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The appearance of the light Higgs boson at the LHC is difficult to explain, particularly in light of
naturalness arguments in quantum field theory. However, light scalars can appear in condensed matter
systems when parameters (like the amount of doping) are tuned to a critical point. At zero temperature these
quantum critical points are directly analogous to the finely tuned standard model. In this paper, we explore
a class of models with a Higgs near a quantum critical point that exhibits non-mean-field behavior.
We discuss the parametrization of the effects of a Higgs emerging from such a critical point in terms of form
factors, and present two simple realistic scenarios based on either generalized free fields or a 5D dual in
anti–de Sitter space. For both of these models, we consider the processes gg → ZZ and gg → hh, which can
be used to gain information about the Higgs scaling dimension and IR transition scale from the
experimental data.
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I. INTRODUCTION

The Higgs boson mass has been measured to be around
125 GeV by the LHC experiments. The appearance of a
light scalar degree of freedom is quite unusual both in
particle physics and in condensed matter systems [1].
While there is no previous particle physics precedent,
some condensed matter systems can produce a light scalar
by tuning parameters close to a critical value where a
continuous (second-order) phase transition occurs. As the
critical point is approached, the correlation length diverges,
which is an indication that the mass of the corresponding
excitation approaches zero. At the critical point the system
has an approximate scale invariance, and at low energies we
see the universal behavior of some fixed point that con-
stitutes the low-energy effective theory. If the system
approaches a trivial fixed point, then we find “mean-field”
critical exponents associated with the Landau-Ginzburg
effective theory, and a light scalar excitation. The Higgs
sector of the standard model (SM) is, in fact, precisely
analogous to a Landau-Ginzburg theory. However, if the
system is in the domain of attraction of a nontrivial fixed

point, then we find nontrivial critical exponents, and
potentially, no simple particle description.
Phase transitions that occur at zero temperature as some

other parameter is varied are referred to as quantum phase
transitions (QPTs) since quantum fluctuations dominate over
the more usual thermal fluctuations (see, e.g., Ref. [2], and
reference therein), and this is the case of interest for particle
physics. Experimentally, we know that the Higgs is much
lighter than our theoretical expectations. In the SM, varying
the Higgs mass parameter in the Lagrangian provides for a
continuous phase transition where the physical Higgs mass
[and vacuum expectation value (VEV)] goes through zero;
therefore, in the SM we are extremely close to the quantum
critical point [3] of a QPTwith mean-field behavior. Indeed,
if the SM is correct up to the Planck scale, then a change in 1
part in 1028 can push us through the phase transition, so we
are very, very close to the critical point. If there is new
physics beyond the SM, then the relevant questions are,
“Does the underlying theory also have a QPT?” and “If so, is
it more interesting than mean-field theory?”.
At a QPT the approximate scale-invariant theory is

characterized by the scaling dimensions Δ of the gauge-
invariant operators. In the SM we have only small,
perturbative corrections to the dimensions of Higgs oper-
ators: Δ ¼ 1þOðα=4πÞ, corresponding to mean-field
behavior. The purpose of this paper is to present a general
class of theories describing a Higgs field near a non-
mean-field QPT and explore the observable consequences.
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In such theories, in addition to the pole corresponding to
the recently discovered Higgs boson, there can also be a
Higgs continuum, which could potentially start not too far
above the Higgs mass. The continuum represents additional
states associated with the dynamics underlying the QPT,
which we assume is described by a strongly coupled
conformal field theory (CFT) [4]. The Higgs field can
create all of these states, both the pole and the continuum.
The pole itself could be just an elementary scalar that mixes
with some states from the CFT. In this case, the hierarchy
problem will be just like in the SM. Another interesting
possibility would be if the pole itself was a composite
bound state of the CFT, similarly to composite Higgs
models [8]. Most of the discussion here is general and does
not make a distinction between these cases.
One result of the presence of the continuum is the

appearance of form factors in couplings of the Higgs to the
SM particles. Furthermore, associated with the dynamics of
the nontrivial fixed point there will generically be extra
states, which will decouple from low energies at some
cutoff scale. Depending on how close these states are to the
electroweak scale, their effects on the effective theory will
be more or less important. This is just as in the SM
supplemented by higher-dimensional operators, with the
extra information that the states of the QPT are expected to
couple strongly to the Higgs field and, because of the
Higgs’s large anomalous dimension, a generic operator
with a given number of Higgs insertions will be more
irrelevant than the analog one in the weakly coupled case.
The phenomenology of these models will share some

features with scenarios where the Higgs is involved with a
conformal sector [9–13]; however, here we try to formulate
a general low-energy effective theory consistent with a QPT
and no new massless particles.
As in the SM, our effective theory does not allow us to

address the question of how nature ends up tuned close to
the QPT critical point. However, since we seem to be near
such a critical point, it is worth considering what effective
theories can accommodate a light Higgs and still offer
phenomenology distinct from the usual perturbative Higgs
models. This is the case of a quantum critical Higgs that we
explore in this paper.
The paper is organized as follows: we first discuss the

general phenomenology of Higgs form factors, we then
present two general classes of models for a Higgs near a
QPT, and, finally, we discuss observable signals at the LHC
that can allow us to extract the Higgs scaling dimension and
IR transition scale.

II. FORM FACTORS FOR HIGGS
PHENOMENOLOGY

Our ultimate goal is to investigate scenarios where the
Higgs is partially embedded into a strongly coupled sector.
We envision that such a sector is approximately conformal at
scales well above the weak scale, as expected at a quantum

critical point. This would allow the type of scenario outlined
in the Introduction: the Higgs has a significant anomalous
dimension and a continuum contribution to n-point func-
tions. In order to understand what types of new physics
effects could appear, we first present a model-independent
parametrization, based on form factors, of the various
amplitudes controlling themain Higgs production and decay
processes at the LHC. We assume that the SM fermions, the
massless gauge bosons, and the transverse parts of theW and
Z are external to the CFT, or in other words, they are
elementary states, while theHiggs (alongwith theGoldstone
bosons associatedwith the longitudinal components of theW
and Z) originates from or is mixed with the strong sector,
corresponding to a theory with spontaneously or explicitly
broken conformal symmetry. Note that in the case of a fully
spontaneous breaking of conformal symmetry, an additional
massless scalar called the dilaton emerges as the Goldstone
boson for broken scale invariance. The idea that the Higgs
pole at 125GeVitself could be a dilaton has been entertained
previously in Refs. [14–17]. However, for realistic non-
supersymmetric examples, one also needs an explicit break-
ing of scale invariance to stabilize the symmetry-breaking
minimum, which generically pushes the dilatonmass to high
values [15,16]. We do not consider the case of a Higgs-like
dilaton pole at 125 GeV in this paper. This strong CFT
sector is characterized by its n-point functions, which are
denoted by blobs in the diagrams below. The scale of
conformal symmetry breaking is parametrized by a single
parameter μ.
Within the SM one does not expect large deviations from

mean-field theory in the electroweak symmetry-breaking
sector: any such deviation would be the result of small
quantum loop corrections involving perturbative couplings.
As a consequence, nontrivial momentum dependence in the
SM is typically subdominant, leading to form factors that
are constant up to small corrections. Once the effects of the
strong sector leading to the QPT are added via its n-point
functions, deviations from mean-field theory are possible.
By now the Higgs boson has been observed in several
different channels at the LHC, with all results in agreement
with the SM predictions. When the Higgs is embedded into
a strong conformal sector, one therefore needs to ensure
that the resulting deviations from the SM are not too large.
We first present a general parametrization of the relevant
Higgs amplitudes in terms of form factors (Secs. II A
and II B), and then argue that most of these corrections
remain small even when the Higgs is embedded into a
strongly interacting sector (Sec. II C). We then explore
specific realizations of the strong conformal sector and their
contributions to these form factors in later sections. We
focus on those implementations where the corrections to
already-measured Higgs observables are expected to be
small. The amplitudes can be divided into two sets: those
where the measurement is made with all the legs on shell
(and the form factor reduces to a constant), and those
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measured with off-shell information, where additional
momentum dependence is expected to appear.

