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We study how useful random states are for quantum metrology, i.e., whether they surpass the classical
limits imposed on precision in the canonical phase sensing scenario. First, we prove that random pure states
drawn from the Hilbert space of distinguishable particles typically do not lead to superclassical scaling of
precision even when allowing for local unitary optimization. Conversely, we show that random pure states
from the symmetric subspace typically achieve the optimal Heisenberg scaling without the need for local
unitary optimization. Surprisingly, the Heisenberg scaling is observed for random isospectral states of
arbitrarily low purity and preserved under loss of a fixed number of particles. Moreover, we prove that for
pure states, a standard photon-counting interferometric measurement suffices to typically achieve
resolution following the Heisenberg scaling for all values of the phase at the same time. Finally, we
demonstrate that metrologically useful states can be prepared with short random optical circuits generated
from three types of beam splitters and a single nonlinear (Kerr-like) transformation.
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I. INTRODUCTION

Quantum metrology opens the possibility to exploit
quantum features to measure unknown physical quantities
with accuracy surpassing the constraints dictated by classical
physics [1–4]. Classically, by employing N probes to
independently sense a parameter, the mean-squared error
of estimation scales, at best, as 1=N. This resolution is also
known as the standard quantum limit (SQL) [5]. Quantum
mechanics, however, allows one to engineer entangled states
of N particles which, when used as probes, can lead to
resolutions beyond the SQL. Crucially, in the canonical
phase-sensing scenario, a precision scaling like 1=N2,
known as the Heisenberg limit (HL) [6], can be attained.
In practice, the destructive impact of noise must also be
taken into account [7–9], but quantum-enhanced resolutions
have been successfully observed in optical interferometry
[10,11] (including gravitational-wave detection [12]), ultra-
cold ion spectroscopy [13,14], atomic magnetometry
[15,16], and in entanglement-assisted atomic clocks [17,18].
A fundamental question is to understand which

quantum states offer an advantage for quantum metrology.

Quantum-enhanced parameter sensitivity can only be
observed with systems exhibiting interparticle entangle-
ment [19]; thus, such enhanced sensitivity can be used to
detect multipartite entanglement [20–23] and lower bound
the number of particles being entangled [24,25]. However,
the precise connection between entanglement and a quan-
tum metrological advantage is not fully understood so far.
It is known that states achieving the optimal sensitivity

must have entanglement between all their particles [25],
like the Greenberger-Horne-Zeilinger (GHZ) state (equiv-
alent to the N00N state in optical interferometry), yet there
also exist classes of such states that are useless from the
metrological perspective [26]. The optimal states, however,
belong to the symmetric (bosonic) subspace, from which
many states have been recognized to offer a significant
advantage in quantum metrology [26–28]. On the other
hand, a very weak form of entanglement—so-called undis-
tillable entanglement—may lead to Heisenberg scaling
[29], while any superclassical scaling arbitrarily close to
the HL (1=N2−ϵ with ϵ > 0) can be achieved with states
whose geometric measure of entanglement vanishes in the
limit N → ∞ [30].
Here, we go beyond merely presenting examples of

states leading to quantum-enhanced precision. Instead, we
conduct a systematic study by analyzing typical properties
of the quantum and classical Fisher information on various
ensembles of quantum states. First, we show that states
of distinguishable particles typically are not useful for
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metrology, despite having a large amount of entanglement
as measured by the entanglement entropy [31–34] and
various other measures [35–38]. On the contrary, we show
that most pure random states from the symmetric (bosonic)
subspace of any local dimension achieve resolutions at the
HL. Moreover, we prove that the usefulness of random
symmetric states is robust against the loss of a finite
number of particles, and it also holds for mixed states
with fixed spectra (as long as the distance from the
maximally mixed state in the symmetric subspace is
sufficiently large). This result remain in stark contrast to
the case of GHZ states, which completely lose their
(otherwise ideal) phase sensitivity upon loss of just a single
particle. Third, we show that, even for a fixed measurement,
random pure bosonic states typically allow one to sense the
phase at the HL. Concretely, this holds in the natural
quantum-optics setting of photon-number detection in
output modes of a balanced beam splitter [39] and
independently of the value of the parameter. Finally, we
demonstrate that states generated using random circuits
with gates from a universal gate set on the symmetric
subspace consisting only of beam splitters and a single
nonlinear Kerr-like transformation also typically achieve
Heisenberg scaling—again, even for a fixed measurement.
Since all of our findings also equally apply to standard
atomic interferometry [40–43], we hope that our work not
only shows that metrological usefulness is a more generic
feature than previously thought, but also opens up new
possibilities for quantum-enhanced metrology based on
random states.
Lastly, let us note that, as metrological usefulness of

quantum states is tantamount to the notion of state macro-
scopicity [44], our results directly apply in this context
[45,46]. Moreover, since states attaining HL can be used to
approximately clone N quantum gates into as many as N2

gates as N → ∞, one can immediately use our findings to
also infer that typical symmetric states provide a resource
allowing for optimal asymptotic replication of unitary
gates [47,48].
Our results are based on leveraging recent insights

concerning the continuity of quantum Fisher information
[30], measure concentration techniques [35,49–51],
recently proven results about the spectral gap in the special
unitary group [52], as well as the theory of approximate t-
designs [53–55].
Our work sheds new light on the role of symmetric

states in quantum metrology [26–28,46,56]. In particular, it
clarifies the usefulness of symmetric states from the
typicality perspective [26], but it also analytically confirms
the findings about their typical properties previously
suggested by numerical computations [46,56].
The remainder of the paper is organized as follows.

In Sec. II, we introduce the setting of quantum parameter
estimation, including the classical and quantum Fisher
information and their operational interpretation. In

Sec. III, we familiarize the reader with the technique of
measure concentration and introduce some additional
notation. In Sec. IV, we present our results on the lack
of usefulness of random states of distinguishable particles
for quantum metrology. Subsequently, in Sec. V, we show
that states from the symmetric (bosonic) subspace typically
attain the HL. Next, in Sec. VI, we analyze the robustness
of metrological usefulness of such states under noise and
loss of particles. In Sec. VII, we turn our attention to the
classical Fisher information in a concrete measurement
setup. We prove that with random pure symmetric states,
Heisenberg scaling can typically be achieved with a
physically accessible measurement setup—essentially, a
Mach-Zehnder interferometer with particle-number detec-
tors. Finally, in Sec. VIII, we demonstrate that symmetric
states whose metrological properties effectively mimic
those of random symmetric states can be prepared by short
random circuits generated from a universal gate set in the
symmetric subspace. We conclude our work in Sec. IX.

II. QUANTUM METROLOGY

We consider the canonical phase-sensing scenario of
quantum metrology [6], in which one is given N devices
(black boxes) that encode a phaselike parameter φ. The task
is to determine the optimal strategy of preparing quantum
probes so that, after interaction with the devices, the probes
can be measured in a way that reveals the highest sensitivity
to fluctuations of the parameter φ. Crucially, in quantum
mechanics, one has the freedom to apply the devices “in
parallel” to a (possibly entangled) state ρ of N particles—see
Fig. 1. The whole process is assumed to be repeated many

FIG. 1. Local-unitary (LU) optimized lossy quantum metrology
protocol: A given state ρ is adjusted with LU operations
V1;…; VN to probe, as precisely as possible, small fluctuations
of the parameter φ, which is independently and unitarily encoded
into each of the N constituent particles. Finally, only N − k
particles are measured, reflecting the possibility of losing k of
them. The most general measurement is then described by a
positive-operator-valued measure (POVM), i.e., a collection of
positive semidefinite operators fΠN−k

n gn that act on the remaining
N − k particles and sum up to the identity. The process is repeated
ν times, in order to construct the most sensitive estimate of the
parameter, ~φ, based on the measurement outcomes fnigνi¼1.
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ν ≫ 1 times so that sufficient statical data are always
guaranteed. Note that parameter sensing is the most “opti-
mistic” metrology setting [57], in the sense that any type of
general phase-estimation problem that also accounts for the
nonperfect prior knowledge about the value ofφ or finite size
of the measurement data is bound to be more difficult [58].
Let pnjφ be the probability that (in any given round) the

measurement will result in the outcome n given that
the initial state is ρ and the parameter is φ. Then, the
mean-squared error Δ2 ~φ of any unbiased and consistent
estimator ~φ of φ is lower bounded by the Cramér-Rao
bound (CRB) [57]:

Δ2 ~φ ≥
1

νFclðfpnjφgÞ
; ð1Þ

where

FclðfpnjφgÞ ≔
X
n

1

pnjφ

�
dpnjφ
dφ

�
2

ð2Þ

is the classical Fisher information (FI). Importantly, in the
phase-sensing scenario, the CRB (1) is guaranteed to be
tight in the limit of large ν [57]. The classical Fisher
information hence quantifies, in an operationally mean-
ingful way, what the ultimate resolution to the fluctuations
of φ is with a given measurement and state.
The quantum device is taken to act on a single particle

(photon, atom, etc.) with Hilbert space Hloc of finite
dimension d ≔ jHlocj via a Hamiltonian h, which, without
loss of generality, we assume to be traceless (any nonzero
trace of h can always be incorporated into an irrelevant
global phase factor). The device unitarily encodes the
unknown parameter φ by performing the transformation
e−ihφ. The multiparticle state ρ ∈ HN ≔ ðHlocÞ⊗N moves
along the trajectory

φ ↦ ðe−ihφÞ⊗NρðeihφÞ⊗N; ð3Þ

corresponding to the unitary evolution with the global
Hamiltonian

H ≔ HN ≔
XN
j¼1

hðjÞ: ð4Þ

The measurement is defined by a POVM, fΠN
n gn, acting on

the whole system (or, while accounting for particle losses,
only on the remaining N − k particles—see Fig. 1) and
satisfying

P
nΠN

n ¼ I. It yields outcome n with probability

pnjφ ¼ trðΠN
n e−iHφρeiHφÞ: ð5Þ

In the seminal work, Braunstein and Caves [59] showed
how to quantify the maximal usefulness of a state ρ in the

above scenario by maximizing the classical Fisher infor-
mation (2) over all possible POVMs. The resulting quantity
is called quantum Fisher information (QFI). It depends
solely on the quantum state ρ being considered and the
HamiltonianH responsible for the parameter encoding, and
we denote it by Fðρ; HÞ. A QFI scaling faster than linear
with N (for fixed local Hamiltonian h) ultimately leads to
superclassical resolutions by virtue of the CRB (1). Since
the Hamiltonian (4) is local and parameter independent,
the ultimate HL is unambiguously given by Fcl ∝ N2, with
superclassical scaling being possible solely due to the
entanglement properties of ρ and not due to a nonlocal
or nonlinear parameter dependence [60–62]. Importantly,
thanks to the unitary character of the parameter encoding
(3), resolutions that scale beyond SQL can indeed be
attained in metrology [8,9].
Although in the phase-sensing scenario the optimal

measurement can be designed for a particular value of
φ, it is often enough to know, prior to the estimation, that
the parameter lies within a sufficiently narrow window of
its potential values, as then there exist a sequence of
measurements that eventually—in the limit of many pro-
tocol repetitions (ν → ∞ in Fig. 1) with measurements
adaptively adjusted—yields a classical Fisher information
that still achieves the QFI [63]. Crucially, the optimal
scaling of the QFI achievable in the phase-sensing scenario
is proportional to N2, which proves the Heisenberg scaling
to indeed be the ultimate one.
For the sake of having concise terminology, we call a

family of states for increasing N “useful” for quantum
sensing if there exists a Hamiltonian h in Eq. (3) such that
the corresponding QFI scales faster than N [i.e.,
Fðρ; HÞ ∉ OðNÞ] in the limit of large N. In contrast, we
say that the family of states is “not useful” for quantum
sensing (and hence also for all less “optimistic” metro-
logical scenarios) if its QFI scales asymptotically, at most,
like N [i.e., Fðρ; HÞ ∈ OðNÞ]. We adopt the above
nomenclature for the sake of brevity and concreteness.
However, let us stress that states reaching beyond SQL,
despite not preserving superclassical precision scaling, may
also yield dramatic precision enhancement (e.g., squeezed
states in gravitational detectors [12]), which, in fact, then
guarantees their rich entanglement structure [20–25].
Nevertheless, it is the superclassical precision scaling that
manifests the necessary entanglement properties to be
maintained with the system size. In particular, its protection
at the level of QFI has recently allowed scientists to design
novel noise-robust metrology protocols [64,65].
In the remainder of this section, we give a mathematical

definition of the QFI and discuss some of its properties.
The QFI has an elegant geometric interpretation [59]
as the “square of the speed” along the trajectory (3) measured
with respect to the Bures distance dBðρ; σÞ ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½1 − F ðρ; σÞ�p

, where F ðρ; σÞ ≔ tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1=2σρ1=2

p
is the

fidelity. This allows one to define the QFI geometrically [66]:
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Fðρ; HÞ ≔ ½limφ→02dBðρ; e−iHφρeiHφÞ=jφj�2: ð6Þ

This geometric interpretation of QFI is key for the derivation
of the following results. Using the spectral decomposition of a
quantum state ρ ¼ P

dN
j¼1 pjjejihejj, withpj ≥ 0 denoting its

eigenvalues, we can write the QFI more explicitly as [2,3]

Fðρ; HÞ ¼ 2
X

j;k∶pjþpk≠0

ðpj − pkÞ2
pj þ pk

jhejjHjekij2; ð7Þ

which for pure states,ρ ¼ ψ , simplifies further to thevariance
Δ2Hjψ of H, that is,

Fðψ ; HÞ ¼ 4½trðψH2Þ − trðψHÞ2� ≕ 4Δ2Hjψ : ð8Þ

Let us also recall that theQFI is a convex functionon the space
of quantum states, which shows that mixing states can never
increase their parameter sensitivity above their average
sensitivity. This, together with the fact that the QFI is also
additive on product states [2,3], directly proves that only
entangled states can lead to resolutions beyond the SQL.

III. CONCENTRATION OF MEASURE
PHENOMENON

Before presenting our main results, we briefly discuss
a key ingredient for their proofs—the concentration of
measure phenomenon [49–51]. For a more detailed dis-
cussion, we point the reader to Appendix A. For any finite-
dimensional Hilbert space, we denote by μðHÞ the Haar
measure on the special unitary group SUðHÞ. The Haar
measure can be thought of as the uniform distribution over
unitary transformations. We denote by PrU∼μðHÞ(AðUÞ) the
probability that a statement A holds for unitaries U drawn
from the measure μðHÞ and by

E
U∼μðHÞ

fðUÞ ≔
Z
SUðHÞ

dμðUÞfðUÞ ð9Þ

the expectation value of a function f∶ SUðHÞ → R. Our
findings concern the typical value of such functions. For
example, fðUÞ could be the QFI of some family of so-
called isospectral states, i.e., states of the form UρU†, with
ρ some fixed state on H and U ∼ μðHÞ a unitary drawn
from the Haar measure on SUðHÞ [37]. Note that as
FðUρU†; HÞ ¼ Fðρ; U†HUÞ [this follows directly from
Eq. (7)], all our results can also be interpreted as being
about random Hamiltonians instead of random states.
To show that for almost allU the value of such a function

is close to the typical value and that this typical value is
close to the average, we repeatedly employ the following
concentration of measure inequality [50]:

Pr
U∼μðHÞ

����fðUÞ − E
U∼μðHÞ

f
��� ≥ ϵ

�
≤ 2 exp

�
−
jHjϵ2
4L2

�
: ð10Þ

It holds for every ϵ ≥ 0 and every function f∶SUðHÞ → R
that is Lipschitz continuous [with respect to the geodesic
distance on SUðHÞ] and thus possesses its corresponding
Lipschitz constant L. Recall that the Lipschitz constant
gives the bound on how fast the value of a function can
change under a change of its argument. For a formal
definition of L, see Eq. (A5) in Appendix A, where we
explicitly prove bounds on Lipschitz constants of all the
functions relevant for our considerations. Here, let us only
note that as both the FI (2) and the QFI (6) are nontrivial (in
particular, nonlinear) functions of quantum states, we need
to resort to advanced techniques of differential geometry.
Before we move on to our results, we introduce a

minimal amount of additional notation: Given two func-
tions f, g, we write fðNÞ ∈ Θ(gðNÞ) if both functions have
the same behavior in the limit of large N (up to a positive
multiplicative constant) and write fðNÞ ∈ O(gðNÞ) if there
exists a constant C such that fðNÞ ≤ CgðNÞ in the limit of
large N. Slightly abusing notation, we sometimes also use
the symbols Θ(fðNÞ) and O(fðNÞ) to denote an arbitrary
function with the same asymptotic behavior as f. For any
operator X, we denote its operator norm by

∥X∥ ≔ sup
jψi≠0

∥Xjψi∥
∥jψi∥ ; ð11Þ

where ∥jψi∥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffihψ jψip
stands for the standard vector

norm. Then, the trace and the Hilbert-Schmidt norms of X
are defined as ∥X∥1 ≔ tr

ffiffiffiffiffiffiffiffiffi
X†X

p
and ∥X∥HS ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðX†XÞ

p
,

respectively. These generally obey the relation
∥X∥ ≤ ∥X∥HS ≤ ∥X∥1.

