RðfÞ
L−1 ¼

~M0R
ðfÞ
0 . Therefore, Eq. (B5) leads to

RðfÞ
n ¼ ~Mnþ1

~Mnþ2… ~ML−1 ~M0… ~MnR
ðfÞ
n ; ðB6Þ

i.e., RðfÞ
n is the eigenvector of the matrix ~Mnþ1

~Mnþ2…
~ML−1 ~M0… ~Mn associated with the eigenvalue 1.
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We now construct a bipartite process with a steady
state corresponding to the periodic steady stateRPSðtÞ. The
Markov process including both the system and the external
protocol has N × L states, which is the dimension of the
stationary distribution vector P. The stochastic matrix that
fulfills the relation LP ¼ 0 can be written in the form

L ¼

0
BBBBBBBB@

L0 − Γ 0 … Γ
Γ L1 − Γ … 0

0 Γ … 0

..

. ..
. . .

. ..
.

0 0 … LL−1 − Γ

1
CCCCCCCCA
; ðB7Þ

where Γ is the identity matrix with dimension N multiplied
by γ, and Ln is the matrix in Eq. (A19) with z ¼ 0 and
γn ¼ γ. From Eq. (A20), the stationary master equation can
be written as

Lnþ1Pnþ1 þ γPn − γPnþ1 ¼ 0; ðB8Þ

where Pn is a vector that contains the N states of the system
for the protocol in state n. This equation is valid for
n ¼ 0; 1;…; L − 1, where if n ¼ L − 1, then nþ 1 ¼ 0.
Equation (B8) implies

Pn ¼ ~Lnþ1
~Lnþ2… ~LL−1 ~L0… ~LnPn; ðB9Þ

where ~Ln ≡ 1 −Lnγ
−1. Hence, Pn is the eigenvector of

~Lnþ1
~Lnþ2… ~LN−1 ~L0… ~Ln associated with the eigenvalue

1. Comparing Eq. (B6) with Eq. (B9), we obtain that the

choices Ln ¼ Mn and γ ¼ ϵ−1 ¼ L=τ lead to Pn ∝ RðfÞ
n .

These two quantities are not exactly the same because of a
different normalization, i.e.,

P
iP

n
i ¼ 1=L. Therefore, the

steady state of the stochastic matrix (A20) in the limit
L → ∞, with γ ¼ L=τ and Ln ¼ Mðnτ=LÞ, is equivalent
to the periodic steady state from Eq. (B1).

APPENDIX C: DETAILS OF THE MODEL
FROM SEC. III

In this appendix, we define the model from Sec. III more
precisely, with changes in the energies and energy barriers
that take place at random times, and we explain how we
calculate J, D, and σ.
The clock and external protocol together form a bipartite

Markov process. The model is defined by the stochastic
matrix for this bipartite process. This matrix is of the form
(A20) with

ðLnÞiþ1i ¼ χi−nϵi−n;

ðLnÞi−1i ¼ χi−1−nϵi−n;

ðLnÞii ¼ −ðχi−n þ χi−1−nÞϵi−n; ðC1Þ

where the other elements of the matrix are 0. For this
model, the number of jumps that change the protocol is
L ¼ N.
Because of the symmetry of the external protocol, the

fluctuating current between states N and 1, which we label
X, is the same as the fluctuating current between any pair of
states i and iþ 1. The random variable X is then the sum of
all these currents divided byN. The statistics of this random
variable can be described by a matrix that has dimension N
instead of the full matrix for the bipartite process that has
dimension N2. This reduction can be demonstrated in the
following way. Instead of changing the transition rates
between states after a jump with rate γ, we consider that the
states rotate in the anticlockwise direction. In this case, a
label α ¼ 1 refers to the states that have transition rate ϵ1χ1
to jump to state α ¼ 2 and transition rate ϵ1χN to jump to
state α ¼ N. This label α that marks the state that has
certain transition rates is different from the label i that
marks a position in the ring. The sum of the currents
between the states with the labels i is the same as the sum of
currents between states with label α. Within the label α, a
jump with rate γ, which is related to a change in the external
protocol, implies a jump from α to α − 1. Therefore, instead
of a stochastic matrix of the form (A20), the time evolution
of the probability vector of the states α ¼ 1; 2;…; N is
described by the stochastic matrix L� that is defined by the
following nonzero elements,