A. On-shell behavior: Constant form factors

The majority of studies that have come out of the LHC
are on properties of Higgs-pole observables, which implies
that for most of the analyses factorization can be employed
to simplify theoretical predictions. In this work, we restrict
to CP-symmetric QPTs, where the Higgs emerges as a CP-
even state. Below, we use diagrammatic illustrations for the
form factors parametrized and estimated in this section. The
dashed lines always represent Higgs-like states, either pole
or continuum, while the shaded blob with several dashed
lines represents an n-point function of the CFT. Multiple
dashed lines stand for an arbitrary number of scalar
insertions connecting the CFTwith the external elementary
legs. A cross implies mixing between elementary and CFT
states, while wiggly and straight lines represent gauge
fields and fermions, as usual.
For Higgs decays to fermions (i.e., b̄b and τ̄τ), the form

factor for the coupling hff is given by

ð1Þ

where μ represents the parametric dependence on the scale
of conformal symmetry breaking and p1;2 are the four-
momenta of the two external fermions. In general, a form
factor involving n fields depends on n − 1 four-momenta,
which correspond to nðn − 1Þ=2 Lorentz invariants. With
the three external particles on shell, the three Lorentz
invariants are completely fixed; hence, this form factor is
simply an effective coupling constant, withp1 · p2 ¼ m2

h=2.
For production of the Higgs via gluon fusion, there are

modifications due to a nonperturbative sector that is
coupled to the top quark:

ð2Þ

where p1;2 are the (incoming) four-momenta of the two
external gluons and ϵ1;2 are their polarization vectors. The

restriction to on-shell external states for the Higgs and the
gluons implies that the form factor is simply an effective
coupling constant.
There is an analogous formula corresponding to the form

factor for the interactions of the Higgs with two photons.
However, several contributions, such as the loop of vector
bosons, change its value relative to the hgg factor:

ð3Þ

Of particular interest is the last class of diagrams, where
electrically charged states in the strong sector contribute to
the low-energy hγγ interaction. This type of contribution is
always present when there are states in the nonperturbative
sector carrying charges under the SM SUð2ÞL × Uð1ÞY
gauge group, like when the Higgs doublet operator mixes
with or emerges from the strong dynamics. Once again,
restriction to on-shell states reduces this form factor to an
effective coupling constant.

B. Off-shell behavior: Momentum-dependent
form factors

The previous form factors encode information about the
new dynamics beyond the SM. Scaling dimensions of
operators and n-point correlators in the strongly coupled
sector enter into the corrections to the effective coupling
constants, which can be measured at collider experiments.
However, in order to fully probe the nature of the quantum
critical point, we need to uncover the momentum depend-
ence of the form factors, i.e., when the Higgs is off shell.
Next, we outline the general structure of these off-shell
observables.
The amplitude associated with the production of the

Higgs through the fusion of massive vector bosons (VBF)
has five independent contributions:
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ð4Þ

Fμν
VVhðpi; μÞ ¼ gμνΓ1 þ ðgμνp1 · p2 − pμ

2p
ν
1ÞΓ2

þ ðpμ
1p

ν
1 þ pμ

2p
ν
2ÞΓ3 þ ðpμ

1p
ν
1 − pμ

2p
ν
2ÞΓ4

þ pμ
1p

ν
2Γ5;

Γi ¼ Γiðp2
1; p

2
2; p1 · p2Þ; ð5Þ

where p1;2 are the (incoming) four-momenta of the two
vector bosons V ¼ fW;Zg, and the on-shell Higgs con-
dition fixes p2

1 þ p2
2 ¼ m2

h − 2p1 · p2. The fermionic cur-
rents J1;2 contain the polarization states for the external
fermions, with the appropriate Dirac structures that couple
to the internal W and Z propagators GVðpiÞ. NV is an
overall normalization set to the SM value. Because of Bose
symmetry, the Γi form factors are symmetric under the
exchange p1 ↔ p2, except Γ4, which is antisymmetric.
The gauge bosons’ propagators include contributions from
the CFT, which are determined to leading order once the
Higgs two-point function is known. Typically the W’s or
Z’s are off shell; the on-shell limit (also known as the
effective W limit) is relevant for high momenta, where the
Higgs is far off shell. The Γ1 form factor is the only one that

appears at tree level in the SM, where ΓðSMÞ
1 ¼ 1 and

ΓðSMÞ
i≠1 ¼ 0. The form factor Γ2 is singled out as the term

transverse to the momenta p1 and p2; thus, it is generated
by operators involving transverse polarizations.
For Higgsstrahlung, where an off-shell electroweak

vector boson produced via Drell-Yan radiates an on-shell
Higgs and a massive vector, the amplitude involves the
same form factors (up to p2 → −p2) as VBF, since the two
processes are related by crossing symmetry:

ð6Þ

where J1 is the current of initial state fermions, ϵ2 is the
vector boson polarization vector, and

ϵ̄2νF
μν
VVhðp1;−p2; μÞ ¼ ϵ̄μ2Γ1 − ½ϵ̄μ2p1 · p2 − pμ

2 ϵ̄2 · p1�Γ2

þ pμ
1 ϵ̄2 · p1ðΓ3 þ Γ4Þ;

Γi ¼ Γiðp2
1; p

2
2;−p1 · p2Þ; ð7Þ

where we use ϵ2 · p2 ¼ 0. Therefore, Higgsstrahlung con-
tains three form factors, in agreement with Ref. [18]. Note
that p2

2 ¼ m2
V and −2p1 · p2 ¼ m2

h −m2
V − p2

1.

Double Higgs production involves two form factors:

ð8Þ

where p1;2 and p3;4 are, respectively, the four-momenta of
the two gluons (incoming) and of the two Higgses (out-
going). Notice that p1 · p2 ¼ s=2 and p1 ·p3¼ðm2

h− tÞ=2.
Because of Bose symmetry between the gluons,
Ξiðp1 · p2; p1 · p3; μÞ ¼ Ξiðp1 · p2; p2 · p3; μÞ. The two
different structures are generated already in the SM,
although Ξ2 is suppressed in the large top mass limit [19].
The last and perhaps most promising case is gg → VV, in

particular, when V ¼ Z → lþl−:

ð9Þ
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Fμνρσ
ggVVðpi; μÞ ¼ ½gμνðp1 · p2Þ − pν