IV. FUTILITY OF GENERAL RANDOM STATES

First, we show that Haar-random isospectral states of
distinguishable particles are typically not useful for quan-
tum metrology even if they are pure and hence typically
highly entangled [31–33,35–38]. This remains true even if
one allows for LU optimization before the parameter is
encoded (see Fig. 1). Note that in the special case d ¼ 2,
the LU optimization of the input state is equivalent to an
optimization over all unitary parameter encodings. The
maximal achievable QFI with LU optimization is given by

FLUðρ; HÞ ≔ sup
V∈LU

FðVρV†; HÞ; ð12Þ

where LU denotes the local unitary group, i.e., a group
consisting of unitaries of the form V ¼ V1 ⊗ V2 ⊗ … ⊗
VN , with Vj acting on the jth particle of the system (see
Fig. 1). Despite the fact that for other states this sometimes
boosts their QFI [26], we have the following no-go theorem

M. OSZMANIEC et al. PHYS. REV. X 6, 041044 (2016)

041044-4



for random states from the full Hilbert space HN of
distinguishable particles:
Theorem 1. (Most random states of distinguishable

particles are not useful for metrology, even after LU
optimization.) Fix a local dimension d, single-particle
Hamiltonian h, and a pure state ψN on HN . Let
FLUðUÞ ≔ FLUðUψNU†; HÞ; then,

Pr
U∼μðHNÞ

ðFLUðUÞ ∉ ΘðNÞÞ ≤ exp

�
−Θ

�
dN

N2

��
: ð13Þ

Proof sketch.—From Eq. (8), we have that Fðψ ; HÞ ≤
4trðψHÞ, which implies

FLUðUψNU†; HÞ
≤ 4 sup

V∈LU
trðUψNU†VH2V†Þ

¼ 4 sup
V1;…;VN

X
j;k

trðUψNU†VjhðjÞV
†
jVkhðkÞV

†
kÞ: ð14Þ

The terms with j ¼ k give a contribution of at most
4N∥h∥2. In the remaining terms, however, the operator
VjhðjÞV

†
jVkhðkÞV

†
k is traceless, so

sup
V1;…;VN

X
j≠k

trðUψNU†VjhðjÞV
†
jVkhðkÞV

†
kÞ

≤ ∥h∥2
X
j≠k

∥tr¬j;kðUψNU†Þ − 1=d2∥1: ð15Þ

But, the average of ∥tr¬j;kðUψNU†Þ − 1=d2∥1 can be upper
bounded exponentially [67] as

E
U∼μðHNÞ

∥tr¬j;kðUψNU†Þ − 1=d2∥1 ≤
d2ffiffiffiffiffiffi
dN

p ; ð16Þ

so

E
U∼μðHNÞ

FLUðUÞ ≤ 4N∥h∥2
�
1þ ðN − 1Þd2ffiffiffiffiffiffi

dN
p

	
: ð17Þ

Conversely, a direct computation of the average non-
LU-optimized QFI yields a lower bound of order
N∥h∥2. Application of a concentration inequality of the
type given in Eq. (10) yields the claimed result (see
Appendix D for details). ▪
Because of the convexity of QFI, the typical behavior

of the QFI on any unitary-invariant ensembles [66] of
mixed density matrices in HN can only be worse than that
of pure states predicted by the above theorem. Furthermore,
a bound similar to Eq. (17) can also be derived for
Hamiltonians H with few-body terms, for example, those
with finite or short-range interactions on regular lattices or
those considered in Ref. [60]. Lastly, let us remark that, as
we consider the most optimistic phase-sensing protocol,

Theorem 1 also disproves the possibility of superclassical
scalings of precision when considering random states in
any general phase-estimation protocol [58], e.g., the
Bayesian single-shot scenarios [68–70].
The above proof relies on the fact that most random

states on HN have very mixed two-particle marginals.
Thus, high entanglement entropy is enough to make
random pure states on HN useless for quantum metrology.
Complementing this, in Ref. [30], it has been proven that a
nonvanishing geometric measure of entanglement EgðψÞ ∈
Θð1Þ is, at the same time, necessary for Heisenberg scaling
[recall that the geometricmeasure of entanglement for a pure
state ψ is defined as EgðψÞ ≔ 1 −maxσ∈SEP trðψσÞ, where
SEP denotes the set of separable states in DðHNÞ].
Interestingly, pure random states of N particles do typically
satisfyEgðψÞ ≈ 1 [36]. This result, togetherwith Theorem1,
shows that, contrary to a recent conjecture of Ref. [71],
a high geometric measure of entanglement is not sufficient
for states to exhibit superclassical precision scaling in
quantum metrology. However, let us note that this is
consistent with the numerical findings of Ref. [46]. The
idea that the presence or absence of superclassical scaling of
the QFI arises solely from the two-particle marginals has
also recently been noted in Ref. [72].

V. USEFULNESS OF RANDOM
SYMMETRIC STATES

We now turn to the study of random states from the
symmetric (bosonic) subspace of N qudits, SN ≔
spanfjψi⊗N∶jψi ∈ Hlocg, which is of dimension
jSN j ¼ ðNþd−1

N Þ ∈ ΘðNd−1Þ. This subspace of states con-
tains metrologically useful states such as the GHZ state
or the Dicke state [27] and naturally appears in exper-
imental setups employing photons and bosonic atoms [3].
For the special case d ¼ 2, it was proven in [26] that,
with LU optimization, almost all pure symmetric states
exhibit FLU > 4N∥h∥2.
In what follows, we consider random isospectral sym-

metric states, i.e., states of the form UσNU†, with σN being
a fixed state on SN and U ∼ μðSNÞ. By σmix ¼ 1SN

=jSN j,
we denote the maximally mixed state in SN . In particular,
we prove that such symmetric states typically achieve a
Heisenberg-like scaling, provided that the spectrum of σN
differs sufficiently from the spectrum of σmix. Interestingly,
this holds even without LU optimization:
Theorem 2. (Most random isospectral symmetric

states are useful for quantum sensing.) Fix a single-particle
Hamiltonian h, local dimension d, and a state σN from the
symmetric subspace SN with eigenvalues fpjgj. Let
FðUÞ ≔ FðUσNU†; HÞ; then,

Pr
U∼μðSNÞ

ðFðUÞ < dBðσN; σmixÞ2ΘðN2ÞÞ

≤ exp ð−dBðσN; σmixÞ3ΘðNd−1ÞÞ: ð18Þ
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Proof sketch.—We use the standard integration tech-
niques (see Appendix C for details) on the unitary group
to show that

E
U∼μðSNÞ

FðUÞ ¼ trðh2ÞGðN; dÞΛðfpjgjÞ; ð19Þ

where

GðN; dÞ ≔ 4NðN þ dÞ
dðdþ 1Þ

jSN j
jSN j þ 1

; ð20Þ

and ΛðfpjgjÞ is a function of the eigenvalues fpjgj
which for pure states attains Λ ¼ 1. Therefore, for the
case of pure states, we have

E
U∼μðSNÞ

FðUψNU†; HÞ ¼ trðh2ÞGðN; dÞ; ð21Þ

where ψN is an arbitrary pure state on SN . From this
result, it clearly follows that the average QFI of random
pure symmetric states exhibits Heisenberg scaling in the
limit N → ∞. Moreover, it turns out that ΛðfpjgjÞ
satisfies the inequality

ΛðfpjgjÞ ≥
jSN j

jSN j − 1

dBðσN; σmixÞ2
2

: ð22Þ

The inequality (18) now follows from concentration of
measure inequalities on SUðSNÞ (see Appendix D for a
detailed proof). ▪
As the Bures distance to the maximally mixed state

dBðσN; σmixÞ enters the theorem in a nontrivial way, we
illustrate the power of the result by showing that even
states that asymptotically move arbitrarily close to σmix still
typically achieve a superclassical scaling:
Corollary 1. (Sufficient condition for usefulness of

random isospectral symmetric states) Let UσNU† be an
ensemble of isospectral states from the symmetric
subspace SN with eigenvalues fpjgj. Theorem 2 implies
that randomstates drawn fromsuch an ensemble are typically
useful for sensing, as for any α < min f1=2; ðd − 1Þ=3g,
they yield a precision scaling 1=N2ð1−αÞ provided that
dBðσN; σmixÞ ≥ 1=Nα.
Let us remark that Theorem 2 constitutes a fairly

complete description of the typical properties of QFI on
various ensembles of isospectral density matrices. Typical
properties of entanglement and its generalizations on sets of
isospectral density matrices were analyzed in Ref. [37].

VI. ROBUSTNESS TO IMPERFECTIONS

Next, we underline the practical importance of the above
results by showing that the usefulness of random symmetric
states is robust against dephasing noise and particle loss.

A. Depolarizing noise

We first investigate how mixed σN may become while
still providing a quantum advantage for metrology. To this
aim, we consider a concrete ensemble of depolarized states:
Example 1 [Depolarized random symmetric states]

Fix a local dimension d, single-particle Hamiltonian h,
and p ∈ ½0; 1�. Let ψN be a pure state on SN , and set

σNðpÞ ¼ ð1 − pÞψN þ pσmix: ð23Þ

Let FpðUÞ ≔ FðUσNðpÞU†; HÞ; then, for every ϵ > 0,

Pr
U∼μðSNÞ

ðjFpðUÞ − EFpj ≥ ϵFpÞ ≤ exp ð−ϵ2ΘðNd−1ÞÞ;

ð24Þ

where EFp ≔ EU∼μðSNÞFp is given by Eq. (19) with

Λ ¼ Λp ≔
ð1 − pÞ2

1 − pþ 2p=jSN j
: ð25Þ

The above example shows that for all values of p < 1,
the Heisenberg scaling of the QFI is typically retained.
The QFI then still concentrates around its average, which
is of order N2. Moreover, we observe that for large N,
the average value of QFI of random symmetric depolar-
ized states decreases essentially linearly with p as
jΛp − ð1 − pÞj ≤ 2=jSN j. Finally, Eq. (24) is a large
deviation inequality for QFI on the ensemble of depolarized
pure symmetric states, with the mean EFp. The average
EFp for the special case p ¼ 0 is given by Eq. (21).

B. Finite loss of particles

Next, we investigate whether the Heisenberg scaling of
random symmetric states is robust under the loss of
particles. We model the particle loss by the partial trace
over k ≤ N particles, i.e., σN ↦ trkðσNÞ for a given state
σN . Note that because of the permutation symmetry of state
σN considered, it does not matter which particles are lost. In
particular, such a mechanism is equivalent to the situation
in which one is capable of measuring only (as if distin-
guishable) N − k of the particles. We are therefore inter-
ested in typical properties of FðtrkðUσNU†Þ; HN−kÞ, where
HN−k ¼

P
N−k
j¼1 hðjÞ and UσNU† is a random isospectral

state on SN .
For comparison, let us recall that the GHZ state, which is

known to be optimal in quantum sensing [5], becomes
completely useless upon the loss of just a single particle, as
the remaining reduced state is separable. In contrast,
sufficiently pure random bosonic states typically remain
useful for sensing even when a constant number of particles
has been lost. Even the Heisenberg scaling ∼1=N2 of the
QFI is preserved:
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Theorem 3. (Random isospectral symmetric states
are typically useful under finite particle loss.) Fix a
local dimension d, single-particle Hamiltonian h, and a
state σN on SN with eigenvalues fpjgj. Let FkðUÞ ≔
FðtrkðUσNU†Þ; HN−kÞ; then,

Pr
U∼μðSNÞ

�
FkðUÞ< ∥σN − σmix∥2HSΘ

�
N2

kd

��

≤ exp

�
−∥σN − σmix∥4HSΘ

�
Nd−1

k2d

��
: ð26Þ

The main difficulty in the proof of the above theorem is
that the random matrix ensemble induced by the partial
trace of random isospectral states from SN is not well
studied. Hence, we cannot use standard techniques to
compute the average of FkðUÞ. We circumvent this
problem by lower bounding the QFI by the asymmetry
measure [73] and then the HS norm

Fðρ; HÞ ≥ ∥ρ; H∥21 ≥ ∥½ρ; H�∥2HS ð27Þ

and then computing the average of the right-hand side
instead. We provide all the technical details of the proof in
Appendix D; here, we only consider the two-mode case as
an example:
Example 2. For d ¼ 2 and after fixing trðh2Þ ¼ 1=2,

the following inequality holds:

E
U∼μðSNÞ

FðtrkðUσNU†Þ; HN−kÞ

≥
1

3

ðN − kÞðN þ 1Þ
ðkþ 1Þðkþ 2Þ

ðN þ 1Þtrρ2N − 1

N
ð28Þ

(see Lemma 9 in Appendix C), which, for the pure states,
further simplifies to

E
U∼μðSNÞ

FðtrkðUψNU†Þ; HN−kÞ ≥
1

3

ðN − kÞðN þ 1Þ
ðkþ 1Þðkþ 2Þ : ð29Þ

It is interesting to note that without particle losses, i.e.,
k ¼ 0, this formula gives

E
U∼μðSNÞ

FðUψNU†; HNÞ ≥
1

6
NðN þ 1Þ; ð30Þ

a result that differs from the exact expression (21) only by a
factor of 1=2.
The above result is most relevant for atomic interfer-

ometry experiments [40–43], in which unit detection
efficiencies can be achieved, and it is hence reasonably
possible to limit the loss of particles to a small number. In
contrast, current optical implementations are limited by
inefficiencies of photon detectors that are adequately
modeled with a fictitious beam-splitter model [3]. It is

known in noisy quantum metrology that generic uncorre-
lated noises (in particular, the noise described by the beam-
splitter model) constrain the ultimate precision to a constant
factor beyond the SQL [8,9]. The beam splitter effectively
fixes the loss-rate per particle, allowing all the particles to
be lost with some probability. In fact, modeling losses with
a beam splitter is equivalent to tracing out k particles with
probability ðNkÞð1 − ηÞkηN−k, where η is the fictitious beam-
splitter transitivity (see Appendix E for the proof). Thus,
the number k of particles lost fluctuates according to a
binomial distribution. As a result, the lower bound on the
average QFI utilized in Sec. VI B must also be averaged
over the fluctuations of k, and the superclassical scaling is
lost. Our results on the robustness of random bosonic states
against finite particle losses are hence fully consistent with
the no-go theorems of Refs. [8,9]. Moreover, the fact that
random states are much more robust against particle loss
than, for example, N00N states, which lose their metro-
logical usefulness upon the loss of a single particle, raises
the hope that for finite N, they might still perform
comparably well even under uncorrelated noise.

VII. ATTAINING THE HEISENBERG LIMIT
WITH A SIMPLE MEASUREMENT

We have demonstrated that random bosonic states lead, in
a robust manner, to superclassical scaling of the QFI. This
proves that, in principle, they must allow one to locally sense
the phase around any value with resolutions beyond the
SQL. However, as previously explained in Sec. II, the phase-
sensing scenario allows the measurement to be optimized for
the particular parameter value considered. Moreover, such a
measurement may also strongly depend on the state utilized
in the protocol, so one may question whether it could be
potentially implemented in a realistic experiment, as it then
must theoretically be adjusted depending on the state drawn
at random. Thus, it is a priori not clear if metrological
usefulness of random symmetric states can actually be
exploited in practice. Here, we show that this is indeed
the case. For random symmetric states of two-mode bosons,
a standard measurement in optical and atomic interferometry
suffices to attain the Heisenberg scaling of precision when
sensing the phase around any value.
In particular, we consider the detection of the distri-

bution of the N bosons between two modes (interferom-
eter arms) after a balanced beam-splitter transformation
[3]. As depicted in Fig. 2, this corresponds, in optics, to
the photon-number detection at two output ports of a
Mach-Zehnder (MZ) interferometer [39]. Yet, such a setup
also applies to experiments with atoms in double-well
potentials, in which the beam-splitter transformation can
be implemented via trap-engineering and atomic inter-
actions [40,41], while number-resolving detection has
recently been achieved via cavity-coupling [42] and
fluorescence [43].
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One can directly relate the general protocol of distin-
guishable qubits (see Fig. 1) to the optical setup of photons
in two modes (see Fig. 2) after acknowledging that the
Dicke basis of general pure symmetric qubit states is
nothing but their two-mode picture, in which a qubit in
a state j0i (j1i) describes a photon traveling in arm a (b) of
the interferometer. In particular, a general pure bosonic
state of N qubits can then be written as a superposition of
Dicke states fjn;N − nigNn¼0, where each jn; N − ni rep-
resents the situation in which n and N − n photons are
traveling in arm a and b, respectively. In Fig. 2, the
estimated phase φ is acquired in between the interferometer
arms, i.e., by the transformation expð−iĴzφÞ [74]. In the
qubit picture, this corresponds to a single-particle unitary
expð−ihφÞ with h ¼ σz=2. Moreover, the unitary balanced
beam-splitter transformation of Fig. 2, commonly defined
in the modal picture as B̂ ≔ expð−iπĴx=2Þ, is then equiv-
alent to a local rotation expð−iπσx=4Þ of each particle in the
qubit picture applied after the φ encoding.
Hence, the measurement of Fig. 2 with outcomes labeled

by n (the number of photons detected in mode a)
corresponds to a POVM fΠN

n gNn¼0 with elements ΠN
n ¼

B̂†DN
n B̂, where DN

n are the projections onto Dicke states,
jDN

n i ≔ jn;N − ni. Given a general pure state ψN inside
the interferometer (see Fig. 2), the state after acquiring the
estimated phase reads ψNðφÞ ≔ e−iĴzφψNeiĴzφ. Then, the
probability of outcome n given that the unknown parameter
was φ is just

pnjφðψNÞ ¼ tr½ΠN
n ψNðφÞ�: ð31Þ

Before we proceed, let us note that because of the identity
B̂e−iĴzφB̂† ¼ eiĴyφ, it is possible to effectively map the
above measurement scheme to the situation in which
the initial state is already propagated through a beam
splitter, ~ψN ¼ B̂ψNB̂

†, yet the parameter is encoded via
a Hamiltonian in the y direction (via ~h ¼ −σy=2). As a
result, the measurement (POVM) elements then simplify
to just projections onto the Dicke states DN

n (see
Appendix C 4 for details).

