
Confinement and String Breaking for QED2 in the Hamiltonian Picture

Boye Buyens,1 Jutho Haegeman,1 Henri Verschelde,1 Frank Verstraete,1,2 and Karel Van Acoleyen1
1Department of Physics and Astronomy, Ghent University, Krijgslaan 281, S9, 9000 Gent, Belgium
2Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna,

Boltzmanngasse 5, 1090 Vienna, Austria
(Received 12 October 2015; revised manuscript received 27 June 2016; published 23 November 2016)

The formalism of matrix product states is used to perform a numerical study of (1þ 1)-dimensional
QED—also known as the (massive) Schwinger model—in the presence of an external static “quark” and
“antiquark”. We obtain a detailed picture of the transition from the confining state at short interquark
distances to the broken-string “hadronized” state at large distances, and this for a wide range of couplings,
recovering the predicted behavior both in the weak- and strong-coupling limit of the continuum theory. In
addition to the relevant local observables like charge and electric field, we compute the (bipartite)
entanglement entropy and show that subtraction of its vacuum value results in a UV-finite quantity. We find
that both string formation and string breaking leave a clear imprint on the resulting entropy profile. Finally,
we also study the case of fractional probe charges, simulating for the first time the phenomenon of partial
string breaking.
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I. INTRODUCTION

The confinement of color charge in quantum chromo-
dynamics is one of the beautiful key mechanisms of the
standard model. Focusing on the static aspect of confine-
ment, one can probe the theory with a heavy quark-
antiquark (qq̄) pair and examine how the modified ground
state evolves as a function of the interquark distance [1].
For small distances, a color electric flux tube forms
between the pair, resulting in a static potential (i.e., the
surplus energy of the modified ground state) that grows
linearly with the distance. This flux tube can, therefore, be
conveniently modeled by an interquark string with a certain
string tension. One can then describe a heavy quarkonium
state as a qq̄ pair that is kept together by this confining
string. However, there exists a critical distance at which the
string breaks. Beyond this distance the flux tube disappears
and the potential flattens out to a constant. At this point it
has become energetically favorable to excite light particles
out of the vacuum that completely screen both the probe
quark and antiquark, leading to two isolated color singlets.
In a dynamical setting these would then be the two freely
propagating jets of hadrons that emerge as the final product
of some particle collision.
This phenomenological picture is corroborated both by

experiment and theoreticalwork.At the computational level,
the static potential has been studied extensively over the

years with lattice QCD. The linearly rising confining
interquark potential has been obtained, both in the quenched
case [2–12] that excludes dynamical light quark degrees of
freedom and in the unquenched case [13–18] that includes
these degrees of freedom. In the latter case, where the
dynamical quarks can screen the heavy probe charges, the
phenomenon of string breaking has also been observed [19]
as an asymptotic flattening of the calculated potential.
Nevertheless, our understanding of confinement is incom-
plete: the Euclidean space-time lattice Monte Carlo simu-
lations cannot access the real-time aspects of the dynamical
string formation and string breaking. Furthermore, even in
the static case, it is not settled yet if one can fully describe the
confinement mechanism—specifically, the nonperturbative
string formation—in terms of (semi)local degrees of free-
dom (e.g., center vortices, magnetic monopoles) [20–22].
In this paper, we study how confinement and string

breaking show up in the Hamiltonian setup, as opposed to
the Euclidean path integral setup of lattice Monte Carlo
simulations. We do this for the simplest nontrivial quantum
gauge field theory: (1þ 1)-dimensional quantum electro-
dynamics (QED2), also known as the Schwinger model
[23]. The Schwinger model has a long-standing tradition as
a toy model for QCD, sharing its confining and chiral
symmetry-breaking properties. (We therefore often refer to
“quark” and “antiquark” both for the external probe charges
and for the light dynamical fermions.) But notice that in the
future the significance of QED2 could go well beyond
being a toy model, as QED2 or QED2-like theories might be
realized effectively by quantum simulators [24–43].
An important difference with QCD is that QED2 already