1p
μ
2�ðgρσΘ1 þ pρ

1p
σ
1Θ2 þ pρ

2p
σ
2Θ3Þ þ ½gμρgνσðp1 · p2Þ þ gμνpρ

1p
σ
2 − gμρpν

1p
σ
2 − gνσpμ

2p
ρ
1�Θ4

þ gρσ½gμνðp1 · p3Þðp2 · p3Þ − pμ
3p

ν
3ðp1 · p2Þ þ pμ

3p
ν
1ðp2 · p3Þ þ pμ

2p
ν
3ðp1 · p3Þ�Θ5

þ pσ
3½gμνpρ

2ðp1 · p3Þ þ gνρpμ
3ðp1 · p2Þ − gνρpμ

2ðp1 · p3Þ − pμ
3p

ν
1p

ρ
2�Θ6

þ ½gμσpν
1p

ρ
1ðp2 · p3Þ − gμρpν

1p
σ
1ðp2 · p3Þ þ gμρpσ

1p
ν
3ðp1 · p2Þ − gμσpρ

1p
ν
3ðp1 · p2Þ�Θ7

þ ½gνσpμ
2p

ρ
2ðp1 · p3Þ − gνρpμ

2p
σ
2ðp1 · p3Þ þ gμρpσ

1p
ν
3ðp1 · p2Þ − gμσpρ

1p
ν
3ðp1 · p2Þ�Θ8; ð10Þ

F̂μνρσ
ggVVðpi; μÞ ¼ p1αp2βpiγpjδðεμναβερσγδΘ̂ij

1 þ εμραγενσβδΘ̂ij
2 þ εμσαγενρβδΘ̂ij

3 þ δi1δ
j
3ε

μαρσενβγδΘ̂4 þ δi2δ
j
3ε

νβρσεμαγδΘ̂5Þ;
Θk ¼ Θkðp1 · p2; p1 · p3Þ; Θ̂ij

k ¼ Θ̂ij
k ðp1 · p2; p1 · p3Þ; ð11Þ

where p1;2 are the four-momenta of the two gluons, with
polarizations ϵ1;2, and p3;4 are the four-momenta of the two
massive electroweak vectors, with ϵ3;4 their polarization.
Note that p1 ·p2¼s=2 and p1 · p3 ¼ ðm2

V − tÞ=2. The latin
indices run over a set of three independent particle momenta
(e.g., 1–3).We use a slightly redundant notation: some of the
form factors vanish identically because of the antisymmetry
of the ϵ tensor, Θ̂1j

2;3 ¼ Θ̂i2
2;3 ¼ 0; moreover, because of Bose

symmetry between thegluons, Θ̂3;5 can be expressed in terms
of Θ̂2;4, respectively. More explicitly, Θ̂ij

1 ðp1 ·p2;p1 ·p3Þ¼
Θ̂ij

1 ðp1 ·p2;p2 ·p3Þ, Θ̂ij
2 ðp1 ·p2;p1 ·p3Þ¼Θ̂ji

3 ðp1 ·p2;p2 ·p3Þ,
and Θ̂4ðp1 · p2; p1 · p3Þ ¼ Θ̂5ðp1 · p2; p2 · p3Þ. Analogous
Bose symmetry constraints apply to other Θ’s as well. For
recent analyses of this process at theLHC, in the limitp2≪μ2

where the resulting effective theory is the SM perturbed by
higher-dimensional operators, see, e.g., Ref. [20].
Eventually, with a large integrated luminosity, we will be

able to probe VV scattering, V ¼ fW;Zg:

In general, there are many form factors in this channel,
even restricting to on-shell V’s. Likewise, for the Higgs-
associated production with a top quark pair:

either gg or qq̄ initiated. We leave the analysis of these form
factors for future work.

C. Estimation of form factors: A case for a simple
parametrization of the leading Higgs processes

Next, we argue that most form factors remain small and
can be estimated using the insertions of the smallest n-point
functions, even though the Higgs is (partly) embedded into
a strongly coupled sector. In the framework of a quantum
critical Higgs, we assume that the origin of the corrections
to Higgs observables is from a strongly coupled sector that
plays some role in electroweak symmetry breaking, and
perhaps produces the light Higgs boson resonance (pos-
sibly along with a scalar continuum, as we discuss later). In
this paper, we assume all other SM fields are external to this
nonperturbative sector, with the Higgs acting as a portal to
the strong dynamics. Naive dimensional analysis (NDA)
provides a guide for our expectations of the size of the form
factors discussed above. We begin our estimates from an
effective field theory perspective, where the only light
degree of freedom surviving from the strongly coupled
sector (below the scale μ) is the Higgs particle. In this limit,
the form factors are expected to have asymptoted to their
zero-momentum values [21]. In this case, we can estimate
the size of the n-point Higgs correlators by considering the
effect of loops on its renormalization. In NDA, the loop
corrections should be roughly of the same size as the
original n-point function. The example of n ¼ 6 is explic-
itly depicted here:

Following the rules of NDA, assuming that the n-point
function is described by the coupling

L ¼ αn
μn−4

ϕn; ð12Þ

a typical loop contribution with two insertions of this
operator that contributes to the same n-point amplitude
would be one in which each vertex has n=2 external lines,
and n=2 propagators exchanged in n=2 − 1 loops that are
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cut off at the scale μ. In this case, the quantum correction to
αn is expected to be roughly

αn → αn

�
1þ αn

ð16π2Þn=2−1
�
:

For this correction to be comparable to the initial coupling,
we must have αn ∼ ð16π2Þn=2−1 [22].
With this NDA estimate of the n-point amplitude in

hand, we can see that the n-point contribution to, e.g., the
gluon fusion process is suppressed by insertions of the
perturbative coupling of the top quark to the strongly
coupled sector, along with a loop factor that is only partially
canceled by the large coefficient α:

If the shaded region corresponds to the n-point function,
there are n − 1 insertions of the top Yukawa, and n − 2
loops. There are n − 1 scalar propagators and n − 2
fermionic propagators running in these loops.
Computing the loops with a hard cutoff at the scale μ in
Eq. (12) yields an estimate for the contribution of the n-
point correlator to the ht̄t coupling:

gtthn ∼ 4π

�
λt
4π

�
n−1

: ð13Þ

This is one of the crucial results in this paper, one that allows
us to use very simple parametrizations to estimate the leading
corrections to Higgs processes in quantum critical Higgs
(QCH)models. This NDAdoes not rely onwhether or not the
strong sector is conformal.What thismeans is that the n-point
amplitude contributions are increasingly suppressed by per-
turbative loop factors for increasing n, and, therefore, the
leading contribution to the form factor in this case is due to the
Higgs two-point function (in the electroweak broken phase).
In this case, the dominant contribution to the form factor is
tree level, and involves only a single insertion of the top
Yukawa coupling along with the full nonperturbative two-
point function of the Higgs. For example, nonstandard
momentum-dependent effects in double Higgs production
through gluon fusion would be dominated by the following
diagram:

which involves the ggh form factor in Eq. (2), now with the
Higgs off shell (p1 · p2 ¼ s=2), and the trilinear Higgs form
factor:

Mgghh ¼ ½ðϵ1 · p2Þðϵ2 · p1Þ − ðp1 · p2Þðϵ1 · ϵ2Þ�
× Fgghðp1 · p2; μÞGðp1 þ p2Þ
× Fhhhðp1 · p2; μÞ; ð14Þ

where Gðp1 þ p2Þ is the Higgs propagator. We emphasize
again that this result is based on the crucial (but reasonable)
assumption of the applicability of our NDA to estimate
contributions from the strong sector.
The same power counting implies that the form factor

Fggh with the Higgs on shell reduces to the SM value up to
corrections of Oðλt=4πÞ associated with higher-point cor-
relation functions, and up to corrections of Oðm2

h=μ
2Þ due

to the nontrivial momentum dependence of such higher-
point correlators.
Analogously, the strong sector’s contribution to the gg →

VV amplitude is dominated by the following diagram:

with the associated form factor:

MggVV ¼ ½ðϵ1 · p2Þðϵ2 · p1Þ − ðp1 · p2Þðϵ1 · ϵ2Þ�
× Fgghðp1 · p2; μÞGðp1 þ p2Þ
× Fμν

VVhð−p3;−p4; μÞϵ̄3μϵ̄4ν: ð15Þ

Finally, the new physics effects in VV scattering factor-
ize into the product of the VBF form factors. The Higgs
contribution to VV scattering is singled out, even off shell,
and the s-channel Higgs amplitude is given by