Having the explicit form of the measurement-
outcome probability, we can compute the corresponding
(classical) FI

FclðfpnjφðψNÞgÞ ¼
XN
n¼0

trði½ΠN
n ; Ĵz�ψNðφÞÞ2

tr½ΠN
n ψNðφÞ�

: ð32Þ

The unitary rotation e−iĴzφ entering the definition of
ψNðφÞ is responsible for the strong dependence (see also
the numeric results in Sec. VIII) of the FI on the value
of φ. However, let us note that when averaging (with
respect to the Haar measure) the FI (32) over all bosonic
states ψN ∈ SN , any unitary transformation of the state
becomes irrelevant. In particular, owing to the parameter
being unitary encoded, ψNðφÞ can then simply be
replaced by ψN, so the average of Eq. (32) manifestly
ceases to depend on φ.
This observation alone is not sufficient to deduce that

the concentration behavior of FI (32) is independent of
the value of the parameter φ. However, with the
following theorem, we show not only this but actually
a significantly stronger statement. We prove that the FI
given in Eq. (32) evaluated on random symmetric states
not only typically attains the Heisenberg scaling for a
certain value of φ but typically does so for all values of
φ at the same time.
Theorem 4. (Pure random symmetric qubit states

typically attain the HL for all values of φ in the setup of
Fig. 2.) Let ψN be a fixed pure state on SN for d ¼ 2modes
and pnjφðUψNU†Þ the probability to obtain outcome n
given that the value of the unknown phase parameter is φ
and the interferometer state is UψNU† [see also Eq. (31)].
Let FclðU;φÞ ≔ FclðfpnjφðUψNU†ÞgÞ be the correspond-
ing FI defined in Eq. (32); then,

Pr
U∼μðSNÞ

ð∃φ∈½0;2π�FclðU;φÞ ≤ ΘðN2ÞÞ ≤ exp ð−ΘðNÞÞ:

ð33Þ

In other words, the probability that for a random state
there exists a value of the parameter φ for which
FclðU;φÞ does not achieve Heisenberg scaling is expo-
nentially small in N. Hence, when dealing with typical
two-mode bosonic states, one does not have to resort to
LU optimization (similarly, as in Theorem 2) in order to
reveal their metrological usefulness even for a fixed
measurement. Note that such an optimization would
make the problem φ independent. As the interferometric
scheme of Fig. 2 is restricted to the symmetric subspace
SN , one is only allowed to perform LU operations of the
form V⊗N . However, setting V ¼ expð−iθσz=2Þ, one can
then always shift φ → φþ θ to any desired value.
We provide a detailed proof of Theorem 4 in

Appendix D, where we also present its more precise and

FIG. 2. Mach-Zehnder interferometer: We consider a bosonic
pure state ψN of N photons in modes a and b inside the
interferometer. The estimated phase φ is acquired because of
the path difference in the arms. After a balanced beam splitter, the
number of photons n and N − n are measured in arms a and b,
respectively.
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technical version. One of its constituents—the analysis
of the average value of the FI (32)—can be found in
Appendix C 4, where, by rigorously showing that

c−N2 ≤ E
U∼μðSNÞ

FclðU;φÞ ≤ cþN2 þ N; ð34Þ

with constants 0 < c− < cþ < ∞, we prove that the
average FI indeed asymptotically follows the HL-like
scaling. Although our derivation only allows us to bound
the actual asymptotic constant factor, we conjecture that
EU∼μðSNÞFclðU;φÞ → N2=6. In particular, we realize that
such behavior is recovered after replacing the denomina-
tors of all terms in the sum of Eq. (32) by their average
values; we also verify our conjecture numerically in
Sec. VIII below.
The fact that random symmetric states typically lead to

Heisenberg scaling for all values of φ in the simple setup
of Fig. 2 has important consequences. If this were not the
case, it could be possible that for a typical symmetric state
ψN , there are values of φ for which the sensitivity is low.
Our stronger result, however, is directly useful for real-
izable setups: In real interferometry experiments, one
typically starts the phase-estimation protocol by calibrat-
ing the device [10,11]. This is done by taking control of φ
and reconstructing the pnjφ empirically from measure-
ments with different known values of φ. A tomography of
the state ψN is then not necessary, and an efficient
estimator (e.g., max-likelihood [57]) that saturates the
CRB (1) can always be constructed after sufficiently many
protocol repetitions. Crucially, this implies that one might
randomly generate (for instance, following the protocol
we present in Sec. VIII) many copies of some fixed
random symmetric state ψN and, even without being aware
of its exact form, one can still typically construct an
estimator that attains the Heisenberg scaling, while sens-
ing small fluctuations of the parameter around any given
value of φ.

VIII. EFFICIENT GENERATION OF RANDOM
SYMMETRIC STATES

We have shown that random symmetric states have very
promising properties for quantum-sensing scenarios, but so
far, we have not addressed the question of how to efficiently
generate such states. In this section, we demonstrate that
the random symmetric states can be simulated with help of
short random circuits whose outputs indeed yield, on
average, the Heisenberg scaling not only of the QFI but
also of the FI for the measurement scheme depicted
in Fig. 2.
Concretely, we consider random circuits over a set of

gates that is universal on the special unitary group of the
symmetric subspace and consists of four different gates:
three beam splitters and a cross-Kerr nonlinearity. A set of
gates is said to be universal on a certain unitary group if, by

taking products of its elements, one can obtain arbitrarily
good approximations (in trace norm) to any unitary
operation in this group. We emphasize that the universality
of the symmetric subspace SN is not connected to the
notion of universal quantum computation. This follows
from the fact that the dimension of SN scales polynomially
(in the case of d ¼ 2 modes, linearly) in the number of
particles N, and consequently, this space is not sufficient
for universal quantum computation. We first construct a
universal set of unitary gates on SN for d ¼ 2, which is
inspired by operations commonly available when dealing
with bosonic (optical and atomic) systems. We present our
results in the language of two-mode interferometry
(see Fig. 2).
We start with the following set of gates:

V1 ≔
1ffiffiffi
5

p
�

1 2i

2i 1

�
; V2 ≔

1ffiffiffi
5

p
�

1 −2
−2 1

�
;

V3 ≔
1ffiffiffi
5

p
�
1þ 2i 0

0 1 − 2i

�
; ð35Þ

known to be a “fast” universal gate set for linear optics
[75–79]. The above matrices reflect how gates act on a
single particle (which can be either in mode a or in mode
b). The action on SN is then given by V̂j ¼ V⊗N

j for
j ∈ f1; 2; 3g. We now supplement the above collection
by a two-mode gate corresponding to a cross-Kerr non-
linearity (with effective action time t ¼ π=3) [80].
Concretely, we take

V̂XK ≔ exp

�
−iπn̂an̂b

3

�
; ð36Þ

where n̂a=b are the particle-number operators of modes
a=b marked in Fig. 2. For the general method of checking
if a given gate promotes linear optics to universality in SN ,
see Ref. [81].
In atom optics, large cross-Kerr nonlinearities and

phase shifts (XKPS) can be achieved in ultracold
two-component Bose gases in the so-called two-mode
approximation [82–84] (see also Refs. [34,85]). In optics,
reaching large XKPS is more challenging [86–88],
but there has recently been spectacular progress in this
area, both on weak [89,90] and strong nonlinearities
[91–93]. From the theoretical perspective, using the
methods of geometric control theory [94,95] and ideas
from representation theory of Lie algebra [81], it is
possible to prove that the gates fV̂1; V̂2; V̂3; V̂XKg are
universal for SUðSNÞ. The gate V̂XK is not the only gate
yielding universality when supplemented with gates that
are universal for linear optics. The comprehensive char-
acterization of (nonlinear) gates having this property will
be presented in Ref. [81].
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A random circuit of depth K over this gate set is now
obtained by picking, at random (according to a uniform
distribution), K gates from the set fV̂1; V̂

†
1; V̂2; V̂

†
2; V̂3;

V̂†
3; V̂XK; V̂

†
XKg. We call states generated by applying such a

circuit to some fixed symmetric state “random circuit
states”.
Our intuition that the above scheme should generate

unitaries distributed approximately according to μðSNÞ
comes from the theory of the so-called ϵ-approximate
unitary t-designs [54,55,96]. There are several essen-
tially equivalent ways to define unitary designs [54].
One of them, introduced in Ref. [53], implies that an
ϵ-approximate unitary t-design μϵ;tðHÞ is a distribution
over the unitary group SUðHÞ acting on a Hilbert
space H (of dimension jHj) that efficiently approxi-
mates the Haar measure μðHÞ in such a way that for
all balanced monomials f∶SUðHÞ → R of degree t, it
holds that

��� E
U∼μðHÞ

fðUÞ − E
U∼μϵ;tðHÞ

fðUÞ
��� ≤ ϵ=jHjt: ð37Þ

Moreover, if such a function satisfies a concentration
inequality of the form given in Eq. (10) with respect to
the Haar measure, then an (albeit weaker) concentration also
holds with respect to the design [53]. All these statements
carry over in a similar form to balanced polynomials. Their
corresponding difference can always be bounded by the
weighted sum of the differences of their constituting mono-
mials. The isospectral QFI, FðUÞ ¼ FðUσNU†; HÞ, intro-
duced in Theorem 2 as a function of unitary rotations is
precisely such a balanced polynomial of order two, which
can be seen directly from Eq. (7).
For distinguishable qudits, there are efficient methods to

generate approximate designs by using random circuits over
local universal gate sets onHN [54,55]. These constructions
unfortunately do not immediately carry over to the sym-
metric subspace SN of N qubits. However, one can use the
fact proven in Ref. [55] (based on results of Ref. [52]) that in
anyHilbert spaceH, sufficiently long random circuits over a
set of universal gates form an ϵ-approximate unitary t-
design. More precisely, this holds whenever the gates
employed in the circuit are nontrivial and have algebraic
entries. The set of gates that are universal in the SN given
above satisfies this condition. For this to hold, it would
actually be sufficient to replace all three gates V̂1, V̂2, V̂3 by a
single nontrivial beam splitter [77] and the gate V̂XK by an
essentially nontrivial nonlinear gate. The latter would not
even have to be a reproducibly implementable nonlinear
operation, but its strength could even be allowed to vary
from invocation to invocation.However, it ismathematically
very difficult to analytically bound the depth K of such
circuits that is sufficient to achieve a given ϵ for a given t.
For this reason, we resort to a numerical analysis to

verify how rapidly, with increasing K, the average QFI and
the FI of random circuit states converge to the respective
averages for random symmetric states. We consider the
scenario of Fig. 2. In this two-mode case, d ¼ 2, it holds
that jSN j ¼ N þ 1, and from Eq. (32), we obtain concen-
tration of the QFI around the value EF ≔ EU∼μðHÞFðUÞ ¼
NðN þ 1Þ=3 [97]. For the FI, we expect to find
EFcl ≔ EU∼μðHÞFclðU;φÞ ¼ NðN þ 1Þ=6 (for details, see
the discussion after Theorem 4 and Appendix C 4). In
Fig. 3, we show explicitly that random circuit states
generated according to our recipe indeed allow us to reach
these values already for moderate K.
In Fig. 4, we further verify the behavior of the ultimate

limits on the attainable precision via the relevant CRB [see
Eq. (1)] dictated by the attained values for 1=F and 1=Fcl.
We observe that the ultimate bounds predicted by the
average EF and EFcl for random symmetric states are
indeed quickly saturated (here,K ¼ 60), and crucially, both
reach the predicted Heisenberg scaling. This demonstrates
that it is possible to generate states that share the favorable
metrological properties of Haar-random symmetric states
via the physical processes of applying randomly selected
optical gates.

FIG. 3. Convergence of QFI and FI of random circuit states
for increasing depth K. The main plot shows F and Fcl
of N ¼ 100 two-mode photons (indistinguishable qubits)
for the measurement from Fig. 2 averaged over 150 realiza-
tions (sufficient to make the finite sample size irrelevant)
of random circuits for different depths K. The starting states
before the random circuit are of the form jψNi ¼P

N
n¼0

ffiffiffiffiffi
xn

p jn; N − ni, with x0 ¼ 1 polarized (red line),
xn ¼ ðNnÞ=2N balanced (blue line), or x0 ¼ xN ¼ 1=2 N00N
(yellow line). Fast convergence to the values NðN þ 1Þ=3 and
NðN þ 1Þ=6 (black horizontal lines) is evident in all cases.
The shaded regions mark “worse than SQL” and “better than
HL” precisions. The Fcl curves are plotted for φ ¼ π=2 (solid
line) and φ ¼ π=3 (dotted line). The inset depicts the
sufficient circuit depth Ksuf as a function of N, such that
the corresponding sample-averaged QFI (black curves) or FI
(red curves) is at most 1% (top curves) or 10% (bottom
curves) from its typical value. As Ksuf grows, at most, mildly
with N, for realistically achievable photon numbers [78],
K ≈ 20 may be considered sufficient.
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IX. CONCLUSIONS

In this work, we present a systematic study of the
usefulness of random states for quantum metrology. We
show that random states, sampled according to the Haar
measure from the full space of states of distinguishable
particles, are typically not useful for quantum enhanced
metrology. In stark contrast, we prove that states from the
symmetric subspace have many very promising properties
for quantum metrology: They typically achieve Heisenberg
scaling of the quantum Fisher information, and this scaling is
robust against particle loss and equally holds for very mixed
isospectral states. Moreover, we show that the high quantum
Fisher information of such random states can actually be
exploited with a single fixed measurement that is imple-
mentable with a beam splitter and particle-number detectors.
Finally, we also demonstrate that states generated with short
random circuits can be used as a resource to achieve classical
Fisher information with the same scaling as the Heisenberg
limit. Our results on random symmetric states open up new
possibilities for quantum enhanced metrology.
Our work, which is a study initiating a new research

direction, naturally raises a number of interesting questions:
From the physical perspective, it would be important to
investigate the impact of more realistic noise types, such as
local (and correlated) dephasing, depolarization [56], and
particle loss on the classical Fisher information in the
interferometric scenario considered in Sec. VII, as well as
quantumFisher information, in general, for finiteN. Further,
it would be interesting to seewhether bosonic random states
are also useful for multiparameter sensing problems with
noncommuting generators [72]. An important part of the

quantum metrology research is devoted to infinite-dimen-
sional optical systems with the mean number of particles—
corresponding to the power of a light beam—being fixed [3],
e.g., in squeezing-enhanced interferometry with strong laser
beams of constant power [98]. Here, one could ask whether
states prepared via random Gaussian transformations
[99,100] or random circuits of gates that are universal for
linear optics are typically useful for metrology. Another
relevant problem beyond our analysis is the speed of
convergence to the approximate designs when considering
performance of the states prepared with random bosonic
circuits discussed in Sec. VIII. Furthermore, it is interesting to
study properties of the ensembles of random states generated
from theHaar-randompure states andpossibly particle loss of
both bosons and fermions. Lastly, a natural question to be
asked is whether the typical metrological usefulness of
random bosonic states remains valid if one considers general
phase-estimation scenarios, e.g., single-shotprotocolswithno
prior knowledge assumed about the parameter value [68], for
which Bayesian inference methods must be employed to
quantify the attainable precision [69,70].
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APPENDIX: CONTENTS

Here, we give the details that are needed to obtain the
results given in the main text. In Appendix A, we discuss
the concentration of measure on the special unitary group
and give bounds on the Lipschitz constants of the relevant
functions on this group. In Appendix B, we prove a lower
bound on the QFI, which is useful when studying particle
losses. In Appendix C, we give bounds for averages of FI

FIG. 4. Mean-squared error attained by random bosonic states
generated by sufficiently deep random circuits. We depict the
ultimate limit of the resolution νΔ2 ~φ attainable with random
circuit states generated by applying a deep random circuit
(K ¼ 60) onto a two-mode balanced [xn ¼ ðNnÞ 1

2N
in Fig. 3] state

for both the interferometric measurement of Fig. 2 (red line) and
the theoretically optimal one yielding the QFI (black line). The
corresponding sample-averaged FI and QFI quickly concentrate
around the typical values N2=3 and N2=6 (dashed lines),
respectively. The shaded regions mark the “worse than SQL”
and “better than HL” precisions.
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and QFI on the relevant ensembles of density matrices that
we consider—isospectral density matrices of distinguish-
able particles, random symmetric (bosonic) states of
identical particles, and random bosonic states that under-
went particle loss (Appendix C 3). In Appendix D, we use

the previously derived technical results to prove Theorems
1, 2, 3, and 4 in the main text. In Appendix E, we prove the
equivalence of the beam-splitter model of particle losses
and the operation of taking partial traces over particles
contained in two-mode bosonic systems.

Notation used throughout the paper, unless indicated differently.

Symbol/Acronym Explanation

Hloc Local Hilbert space
d ¼ jHlocj Dimension of the local Hilbert space
HN ¼ H⊗N Hilbert space of N distinguishable particles
D ¼ jHN j Dimension of the space of N distinguishable particles
SN ¼ spanfjψi⊗N∶jψi ∈ Hg Hilbert space of N bosons
H General Hilbert space
jHj Dimension of the general Hilbert space
h Local Hamiltonian encoding the phase φ
H ¼ HN ¼ P

N
j¼1 h

ðjÞ Hamiltonian acting on N particles

DðHÞ Set of states on the Hilbert space H
1 Identity operator on the relevant Hilbert space
ρ; σ;… Symbols denoting (in general) mixed states
ψ ;ϕ;… Symbols denoting pure states
FclðfpnjφgÞ Classical Fisher information associated with the family of probability distributions fpnjφg
Fðρ; HÞ Fisher information computed for the state ρ with respect to the Hamiltonian H
dBðρ; σÞ Bures distance between states ρ and σ
F ðρ; σÞ Uhlmann fidelity between states ρ and σ
Psym Orthogonal projector onto Sym2ðHÞ
Pasym Orthogonal projector onto ⋀2ðHÞ
EndðHÞ Set of linear operators on H
HermðHÞ Set of Hermitian operators on H
SUðHÞ Special unitary group on H
μðHÞ Haar measure on SUðHÞ
EU∼μðHÞ Expectation value (average) with respect to μðHÞ
Ω Set of isospectral density matrices in H (for the specified ordered spectrum)
QFI Quantum Fisher information
FI Classical Fisher information
GHZ Greenberger-Horne-Zeilinger state
SQL Standard quantum limit
HL Heisenberg Limit
POVM Positive operator-valued measure

APPENDIX A: CONCENTRATION OF MEASURE
ON SPECIAL UNITARY GROUP AND LIPSCHITZ

CONSTANTS FOR QFI AND FI

In this appendix, we first present a basic concentration of
measure inequalities on the special unitary group SUðHÞ.
Then, we give bounds on the Lipschitz constants of various
functions based on QFI and FI that appear naturally, while
studying different statistical ensembles of states on H—
isospectral density matrices, partially traced isospectral
density matrices, etc.