L�
αþ1α ¼ χαϵα;

L�
α−1α ¼ χα−1ϵα þ γ;

L�
αα ¼ −ðχα þ χα−1Þϵα − γ: ðC2Þ

With this reduction, the system and protocol together are
described by a matrix with dimension N. The modified
generator (A20) is also reduced to anN-dimensional matrix
L�ðzÞ. Its nonzero elements are

L�ðzÞαþ1α ¼ χαϵαez=N;

L�ðzÞα−1α ¼ χα−1ϵαe−z=N þ γ;

L�ðzÞαα ¼ −ðχα þ χα−1Þϵα − γ: ðC3Þ
The current J and the diffusion coefficient D are given by
relations (A22) and (A23), respectively, with the coeffi-
cients CmðzÞ given by

XN
m¼0

CmðzÞxm ≡ det½xI −L�ðzÞ�: ðC4Þ

The entropy production σ is calculated with relation (A12).
We now consider the model in the limit χN ¼ 0,

χ1 ¼ χ2 ¼ … ¼ χN−1 ¼ χ, and χ ≫ γ. The condition
χ ≫ γ means that the system reaches an equilibrium
distribution P�

α before a jump with rate γ takes place.
This equilibrium distribution is given by
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P�
α ¼ e−Eα=Z; ðC5Þ

where Z ¼ P
N
α¼1 e

−Eα . With this distribution, we can
calculate the entropy production rate σ given in Eq. (14)
using Eq. (A12).
The total current X is the sum of the current between all

states divided by N. Denoting the current between α and
αþ1 by Xααþ1, we obtain X¼ðX12þX23þ���þX1NÞ=N.
The fluctuating current through the links associated with
the rate γ that leave state α is denoted by Yα. The average
value for this unidirectional current is γP�

α. From
Kirchhoff’s law for the fluctuating currents, we obtain

X ¼
XN
α¼2

Yα=N − ðN − 1ÞY1=N: ðC6Þ

Hence, the random variable X can be viewed as a biased
random walk that gives a step of size 1=N forward if the
protocol changes and the clock is in a state α ≠ 1, or a step
of size ðN − 1Þ=N backward if the clock is in state α ¼ 1.
The master equation for this random walk reads

d
dt

PðX; tÞ ¼ keffþ PðX − 1=N; tÞ þ keff− PðX þ 1 − 1=N; tÞ
− ðkeffþ þ keff− ÞPðX; tÞ; ðC7Þ

where keffþ ≡ γ
P

N
α¼2 P

�
α and keff− ≡ γP�

1. Using the Laplace
transform

~Pðz; tÞ≡X
X

PðX; tÞeXz; ðC8Þ

we obtain

d
dt

~Pðz; tÞ ¼ ½keffþ ez=N þ keff− e−ðN−1Þz=N

− ðkeffþ þ keff− Þ� ~Pðz; tÞ: ðC9Þ

The solution of this differential equation with boundary
condition ~Pð0; tÞ ¼ 1 is ~Pðz; tÞ ¼ eψðzÞt, with

ψðzÞ ¼ keffþ ez þ keff− e−ðN−1Þz − ðkeffþ þ keff− Þ: ðC10Þ

From this solution, we obtain

J ¼ d
dz

ψðzÞj
z¼0

¼ ½keffþ − keff− ðN − 1Þ�=N ðC11Þ

and

2D ¼ d2

dz2
ψðzÞj

z¼0
¼ ½keffþ þ keff− ðN − 1Þ2�=N2; ðC12Þ

which are the expressions given in Eqs. (12) and (13) of the
main text, respectively.
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