MWWWW ¼ Jμ1Gμνðp1ÞJρ2Gρσðp2ÞFνσ
VVhðp1; p2; μÞ

×Gðp1 þ p2ÞFατ
VVhð−p3;−p4; μÞϵ̄3αϵ̄4τ: ð16Þ

This probes both the Higgs propagator and the two gauge
boson form factors off shell.
Let us comment on the UV scaling behavior of the form

factors for the case of a strong sector that is conformal at
high energies. For large momenta, the Higgs propagator
scales as p2Δ−4, where Δ is the dimension of the Higgs
operator. The amputated form factors Fh…h scale asymp-
totically as p4−nΔ · vmΔ, where n is the number of legs with
large momenta, whilem is the number of VEV insertions at
zero momentum. For example, Fhhh in Eq. (14) requires
one VEV and three Higgs legs, so that Fhhh ∼ p4−3ΔvΔ.
Analogously, the form factor Fμν

VVhϵμϵν scales at large
momenta as Fhhh because of the equivalence theorem that
relates the Goldstone bosons inside the Higgs field to the
longitudinal polarizations of V. For the transverse polar-
izations, the estimate of the asymptotic behavior involves

BRANDO BELLAZZINI et al. PHYS. REV. X 6, 041050 (2016)

041050-6



instead the insertion of the weakly gauged conserved
currents of the CFT, schematically hH†…HJμJνi, so that
the scaling of the amputated form factor is p−nΔþ2 · vmΔ.
We stress that our power counting implicitly assumes that
the IR corrections from insertions of several Higgs VEVs
are suppressed, such that the n-point function with the least
number of critical Higgses (but with unsuppressed number
of derivatives) captures already the leading contribution to
the form factors. Such a scaling is realized, e.g., in the
power counting of Ref. [23], where operators with
fewer derivates are suppressed due to a shift symmetry
h → hþ c.
We emphasize that these results depend crucially on how

the SM fields are embedded into the (strongly interacting)
conformal sector. If the top quark were part of the strong
dynamics, as it is often the case in extensions of the
standard model, then the higher-point correlation functions
are expected to give contributions that are unsuppressed
relative to the leading term in the λt expansion. In this case,
all n-point correlators are important for estimating the form
factors. In fact, this is the case for the longitudinal W�
bosons, which are part of the strong sector (along with the
Higgs and the longitudinal Z) and may hence strongly
affect the rate of h → γγ. Of course, the argument above is
model dependent. For example, in composite Higgs models
where the Higgs emerges as a Goldstone boson, corrections
to h → γγ (and gg → h) are protected by the associated
Goldstone symmetry. Such a symmetry is preserved by the
strong sector and, therefore, the generation of terms such as
B2
μνjHj2 (and G2

μνjHj2) is suppressed by insertions of the
explicit breaking parameters [24]. In the next section, we
present a different class of strongly interacting theories that
can reproduce the SM predictions at low energies, e.g., in
h → γγ, even though no global symmetry is at work. Rather
than invoking a symmetry, we consider generic theories
that are perturbations around generalized free fields [25].
For example, below we consider a strong sector where only
the n ¼ 2 correlators are nonvanishing, and where higher-
point correlators are present only due to the perturbative
SM couplings. Another example we consider is that in
which higher n-point correlators are suppressed due to a
large N expansion being possible in the strong sector. In
either case, these benchmark theories admit a perturbative
expansion, where the smallness of the SM couplings or
of 1=N suppresses deviations from the new physics sector.
Effectively, the scale suppressing operators associated with
higher n-point functions is larger than the scale that
controls the two-point function. Hereafter, this latter scale
alone is denoted as μ.

III. MODELING THE QUANTUM
CRITICAL HIGGS

The range of possible phenomena associated with
generic models of electroweak quantum criticality is large,

with only a few constraints imposed by consistency of the
theory (e.g., unitarity bounds) on the form factors discussed
above. To make concrete predictions, we need to make
some additional assumptions about the QPT. In this section,
we present two such models: one based on generalized free
fields and a second one based on a 5D realization of those
using the AdS/CFT correspondence. These models serve as
illustrations of the general arguments presented in Sec. II C,
and serve as toy models for performing concrete calcu-
lations in the upcoming section for LHC phenomenology.
While not forbidden by experimental results, strong self-
interactions in the low-energy effective theory for the Higgs
would hinder our ability to make quantitative statements.
Of course, there is no requirement that strongly coupled
dynamics produces a strongly coupled effective theory, and
in fact, there are many counterexamples where a strongly
coupled theory produces a weakly coupled effective theory
for the low-energy degrees of freedom: Seiberg duality, the
ρ meson at large N, and the AdS/CFT correspondence. In
the latter example, assuming that the low-energy compo-
sites of the broken CFT have weak interactions is tanta-
mount to assuming that there is a weakly coupled AdS dual.
In the strict large N limit there are no bulk interactions in
the AdS dual, but for large yet finite N, we expect that there
are perturbative bulk interactions that are inherited by the
4D low-energy effective theory.
The infinite N limit in AdS/CFT yields a subclass of

models that generalize to a broader category of strongly
coupled theories: it is possible that the strongly coupled
sector is completely specified by the two-point functions of
that theory, with or without a large N expansion. Such
theories are referred to as models of generalized free fields
[25]. Weakly coupling a fundamental light Higgs to such a
theory would produce the type of dynamics we are
interested in. Of course, such a construction would not
on its own resolve the hierarchy problem; however,
our motivation is to explore the possible variations of
Higgs phenomenology rather than solving the hierarchy
problem.

A. Generalized free-field theory

In theories where n-point functions with n > 2 vanish,
one obtains what is called a “generalized free-field theory”
[25]. For a more recent discussion of generalized free
fields, see, e.g., Ref. [26], and references therein. Since the
theory is quadratic in this case, a one-particle irreducible
(1PI) effective Lagrangian density can be constructed
whose path integral generates the two-point functions
of the theory. As an example, we consider an unbroken
CFT with a scalar operator h with scaling dimension Δ.
The two-point function is then fixed by conformal
invariance [27]:

Gðp2Þ ¼ −
i

ð−p2 þ iϵÞ2−Δ : ð17Þ
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The generalized free field (GFF) Lagrangian that repro-
duces this two-point function is

LGFF ¼ −h†ð∂2Þ2−Δh: ð18Þ

Phenomenological constraints suggest that if there is a
strongly coupled sector mixing with the Higgs, then there
must either be a gap or the mixing must be highly
suppressed. A simple IR deformation of the above
Lagrangian provides a two-point function that features a
gap, yet reduces to conformal behavior at high momentum:

L ¼ −h†ð∂2 þ μ2Þ2−Δh: ð19Þ

Here, μ reduces to a mass term (a pole in the two-point
function) as Δ goes to 1, but for other values of Δ
represents the beginning of a cut. The μ term gives a
contribution to the potential energy (the p → 0 limit) and
removes the massless degrees of freedom. In terms of a
fundamental CFT description, this would correspond to the
continuum shifted to start at p2 ¼ μ2 rather than at p2 ¼ 0.
There are other possibilities [13,29] for the structure of

the above quadratic Lagrangian that correspond to differ-
ently shaped spectral density functions. The different
shapes correspond to different ways in which the behavior
of the theory makes the transition from the IR, where
conformal symmetry is broken, to the UV, where it is
restored. For the sake of simplicity, we use examples based
on this simple model, but want to emphasize again that this
is not a necessary or unique choice. The appearance of a
continuum in conformal theories is generic; such a CFT
continuum does not admit, generically, an interpretation in
terms of weakly interacting multiparticle states. Whether or
not this continuum survives the spontaneous breaking of the
conformal symmetry (or becomes a discretuum or a con-
tinuumwith a mass gap) depends strongly on the mechanism
of conformality breaking and the corresponding CFT
dynamics. We see in the next section that for CFTs with
AdS duals, a continuum theory generically corresponds to
soft-wall-type constructions, even though soft walls may
also support a mass gap. Hard walls correspond to a
discretuum, as in the original Randall-Sundrum (RS) mod-
els, although finite coupling quantum effects in the 5D
theory restore the continuum at high scales (where the mode
separation becomes small in comparison with the widths).
In general, the two-point function can be formulated in