1. Concentration of measure on unitary group

We make extensive use of the concentration of measure
phenomenon on the special unitary group SUðHÞ. It will be
convenient to use a metric tensor gHS induced on SUðHÞ

from the embedding of SUðHÞ in the set of all linear
operators, EndðHÞ, equipped with the Hilbert-Schmidt inner
product hA;Bi ¼ trðA†BÞ. Let us write the formula for gHS
explicitly. The special unitary group is a Lie group; thus, for
every U ∈ SUðHÞ, we have an isomorphism TUSUðHÞ≈
suðHÞ, whereTU is the tangent space to SU atU and suðHÞ
is the Lie algebra of the group consisting of Hermitian
traceless operators onH. The linear isomorphism is given by
the following mapping:

suðHÞ ∋ X ↦ X̂ ¼ d
dφ

����
φ¼0

exp ð−iφXÞU ∈ TUSUðHÞ:

ðA1Þ
Using the identification Eq. (A1) and treating the operator
X̂ ¼ d

dφ jφ¼0
exp ð−iφXÞU ¼ −iXU as an element of

EndðHÞ, we get
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gHSðX̂; ŶÞ ¼ hiXU; iYUi ¼ trð½iXU�†iYUÞ ¼ trðXYÞ;
ðA2Þ

where we have used X† ¼ X, the identity UU† ¼ 1, and the
cyclic property of the trace. The gradient of a smooth
function f∶SUðHÞ → R at point U ∈ SUðHÞ is defined
by the condition

gHSð ˆ∇fjU; X̂Þ ¼
d
dϕ

����
ϕ¼0

fðexp ð−iϕXÞUÞ; ðA3Þ

which has to be satisfied for all X ∈ suðHÞ.
Fact 1. (Concentration of measure on SUðHÞ. [50])

Consider a special unitary group SUðHÞ equipped with the
Haar measure μ and the metric gHS. Let

f∶SUðHÞ ↦ R ðA4Þ
be a smooth function on SUðHÞ with the mean Eμf, and let

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

U∈SUðHÞ
gHSð∇f;∇fÞ

r
ðA5Þ

be the Lipschitz constant of f. Then, for every ϵ ≥ 0, the
following concentration inequalities hold:

Pr
U∼μðSNÞ

�
fðUÞ − E

U∼μðHÞ
f ≥ ϵ

�
≤ exp

�
−
Dϵ2

4L2

�
; ðA6Þ

Pr
U∼μðSNÞ

�
fðUÞ − E

U∼μðHÞ
f ≤ −ϵ

�
≤ exp

�
−
Dϵ2

4L2

�
; ðA7Þ

where D ¼ jHj is the dimension of H.
Fact 2. Concentration inequalities Eq. (A7) also hold

for the general (not necessarily smooth) L-Lipschitz func-
tions f∶SUðHÞ ↦ R [50], that is, functions satisfying

jfðUÞ − fðVÞj ≤ LdðU;VÞ; ðA8Þ
where dðV;WÞ is the geodesic distance between unitariesU
and V given by

dðU;VÞ ≔ inf
γ∶γð0Þ¼U;γð1Þ¼V

Dγ; ðA9Þ

with Dγ ≔
R
½0;1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHSðdγdt ; dγdtÞ

q
, and the infimum is over the

(piecewise smooth) curves γ that start at U and end at V.
Remark 1. Because of the definition of the gradient

∇f (A3) and the structure of the tangent space TUSUðHÞ
for U ∈ SUðHÞ [see Eq. (A1)], we have

trð∇fjUXÞ ¼
d
dϕ

����
ϕ¼0

fðexp ð−iϕXÞUÞ; ðA10Þ

where X ¼ X† and trX ¼ 0. Assume that for C > 0, we can
find the bound���� d

dϕ

����
ϕ¼0

fðexp ð−iϕXÞUÞ
���� ≤ C∥X∥HS; ðA11Þ

which is valid for all U ∈ SUðHÞ. Then, from Eq. (A10),
we can conclude that C is an upper bound on the Lipschitz
constant of f.

2. Lipschitz constants for quantum Fisher information
for general Hamiltonian encoding

Recall that for unitary encodings, the quantum Fisher
information for a state ρ with spectral decompositionP

i pijeiiheij is

Fðρ; HÞ ¼ 2
X

i;j∶piþpj≠0

ðpi − pjÞ2
pi þ pj

jheijHjejij2; ðA12Þ

where H is the Hamiltonian generating the unitary evolu-
tion of mixed states,

R ∋ φ ↦ ρðφÞ ≔ exp ð−iφHÞρ exp ðiφHÞ ∈ DðHÞ:
ðA13Þ

The QFI depends on both the state ρ ∈ DðHÞ and the
Hamiltonian H ∈ HermðHÞ encoding the phase φ. In what
follows, without any loss of generality, we assume that
trðHÞ ¼ 0. We are interested in the behavior of Fðρ; HÞ
when H is fixed and ρ varies over some ensemble of
(generally mixed) states. As we want to use concentration
inequalities [of the type in Eq. (A7)], our aim here is to give
bounds on Lipschitz constants of QFI on relevant sets of
density matrices.
We first study QFI on the set of isospectral density

matrices

Ωðp1;…;pDÞ ≔ fρ ∈ DðHÞjsp↑ðρÞ ¼ fpjgjg; ðA14Þ

where sp↑ðρÞ denotes the vector on nonincreasingly ordered
eigenvalues of ρ. In what follows, for the sake of simplicity,
we use the shorthand notation Ωðp1;…;pDÞ ≔ Ω. Let

FΩ;H∶SUðHÞ ∋ U ↦ FðUρ0U†; HÞ ∈ R; ðA15Þ

where ρ0 is the arbitrarily chosen state belonging toΩ. Then,
we can prove the following lemma.
Lemma 1. The Lipschitz constant (with respect to

gHS) of the function FΩ;H defined by Eq. (A15) is upper
bounded by

LΩ ≤ min

(
1; 2

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dB

�
ρ;

1
D

�s )
32∥H∥2; ðA16Þ

where 1=D is the maximally mixed state on H.
Remark 2. The quantity dBðρ; 1=DÞ depends only on

the spectrum of ρ and thus is constant on the set of
isospectral density matrices Ω.
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Proof.——In a recent paper [30], the following inequal-
ity was proven:

jFðρ; HÞ − Fðσ; HÞj ≤ 32dBðρ; σÞ∥H∥2; ðA17Þ

where dBðρ; σÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½1 − F ðρ; σÞ�p

is the Bures distance

between density matrices, with F ðρ; σÞ ¼ tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1=2ρσ1=2

p
denoting the fidelity. Inserting

ρ ¼ Uρ0U† and σ ¼ exp ð−iϕXÞUρ0U† exp ðiϕXÞ
ðA18Þ

into Eq. (A17), one obtains

jFΩ;Hðexp ð−iϕXÞUÞ − FΩ;HðUÞj
≤ 32dBðUρ0U†; exp ð−iϕXÞUρ0U† exp ðiϕXÞÞ∥H∥2:

ðA19Þ

Dividing the above by jϕj and taking the limit ϕ → 0, one
arrives at���� d
dϕ

����
ϕ¼0

FΩ;Hðexp ð−iϕXÞUÞ
����

≤ 32∥H∥2limϕ→0

1

jϕj dBðUρ0U†; exp ð−iϕXÞ

× Uρ0U† exp ðiϕXÞÞ: ðA20Þ

Then, Eq. (6) implies that

limϕ→0

1

jϕj dBðρ; exp ð−iϕXÞρ exp ðiϕXÞÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρ; XÞ

p
;

ðA21Þ

and therefore,���� d
dϕ

����
ϕ¼0

FΩ;Hðexp ð−iϕXÞUÞj ≤ 16∥H∥2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρ; XÞ

p
:

ðA22Þ
In addition, we have two upper bounds on the square root of
the quantum Fisher information:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρ; HÞ

p
≤ 2∥H∥ ≤ 2∥H∥HS ðA23Þ

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρ; HÞ

p
≤ 4

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dB

�
ρ;

1
D

�s
∥H∥

≤ 4
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dB

�
ρ;

1
D

�s
∥H∥HS; ðA24Þ

where Eq. (A23) follows from the fact that the maximal
value of the QFI for the phase encoded via the Hamiltonian
H is bounded from above by 4∥H∥2 [1], and Eq. (A24)
follows from Eq. (A17) for σ ¼ 1=D, for which the QFI
trivially vanishes. Combining inequalities Eqs. (A23) and
(A24) with Eq. (A22) and using Remark 1, one finally
obtains Eq. (A16). ▪
Remark 3. The upper bound on the Lipschitz constant

of FΩ;H given in Eq. (A16) depends explicitly on the
spectrum of the considered set of isospectral density
matrices. Specifically, the right-hand side of Eq. (A16)
decreases as ρ becomes more mixed. For special cases of
Haar-random pure states and random depolarized states
(see below), we can get better bounds on the Lipschitz
constant of the QFI.
Lemma 2. Consider the ensemble of Haar-random

depolarized pure states,

ρ ¼ ð1 − pÞψ þ p
1
D
; ðA25Þ

where ψ stands for the projector onto a Haar-random pure
state jψi and p ∈ ½0; 1�. For fixed p, the states in Eq. (A25)
form an ensemble of isospectral density matrices since, for
any such ρ, we have

sp↑ðρÞ ¼
�
1 − pþ p

D
;
p
D
;…;

p
D

�
: ðA26Þ

For this particular spectrum, the Lipschitz constant Lp

(with respect to gHS) of the function Fp ≔ FΩ;H, defined by
Eq. (A15), is upper bounded by

Lp ≤ 16
ð1 − pÞ2
1 − pþ 2p

D

∥H∥2: ðA27Þ

Proof.—Let us first note that for ρ given by Eq. (A25),
the QFI takes the form [2]

Fðρ; HÞ ¼ ð1 − pÞ2
1 − pþ 2p

D

Fðψ ; HÞ; ðA28Þ

from which it directly follows that, for all U ∈ SUðHÞ,

FpðUÞ ¼ ð1 − pÞ2
1 − pþ 2p

D

FpðUÞ; ðA29Þ

and consequently,

Lp ¼ ð1 − pÞ2
1 − pþ 2p

D

L0: ðA30Þ

One can estimate L0 by exploiting the fact that, for pure
states, the QFI is simply Fðψ0; HÞ ¼ 4ftrðψ0H2Þ −
½trðψ0HÞ�2g, which allows one to express F0ðUÞ as
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F0ðUÞ ¼ tr½ðU ⊗ Uψ0 ⊗ ψ0U† ⊗ U†ÞV�; ðA31Þ

where V ¼ 4ðH2 ⊗ 1 −H ⊗ HÞ. By the virtue of Lemma
6.1 of Ref. [38] (see also Ref. [37]), the Lipschitz constant
of F0 is bounded by 2∥V∥ ≤ 16∥H∥2. Combining this with
Eq. (A30) yields Eq. (A27). ▪
It is also possible to prove the Lipschitz continuity of the

optimized version of QFI on Ω,

FV
Ω;H∶SUðHÞ ∋ U ↦ supV∈VFΩ;HðVUÞ ∈ R; ðA32Þ

where V ⊂ SUðHÞ is a compact class of unitary gates
on H.
Lemma 3. The Lipschitz constant LV

Ω (with respect to
the geodesic distance) of the function FV

Ω defined by
Eq. (A32) is upper bounded by the Lipschitz constant
of FΩ,

LV
Ω ≤ LΩ: ðA33Þ

Proof.—Let U;U0 ∈ SUðHÞ. Without loss of generality,
we can assume FV

Ω;HðUÞ ≥ FV
Ω;HðU0Þ. Let V0 ∈ V be the

element such that

FΩ;HðV0UÞ ¼ FV
Ω;HðUÞ ¼ supV∈V FΩ;HðVUÞ: ðA34Þ

Consequently, we have the following inequalities:

jFV
Ω;HðUÞ − FV

Ω;HðU0Þj ¼ FΩ;HðV0UÞ − FV
Ω;HðU0Þ

≤ FΩ;HðV0UÞ − FΩ;HðV0U0Þ
≤ LΩdðU;U0Þ; ðA35Þ

where, in the last inequality, we used Lipschitz continuity
of FΩ;H, which is guaranteed by Lemma A 2. ▪
Remark 4. For us, the case of greatest interest is

H ¼ HN and V ¼ LU (local unitary group on N distin-
guishable particles).

3. Lipschitz constants for quantum Fisher
information with particle losses

We now give bounds on the Lipschitz constant of the QFI
in the case of particle losses for bosonic states. Recall that,
in this setting, the Hamiltonian acting on N particles is
given by HN ¼ P

N
i¼1 h

ðiÞ and that the Hilbert space of the
system is the totally symmetric space ofN particles denoted
by SN. Let us define a function

F½k�
Ω ∶SUðSNÞ ∋ U ↦ FðtrkðUρU†Þ; HN−kÞ ∈ R: ðA36Þ

Lemma 4. The Lipschitz constant (with respect to

gHS) of the function F½k�
Ω defined by Eq. (A36) is upper

bounded by

L½k�
Ω ≤ min

(
1; 2

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dB

�
ρ;
PN
sym

jSN j
�s )

32∥HN−k∥2; ðA37Þ

where PN
sym=jSN j is the maximally mixed state on SN and

PN
sym stands for the projector onto SN .
Proof.—We prove Eq. (A37) in an analogous way to

Eq. (A16). Let ρ0 ¼ trkðρÞ and σ0 ¼ trkðσÞ be two states on
SN−k obtained by tracing out k particles from ρ and σ,
respectively. Applying the inequality Eq. (A17) to ρ0 and σ0
and the Hamiltonian H ¼ HN−k, one obtains

jFðρ0; HÞ − Fðσ0; HÞj ≤ 32dBðρ0; σ0Þ∥HN−k∥2

≤ 32dBðρ; σÞ∥HN−k∥2; ðA38Þ

where the second inequality follows from the fact that the
Bures distance does not increase under trace-preserving
completely positive maps [66] [for us, the relevant TPCP
map is the partial trace, ρ ↦ trkðρÞ]. We now set

ρ ¼ Uρ0U†;

σ ¼ exp ð−iφXÞUρ0U† exp ðiφXÞ; ðA39Þ

where U ∈ SUðSNÞ and X ∈ suðSNÞ, and the rest of the
proof is exactly the same as that of Lemma 1. ▪

4. Lipschitz constant of the classical Fisher information

We conclude this section by giving bounds on the
Lipschitz constant of the classical Fisher information for
the case of isospectral mixed states, fixed Hamiltonian
encoding, and a fixed measurement setting. Recall that for
the unitary encoding (A13), classical Fisher information is
a function of the state ρ ∈ DðHÞ, Hamiltonian H, the
phase φ, and the POVM fΠng used in the phase-estimation
procedure. These three objects define a family of proba-
bility distributions

pnjφðρðφÞÞ ¼ trðΠnρðφÞÞ; ðA40Þ

where ρðφÞ ¼ exp ð−iφHÞρ exp ðiφHÞ. The classical
Fisher information is then given by

Fclðρ; H;φ; fΠngÞ≡ FclðfpnjφgÞ ¼
X
n

trði½Πn; H�ρðφÞÞ2
trðΠnρðφÞÞ

;

ðA41Þ

where the summation is over the range of indices labeling
the outputs of a POVM fΠng (for simplicity, we consider
POVMs with a finite number of outcomes). Let us fix the
Hamiltonian H, the phase φ, and the POVM fΠng. Let us
define a function
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Fcl;Ω;H∶SUðHÞ ∋ U ↦ FclðUρ0U†; H;φ; fΠngÞ ∈ R;

ðA42Þ

for some fixed state ρ0 ∈ Ω.
Lemma 5. The Lipschitz constant (with respect to

gHS) of the function Fcl;Ω;H defined by Eq. (A42) is upper
bounded by

Lcl;Ω;H ≤ 24∥H∥2: ðA43Þ

Proof.—The strategy of the proof is analogous to the one
presented in the other lemmas in this section. The idea is to
find a bound for���� d

dϕ

����
ϕ¼0

Fcl;Ω;Hðexpð−iϕXÞUÞ
����; ðA44Þ

in terms of the Hilbert-Schmidt norm of X. Let us first
assume that at U ∈ SUðHÞ for all n,

trðΠnρðφÞÞ ≠ 0: ðA45Þ
Under the above condition, we have

d
dϕ

����
ϕ¼0

Fcl;Ω;Hðexp ð−iϕXÞUÞ

¼
X
n

trf½H;Πn�ρUðφÞgtrf½H;Πn�½iX; ρUðφÞ�g
trðΠnρUðφÞÞ

þ
X
n

trf½H;Πn�ρUðφÞg2trf½iH;Πn�ρUðφÞg
trðΠnρUðφÞÞ2

;

ðA46Þ
where ρUðφÞ ¼ exp ð−iφHÞUρ0U† exp ðiφHÞ. Let us
introduce the auxiliary notation

A ¼
X
n

���� trf½H;Πn�ρUðφÞgtrf½H;Πn�½iX; ρUðφÞ�g
trðΠnρUðφÞÞ

����;
ðA47Þ

B ¼
X
n

���� trf½H;Πn�ρUðφÞg2trf½iH;Πn�ρUðφÞg
trðΠnρUðφÞÞ2

����: ðA48Þ

Clearly, we have the inequality���� d
dϕ

����
ϕ¼0

Fcl;Ω;Hðexp ð−iϕXÞUÞ
���� ≤ Aþ B: ðA49Þ

In order to bound A and B (from above), we observe that,
for any state ρ ∈ DðHÞ, we have

jtrð½H;Πn�ρÞj ≤ 2trðΠnρÞ∥H∥; ðA50Þ

jtrð½X;Πn�ρÞj ≤ 2trðρΠnÞ∥X∥; ðA51Þ

jtrðf½H;Πn�½iX; ρ�gÞj ≤ 4trðρΠnÞ∥X∥∥H∥: ðA52Þ

In order to prove (A50), we first upper bound jtrðHΠnρÞj,

jtrðHΠnρÞj ¼
���tr�H ffiffiffiffiffiffi

Πn

p ffiffiffiffiffiffi
Πn

p ffiffiffi
ρ

p ffiffiffi
ρ

p ���� ðA53Þ

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðρH2ΠnÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðρΠnÞ

p
ðA54Þ

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðρΠ2

nÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trðρH4Þ
qr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trðρΠnÞ
p