exhibits confinement at the perturbative level, as the
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Coulomb potential is linear in 1þ 1 dimensions.
Furthermore, the theory can also be solved in a strong-
coupling expansion, via bosonization [44]. We make exten-
sive use of both the strong- and weak-coupling results in the
analysis of our numerical results. Our simulations of the
lattice Hamiltonian are performed close to the continuum
limit, indeed allowing for a quantitative check against these
analytic continuum results in the appropriate regimes.
Specifically, we simulate the modified vacuum structure

in the presence of two probe charges, and this for different
distances and values of the charges. As we show, already in
this static case the Hamiltonian simulations give a com-
plementary view on the confining properties of the theory.
At the practical level, the direct access to the quantum state
allows for a relatively easy calculation of all local observ-
ables. In this way we could not only extract the static
interquark potential, but also, for instance, determine the
detailed spatial profile of the electric string or the precise
charge distribution of the light fermions around the probe
charges. At a more fundamental level, our tensor network
state (TNS) simulations (see below) allow for a direct
calculation of the entanglement entropy between different
regions. In the past decade, it has become clear that
entanglement entropy is a very useful quantity for the
characterization of quantum many-body systems and
quantum field theories [45], in particular also for the
investigation of the confining properties of gauge theories
[46]. In this context the entanglement entropy is typically
calculated either from the dual geometry in the AdS/CFT
approach [46,47] through the Ryu-Takayanagi conjecture
[48] or from lattice Monte Carlo simulations [49–51]
through the replica trick, allowing for calculation of the
discrete Renyi entropies. In contrast, tensor network state
simulations give access to the full Schmidt spectrum of the
state. The Schmidt spectrum fλαg follows from the Schmidt
decomposition: if jΨi ∈ HA ⊗ HB is a state belonging to
the tensor product of the two Hilbert spaces HA and HB,
then one can write

jΨi ¼
Xd
α¼1

ffiffiffiffiffi
λα

p
jΨðAÞ

α i ⊗ jΨðBÞ
α i; ð1:1Þ

with d ≤ max½dimðHAÞ; dimðHBÞ�, jΨðAÞ
α i ∈ HA and

jΨðBÞ
α i ∈ HB orthonormal unit vectors, and λα, called the

Schmidt values, non-negative numbers that sum to one.
From the Schmidt values one can calculate all Renyi
entropies, including the von Neumann entropy. In our
simulations we find that subtraction of the vacuum entropy
results in a UV-finite entanglement (von Neumann) entropy
and that both the string formation and string breaking leave
characteristic imprints on this renormalized entropy.
As we mentioned in the previous paragraph, we use the

general formalism of TNS [52,53] for our simulations.
Although the TNS formalism has been mainly developed in
the context of condensed matter physics, it is actually a

universal method in the same way that the Feynman
diagrammatic approach has a universal character. The latter
applies whenever the interactions are weak, whereas the
TNS method applies whenever the interactions are local. It
is in fact precisely the entanglement structure of low-energy
states for local systems, captured by the so-called area law
[54], which lies at the root of the TNS description.
For one spatial dimension, the most widely used TNS go

by the name of matrix product states (MPS) [55,56].
Recently, different applications of MPS on (1þ 1)-
dimensional gauge theories have demonstrated its potential
in the context of gauge theories. In Refs. [57–59], the MPS
formalism was used for the numerical simulation of non-
equilibrium physics, but static properties [38,57,59–67]
and finite temperature properties [68,69] have also been
studied. Notably, Ref. [59] simulated string breaking for
probe charges in a SU(2) quantum link lattice model. In
higher dimensions, the TNS formalism is at present less
developed; nevertheless, some first promising results have
appeared for (2þ 1)-dimensional gauge theories [70–74].
In the next section, we discuss the starting point of

our simulations, introducing both the relevant lattice
Hamiltonian in the presence of probe charges and the
appropriate form of MPS that is dictated by gauge
invariance. We then first consider the asymptotic case of
two (fractional) probe charges at infinity in Sec. III. In
Sec. IV, we consider finite interquark distances and study
how the ground state evolves as a function of this distance.
We distinguish three different cases. First, we consider the
strong-coupling limit. This is a special case, since in this
limit the interquark string never forms and all probe
charges, fractional or integer, are screened asymptotically.
We then go away from the strong-coupling limit, consid-
ering first the case of unit probe charges. In this case, we
clearly observe the transition from a string state at short
interquark distances to a broken-string two meson state at
large distances. Then, in addition to unit probe charges, we
also consider fractional probe charges, simulating for the
first time the phenomenon of partial string breaking, with
probe charges that get only partially screened. Finally, in
Sec. V, we present our conclusions. Technical details on our
MPS simulations and on some perturbative weak-coupling
calculations can be found in the Appendixes.