terms of a spectral density function. Of course, with the
discovery of the Higgs particle, we insist that the spectral
density includes at least a pole at 125 GeV, with features
that closely resemble those of the SM Higgs. A general
two-point function with a pole atm2

h, and a cut beginning at
the scale μ, is

Ghðp2Þ ¼ i
p2 −m2

h

þ
Z

∞

μ2
dM2

ρðM2Þ
p2 −M2

: ð20Þ

A simple Lagrangian that yields a two-point function of the
above form is

Lquadratic ¼ −
1

2Zh
h½∂2 þ μ2�2−Δh

þ 1

2Zh
ðμ2 −m2

hÞ2−Δh2; ð21Þ

where the physical pole mass, mh ≈ 125 GeV, and the
quadratic terms in Eq. (21) are obtained by expanding the
Higgs potential around its minimum, such that hhi ¼ 0, h
being the real part of the fluctuation around the VEV. Note
that while the scaling dimension of h is Δ, its engineering
dimension is 1. Since h is assumed to be weakly coupled,
the scaling dimension of h2 is 2Δ to first order, so the
bounds of Ref. [30] are not relevant. Perturbative correc-
tions also give additional contributions to the spectral
density, shifting both the location of the branch cut and
the overall shape. These effects, though, are both subdomi-
nant, and we neglect them in our estimation of form factors.
It is convenient to work with a canonically normalized
Higgs field. To achieve this, we can set the residue of the
pole to 1 by choosing the normalization to be

Zh ¼ ð2 − ΔÞ
ðμ2 −m2

hÞΔ−1
: ð22Þ

The propagator for the physical Higgs scalar can then be
written simply as

GhðpÞ ¼ −
iZh

ðμ2 − p2 þ iϵÞ2−Δ − ðμ2 −m2
hÞ2−Δ

: ð23Þ

This type of propagator has been studied in a variety of
papers [9,31,32], including its AdS5 description [33,34].
Besides modified propagators, the Higgs Lagrangian

Eq. (21) is associated with nonstandard couplings between
the Higgs field components and the transverse polarizations
of the electroweak gauge bosons, once we promote the
derivative in Eq. (19) to a gauge covariant derivative. In
fact, it also gives rise to new vertices with arbitrary powers
of the gauge fields. Here, we use the results of Ref. [9],
which used the Mandelstam technique [35] of path-ordered
exponentials (also known as Wilson lines) to ensure gauge
invariance. The form factors that describe the interactions
of the rescaled Higgs field h with gauge fields are given in
Appendix A, along with further details on the Lagrangian
Eq. (21).
While a detailed derivation of the bounds on the

parameters μ, Δ is beyond the scope of this paper, one
can get a good idea of how weakly constrained these
parameters are by going into the limit of large μ compared
to the momentum scales relevant for a particular process,
and expand the Lagrangian Eq. (21) in powers of p2=μ2.
The leading operator (after rescaling the Higgs doublet to
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have a canonical kinetic term) will be a dimension six
Higgs operator − 1

2
½ð1 − ΔÞ=μ2�ðD2H†ÞðD2HÞ, which, as

expected, vanishes both for Δ → 1 and μ → ∞. Using the
equations of motion (or field redefinitions), we can gain
more insight into the effects of this operator: it induces
four-Fermi operators, which are, however, strongly sup-
pressed by the SM Yukawa couplings, a modification to the
Higgs potential (which is very weakly constrained by
current data), while the leading effect is a modification
to the Yukawa couplings given by

1

2

ðΔ − 1Þ
μ2

Yffiffiffiffiffiffiffiffiffiffiffiffi
2 − Δ

p ψ̄L
∂VH

∂H† ψR þ H:c:; ð24Þ

where Y are the Yukawa couplings and VH is the Higgs
potential. This then gives rise to a correction to the top
Yukawa coupling, which, in turn, modifies the Higgs
production rate via gluon fusion. The resulting correction
(expressed in terms of the physical Higgs mass) together
with the experimental limit at 1σ C.L., obtained from
Ref. [36] assuming no direct new physics contributions to
the Higgs coupling to gluons, is given by

−δyψψh
ðyψψhÞSM

≃ Δ − 1

2

m2
h

μ2

≈ 3%

�
Δ − 1

0.6

��
0.4 TeV

μ

�
2 ≲ 7%; ð25Þ

leading to an experimental bound on the parameters
μ=

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ − 1

p ≳ 335 GeV.
Going beyond the quadratic terms, we can also include

small Higgs self-interactions with their associated form
factors, but these are model dependent in that they require
information beyond simply the two-point function. The
simplest models that provide this kind of detail come from
the AdS/CFT correspondence, which we discuss in the
following.

B. Generalized free fields and AdS/CFT

If we insist that the dynamics is conformal in the UV, as
in the examples above, then the high-momentum behavior
of all such two-point functions is purely a function of
momentum and the scaling dimensions of the fields. In the
IR, where the conformal dynamics is presumed to be
broken to produce a gap, the specifics of the breaking
determine the transition from SM-like mean-field behavior
to exhibiting sensitivities to the scaling dimensions asso-
ciated with the strongly coupled conformal theory.
The AdS/CFT correspondence [37] offers a framework

where the strongly coupled CFTwith generalized free-field
behavior, its perturbative coupling to the fundamental fields
of the SM, and its breaking can all be understood in terms
of a weakly coupled 5D theory. We consider a class of 5D
models in which a scalar field carrying the same quantum

numbers as the Higgs propagates in the bulk of the extra
dimension. Five-dimensional gauge fields are required for
consistency, such that local gauge transformations of the
bulk Higgs are compensated for appropriately. A soft wall
is included to truncate the extra dimension, producing a gap
in the spectrum near the TeV scale. The rest of the SM
fields are taken to be localized on the UV brane. In general,
these can propagate in the bulk as well, but we take the
simplifying assumption that only the minimal bulk field
content be added to generate nontrivial behavior for the
Higgs QPT.
The 5D theory that we consider has the following action:

S¼
Z

d4xdz
ffiffiffi
g

p ½jDMHj2− 1

4g24
Wa2

MN −ϕðzÞjHj2þLintðHÞ�

þ
Z

d4xLperturbative: ð26Þ

An SO(4) global symmetry is gauged in the bulk, intro-
duced in order to preserve the custodial SUð2ÞL × SUð2ÞR
symmetry [38] of the SM. Smaller groups are possible, but
are difficult to reconcile with electroweak precision con-
straints without a large separation of scales. The electro-
weak singlet ϕ is a background field whose expectation
value determines the bulk Higgs mass, and whose profile
determines the properties of the soft wall and associated
gap. The absence of Lint, with terms higher than quadratic,
in the 5D description would correspond to the generalized
free-field limit. Their inclusion allows for form factors for
nontrivial, n > 2 point, correlation functions.
Via the AdS/CFT correspondence, this action, with a

constant background field ϕ ¼ m2 and neglecting Lint,
encodes the physics of a large N 4D strongly coupled CFT
containing a scalar operator with a scaling dimension
given by