ðA55Þ

≤ trðρΠnÞ∥H∥; ðA56Þ

where in (A53), we have used the non-negativity of
operators Πn and ρ. In Eq. (A55), we have repetitively
used the Cauchy-Schwarz inequality, first for P ¼ffiffiffi
ρ

p
H

ffiffiffiffiffiffi
Πn

p
, Q ¼ ffiffiffiffiffi

M
p ffiffiffi

ρ
p

and then for P ¼ ffiffiffi
ρ

p
H2,

Q ¼ M
ffiffiffi
ρ

p
. The final inequality (A56) follows immediately

from operator inequalities,

H4 ≤ ∥H∥41; Πn ≤ Π2
n: ðA57Þ

Using analogous reasoning, it is possible to prove
jtrðHΠnρÞj ≤ trðρΠnÞ∥H∥. This finishes the proof of
Eq. (A50). Using essentially the same methodology, it is
possible to prove the inequalities (A52) and (A51). By
plugging inequalities (A50)–(A52) into Eq. (A49) for
ρ ¼ ρUðφÞ and using the normalization conditionX

n

trðΠnρUðφÞÞ ¼ 1; ðA58Þ

we obtain

���� d
dϕ

����
ϕ¼0

Fcl;Ω;Hðexp ð−iϕXÞUÞ
���� ≤ 24∥H∥2∥X∥ ðA59Þ

≤ 24∥H∥2∥X∥HS: ðA60Þ

By the virtue of Remark 1, we conclude that the
Lipschitz constant of Fcl;Ω;HðUÞ is upper bounded by
24∥H∥. The above derivation explicitly used the
assumption (A45), which translates to assuming that
denominators appearing in the definition of classical
Fisher information do not vanish. However, with the help
of inequalities (A50)–(A52), one can easily prove that the
possible singularities coming from zeros of some denom-
inators are actually removable and that Fcl;Ω;HðUÞ is
actually a differentiable function of U. Consequently,
inequality (A59) is actually satisfied for U ∈ SUðHÞ, for
which conditions (A45) are not satisfied. ▪
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APPENDIX B: LOWER BOUNDS ON THE QFI

Lemma 6. Let ρφ be a one-parameter family of states
on a Hilbert space H. Then, the following lower bound for
QFI holds (see also Ref. [101]):

Fðρφ; _ρφÞ ≥ ∥_ρ∥21: ðB1Þ
In particular, for ρφ ¼ exp ð−iHφÞρ exp ðiHφÞ, we have

Fðρ; HÞ ≥ ∥½H; ρ�∥21: ðB2Þ

Recall that the right-hand side of Eq. (B2), ∥½H; ρ�∥21,
equals the measure of asymmetry introduced in Ref. [73].
Proof.——We give the proof only in the Hamiltonian

case (B2). The proof of the general case is analogous to
this. Recall that the quantum Fisher information is related
to the Bures distance dBðρ; σÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½1 − F ðρ; σÞ�p

through

dBðρφ; ρφþδφÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρφ; HÞ

q
jδφj þOðδφ2Þ: ðB3Þ

At the same time, from the Fuchs–van der Graaf inequal-
ities [102], we know that

∥ρ − σ∥1 ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F ðρ; σÞ2

q
≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½1 − F ðρ; σÞ�

p
¼ 2dBðρ; σÞ; ðB4Þ

with the second inequality stemming from the fact that
F ðρ; σÞ ≤ 1. By combining Eqs. (B3) and (B4), we obtain

∥ρφ − ρφþδφ∥1 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρφ; HÞ

q
jδφj þOðδφ2Þ: ðB5Þ

Dividing this by jδφj and then taking the limit δφ → 0,
we get

lim
δφ→0

1

jδφj ∥ρφ − ρφþδφ∥1 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρφ; HÞ

q
; ðB6Þ

which, by virtue of the fact that

lim
δφ→0

1

jδφj ∥ρφ − ρφþδφ∥1 ¼ ∥_ρ∥1; ðB7Þ

directly leads us to Eq. (B2). ▪
Remark 5. Using the standard inequality between

trace and Hilbert-Schmidt norms, we obtain the weaker
versions of inequalities (B1) and (B2),

Fðρφ; _ρφÞ ≥ ∥_ρ∥2HS; ðB8Þ

Fðρ; HÞ ≥ ∥½H; ρ�∥2HS. ðB9Þ

Remark 6. For pure states, Fðρ; HÞ ¼ ∥½H; ρ�∥21.
Proof.—Let us prove that for pure states, the right-hand

side of Eq. (B2) is simply the QFI of ρ. To this end, let us
denote Hjψi ¼ j ~φi and then

∥½H; ρ�∥21 ¼ ∥j ~φihψ j − jψih ~φj∥21
¼ hψ jH2jψi∥jφihψ j − jψihφj∥21; ðB10Þ

where jφi ¼ j ~φi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψ jH2jψi

p
. The matrix under the trace

norm is manifestly anti-Hermitian and of rank two, so it is
straightforward to compute its norm. To do this, let us write
jφi ¼ αjψi þ βjψ⊥i, where jαj2 þ jβj2 ¼ 1 and jψ⊥i is
some normalized vector orthogonal to jψi. It also follows
that α ∈ R because α ¼ hψ jφi ¼ hψ jHjψi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψ jH2jψi

p
.

All this implies that

jφihψ j − jψihφj ¼ βjψ⊥ihψ j − β�jψihψ⊥j; ðB11Þ

and consequently, the eigenvalues of the above matrix are
�ijβj. Thus, its trace norm amounts to 2jβj, giving

∥½H; ρ�∥21 ¼ 4hψ jH2jψijβj2 ¼ 4hψ jH2jψið1 − α2Þ ðB12Þ

¼ 4hψ jH2jψi
�
1 −

hψ jHjψi2
hψ jH2jψi

�
ðB13Þ

¼ 4ðhψ jH2jψi − hψ jHjψi2Þ ¼ Fðρ; HÞ: ðB14Þ

▪

APPENDIX C: AVERAGES AND BOUNDS ON
AVERAGES OF QFI AND FI ON RELEVANT

STATISTICAL ENSEMBLE

In this appendix, we compute and/or bound averages of
the FI or QFI on the ensembles of mixed quantum states
appearing in the main text.

1. Averages of QFI on ensembles of
isospectral density matrices

We extensively use the following result concerning the
integration on the special unitary group.
Fact 3. (Integration of a quadratic function on the

unitary group.) Letting V ∈ HermðH ⊗ HÞ, the following
equality holds [67],Z

SUðHÞ
dμðUÞU⊗2VðU†Þ⊗2 ¼ αPsym þ βPasym; ðC1Þ

where Psym and Pasym are projectors onto the symmetric
and antisymmetric subspaces of H ⊗ H which can be
expressed as

Psym ¼ 1

2
ð1 ⊗ 1þ SÞ; Pasym ¼ 1

2
ð1 ⊗ 1 − SÞ; ðC2Þ
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with S being the so-called swap operator satisfying
Sjxijyi ¼ jyijxi for any pair jxi; jyi ∈ H. Finally, the real
coefficients α and β are given by

α ¼ 1

Dþ
trðPsymVÞ;

β ¼ 1

D−
trðPasymVÞ; ðC3Þ

where D� ¼ DðD� 1Þ=2 with D ¼ jHj.

We first consider the case in which both the Hilbert space
H and the Hamiltonian H are fully general.
Lemma 7. Let FΩ;H be defined as in Eq. (A15). Then,

the following equality holds:

E
U∼μðHÞ

FΩ;HðUÞ ¼ 2trðH2Þ
D2 − 1

X
i;j∶piþpj≠0

ðpi − pjÞ2
pi þ pj

: ðC4Þ

Proof.—We have the following sequence of
equalities:

E
U∼μðHÞ

FΩ;HðUÞ ¼ 2
X

i;j∶piþpj≠0

ðpi − pjÞ2
pi þ pj

�Z
SUðHÞ

dμðUÞjheijU†HUjejij2
�

ðC5Þ

¼ 2
X

i;j∶piþpj≠0

ðpi − pjÞ2
pi þ pj

�Z
SUðHÞ

dμðUÞtr½U ⊗ UH ⊗ HU† ⊗ U†jeiihejj ⊗ jejiheij�
�

ðC6Þ

¼
X

i;j∶piþpj≠0

ðpi − pjÞ2
pi þ pj

trf½ðαH þ βHÞ1 ⊗ 1þ ðαH − βHÞS�jeiihejj ⊗ jejiheijg; ðC7Þ

where the third equality follows from Fact 3 for
V ¼ H ⊗ H, and the real numbers αH and βH are given by

αH ¼ 1

Dþ
trðH ⊗ HPsymÞ ¼ 1

2Dþ
trðH2Þ;

βH ¼ 1

D−
trðH ⊗ HPasymÞ ¼ −

1

2D−
trðH2Þ: ðC8Þ

To obtain Eq. (C8), we also used the fact that trðHÞ ¼ 0.
Then, inserting Eq. (C8) into Eq. (C7) and using the
identities

trðjeiihejj ⊗ jejiheijÞ ¼ 0;

trðjeiihejj ⊗ jejiheijSÞ ¼ 1; ðC9Þ

one arrives at

E
U∼μðHÞ

FΩ;HðUÞ ¼ trðH2Þ
2

�
1

Dþ
þ 1

D−

� X
i;j∶piþpj≠0

ðpi −pjÞ2
pi þpj

;

ðC10Þ

which, by virtue of the definitions of D�, leads us to
Eq. (C4). ▪
The formula (C4) simplifies significantly for the case of

pure states.
Remark 7. Let Ω0 consist of pure states on H. In this

case, it is fairly easy to see that

X
i;j∶piþpj≠0

ðpi − pjÞ2
pi þ pj

¼ 2ðD − 1Þ; ðC11Þ

and consequently,

E
U∼μðHÞ

FΩ0;HðUÞ ¼ 4trðH2Þ
Dþ 1

: ðC12Þ

By comparing Eqs. (C12) and (C4), one finds that the
average QFI over any ensemble Ω of isospectral states can
be easily related to the average QFI over pure states.
Specifically, one has

E
U∼μðHÞ

FΩ;HðUÞ ¼ 4trðH2Þ
Dþ 1

ΛðfpjgjÞ

¼ E
U∼μðHÞ

FΩ0;HðUÞΛΩ; ðC13Þ

where

ΛðfpjgjÞ ¼
1

2ðD − 1Þ
X

i;j∶piþpj≠0

ðpi − pjÞ2
pi þ pj

: ðC14Þ

Note that ΛðfpjgjÞ ¼ 1 for pure states and ΛðfpjgjÞ ¼ 0

for the maximally mixed state. Since, in general, the
dependence on the spectrum in the above formula is
quite complicated, it is desirable to have simple bounds
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on
P

i;j∶piþpj≠0
ðpi−pjÞ2
piþpj

. The following fact provides one

such bound:
Fact 4. Let the numbers p1;…; pD satisfy pi ≥ 0 andP
D
i¼1 pi ¼ 1. Then, the following inequality holds:

X
i;j∶piþpj≠0

ðpi − pjÞ2
pi þ pj

≥ 2

�
D −

�XD
i¼1

ffiffiffiffiffi
pi

p �2	

¼ 2D

�
1 − F 2

�
ρ;

1
D

�	
: ðC15Þ

Proof.—First, by using the identity ðpi − pjÞ2 ¼
ðpi þ pjÞ2 − 4pipj, the left-hand side of the inequality
(C15) can be rewritten as

X
i;j∶piþpj≠0

ðpi − pjÞ2
pi þ pj

¼
X

i;j∶piþpj≠0

�ðpi þ pjÞ2
pi þ pj

−
4pipj

pi þ pj

	
;

ðC16Þ

which, noting that the first sum in the above amounts to
2ðD − 1Þ, can be rewritten as

X
i;j∶piþpj≠0

ðpi − pjÞ2
pi þ pj

¼ 2

�
ðD − 1Þ −

X
i;j∶piþpj≠0

2pipj

pi þ pj
þ 1

�
: ðC17Þ

To obtain the inequality in Eq. (C15), we apply the
following well-known relation between the harmonic and
geometric means,

2
1
pi
þ 1

pj

≤ ffiffiffiffiffiffiffiffiffi
pipj

p
; ðC18Þ

to Eq. (C17). Then, to obtain the equality in Eq. (C15) and
complete the proof, it suffices to notice that

F
�
ρ;

1
D

�
¼ tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

r
ρ

ffiffiffiffi
1
D

rs
¼ 1ffiffiffiffi

D
p tr

ffiffiffi
ρ

p ¼ 1ffiffiffiffi
D

p
XD
i¼1

ffiffiffiffiffi
pi

p
:

ðC19Þ

▪
Remark 8. Note that the bound (C15) is tight. To be

more precise, it is saturated for the maximally mixed state
ρ ¼ I=D, for which both sides of the inequality (C15)
simply vanish, and for pure states, for which they amount
to 2ðD − 1Þ.

2. Averages of QFI for N particles

We now discuss the average behavior of the QFI for
ensembles consisting of states of distinguishable or bosonic
particles (in the case when all particles evolve in the same
manner under a local Hamiltonian). For the case of N
distinguishable particles, we have

H ¼ HN ¼ ðCdÞ⊗N; ðC20Þ

where Cd is the Hilbert space of a single particle and N is
the number of particles. Clearly, we have D ¼ jHN j ¼ dN .
The Hilbert space of N bosons in dmodes is the completely
symmetric subspace of HN ,

H ¼ SN ¼ spanCfjϕi⊗N jjϕi ∈ Cdg; ðC21Þ

of dimensionD ¼ jSN j ¼ ðNþd−1
N Þ. It will be convenient for

us to use the orthonormal basis of SN consisting of
generalized Dicke states [103] (we also use them exten-
sively in part of the Appendix, where we estimate the
impact of particle losses on typical properties of QFI).
Within the second quantization picture, SN can be treated
as a subspace of d-mode bosonic Fock space, and the
generalized Dicke states are of the form

j~k; Ni ¼
Q

d
i¼1 ða†i ÞkiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

d
i¼1 ki!

q jΩi; ðC22Þ

where jΩi is the Fock vacuum, a†i are the standard creation

operators and the vector ~k ¼ ðk1; k2;…; kdÞ consists of
non-negative integers that count how many particles
occupy each mode. Due to the fact that the number of

particles is N, the vector ~k satisfies the normalization

condition j~kj ≔ P
d
i¼1 ki ¼ N. Let us also notice that, in the

particle picture, the Dicke states are given by

j~k; Ni ¼ N ð~k; NÞPN
symj~ki; ðC23Þ

where j~ki is a vector from ðCdÞ⊗N given by j~ki ¼
j1i⊗k1 ⊗ j2i⊗k2 ⊗ … ⊗ jdi⊗kd , the constant N ð~k; NÞ is
given by

N ð~k; NÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi�
N
~k

�s
ðC24Þ

with �
N
~k

�
¼ N!Q

d
i¼1 ki!

; ðC25Þ

and by PN
sym, we denote the orthonormal projector

onto SN ⊂ HN .
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The Hamiltonian used in the phase estimation is local
and symmetric under the exchange of particles,

H ¼ HN

¼ h ⊗ I ⊗ … ⊗ Iþ I ⊗ h ⊗ I ⊗ … ⊗ I

þ � � � þ I ⊗ … ⊗ I ⊗ h; ðC26Þ
where h stands for the single-particle local Hamiltonian. In
what follows, we assume, for simplicity, that trðhÞ ¼ 0.
Note that the Hamiltonian HN preserves the subspace SN .
Now, it follows from Eqs. (C4) and (C12) that the

average behavior of the QFI on states supported on the
subspace W ⊂ H is dictated by the value of trWðH2

NÞ. In
the following lemma, we compute the latter in the cases
W ¼ HN and W ¼ SN .
Lemma 8. Let Hamiltonian H be given by Eq. (C26).

Then, the following relations,

E
U∼μðHNÞ

FΩ;H ¼ 4Ntrðh2Þ
d

jHN j
jHN j þ 1

ΛðfpjgjÞ ðC27Þ

and

E
U∼μðSNÞ

FΩ;H ¼ 4NðN þ dÞtrðh2Þ
dðdþ 1Þ

jSN j
jSN j þ 1

ΛðfpjgjÞ

ðC28Þ
are true. For pure qubits, Eq. (C28) simplifies to

E
U∼μðSNÞ

Fð1;0;…;0Þ;H ¼ 2

3
NðN þ 1Þtrðh2Þ: ðC29Þ

Remark 9. The qualitative meaning of the above
lemma is twofold. First, it shows that for uniformly
distributed isospectral states from HN , the scaling of the
QFI on average is at most linear in the number of particlesN,
and, second, it proves that for random pure symmetric states,
the average QFI scales quadratically with N, both for fixed
local Hamiltonian h and local dimension d. Thus, for
symmetric states the average QFI attains the Heisenberg
limit. This behavior still holds for random isospectral density
matrices, provided their spectrum is sufficiently pure, with
the “degree of purity” quantified by ΛðfpjgjÞ defined
by Eq. (C14).
Proof.—We start from the proof of Eq. (C27). Using the

fact that the local Hamiltonian h is traceless, one obtains

trHN
ðH2Þ ¼

XN
i¼1

trHN
½ðhðiÞÞ2�

¼
XN
i¼1

trðh2ÞdN−1

¼ Ntrðh2Þ jHN j
d

: ðC30Þ

Inserting the above into Eq. (C4) (note that hereH ¼ HN),
we arrive at Eq. (C27).
The proof of Eq. (C28) is more involved, as it requires

the computation of trSN
ðH2Þ. The final result reads

trSN
ðH2Þ ¼ NðN þ dÞtrðh2Þ

dðdþ 1Þ jSN j; ðC31Þ

which when plugged into Eq. (C4) yields Eq. (C28).
To explicitly determine Eq. (C31), let us choose the basis

fjiigdi¼1 of the single-particle space as the eigenbasis of
the local Hamiltonian h. Thus, we have hjii ¼ λijii for
i ¼ 1;…; d. The corresponding generalized Dicke states
[see Eq. (C23)] satisfy

HN j~k; Ni ¼ ð~k ~λÞj~k; Ni; ðC32Þ

where ~λ ¼ ðλ1;…; λdÞ is the vector of eigenvalues of h and
the standard inner product in Rd. Now, Eq. (C32), together
with the fact that the generalized Dicke states form a basis
of SN , allows us to write

trSN
ðH2Þ ¼

X
~k∶j~kj¼N

ð~k ~λÞ2 ðC33Þ

¼
X

~k∶j~kj¼N

Xd
i¼1

λ2i k
2
i þ

X
~k∶j~kj¼N

Xd
i;j¼1
i≠j

ðλiλjÞðkikjÞ; ðC34Þ

where, to obtain the second equality, we explicitly squared
all scalar products appearing under the sum. From the
symmetry, we haveX

~k∶j~kj¼N

k2i ¼
X

~k∶j~kj¼N

k2i0 ;

X
~k∶j~kj¼N

kikj ¼
X

~k∶j~kj¼N

ki0kj0 ; ðC35Þ

for all i, i0 and for all pairs of different indices ði; jÞ and
ði0; j0Þ. As a result, Eq. (C33) simplifies to

trSN
ðH2Þ ¼

X
~k∶j~kj¼N

��Xd
i¼1

λ2i

	
k1 þ

�Xd
i;j¼1
i≠j

λiλj

	
k1k2

�
:

ðC36Þ
The fact that h is traceless yields

trðh2Þ ¼
Xd
i¼1

λ2i ¼ −
Xd
i;j¼1
i≠j

λiλj: ðC37Þ

Moreover, because of the condition k1 þ � � � þ kd ¼ N, we
have
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X
~k∶j~kj¼N

ðk1 þ � � � þ kdÞ2 ¼ jSN jN2: ðC38Þ

By exploiting the identities (C35), the left-hand side of the
above equation can be rewritten as

X
~k∶j~kj¼N

ðk1 þ � � � þ kdÞ2 ¼ d
X

~k∶j~kj¼N

k21 þ dðd − 1Þ
X

~k∶j~kj¼N

k1k2:

ðC39Þ

As a result, one obtains

dðd − 1Þ
X

~k∶j~kj¼N

k1k2 ¼ jSN jN2 − d
X

~k∶j~kj¼N

k21: ðC40Þ

Using Eqs. (C36), (C37), and (C40), we finally arrive at

trSN
ðH2Þ ¼ trðh2Þ

�
ðdþ 1Þ

� X
~k∶j~kj¼N

k21

�
− N2jSN j

	
: ðC41Þ

We compute the sum
P

~k∶j~kj¼Nk
2
1 by noting that

#ðf~kjj~kj ¼ N; k1 ¼ igÞ ¼
�
N − iþ d − 2

N − i

�
; ðC42Þ

where #ðÞ denotes the number of elements of a discrete set.
The above equation follows from the fact that the number

of elements of the set f~kjj~kj ¼ N; k1 ¼ ig is the same as the
dimension of the Hilbert space of N − i bosons in d − 1
modes. Consequently, we get

X
~k∶j~kj¼N

k21 ¼
XN
i¼0

i2
�
N − iþ d − 2

N − i

�
¼ Nð2N þ d − 1Þ

dðdþ 1Þ jSN j:

ðC43Þ

Inserting the above expression into Eq. (C41) yields
Eq. (C31). The equality (C43) can be proven using standard
combinatorial identities. Below, we sketch its proof for
completeness. First, by virtue of the diagonal sum property
of binomial coefficients [105], we have that

�
N − iþ a
N − i

�
¼

XN−i

k¼0

�
aþ k − 1

k

�
; ðC44Þ

where a is an arbitrary integer. Inserting Eq. (C44) (with
a ¼ d ¼ 2) to the left-hand side of Eq. (C43), we get

XN
i¼0

i2
�
N − iþ d − 2

N − i

�
¼

XN
i¼0

XN−i

k¼0

i2
�
d − 2þ k − 1

k

�

¼
XN
k¼0

�XN−k

i¼0

i2
��

d − 2þ k − 1

k

�
:

ðC45Þ

The sum
P

N−k
i¼0 i2 is a polynomial of degree 3 in k and

can be easily computed. Therefore, in order to finish the
computation, it suffices to know the moments

XN
k¼0

kj
�
a − 1þ k

k

�
; ðC46Þ

for the powers j ¼ 1, 2, 3. These can be found, for instance,
on page 5 of Ref. [106]. ▪
Remark 10. The most demanding part in the proof

of Lemma C 2 is the computation of trSN
ðH2Þ, which

can be simplified greatly by the use of group theoretic
methods. This should allow one to perform an analo-
gous analysis for other irreducible representations of the
group SUðdÞ, for instance, for the fermionic subspace
of HN .

3. Average QFI for bosons with particle losses

Let ρ0 ¼ trkðρÞ be a mixed symmetric state on N − k
particles arising from tracing out k particles of some
N-partite state ρ ∈ DðSNÞ. Our aim in this section is to
bound the average of the QFI over mixed states created in
the above way, where ρ is a random isospectral state acting
on SN . Recall that we are interested in the standard context
of quantum metrology; i.e., the Hamiltonian H encoding
the phase φ is given by Eq. (C26).
Lemma 9. Let ρ ∈ DðSN Þ be a state of N bosons with

single-particle d-dimensional Hilbert space Hl and the
spectrum fp1;…; pjSN jg. Let us fix the local Hamiltonian h
and a non-negative integer k. Then, the following inequality
holds:

E
U∼μðSNÞ

FðtrkðUρU†Þ; H½N−k�Þ

≥ 2
ðN − kÞðN þ dÞ
ðdþ 1Þðdþ kÞ

jSN jðjSN jtrρ2N − 1Þtrh2
jSkjðjSN j2 − 1Þ : ðC47Þ

Proof.—Denoting σU ¼ trkðUρU†Þ, we notice that the
inequality (B9) allows one to lower bound the QFI as

FðσU;HN−kÞ ≥ ∥½σU;HN−k�∥2HS ðC48Þ

¼ 2ðtrSN−k
fσ2UH2

N−kg − trSN−k
fðσUHN−kÞ2gÞ; ðC49Þ

where due to the fact that σU is symmetric, the trace is taken
over the symmetric subspace SN−k. For the same reason,
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we can cut the Hamiltonian to the symmetric subspace on
which it acts as

HN−kjSN−k
≔ PN−k

sym HN−kPN−k
sym

¼
X
~n

λðN−kÞ
~n j~n; N − kih~n; N − kj; ðC50Þ

where, as before, j~n; N − ki are (N − k)-partite generalized
Dicke states and ~n ¼ ðn0;…; nd−1Þ is a vector of non-
negative integers such that n0 þ � � � þ nd−1 ¼ N − k, and

λðN−kÞ
~n are the eigenvalues ofHN−k. By abuse of notation, in
what follows, we denote both the Hamiltonian and its
symmetric part (C50) by HN−k.
Using the swap operator introduced in Fact 3 for

H ¼ SN−k and the fact that trðSA ⊗ BÞ ¼ trðABÞ holds
for any pair of operators acting on SN−k, we can rewrite
Eq. (C48) as

FðσU;HN−kÞ ≥ 2ftr½ðHN−kσU ⊗ σUHN−kÞSN−k�
− tr½ðσUHN−k ⊗ σUHN−kÞSN−k�g ðC51Þ

¼2ftr½ðσU⊗σUÞðPN−k
sym ⊗H2

N−k−HN−k⊗HN−kÞSN−k�g;
ðC52Þ

where to obtain the second line we used the fact that σU acts
on SN−k and that S2

N−k ¼ PN−k
sym ⊗ PN−k

sym , and, for simplic-
ity, we dropped the subscript SN−k ⊗ SN−k in the trace.

Exploiting the fact that the symmetric projector PN
sym is

diagonal in the Dicke basis, that is,

PN
sym ¼

X
~p

j~p;Nih~p; Nj; ðC53Þ

the representation of the Hamiltonian in Eq. (C48), and the
definition of the swap operator, one arrives at the following
formula:

ðPN−k
sym ⊗ H2

N−k −HN−k ⊗ HN−kÞSN−k

¼
X
~n; ~m

ðλ2~n − λ~nλ ~mÞj ~m;N − kih~n; N − kj

⊗ j~n; N − kih ~m;N − kj; ðC54Þ

which, when plugged into Eq. (C51), gives

FðσU;HN−kÞ ≥ 2
X
~n; ~m

ðλ2~n − λ~nλ ~mÞtr½ðσU ⊗ σUÞj ~m;N − ki

× h~n; N − kj ⊗ j~n; N − kih ~m;N − kj�:
ðC55Þ

We are now ready to lower bound the average EU∼μðSNÞ
FðσU;HN−kÞ. Using the fact that σU ¼ trkðUρU†Þ and
that UρU† is symmetric, we obtain from inequality (C55)
that

E
U∼μðSNÞ

FðσU;HN−kÞ

≥ 2
X
~n; ~m

ðλ2~n − λ~nλ ~mÞ
Z
SUðSNÞ

dμðUÞtr½ðUρU† ⊗ UρU†Þj ~m;N − kih~n; N − kj ⊗ Pk
sym ⊗ j~n; N − kih ~m;N − kj ⊗ Pk

sym�;

ðC56Þ

where now the trace is performed over SN ⊗ SN. Let us
focus for a moment on the state

Z
SUðSNÞ

dμðUÞðUρU† ⊗ UρU†Þ: ðC57Þ

It follows from Fact 3 (for H ¼ SN) that after performing
the integration, the above state assumes the following form:

Z
SUðSNÞ

dμðUÞðUρU† ⊗ UρU†Þ ¼ αPsym∧sym þ βPas∧as:

ðC58Þ

For completeness, let us recall that Psym∧sym and Pas∧as are
the projectors onto the symmetric and antisymmetric

subspaces of SN ⊗ SN , respectively, and they are
given by

Psym∧sym ¼ 1

2
ðPN

sym ⊗ PN
sym þ SNÞ;

Pas∧as ¼
1

2
ðPN

sym ⊗ PN
sym − SNÞ: ðC59Þ

Moreover, the real coefficients α and β are explicitly
given by

α ¼ 1

2DþðSNÞ
ð1þ trρ2Þ;

β ¼ 1

2D−ðSNÞ
ð1 − trρ2Þ; ðC60Þ

where D�ðSNÞ ¼ jSN jðjSN j � 1Þ=2.
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Plugging Eq. (C58) into Eq. (C56) and using Eq. (C59), one arrives at

E
U∼μðSNÞ

FðσU;HN−kÞ ≥
X
~n; ~m

ðλ2~n − λ~nλ ~mÞfðαþ βÞjtrðPN
symj ~m;N − kih~n; N − kj ⊗ Pk

symÞj2

þ ðα − βÞtr½SNðj ~m;N − kih~n; N − kj ⊗ Pk
sym ⊗ j~n; N − kih ~m;N − kj ⊗ Pk

symÞ�g: ðC61Þ

The right-hand side of this inequality can significantly be simplified if one observes that the first trace under the curly
brackets is nonzero only if ~m ¼ ~n, giving

E
U∼μðSNÞ

FðσU;HN−kÞ ≥ ðα − βÞ
X
~n; ~m

ðλ2~n − λ~nλ ~mÞ×tr½SNðj ~m;N − kih~n; N − kj ⊗ Pk
sym ⊗ j~n; N − kih ~m;N − kj ⊗ Pk

symÞ�g:

ðC62Þ

Our aim now is to compute the remaining trace, which for
further purposes, we denote T ~m;~n. We use the fact that
the projector Pk

sym can be written as in Eq. (C53), which,
together with the following identity,

PN
symj~n; N − kij~p; ki ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi�
N−k
~n

�r ffiffiffiffiffiffiffiffi�
k
~p

�r
ffiffiffiffiffiffiffiffiffiffiffiffiffi�

N
~nþ~p

�r j~nþ ~p;Ni; ðC63Þ

allows us to express T ~m;~n as

T ~m;~n ¼
X
~o

�
N−k
~m

��
k
~o

�
�

N
~mþ~o

�
�
N−k
~n

��
k
~o

�
�

N
~nþ~o

� : ðC64Þ

This gives

E
U∼μðSNÞ

FðσU;HN−kÞ ≥ ðα − βÞ
X
~n; ~m

ðλ2~n − λ~nλ ~mÞ

×
X
~o

�
N−k
~m

��
k
~o

�
�

N
~mþ~o

�
�
N−k
~n

��
k
~o

�
�

N
~nþ~o

� ðC65Þ

¼ 2
jSN jtrρ2 − 1

jSN jðjSN j2 − 1Þ ðLN;k − L0
N;kÞ;

ðC66Þ
where we used the explicit expressions for α and β and
denoted

LN;k ¼
X
~o

2
64X

~m

�
N−k
~m

��
k
~o

�
�

N
~mþ~o

�
3
75
2
64X

~n

λ2~n

�
N−k
~n

��
k
~o

�
�

N
~nþ~o

�
3
75;

LN;k
0 ¼

X
~o

2
64X ~m

λ ~m

�
N−k
~m

��
k
~o

�
�

N
~mþ~o

�
3
75
2

: ðC67Þ

We now compute each sum separately. To this end, let us
first notice that it follows from Eq. (C63) that

X
~m

�
N−k
~m

��
k
~o

�
�

N
~mþ~o

�
¼

X
~m

tr½PN
symj ~m;N − kih ~m;N − kj ⊗ j~o; kih~o; kj�

ðC68Þ

¼ tr½PN
symðPN−k

sym ⊗ j~o; kih~o; kjÞ� ðC69Þ

¼ jSN j
jSkj

; ðC70Þ

where to get the second equality, we used Eq. (C53), while
to obtain the third one, we used the fact that the partial trace
of PN

sym over N − k subsystems is given by

trN−kðPN
symÞ ¼

jSN j
jSkj

Pk
sym: ðC71Þ

With the aid of formula Eq. (C68), we can write LN;k as

LN;k ¼
jSN j
jSkj

X
~n

λ2~n
X
~o

�
N−k
~n

��
k
~o

�
�

N
~nþ~o

� : ðC72Þ

Then, exploiting Eqs. (C53) and Eq. (C63) and the form
of the Hamiltonian HN−k, this equation can be further
rewritten as

LN;k ¼
jSN j
jSkj

tr½PN
symðH2

N−k ⊗ Pk
symÞ� ðC73Þ

¼ jSN j2
jSk∥SN−kj

trSN−k
ðH2

N−kÞ; ðC74Þ

where the second equality stems from Eq. (C71).
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To compute L0
N;k, we follow more or less the same

strategy. First, using Eqs. (C63) and (C50), we can rewrite
it as

L0
N;k ¼

X
~o

ftr½PN
symðHN−k ⊗ j~o; kih~o; kjÞ�g2: ðC75Þ

Then, we use the fact that in the full Hilbert space
ðCdÞ⊗ðN−kÞ, HN−k assumes the form given in Eq. (C26),
which gives

tr½PN
symðHN−k ⊗ j~o; kih~o; kjÞ�
¼ ðN − kÞtr½PN

symðh ⊗ PN−k−1
sym ⊗ j~o; kih~o; kjÞ� ðC76Þ

¼ ðN − kÞ jSN j
jSkþ1j

tr½Pkþ1
sym ðh ⊗ j~o; kih~o; kjÞ�; ðC77Þ

where the second line follows from Eq. (C71). To compute
the remaining trace, we expand h in its eigenbasis as h ¼P

d−1
n¼0 ξnjnihnj (where ξi are the eigenvalues of h), which

can also be written using the “mode representation” as

h ¼
X
~n

ξ~nj~nih~nj; ðC78Þ

where ~n ¼ ði0;…; id−1Þ is now a d-dimensional vector
whose components are such that ni ¼ 0, 1 and
n0 þ � � � þ nd−1 ¼ 1. In this representation, a number n ¼
i ∈ f0;…; d − 1g is represented by a vector ~n whose ith
component ni ¼ 1, and the remaining ones are zero. Using
Eq. (C63), one obtains

tr½Pkþ1
sym ðh ⊗ j~o; kih~o; kjÞ� ¼

X
~n

ξ~n

�
1
~n

��
k
~o

�
�
kþ1
~nþ~o

�

¼
X
~n

ξ~n

�
k
~o

�
�
kþ1
~nþ~o

� ; ðC79Þ

where the summation is taken over vectors ~n specified
above (there is d such vectors). The second equality
straightforwardly stems from the fact that ð1~nÞ ¼ 1. We
then exploit the fact that ðkþ1

~nþ~oÞ ¼ kþ1
onþ1

ðk~oÞ and the
assumption that trh ¼ 0 to get

tr½Pkþ1
sym ðh ⊗ j~o; kih~o; kjÞ� ¼ 1

kþ 1

Xd−1
n¼0

ξnon

¼ 1

kþ 1
λðkÞ~o ; ðC80Þ

where we recall that λðkÞ~o is the eigenvalue of the k-partite
Hamiltonian Hk [compare Eq. (C50)]. Combining the

above identity with Eqs. (C76) and (C75), one finds
that

L0
N;k ¼

�
N − k
kþ 1

jSN j
jSkþ1j

�
2

trSk
ðH2

kÞ: ðC81Þ

Plugging Eqs. (C73) and (C81) into Eq. (C56), one
eventually finds that the average QFI is lower bounded as

E
U∼μðSNÞ

FðσU;HN−kÞ

≥ 2
jSN j
jSkj

jSN jtrρ2N − 1

jSN j2 − 1

ðN − kÞðN þ dÞ
ðdþ 1Þðdþ kÞ trh

2: ðC82Þ

▪
Remark 11. It is worth mentioning that using similar

techniques, one can also provide an upper bound on the
average QFI for bosons in the case of particle losses. To be
more precise, in what follows, we will derive such a bound
for multiqubit states. As the QFI is upper bounded by the
variance, one has