Δ ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2R2

p
: ð27Þ

The 5D gauge fields correspond to the global symmetries of
the approximate CFT. At a minimum, it must contain the
global symmetries that are gauged in the SM, and phe-
nomenological viability typically forces invariance under
custodial SUð2ÞL × SUð2ÞR. Since we are interested in
fields with dimensions Δ < 2, we need to choose boundary
conditions [33,39] that project out the solution with larger
root in Eq. (27), which results in the boundary value (H0) of
the bulk field (H) playing the role of the 4D effective field
rather than the source of the CFT operator, as it does
when Δ > 2.
For the metric g, we presume the space is asymptotically

AdS, with metric

ds2UV ≈
�
R
z

�
2

ðημνdxμdxν − dz2Þ; ð28Þ
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in a region of the space z ∼ R. Deviations from AdS grow
with increasing z, forcing a finite size for the extra
dimension and a resulting mass gap for the 5D modes.
The precise details of these deformations of AdS determine
the spectrum—whether there is a discretum or a continuum,
and the detailed shape of the spectral density. A simple
classification of the characteristics of such spacetimes has
been given in Ref. [34] for the case when the metric is
modified by an additional overall soft-wall factor,
ds2 ¼ aðzÞ2ðημνdxμdxν − dz2Þ, and a bulk Higgs potential
VðHÞ is included. The Higgs spectrum is determined by the
Schrödinger-type equation [34],

½−∂2
z þ V̂ðzÞ�Ψ ¼ p2Ψ; ð29Þ

where V̂ðzÞ ¼ 3
2
ða00=aÞ þ 3

4
ða02=a2Þ þ M̂2ðzÞ, with M̂2 ¼

a2RV 00ðHÞ. It was found that the asymptotic behavior of the
potential determines the qualitative features of the Higgs
spectrum. If V̂ðzÞ → ∞ for z → ∞, there is a discretuum,
which is the case for all hard walls as well as soft walls
where the warp factor decays sufficiently fast (i.e.,
a ∼ e−ðρzÞα , with α > 1). A continuum without a mass
gap is obtained for cases where V̂ðzÞ → 0 for z → ∞, like
for AdS without an IR brane. Finally, the case of interest
here is where a continuum appears with a mass gap μ. This
corresponds to V̂ðzÞ → μ for z → ∞. The example corre-
sponding to this case, which is our canonical example for
the AdS dual of the quantum critical Higgs, is

aðzÞ ¼ R
z
e−ð2=3Þμðz−RÞ: ð30Þ

It would be very interesting to understand what 4D CFTs
and their necessary deformations are that correspond to
such AdS duals, as well as how generic the case of a mass
gap with a continuum is. These problems, however, are
beyond the scope of this paper.
In the following, we focus on the case of Eq. (30). By

integrating over the bulk and using the solutions of the bulk
equation of motion, and rescaling by a factor

H≡ L1=2H0;
1

L
¼ Zh

ΓðΔ − 1Þ
Γð2 − ΔÞR

3−2Δ22Δ−3; ð31Þ

to convert from 5D normalization to 4D normalization, we
obtain a 4D boundary effective theory for H. Generically
with a bulk potential,H has a VEV, which we shift away as
usual. In the unitary gauge, we can write

H ¼ 1ffiffiffi
2

p
�

0

V þh

�
: ð32Þ

With the appropriate background field, ϕðzÞ, we can
reproduce Eq. (19) [33,34]. For the soft-wall metric,
Eq. (30), this corresponds to

ϕðzÞ ¼ eð4=3Þμðz−RÞ
�
ν2 − 4

R2
− 3μ

z
R2

�
; ð33Þ

where ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2R2

p
. In this case, the normalized boun-

dary-to-boundary propagator is given by

GhðR; R;p2Þ ¼ i
1

L

�
μK1−νðμRÞ
RKνðμRÞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − p2

p
K1−νð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − p2

p
RÞ

RKνð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − p2

p
RÞ

−M2
0

�
−1
;

ð34Þ

where Kα is the modified Bessel function, and

ðM0RÞ2 ≈ f½ðμ2 −m2
hÞR2�2−Δ − ðμ2R2Þ2−Δg: ð35Þ

In the limit pR, μR ≪ 1, Eq. (34) reduces to Eq. (19). The
brane-to-bulk propagator, relevant for computing n-point
correlators due to bulk interactions, is given by

GhðR; z;p2Þ

¼ GhðR;R;p2Þ · a−3=2ðzÞðz=RÞ1=2 Kνð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − p2

p
zÞ

Kνð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − p2

p
RÞ

:

ð36Þ
Different background fields will naturally yield different
two-point correlators and different effective actions, cor-
responding to different models of IR breaking of confor-
mality. We choose this background as it results in an
analytic two-point function, thus making the following
discussion as transparent as possible.
To obtain the appropriate Higgs VEV, a bulk potential

VðHÞ must be included in Lint, and other operators are
allowed as well. Once the two-point function is known,
gauge invariance fixes the gauge interactions required by
minimal coupling [9], i.e., the gauge interactions that
saturate the Ward-Takahashi identities.
To obtain more general form factors, we can include

gauge-invariant higher-dimension operators in Lint. For
example, if we include a higher-dimension bulk operator
that couples two gauge field strengths to the bulk
Higgs,

1

M2
H†FαβFαβH; ð37Þ

then we will have the corresponding 4D interaction in the
1PI effective action (also known as the boundary effective
theory):

W ⊃ −ð2πÞ4δ4ðp1 þ p2 þ p3 þ p4Þg2cFVVhhðpi; μÞ
× Fa

αβðp1ÞFbαβðp2ÞH†ðp3ÞTaTbHðp4Þ: ð38Þ
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In the limit pi ≫ μ, the form factor FVVhðpi; μÞ must
become conformally invariant, and, hence, a falling func-
tion of momentum. The coupling should also vanish as
μ → 0 if we want to recover a pure CFT. Setting one Higgs
field to its VEV (p ¼ 0) yields an effective 4D vertex with
two gauge bosons and one Higgs, which is a form factor
FVVhðpi; μÞ that can contribute to VBF, Eq. (4). In a soft-
wall AdS model with a conformally flat metric, taking flat
zero-mode gauge bosons and with the boundary of AdS5 at
z ¼ R, one finds that the effective 4D vertex is

δabðgαβp1 · p2 − pβ
1p

α
2ÞFVVh; ð39Þ

where

FVVh ¼ 2
V

LM2

Z
∞

R
dza2

�
z
R

�

×
K2−Δ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ðp1 þ p2Þ2

p
z
i
K2−ΔðμzÞ

K2−Δ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ðp1 þ p2Þ2

p
R
i
K2−ΔðμRÞ

: ð40Þ

This is obtained by propagating the Higgses from the
boundary to the bulk using Eq. (36) and inserting a VEVat
zero momentum for one of them.
Another example of the type of form factor that can arise

can be found in a generalized AdS model with a bulk
quartic interaction,

λ5ðH†HÞ2; ð41Þ

which yields a quartic H4 4D coupling constant:

λ ¼ λ5
L2

Z
∞

R
dz

1

a

�
z
R

�
2
�
K2−Δð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

h

p
zÞ

K2−Δð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

h

p
RÞ

�4

: ð42Þ

In order to get the correct value of the Higgs mass, we must
have [by equating the zero-momentum limit of Eq. (21) to
the negative of quadratic term of the shifted potential]

λ ¼ μ2ð2−ΔÞ − ðμ2 −m2
hÞ2−Δ

2V2Zh
; ð43Þ

which reduces to the SM relation λ ¼ m2
h=2v

2 in the limit
Δ → 1, or in the limit μ → ∞.
After setting one Higgs fields to its VEV this also yields

a cubic 4D interaction h3, with a form factor:

Fhhh ¼ λ5
L2

V
Z

∞

R
dz

1

a

�
z
R

�
2 K2−ΔðμzÞ
K2−ΔðμRÞ

×
Y3
i¼1

K2−Δ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − p2

i

p
z
�

K2−Δ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − p2

i

p
R
� : ð44Þ

This is obtained by propagating the Higgses into the bulk
using Eq. (36) and inserting one VEV at zero momentum.
An example is shown in Fig. 1.
Adding Yukawa interactions is also straightforward, as

long as Δ < 1.5 [40]. In this case, the Yukawa coupling is
just the fermion mass divided by V.
In both of these examples the form factor at low

momentum is almost constant and then peaks for momenta
around μ. It would be very inefficient to describe the form
factor by introducing higher-dimension operators if the
scale μ is within reach of the collider.