FQðσU;HN−kÞ ≤ 4Δ2
σUHN−k

¼ 4ftrðσUH2
N−kÞ − ½trðσUHN−kÞ�2g

≤ 4trðσUH2
N−kÞ: ðC83Þ

Then using the fact that the right-hand side can be rewritten
as trðσUH2

N−kÞ ¼ tr½ρðH2
N−k ⊗ Pk

symÞ� and that

Z
SUðSNÞ

dμðUÞUρU† ¼ PN
sym

N þ 1
; ðC84Þ

one obtains

E
U∼μðSNÞ

FðσU;HN−kÞ ≤
4

N þ 1
tr½PN

symðH2
N−k ⊗ Pk

symÞ�:

ðC85Þ

With the aid of Eqs. (C71) and (C31), we eventually get

E
U∼μðSNÞ

FðσU;HN−kÞ ≤
1

3
ðN − kÞðN − kþ 2Þ: ðC86Þ

Notice that for k ¼ 0, this bound gives NðN þ 2Þ=3, which
differs from the exact value for qubits by a factor linear in
N. In general, however, this bound is not very informative
because even for significant particle losses, e.g., k ¼ ηN
with 0 < η < 1, the right-hand side of Eq. (C86) scales
quadratically with N.
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4. Average FI of random two-mode bosonic states
in the interferometric setup

In this part, we study the interferometric setup intro-
duced in Sec. VII and depicted in Fig. 2. Recall that the
classical Fisher information (FI) associated with such a
measurement scheme is given by

FclðfpnjφðψÞgÞ ¼
XN
n¼0

trði½ΠN
n ; Ĵz�ψðφÞÞ2

trðΠN
n ψðφÞÞ

; ðC87Þ

where by Ĵα ≔ 1
2

P
N
i¼0 σ

ðiÞ
α (α ¼ fx; y; zg), we denote

the angular momentum operators, ΠN
n ¼ B̂DN

n B̂
†, where

B̂ ≔ expð−iπĴx=2Þ, DN
n ¼ jDN

n ihDN
n j, and jDN

n i ≔
jn;N − ni are the projections onto the Dicke states propa-
gated through a balanced beam splitter, and ψðφÞ ≔
expð−iĴzφÞψ expðiĴzφÞ, with ψ some pure state in SN
with d ¼ 2 modes.
Similarly as in Theorem 4 of Sec. VII, after fixing ψN to

be a particular pure state on SN , we can then define

FclðU;φÞ ≔ FclðfpnjφðUψNU†Þg; ðC88Þ

where U ∈ SUðSNÞ and φ ∈ ½0; 2π�.
Lemma 10. Let FclðU;φÞ be defined as above. Then,

the following inequalities hold:

c−N2 ≤ E
U∼μðSNÞ

FclðU;φÞ ≤ cþN2 þ N; ðC89Þ

where

c− ¼ 1

36
−

4

3e5
≈ 0.0244;

cþ ¼ −
5

6
þ 3

e
≈ 0.270: ðC90Þ

Proof.—The main difficulty in the proof comes from the
fact that FclðU;φÞ is a complicated, nonlinear function of
U. Let us first note that by using the relation
B̂e−iĴzφB̂† ¼ eiĴyφ, it is possible to rewrite the FI in
Eq. (C87) as

FclðfpnjφðψÞgÞ ¼
XN
n¼0

trði½DN
n ; Ĵy� ~ψðφÞÞ2

trðDN
n ~ψðφÞÞ ; ðC91Þ

where ~ψðφÞ ¼ exp ðiφĴyÞψ exp ð−iφĴyÞ. Let us introduce
the auxiliary notation

fnðU;φÞ ¼ ftrði½DN
n ; Ĵy� exp ðiφĴyÞUψU† exp ð−iφĴyÞÞg2;

ðC92Þ

gnðU;φÞ ¼ trðDN
n exp ðiφĴyÞUψU† exp ð−iφĴyÞÞ: ðC93Þ

Using the above formulas, we obtain the compact expres-
sion for FclðU;φÞ,

FclðU;φÞ ¼
XN
n¼0

fnðU;φÞ
gnðU;φÞ : ðC94Þ

In what follows, we will make use of the inequality

fnðU;φÞ ≤ N2gnðU;φÞ2; ðC95Þ

which follows directly from Eq. (A50) applied to the
considered setting. In order to obtain bounds on the average
EU∼μðSNÞFclðU;φÞ, we use the following subsets of the
SUðSNÞ,

Gnþ;α ¼ fU ∈ SUðSnÞjgnðU;φÞ ≥ αg; ðC96Þ

Gn
−;α ¼ fU ∈ SUðSnÞjgnðU;φÞ ≤ αg; ðC97Þ

where n ¼ 0;…; N and α ∈ ½0; 1�. Because of the unitary
invariance of the Haar measure and the fact that projectors
DN

n have rank one, the distribution of the random variable
gnðU;φÞ is identical to the distribution of the random
variable XðVÞ ¼ trðψVψV†Þ, where V is the Haar distrib-
uted unitary on CNþ1 and ψ is a pure state on this Hilbert
space. The distribution of XðVÞ is known [see, for instance,
Eq. (9) in Ref. [107]] and is given by

pðXÞ ¼ Nð1 − XÞN−1; X ∈ ½0; 1�: ðC98Þ

Lower bound. Let us first derive the lower bound for the
average of FI. Consider first the average of a single term in
a sum (C94). For α > 0, we have the following chain of (in)
equalities:

EU∼μðSNÞ
fnðU;φÞ
gnðU;φÞ ≥

Z
U∈Gn

−;α

dμðUÞ fnðU;φÞ
α

þ
Z
U∈Gn

þ;α

dμðUÞ fnðU;φÞ
gnðU;φÞ

ðC99Þ

¼ 1

α

Z
U∈SUðSNÞ

dμðUÞfnðU;φÞ

−
Z
U∈Gn

þ;α

dμðUÞfnðU;φÞ ðgnðU;φÞ − αÞ
gnðU;φÞα ðC100Þ

≥
1

α

Z
U∈SUðSNÞ

dμðUÞfnðU;φÞ

−
N2

α

Z
U∈Gn

þ;α

dμðUÞgnðU;φÞðgnðU;φÞ − αÞ ðC101Þ
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¼ 1

α

Z
U∈SUðSNÞ

dμðUÞfnðU;φÞ

−
N2

α

Z
1

α
dXpðXÞXðX − αÞ ðC102Þ

¼ 1

α

Z
U∈SUðSNÞ

dμðUÞfnðU;φÞ

−
N2ð1 − αÞNþ1ð2þ αNÞ

αð1þ NÞð2þ NÞ : ðC103Þ

In the above sequence of (in)equalities, Eq. (C99) follows
from the definitions of sets Gn

�;α; Eq. (C101) follows from
the non-negativity of gnðU;φÞ − α on Gnþ;α and from
Eq. (C95). Equation (C102) follows from the definition
of the random variable X presented in the discussion above
Eq. (C98). Finally, Eq. (C103) follows directly from
Eq. (C98). Summing over n, we obtain the inequality

E
U∼μðSNÞ

FclðU;φÞ ≥ 1

α

XN
n¼0

�Z
U∈SUðSNÞ

dμðUÞfnðU;φÞ
�

−
N2ð1 − αÞNþ1ð2þ αNÞ

αð2þ NÞ : ðC104Þ

Using the integration techniques analogous to the ones used
in preceding sections, it is possible to show thatZ
U∈SUðSNÞ

dμðUÞfnðU;φÞ ¼ trð−½DN
n ; Ĵy�2Þ

ðN þ 1ÞðN þ 2Þ : ðC105Þ

Making use of the fact that trðĴyDN
n Þ ¼ 0, we obtain

XN
n¼0

�Z
U∈SUðSNÞ

dμðUÞfnðU;φÞ
�

¼
XN
n¼0

2trðDN
n ; Ĵ

2
yÞ

ðN þ 1ÞðN þ 2Þ

¼ 2trðĴ2yÞ
ðN þ 1ÞðN þ 2Þ

¼ N
6
: ðC106Þ

In the last equality of Eq. (C106), we have used Eq. (C31)
and the fact that Ĵy originates in a single-particle
Hamiltonian satisfying trðh2Þ ¼ 1

2
. Plugging Eq. (C106)

into Eq. (C104), for all α > 0, we obtain

E
U∼μðSNÞ

FclðU;φÞ≥ N
6α

−
N2ð1−αÞNþ1ð2þαNÞ

αð2þNÞ : ðC107Þ

By setting α ¼ Δ
N, where Δ is a fixed positive parameter,

and by using the inequality ð1 − Δ
NÞNþ1 ≤ exp ð−ΔÞ, we

obtain

E
U∼μðSNÞ

FclðU;φÞ ≥ N2

6Δ
−
N2 exp ð−ΔÞð2þ ΔÞ

Δ
: ðC108Þ

Finding the maximal value of the right-hand side of
Eq. (C108) (treated as a function of Δ) is difficult.
Numerical investigation shows that the maximal value is
obtained very close to Δ ¼ 6, which finally gives

E
U∼μðSNÞ

FclðU;φÞ ≥ c−N2; ðC109Þ

where c− ¼ 1
36
− 4

3e5
≈ 0.0244.

Upper bound. The proof of the upper bound of the
average Fisher information is analogous. For α > 0, we
have the following chain of (in)equalities:

E
U∼μðSNÞ

fnðU;φÞ
gnðU;φÞ ≤

Z
U∈Gn

þ;α

dμðUÞ fnðU;φÞ
α

þ
Z
U∈Gn

−;α

dμðUÞ fnðU;φÞ
gnðU;φÞ ðC110Þ

¼ 1

α

Z
U∈SUðSNÞ

dμðUÞfnðU;φÞ

þ
Z
U∈Gn

−;α

dμðUÞfnðU;φÞ ðα − gnðU;φÞÞ
gnðU;φÞα ðC111Þ

≤
1

α

Z
U∈SUðSNÞ

fnðU;φÞ

þ N2

α

Z
U∈Gn

−;α

gnðU;φÞðα − gnðU;φÞÞ ðC112Þ

¼ 1

α

Z
U∈SUðSNÞ

dμðUÞfnðU;φÞ

þ N2

α

Z
α

0

dXpðXÞXðα − XÞ ðC113Þ

¼ 1

α

Z
U∈SUðSNÞ

dμðUÞfnðU;φÞ

þ N2ðαð2þ NÞ þ ð1 − αÞNþ1ð2þ αNÞ − 2Þ
αð1þ NÞð2þ NÞ :

ðC114Þ

In the above sequence of (in)equalities, Eq. (C110)
follows from the definitions of sets Gn

�;α; Eq. (C112)
follows from the non-negativity of α − gnðU;φÞ on Gn

−;α
and from Eq. (C95). Equation (C102) follows from the
definition of the random variable X presented in the
discussion above Eq. (C98). Finally, Eq. (C114) follows
directly from Eq. (C98). Summing over n, we obtain the
inequality
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E
U∼μðSNÞ

FclðU;φÞ

≤
1

α

XN
n¼0

�Z
U∈SUðSNÞ

dμðUÞfnðU;φÞ
�

þ N2ðαð2þ NÞ þ ð1 − αÞNþ1ð2þ αNÞ − 2Þ
αð2þ NÞ :

ðC115Þ

Let Δ be a fixed positive number. By setting α ¼ Δ
N, and

by using Eq. (C106), we obtain the upper bound

E
U∼μðSNÞ

FclðU;φÞ

≤
N2

6Δ
þ N2

Δ
ðΔ − 2þ ðΔþ 2Þ expð−ΔÞÞ þ N: ðC116Þ

Finding the minimal value of the right-hand side of
Eq. (C116) (treated as a function of Δ) is difficult.
Numerical investigation shows that the minimal value is
obtained very close to Δ ¼ 1. Inserting this into
Eq. (C116) gives

EU∼μðSNÞFclðU;φÞ ≤ cþN2 þ N; ðC117Þ

where cþ ¼ − 5
6
þ 3

e ≈ 0.270. ▪

APPENDIX D: PROOFS OF MAIN THEOREMS

In this section, we use the technical results developed in
the preceding appendixes to prove the main theorems from
the main manuscript, where we have used, for the sake of
simplicity, the Θ notation, which allowed us to hide the
presence of complicated constants in the concentration
inequalities. In what follows, we will present technical
versions of these theorems, explicitly giving all the relevant
constants. Proofs of Theorems 1, 2, 3, and Example 1 are
analogous in the sense that they all rely the concentration
inequality (A7) and on

(i) upper bounds on the Lipschitz constants of the
relevant functions on SUðHÞ;

(ii) bounds or explicit values on the average of these
functions on SUðHÞ.

The proof of Theorem 4 is slightly more complicated and
relies on the regularity of FclðU;φÞ viewed as a function of
the parameter φ.
Let us start with an immediate corollary of Fact 1

describing the concentration of measure on SUðHÞ.
Corollary 2. Let f∶SUðHÞ ↦ R be a function on

SUðHÞ. Let D ¼ jHj be the dimension of H. Assume the
function f with the Lipschitz constant L satisfying L ≤ ~L
for some non-negative scalar ~L. Assume that the expect-
ation value of f is upper bounded as EU∼μðHÞf ≤ Fþ. Then,
for every ϵ ≥ 0, the following large deviation bound holds,

Pr
U∼μðHÞ

ðfðUÞ ≥ Fþ þ ϵÞ ≤ exp

�
−
Dϵ2

4 ~L2

�
: ðD1Þ

Assume that the expectation value of f is lower bounded as
EU∼μðHÞf ≥ F−. Then, for every ϵ ≥ 0, the following large
deviation bound holds,

Pr
U∼μðHÞ

ðfðUÞ ≤ F− − ϵÞ ≤ exp

�
−
Dϵ2

4 ~L2

�
: ðD2Þ

We use Corollary 2 to prove technical versions of
Theorems 1, 2, 3 and Example 1 from the main text.
Theorem 5. (Technical version of Theorem 1 from the

main text.) Fix a single-particle Hamiltonian h, local
dimension d, and a pure state ψN on HN . Let
FLUðUÞ ≔ FLUðUψNU†; HÞ; then, for every ϵ ≥ 0,

Pr
U∼μðHNÞ

�
FLUðUÞ ≥ 4N∥h∥2

�
1þ ðN − 1Þd2ffiffiffiffiffiffi

dN
p

�
þ ϵ

�

≤ exp

�
−

ϵ2dN

4096∥h∥4N4

�
; ðD3Þ

Pr
U∼μðHNÞ

�
FLUðUÞ ≤ 4Ntrðh2ÞdN

dðdN þ 1Þ − ϵ

�

≤ exp

�
−

ϵ2dN

4096∥h∥4N4

�
: ðD4Þ

Setting ϵ ¼ 2N∥h∥2ð1þ ðN−1Þd2ffiffiffiffi
dN

p Þ and ϵ ¼ 2Ntrðh2ÞdN
dðdNþ1Þ in

Eqs. (D3) and (D4), respectively, yields Theorem 1.
Proof.—The proof of Theorem 5 follows directly

from Corollary 2 and results proved previously. From
Lemmas 1 and 3, one can infer that the Lipschitz constant
of FLU is upper bounded by ~L ¼ 32∥H∥2 ¼ 32N2∥h∥2.
From Eq. (17), we have the upper bound on EU∼μðHÞFLU.
Using this bound in Eq. (D1) gives Eq. (D3). The lower
bound EU∼μðHÞFLU can be obtained by noting that the
unoptimized QFI is a lower bound to its optimized version.
Therefore,

E
U∼μðHÞ

FLU ≥ E
U∼μðHÞ

FðUψNU†; HÞ ¼ 4Ntrðh2ÞdN
dðdN þ 1Þ ; ðD5Þ

where, in the last equality, we used Eq. (C27). Plugging
Eq. (D5) into Eq. (D2) yields Eq. (D4). ▪
Theorem 6. (Technical version of Theorem 2 from the

main text.) Fix a single-particle Hamiltonian h, local
dimension d, and a state σN from the symmetric subspace
SN with eigenvalues fpjgj. Let σmix be the maximally
mixed state on SN . Let FðUÞ ≔ FðUσNU†; HÞ; then, for
every ϵ ≥ 0,
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Pr
U∼μðSNÞ

�
FðUÞ ≤ dBðσN; σmixÞ2

2NðN þ dÞtrðh2Þ
dðdþ 1Þ

×
jSN j2

jSN j2 − 1
− ϵ

�
≤ exp

�
−

ϵ2jSN j
4096C∥h∥4N4

�
; ðD6Þ

where jSN j ¼ ðNþd−1
N Þ and C ¼ min f1; 8dBðσN; σmixÞg.

Setting ϵ ¼ dBðσN; σmixÞ2 NðNþdÞtrðh2Þ
dðdþ1Þ

jSN j2
jSN j2−1 in Eq. (D6)

yields Theorem 2.
Proof.—The proof is analogous to the proof ofTheorem5.