IV. DIRECT SIGNALS OF QUANTUM
CRITICALITY

A primary focus of run II at the LHC will be to conduct
detailed tests of Higgs phenomenology. The signatures of
quantum criticality can manifest in these analyses in several
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FIG. 1. Form factor for the cubic Higgs coupling, Eq. (44), for
μ ¼ 400, plotted as a function of an off-shell Higgs momentum
p ¼ ffiffiffiffiffiffiffiffiffiffiffi

pμpμ
p

. The solid lines correspond to the real part of the
form factor, and the dashed lines correspond to the imaginary
part. On the top, we keep only one Higgs on shell. We take
Δ ¼ 1.5, and the three colors correspond to three different values
of the off-shell Higgs momentum: 200 GeV (red), 400 GeV
(blue), and 600 GeV (green). On the bottom, only one of the
external Higgs fields are taken to be off shell, and the colors
correspond to Δ ¼ 1.2 (red), 1.4 (blue), and 1.6 (green).
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ways, including modifications of on-shell Higgs production
and decay, drastic changes in the off-resonance high-
momentum behavior of the Higgs two-point function
due to, e.g., the continuum contributions, and, finally,
modifications of n-point Higgs amplitudes, which can
result in sizable new physics contributions to, for example,
double Higgs production. In the context of a non-mean-
field theory description of electroweak symmetry breaking,
collider studies of Higgs properties provide data on the
scaling dimension of the operator that breaks electroweak
symmetry, the threshold scale μ, and on n-point CFT
correlators.
The production of new states above μ will modify the

high-energy behavior p2 ≳ μ2 of cross sections that involve
the exchange of any of the Higgs components. Both the
neutral Higgs and the Goldstone bosons eaten by theW and
the Z have propagators in the 1PI effective action that differ
from the SM [see Eqs. (23) and (A9)]. In addition, the
n-point correlation functions between neutral Higgs bosons
and/or Goldstone bosons will have a form factor depend-
ence that probes the manner in which the Higgs resonance
arises, potentially distinguishing between models where the
Higgs particle originates from or is mixed with the CFT.
An example of a potential signal for quantum criticality

is the high-energy behavior of the gg → ZZ process,
which contributes to the “golden” four-lepton signature.
At center-of-mass energies above the threshold for the cut
in the Higgs two-point function, enhancements of the gg →
h → ZZ amplitude are expected. As in the SM, the Higgs
exchange diagrams interfere with a top-box diagram in
which the Z bosons are radiated off of virtual top quarks.
This process has been studied extensively in the context of
SM Higgs analyses [41–43]. In Sec. IVA, we describe an
analysis of the differential rate of gg → ZZ that simulta-
neously probes the scaling dimension of h and the gap of
the approximate CFT μ.
Another avenue to search for quantum criticality would

be studies of the production of multiple on-shell Higgs
bosons. The high-luminosity LHC run is expected to begin
probing double Higgs production towards the close of the
LHC program, with a few events expected given SM
calculations of the cross section. If the Higgs originates
as part of a CFT, or is perturbatively coupled to one, the
continuum and/or the form factors associated with the CFT
can give nonstandard contributions to the double Higgs
production amplitudes. We examine this possibility in
Sec. IV B.

A. ZZ production via a quantum critical Higgs

The diagrams contributing to the gg → ZZ process are
similar to the SM in the quantum critical Higgs framework.
There are two types of diagrams, one of which corresponds
to a pure SM contribution [41] without a Higgs exchange,
and the usual gluon fusion diagram with an s-channel
Higgs exchange:

The structures of the Higgs two-point function and
of the hZZ form factor in the quantum critical case are
modified, and as a consequence, the interference between
the two diagrams is disturbed. We have discussed two
scenarios in which we can obtain the form factors corre-
sponding to dynamics in which there are new physics
contributions to Higgs observables off the mass shell. We
focus on the case of minimal coupling, where a nonstand-
ard hZZ form factor is present, Eq. (A8), being related by
gauge invariance to the Higgs two-point function (see
Appendix A). Additional nonminimal form factors, like the
AdS bulk coupling form factor Eq. (39), could give
additional contributions.
The expected number of gg → ZZ events (with on-shell

Z-bosons) at 14-TeV center-of-mass proton-proton colli-
sions, with 300 fb−1 of integrated luminosity, are displayed
in Fig. 2. In these plots we vary both the scaling dimension
of the quantum critical Higgs Δ and the scale of conformal
breaking μ. Large enhancements over SM expectations are
observed, particularly at large invariant masses of the ZZ
system mZZ, where the contributions from the continuum
are growing substantially. For the phenomenologically
viable choice of μ ¼ 400 GeV, an increase by a factor
of 5–10 is typical at mZZ ∼ 1.5 TeV. We include, for
comparison purposes, the corresponding distributions that
would be generated if there were simply a second heavy
neutral Higgs of mass 500 GeV arising in a two Higgs
doublet model with cosðβ − αÞ ¼ 0.85, maximizing the
coupling of the heavy Higgs to Z bosons while keeping the
light Higgs couplings consistent with run 1 LHC data. As
expected, the effect of the heavy Higgs quickly disappears
from the invariant mass spectrum, while that of the
continuum persists.
The reason for this large enhancement over the SM result

is that the summation over diagrams in this process
includes a cancellation of the leading behaviors of the
box versus triangle amplitudes at large s. The box and
triangle diagrams are related by gauge invariance, and the
cancellation occurs in order to maintain perturbative
unitarity. For this reason, the phenomenology is particularly
sensitive to modifications of the Higgs two-point function,
and the presence of the cut leads to a slower decrease of the
amplitudes at higher s.

B. Double quantum critical Higgs production

The rate of Higgs pair production is an experimental
probe that can potentially reveal the intrinsic nature of the
Higgs. For example, in models [14–17] where the Higgs
arises from a conformal sector as the dilaton of sponta-
neously broken scale invariance, the Higgs cubic coupling
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could be 5=3 that of the SM, even if all linear Higgs
interactions are tuned to be precisely SM-like [14].
Of course, many new physics effects beyond the modi-

fication of the Higgs cubic coupling can play a role in the
production of a pair of Higgs bosons at the LHC. Other
possibilities involve direct higher-dimensional operators
contributing to the effective hhgg and tt̄hh vertices,
modifications of the Higgs two-point function (as the ones
we have been discussing), and also nontrivial n-point
correlators due to the underlying strong dynamics.
In contrast to other processes, for the quantum critical

Higgs, double production of on-shell Higgs bosons

offers the opportunity to probe the higher n-point
correlators of the CFT. While it would be extremely
interesting to see non-mean-field theory behavior in
probes of the two-point function, the higher correlators
encode information on the type of CFT we would be
dealing with (e.g., large N theories, where the AdS/CFT
correspondence offers a perturbative framework for
estimating the higher-point correlators). In order to study
such potential effects of quantum criticality, we compute
the diagrams relevant for hh production at the LHC.
These diagrams are similar to those associated with ZZ
production:

FIG. 2. The effects of including the quantum critical Higgs two-point function in the production of on-shell Z-boson pairs. The effects
of varying Δ (top two plots) and μ (bottom two plots) are shown. On the right-hand side, data are shown as a fraction of the SM result.
The effect of the cut associated with the nonstandard two-point function is to dramatically enhance the production of Z pairs far away
from the Higgs pole. In each plot, for comparison purposes, the effect of a second heavy 500-GeV Higgs with a 100-GeV width is
included.
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We examine both the case where there is a nontrivial form
factor for the Higgs two-point and three-point functions,
where the three-point function is shown in Eq. (44), and the
case where the three-point function has no nontrivial
momentum dependence. The results are displayed in
Fig. 3, where the solid lines correspond to the case with
nontrivial three-point correlator. The dashed lines corre-
spond to the case where only the Higgs two-point function
shows a nontrivial behavior with momentum.
Of particular note is the fact that the analysis of Z pair

production distributions performed in conjunction with
studies of the double Higgs final state could help to
differentiate between the case of trivial and nonvanishing
higher-n correlation functions. If electroweak symmetry
breaking occurs via a QPT with non-mean-field behavior,

some of the details of the CFT could be extracted from
this data.

V. CONCLUSIONS

The puzzle of how the Higgs boson can be so light is still
one of the greatest outstanding problems of particle
physics, and recent LHC data have only made the problem
more severe. In this paper, we take a bottom-up approach:
given that there is a light Higgs, what are the possible
consistent low-energy theories? The SM is certainly the
best known example: its crucial feature is that it can be
tuned close to a quantum critical point. In general, being
near a quantum critical point implies a hierarchy of scales,
hence a long RG flow, and ultimately coming close to either
a trivial fixed point (mean-field behavior) or a nontrivial
fixed point (non-mean-field behavior). This suggests a
large class of alternative possible theories: those with
quantum critical points and non-mean-field behavior. We
present an effective theory that describes the low-energy
physics of a broad class of such theories, with an arbitrary
scaling dimension for the Higgs field. Gauge invariance

FIG. 3. Potential deviations in double Higgs production at the 14-TeV LHC.We consider two different cases. The first (dashed lines) is
when only the Higgs two-point function is modified, as when the strong sector that mixes with the Higgs has vanishing n-point
correlators for n ≥ 2. The second (solid lines) is when the Higgs quartic coupling (and, hence, the cubic form factor) comes purely from
a four-point correlator in a large N CFT, and thus both the two- and three-point functions for the Higgs boson carry nontrivial
momentum dependence. We vary Δ and μ for both cases, as shown.
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requires that this scaling dimension also appears in form
factors of the gauge couplings. We further show how such
effective theories can be constructed from an AdS5
description, including the generation of form factors that
are not determined by gauge invariance alone. Finally, we
describe how specific processes, gg → ZZ and double
Higgs production, can be used to gain information on
the Higgs scaling dimension and form factor dependence,
or put bounds on the mass threshold of the broken CFT
states associated with the quantum critical point.
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APPENDIX: FORM FACTORS FOR
GENERALIZED FREE FIELDS:

A MINIMAL EXAMPLE

The Lagrangian corresponding to the QPT presented in
Sec. III A can be written as

LH ¼ −
1

Zh
H†½D2 þ μ2�2−ΔH − VðjHjÞ; ðA1Þ

where H is the quantum critical Higgs complex doublet.
The Higgs potential, VðjHjÞ þ μ4−2ΔjHj2, is such that the
Higgs gets a VEV,

hHi ¼ 1ffiffiffi
2

p
�
0

V

�
; ðA2Þ

breaking spontaneously the electroweak symmetry. The
Lagrangian for the excitation around the vacuumh is given
in Eq. (21).
From Eq. (A1) one finds for the trilinear interaction

between two Higgses and one gauge boson,
H†ðpþ qÞVa

μðqÞHðpÞΓμ;aðp; qÞ, in momentum space:

Γν;aðp; q; μÞ ¼ g
Zh

Tað2pν þ qνÞΓðp; q; μÞ; ðA3Þ

where the form factor reads

Γðp; q; μÞ ¼ −
½μ2 − ðpþ qÞ2�2−Δ − ðμ2 − p2Þ2−Δ

2p · qþ q2
: ðA4Þ

One can explicitly check that when Δ ¼ 1 or μ → ∞,
the above form factor reproduces the standard result,
Γν;a
SMðp; qÞ ¼ gTað2pν þ qν). The quartic interaction of

two Higgses and two gauge bosons can be written
as H†ðpþ qþ q̄ÞVa

αðqÞVb
βðq̄ÞHðpÞΓαβ;abðp; q; q̄; μÞ in

momentum space, where the form factor is given by

Γαβ;abðp; q; q̄; μÞ ¼ g2

Zh

�
fTa; TbggαβΓðp; qþ q̄; μÞ þ TaTb ð2pþ q̄Þβð2pþ 2q̄þ qÞα

q2 þ 2ðpþ q̄Þ · q ½Γðp; qþ q̄; μÞ − Γðp; q̄; μÞ�

þ TbTa ð2pþ qÞαð2pþ 2qþ q̄Þβ
q̄2 þ 2ðpþ qÞ · q̄ ½Γðp; qþ q̄; μÞ − Γðp; q; μÞ�

�
: ðA5Þ

Again, forΔ ¼ 1, we obtain the SM result, Γαβ;ab
SM ðp; q; q̄Þ ¼ g2fTa; Tbggαβ, and likewise in the limit μ2 ≫ p2, q2, q̄2, p · q,

q · q̄, p · q̄,

Γαβ;abðp; q; q̄; μÞ ≈ g2fTa; Tbggαβ
�
1 −

m2
h

μ2

�
Δ−1

: ðA6Þ

From this we can obtain the mass of the W:
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m2
W ¼ g2V2

4

�
1 −

m2
h

μ2

�Δ−1
: ðA7Þ

From the above interaction, the vertex of one Higgs boson h and two gauge bosons, Fαβ;ab
VVh ðp; q; q̄; μÞ, is

given by

Fαβ;ab
VVh ðp; q; q̄; μÞ ¼ g2V

Zh

�
fTa; TbggαβΓð0; qþ q̄; μÞ þ TaTb q̄

βð2q̄þ qÞα
q2 þ 2q̄ · q

½Γð0; qþ q̄; μÞ − Γð0; q̄; μÞ�

þ TbTa q
αð2qþ q̄Þβ
q̄2 þ 2q · q̄

½Γð0; qþ q̄; μÞ − Γð0; q; μÞ�
�

þ g2V
Zh

�
fTa; TbggαβΓð−q − q̄; qþ q̄; μÞ − TaTb ð2qþ q̄Þβqα

q2
½Γð−q − q̄; qþ q̄; μÞ − Γð−q − q̄; q̄; μÞ�

− TbTa ðqþ 2q̄Þαq̄β
q̄2

½Γð−q − q̄; qþ q̄; μÞ − Γð−q − q̄; q; μÞ�
�
: ðA8Þ

The propagators for the W and the Z in unitary gauge are
given by

Gαβ
W;ZðpÞ ¼

−i
p2 −m2

W;Z þ iϵ

�
gαβ −

pαpβ

m2
W;Z

�
1 −

p2 −m2
W;Z

p2

þ ð2 − ΔÞðp2 −m2
W;ZÞ

μ2½1 − μ2Δ−4ðμ2 − p2Þ2−Δ�
��

; ðA9Þ

while that of the Higgs boson has been given in Eq. (23). In
the limits μ2 ≫ p2 or Δ → 1, we recover the SM propa-
gators in the unitary gauge.
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