From Lemma 1, we infer that the Lipschitz constant ofFðUÞ
is upper bounded by ~L¼32∥H∥2minf1;8dBðσN;σmixÞg¼
32N2∥h∥2minf1;8dBðσN;σmixÞg. From Eq. (C28) in
Lemma 8, we get

E
U∼μðSNÞ

FðUÞ ¼ 4NðN þ dÞtrðh2Þ
dðdþ 1Þ

jSN j
jSN j þ 1

ΛðfpjgjÞ:

ðD7Þ

Using the inequality (C15) and the Fuch–van de Graaf
inequality [102], 1 − F 2ðσN; σmixÞ ≤ 1

2
dBðσN; σmixÞ, we

obtain

ΛðfpjgjÞ ≥
jSN j

2ðjSN j − 1Þ dBðσN; σmixÞ2: ðD8Þ

Inserting this inequality into Eq. (D7) gives

EU∼μðHNÞFðUÞ≥dBðσN;σmixÞ2
2NðNþdÞtrðh2Þ

dðdþ1Þ
jSN j2

jSN j2−1
;

ðD9Þ

which, together with the bound on the Lipschitz constant of
FðUÞ and Corollary 2, results in Eq. (D6). ▪
Example 3 (Technical version of Example VI A from

the main manuscript). Fix a local dimension d, single-
particle Hamiltonian h, and p ∈ ½0; 1�. Let ψN be a pure
state on SN , and set

σNðpÞ ¼ ð1 − pÞψN þ pσmix: ðD10Þ

Let FpðUÞ ≔ FðUσNðpÞU†; HÞ; then, for every ϵ > 0,

Pr
U∼μðSNÞ

ðjFpðUÞ − E
U∼μðSNÞ

Fpj ≥ ϵ E
U∼μðSNÞ

FpÞ

≤ 2 exp

�
−

ϵ2trðh2Þ2ðN þ dÞ2jSN j2
64∥h∥4ðdðdþ 1ÞNð1þ jSN jÞÞ2

jSN j
�
;

ðD11Þ

where jSN j ¼ ðNþd−1
N Þ and

E
U∼μðSNÞ

Fp¼
4NðNþdÞtrðh2Þ

dðdþ1Þ
jSN j

jSN jþ1

ð1−pÞ2
ð1−pþ2p=jSN jÞ

:

ðD12Þ

Equation (D12) implies Example VI A, as for fixed local
dimension d, we have jSN j ∈ ΘðNd−1Þ.
Sketch of the proof.—The proof of Example 3 parallels

proofs of Theorems 5 and 6 and relies on Fact 1. The bound
of the Lipschitz constant ofFpðUÞ is provided by Lemma 3.
The expression for the average of FpðUÞ is given in Lemma
8. The inequality (D11) follows directly from concentration
inequalities from Fact 1 by setting ϵ ¼ ~ϵEU∼μðSNÞFp. ▪
Theorem 7. (Technical version of Theorem 3 from the

main manuscript.) Fix a single-particle Hamiltonian h,
local dimension d, non-negative integer k, and a state σN on
SN with eigenvalues fpjgj. Let σmix be the maximally
mixed state on SN . Let FkðUÞ ≔ FðtrkðUσNU†Þ; HN−kÞ;
then, for every ϵ ≥ 0,

Pr
U∼μðSNÞ

�
FkðUÞ ≤ 2

ðN − kÞðN þ dÞ
ðdþ 1Þðdþ kÞ

×
jSN jðjSN jtrρ2N − 1Þtrh2

jSkjðjSN j2 − 1Þ − ϵ

�

≤ exp

�
−

ϵ2jSN j
4096C∥h∥4ðN − kÞ4

�
; ðD13Þ

where jSN j ¼ ðNþd−1
N Þ and C ¼ min f1; 8dBðσN; σmixÞg.

Setting ϵ ¼ ðN−kÞðNþdÞ
ðdþ1ÞðdþkÞ

jSN jðjSN jtrρ2N−1Þtrh2
jSkjðjSN j2−1Þ in Eq. (D13) yields

Theorem 3.
Sketch of the proof.—The proof of Theorem 7 parallels

proofs of Theorems 5 and 6 and relies on Corollary 2. The
bound of the Lipschitz constant of FkðUÞ is provided by
Lemma 4. The lower bound for the average of FkðUÞ is
given in Lemma 9. ▪
Theorem 8. (Technical version of Theorem 4 from the

main manuscript.) Let ψN be a fixed pure state on SN with
d ¼ 2 bosonic modes. Let pnjφðUψNU†Þ be the probability
to obtain outcome n in the interferometric scheme defined
in Sec. VII, given that the value of the unknown phase
parameter is φ and the input state is UψNU† [see also
Eq. (31)]. Let FclðU;φÞ ≔ FclðfpnjφðUψNU†ÞgÞ be the
corresponding FI according to Eq. (32) [or Eq. (C87)].
Then, for every ϵ ≥ 0 and every φ ∈ ½0; 2π�, we have

Pr
U∼μðSNÞ

ðFclðU;φÞ ≤ EU∼μðSNÞFclðU;φÞ − ϵÞ

≤ exp

�
−

ϵ2

144N4
ðN þ 1Þ

�
; ðD14Þ

Pr
U∼μðSNÞ

ðFclðU;φÞ ≥ EU∼μðSNÞFclðU;φÞ þ ϵÞ

≤ exp

�
−

ϵ2

144N4
ðN þ 1Þ

�
: ðD15Þ
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In the equations above, EU∼μðSNÞFclðU;φÞ satisfies
inequalities

c−N2 ≤ EU∼μðSNÞFclðU;φÞ ≤ cþN2 þ N; ðD16Þ
where

c− ¼ 1

36
−

4

3e5
≈ 0.0244; cþ ¼ −

5

6
þ 3

e
≈ 0.270:

ðD17Þ
Moreover, we have the following inequality:

Pr
U∼μðSNÞ

�
∃φ ∈ ½0; 2π�FclðU;φÞ ≤ c−

4
N2

�

≤


12πN
c−

�
exp

�
−

c2−
576

ðN þ 1Þ
�
; ðD18Þ

where dxe stands for the smallest integer that is not less
than x. Equation (D18) yields exactly Eq. (33) from
Theorem 4.
Proof.—Equations (D14) and (D15) follow directly from

Fact 1 and the bounds of the Lipschitz constant of
FclðU;φÞ, treated as a function of U (for fixed φ), given
in Lemma 5. From Lemma 5, it follows that the Lipschitz
constant of FclðU;φÞ is bounded above as

L ≤ 24∥H∥2 ¼ 24∥Ĵz∥2 ¼ 6N2: ðD19Þ

Inequalities from Eq. (D16) follow from Lemma 10. The
nontrivial part of the proof is the justification of Eq. (D18).
Let us first introduce the discretization of the interval ½0; 2π�
by M equally spaced points:

φi ¼ ði − 1Þ 2π
M

; i ¼ 1;…;M: ðD20Þ

Moreover, let us notice that from Eq. (A59), it follows that
FclðU;φÞ is Lipschitz continuous for fixed U and varying
φ:

���� d
dφ

FclðU;φÞ
���� ≤ 24∥H∥3 ¼ 3N3; ðD21Þ

where in Eq. (A59), we set X ¼ H ¼ Ĵz. From Eq. (D21), it
follows that for fixed U ∈ SUðSNÞ and for φ; ~φ ∈ ½0; 2π�,
we have

jFclðU;φÞ − FclðU; ~φÞj ≤ 3N3jφ − ~φj: ðD22Þ

When the points in the discretization (D20) are separated
by Δ ¼ 2π

M, the distance on any φ ∈ ½0; 2π� to the closest φi

does not exceed Δ0 ¼ Δ
2
¼ π

M. Using the union bound,
Eq. (D14), and the lower bound in Eq. (D16), we obtain

Pr
U∼μðSNÞ

ð∃φiFclðU;φiÞ ≤ c−N2 − ϵÞ

≤ M exp

�
−

ϵ2

144N4
ðN þ 1Þ

�
: ðD23Þ

Using Eq. (D22) and the discussion following it, we obtain

Pr
U∼μðSNÞ

ð∃φFclðU;φÞ ≤ c−N2 − 3N3Δ0 − ϵÞ

≤ M exp

�
−

ϵ2

144N4
ðN þ 1Þ

�
: ðD24Þ

Now, by setting M ¼ d12πNc−
e (this is the smallest integer M

such that 3N3Δ0 ≤ ci
4
N2) and ϵ ¼ c−

2
N2 in the above

equation, we obtain Eq. (D18). ▪

APPENDIX E: PARTIAL-TRACE AND BEAM-
SPLITTER MODELS OF PARTICLE LOSSES

In this appendix, we prove the equivalence of the beam-
splitter model of particle losses and the operation of taking
the partial trace over the constituent particles in the system
of N bosons in d ¼ 2 modes. A general pure state ψN of N
bosons in two modes a and b can be written as

jψNi ¼
XN
n¼0

αnjn;N − ni ¼
XN
n¼0

αnjDN
n i; ðE1Þ

with the complex coefficients fαngNn¼0 satisfyingP
N
n¼0 jαnj2 ¼ 1. Each Dicke state jDN

n i can be written in
the basis of particle basis jip as

jDN
n i ¼

1ffiffiffiffiffiffiffi
ðNnÞ

q X
x∈f0;1gN

δx;njxip; ðE2Þ

where x ≔ jxj ≔ P
ixi denotes the Hamming weight of

any binary string x ¼ ½x1;…; xN �, whose consecutive
entries specify the state of each qubit. As a result, we
may write a general bosonic pure state (E1) in the particle
basis as

jψNi ¼
X

x∈f0;1gN
cxjxip ¼

X
x∈f0;1gN

cxjx1ijx2i…jxNi; ðE3Þ

with the coefficients cx then given by cx ¼
1ffiffiffiffiffi
ðNnÞ

p P
N
n¼0 αnδx;n.

1. Tracing out k particles

Let us define the notation in which we can split any
binary string x (describing N qubits) into two strings, x0
and u (describing N − k and k qubits, respectively) so that
x ¼ ½x0;u� ¼ ½x01;…; x0N−k; u1;…; uk�. Then, we can gen-
erally write the bosonic state (E3) in the particle basis after
tracing out the last k qubits as
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ϱtrN−k ≔ trkfψNg ðE4Þ

¼ trk

� X1N
x;y¼0N

cxc⋆y jxiphyj



¼
X1N

x;y¼0N

cxc⋆y trkfjxiphyjg ðE5Þ

¼
X1N−k

x0;x0¼0N−k

½ϱtrN−k�x0y0 jx0iphy0j; ðE6Þ

where the above matrix entries of ϱtrN−k are given by

½ϱtrN−k�x0y0 ¼
X1k

u;w¼0k

c½x0;u�c⋆½y0;w�δuw ¼
X1k
u¼0k

c½x0;u�c⋆½y0;u� ðE7Þ

¼
X1k
u¼0k

�XN
n¼0

αnδx0þu;nffiffiffiffiffiffiffi
ðNnÞ

q ��XN
m¼0

α⋆mδy0þu;mffiffiffiffiffiffiffi
ðNmÞ

q �

¼
Xk
u¼0

�
k
u

�
αx0þuα

⋆
y0þuffiffiffiffiffiffiffiffiffiffiffi

ð N
x0þuÞ

q ffiffiffiffiffiffiffiffiffiffiffi
ð N
y0þuÞ

q : ðE8Þ

In the mode basis, we can equivalently write

ϱtrN−k ¼
XN−k

n;m¼0

½ϱtrN−k�nmjDN−k
n ihDN−k

m j; ðE9Þ

and with the help of Eqs. (E2) and (E6), we can explicitly
evaluate the corresponding density-matrix entries:

½ϱtrN−k�nm ¼
X1N−k

x0;y0¼0N−k

½ϱtrN−k�x0y0 hDN−k
m jjx0iphy0jjDN−k

n i

ðE10Þ

¼
X1N−k

x0;y0¼0N−k

½ϱtrN−k�x0y0
δx0;mffiffiffiffiffiffiffiffiffiffiffi
ðN−k

m Þ
q δy0;nffiffiffiffiffiffiffiffiffiffiffi

ðN−k
n Þ

q ðE11Þ

¼
XN−k

x0;y0¼0

�
N − k
x0

��
N − k
y0

�Xk
u¼0

�
k
u

�

×
αx0þuα

⋆
y0þuffiffiffiffiffiffiffiffiffiffiffi

ð N
x0þuÞ

q ffiffiffiffiffiffiffiffiffiffiffi
ð N
y0þuÞ

q δx0;mffiffiffiffiffiffiffiffiffiffiffi
ðN−k

m Þ
q δy0;nffiffiffiffiffiffiffiffiffiffiffi

ðN−k
n Þ

q ðE12Þ

¼
Xk
u¼0

αmþuα
⋆
nþu

�
k
u

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN−k

m ÞðN−k
n Þ

ð N
mþuÞð N

nþuÞ

s
: ðE13Þ

2. Beam-splitter model of mode-asymmetric
particle losses

In quantum optics, photonic losses are modeled by
adding fictitious beam splitters (BSs) of fixed transmittance
into the light transmission modes [39]. In this way, by
impinging a vacuum state on the other input port of any
such BS and tracing out its unobserved output port, one
obtains a model depicting loss of photons. In the case of the
two-mode N-photon bosonic state (E1), after fixing the
transmissivity of the fictitious BS introduced in mode a (b)
to ηa (ηb), the density matrix then describing the observed
modes generally reads [3]

ϱBSN ≔ ΛBS
ηa;ηb ½ψN � ðE14Þ

¼
XN
la¼0

XN−la

lb¼0

pla;lb jξla;lbimhξla;lb j; ðE15Þ

where ΛBS
ηa;ηb is the effective quantum channel representing

the action of fictitious BSs in the two modes, while indices
la and lb denote the number of photons lost in modes a and
b, respectively. The states

jξla;lbim ≔
1ffiffiffiffiffiffiffiffiffiffipla;lb

p
XN−lb

n¼la

αn

ffiffiffiffiffiffiffiffiffiffiffiffi
bðla;lbÞn

q
jn − la; N − n − lbi

ðE16Þ

are generally nonorthogonal, and their coefficients contain
generalized binomial factors:

bðla;lbÞn ≔
�
n
la

�
ηn−laa ð1 − ηaÞla

�
N − n
lb

�
ηN−n−lb
b ð1 − ηbÞlb :

ðE17Þ

The probability of losing la and lb photons in modes a and
b, respectively, then reads

pla;lb ¼
XN−lb

n¼la

jαnj2bðla;lbÞn : ðE18Þ

On the other hand, after reindexing Eq. (E15) by
l—the total number of photons lost in both modes—
the output two-mode mixed state can equivalently be
rewritten as

ϱBSN ¼ ⨁
N

l¼0

plϱ
BS
N;l; ðE19Þ

where
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ϱBSN;l ≔
1

pl

Xl

la¼0

pla;l−la jξla;l−laimhξla;l−la j ðE20Þ

¼ 1

pl

Xl

la¼0

XN−lþla

n;m¼la

× αnα
⋆
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðla;l−laÞn bðla;l−laÞm

q
jn − la; N − n − lþ laim

× hm − la; N −m − lþ laj ðE21Þ

belong to orthogonal subspaces and represent the state
after loss of l photons, which may occur with proba-
bility

pl ¼
Xl

la¼0

pla;l−la ¼
Xl

la¼0

XN−lþla

n¼la

jαnj2bðla;l−laÞn

¼
XN
n¼0

jαnj2
Xmin fl;ng

la¼max f0;n−Nþlg
bðla;l−laÞn : ðE22Þ

3. Equivalence of the partial-trace and
beam-splitter models in the case of equal losses

in the two modes

Lemma 11. For equal photonic losses in both modes,
η ≔ ηa ¼ ηb, the fictitious BS model is equivalent to
tracing out k particles with k distributed according to a
binomial distribution, i.e.,

∀ψn∈SN
∶ ΛBS

η;η½ψN � ¼ ⨁
N

k¼0

pktrkfψNg with

pk ¼
�
N
k

�
ηN−kð1 − ηÞk: ðE23Þ

Proof.—In the case of mode-symmetric losses,
η ≔ ηa ¼ ηb, the overall probability of losing l photons
becomes independent of the state ψN [i.e., its coefficients
αn of Eq. (E1)], as Eq. (E22) then simplifies to

pl ¼
XN
n¼0

jαnj2
Xminfl;ng

la¼maxf0;n−Nþlg

�
n
la

�

×

�
N − n
l − la

�
ηN−lð1 − ηÞl

¼
�
N
l

�
ηN−lð1 − ηÞl: ðE24Þ

Furthermore, the state (E21) in each orthogonal subspace
indexed by l then takes a simpler form,

ϱBSN;l ¼
1

pl

Xl

la¼0

XN−l

n;m¼0

αnþlaα
⋆
mþla

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðla;l−laÞnþla

q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðla;l−laÞmþla

q
jn;N − l − nimhm;N − l −mj ðE25Þ

¼
XN−l

n;m¼0

½ϱBSN;l�nmjDN−l
n ihDN−l

m j; ðE26Þ

where we have shifted the indices n → nþ la and m →
mþ la to explicitly rewrite the state in the Dicke basis, in
which its matrix entries then read

½ϱBSN;l�nm ¼ 1

pl

Xl

la¼0

αnþlaα
⋆
mþla

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðla;l−laÞnþla

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðla;l−laÞmþla

q
ðE27Þ

¼ 1

pl

Xl

la¼0

αnþlaα
⋆
mþla

ηN−lð1 − ηÞl

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
nþ la
la

��
N − n − la

l − la

��
mþ la
la

��
N −m − la

l − la

�s

ðE28Þ

¼
Xl

la¼0

αnþlaα
⋆
mþla

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþla

la
ÞðN−n−la

l−la
Þ

ðNl Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþla

la
ÞðN−m−la

l−la
Þ

ðNl Þ

s
:

ðE29Þ

However, using ðnmÞðmkÞ ¼ ðnkÞðn−km−kÞ and ðnkÞ ¼ ð n
n−kÞ, we getffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnþla
la

ÞðN−n−la
l−la

Þ
ðNl Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffi�
l
la

�s ffiffiffiffiffiffiffiffiffiffiffi
ðN−l

n Þ
ð N
nþla

Þ

s
: ðE30Þ

Finally, this allows us to write the matrix entries specified in
the Dicke basis as

½ϱBSN;l�nm ¼
Xl

la¼0

αnþlaα
⋆
mþla

�
l
la

� ffiffiffiffiffiffiffiffiffiffiffi
ðN−l

n Þ
ð N
nþla

Þ

s ffiffiffiffiffiffiffiffiffiffiffiffi
ðN−l

m Þ
ð N
mþla

Þ

s
: ðE31Þ

Comparing the above expression with Eq. (E13) and
relabeling the indices l → k and la → u, one observes that,
independently of ψN , indeed ϱBSN;l ¼ ϱtrN−l ¼ trlfψNg.
Hence, Eq. (E19) yields Eq. (E23) with binomially dis-
tributed pl according to Eq. (E24). ▪
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