II. SETUP

A. Hamiltonian and gauge symmetry

The Schwinger model is a (1þ 1)-dimensional QED
with one fermion flavor. We start from the Lagrangian
density in the continuum:

L ¼ ψ̄ ½γμði∂μ þ gAμÞ −m�ψ −
1

4
FμνFμν: ð2:1Þ

One then performs a Hamiltonian quantization in the
timelike axial gauge (A0 ¼ 0), which can be turned into
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a lattice system by the Kogut-Susskind spatial discretiza-
tion [75]. The two-component fermions are sited on a
staggered lattice. These fermionic degrees of freedom can
be converted to spin-1=2 degrees of freedom by a Jordan-
Wigner transformation with the eigenvectors fjsnin∶sn ∈
f−1; 1gg of σzðnÞ as the basis of the local Hilbert space at
site n. The compact gauge fields θðnÞ ¼ agA1ðnÞ live on
the links between the sites. Their conjugate momenta EðnÞ,
with ½θðnÞ; Eðn0Þ� ¼ igδn;n0 , correspond to the electric field.
The commutation relation determines the spectrum of EðnÞ
up to a constant: EðnÞ=g ¼ αðnÞ þ p, with αðnÞ ∈ R
corresponding to the background electric field at link n
and p ∈ Z.
In this formulation the gauged spin Hamiltonian derived

from the Lagrangian density Eq. (2.1) reads (see
Refs. [75,76] for more details):

H ¼ g
2

ffiffiffi
x

p
�X

n∈Z

1

g2
EðnÞ2 þ

ffiffiffi
x

p
g

m
X
n∈Z

ð−1ÞnσzðnÞ

þ x
X
n∈Z

½σþðnÞeiθðnÞσ−ðnþ 1Þ þ H:c:�
�
; ð2:2Þ

where σ� ¼ ð1=2Þðσx � iσyÞ are the ladder operators.
Here, we introduce the parameter x as the inverse lattice
spacing in units of g: x≡ 1=ðg2a2Þ. The continuum limit
will then correspond to x → ∞. Note the different second
(mass) term in the Hamiltonian for even and odd sites,
which originates from the staggered formulation of the
fermions. In this formulation the odd sites are reserved for
the charge −g quarks, where spin-up, s ¼ þ1, corresponds
to an unoccupied site and spin-down, s ¼ −1, corresponds
to an occupied site. The even sites are reserved for the
charge þg antiquarks, where now, conversely, spin-up
corresponds to an occupied site and spin-down to an
occupied site.
In the timelike axial gauge the Hamiltonian is still

invariant under the residual time-independent local gauge
transformations generated by

gGðnÞ ¼ EðnÞ − Eðn − 1Þ − g
2
½σzðnÞ þ ð−1Þn�: ð2:3Þ

As a consequence, if we restrict ourselves to physical
gauge-invariant operators O, with ½O;GðnÞ� ¼ 0, the
Hilbert space decomposes into dynamically disconnected
superselection sectors, corresponding to the different eigen-
values of GðnÞ. In the absence of any background charge,
the physical sector then corresponds to theGðnÞ ¼ 0 sector.
Imposing this condition (for every n) on the physical states
is also referred to as the Gauss law constraint, as this is
indeed the discretized version of ∂zE − ρ ¼ 0, where ρ is
the charge density of the dynamical fermions.
The other superselection sectors correspond to states

with background charges. Specifically, if we want to
consider two probe charges, one with charge −gQ at site

0 and one with opposite charge þgQ at site k, we have to
restrict ourselves to the sector

gGðnÞ ¼ gQðδn;0 − δn;kÞ: ð2:4Þ
Note that we consider both integer and noninteger (frac-
tional) charges Q.
As in the continuum case [77], we can absorb the

probe charges into a background electric field string that
connects the two sites. This amounts to the substitution
EðnÞ ¼ g½LðnÞ þ αðnÞ�, where αðnÞ is only nonzero in
between the sites, αðnÞ ¼ −QΘð0 ≤ n < kÞ, and LðnÞ has
an integer spectrum, LðnÞ ¼ p ∈ Z. In terms of LðnÞ, the
Gauss constraint now reads:

GðnÞ ¼ LðnÞ − Lðn − 1Þ − σzðnÞ þ ð−1Þn
2

¼ 0; ð2:5Þ

and we finally find the Hamiltonian [78]:

H ¼ g
2

ffiffiffi
x

p
�X

n∈Z
½LðnÞ þ αðnÞ�2 þ

ffiffiffi
x

p
g

m
X
n∈Z

ð−1ÞnσzðnÞ

þ x
X
n∈Z

½σþðnÞeiθðnÞσ−ðnþ 1Þ þ H:c:�
�
; ð2:6Þ

in accordance with the continuum result of Ref. [77].
In the following sections, we obtain ground-state approx-

imations of this Hamiltonian, for different values of m=g,
different values of the probe charge Q, and different
distances L ¼ k=

ffiffiffi
x

p
(in physical units g ¼ 1) of the charge

pair, all this for different lattice spacings 1=
ffiffiffi
x

p
, focusing on

the continuum limit x → ∞.
An important point regarding the continuum limit is that

the ground-state energy of the Schwinger model is UV
divergent but that this UV divergence does not depend on
the background field αðnÞ. If we write E0 ¼ 2Nϵ0 (with
N ¼ jZj) for the ground-state energy of Eq. (2.6) with zero
background field αðnÞ ¼ 0, we have

ffiffiffi
x

p
ϵ0 → −x=π for the

energy density in the x → ∞ limit [79]. For the modified
ground-state energy in the presence of the probe charge gQ
pair at distance L, we can then write EQðLÞ ¼ VQðLÞ þ E0,
where the potential VQðLÞ is now UV finite. Notice that
VQðLÞ will also be IR (N → ∞) finite (for finite L).

B. Gauge-invariant MPS

Now, consider the lattice spin-gauge system Eq. (2.6) on
2N sites. On site n the matter fields are represented by the
spin operators with basis fjsnin∶sn ∈ f−1; 1gg. The gauge
fields live on the links, and on link n their Hilbert space is
spanned by the eigenkets fjpnin∶pn ∈ Zg of the angular
operator LðnÞ. But notice that for our numerical scheme, we
retain only a finite range: pminðnþ1Þ≤pn≤pmaxðnþ1Þ.
We address the issue of which values to take for pminðnþ1Þ
and pmaxðnþ 1Þ below. Furthermore, it will be convenient
to block site n and link n into one effective site with
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local Hilbert space spanned by fjsn; pning. Writing
κn ¼ ðsn; pnÞ, we introduce the multi-index

κ ¼ ½ðs1; p1Þ; ðs2; p2Þ;…; ðs2N; p2NÞ� ¼ ðκ1;…; κ2NÞ:
With these notations, we have that the effective site n
is spanned by fjκning. Therefore, the Hilbert space of
the full system of 2N sites and 2N links, which is the
tensor product of the local Hilbert spaces, has basis
fjκi ¼ jκ1i1…jκ2Ni2Ng, and a general state jΨi is thus a
linear combination of these jκi:

jΨi ¼
X
κ

Cκ1;…;κ2N jκi;

with basis coefficients Cκ1;…;κ2N ∈ C.
A general MPS jΨðAÞi now assumes a specific form for

the basis coefficients [55]:

jΨðAÞi ¼
X
κ

v†LAκ1ð1ÞAκ2ð2Þ…Aκ2N ð2NÞvRjκi; ð2:7Þ

where AκnðnÞ is a complex DðnÞ ×Dðnþ 1Þ matrix with
components ½AκnðnÞ�αβ and where vL ∈ CDð1Þ×1, vR ∈
CDð2Nþ1Þ×1 are boundary vectors. The MPS ansatz thus
associates with each site n and every local basis state
jκnin ¼ jsn; pnin a matrix AκnðnÞ ¼ Asn;pn

ðnÞ. The indices
α and β are referred to as virtual indices, and D ¼
maxn½DðnÞ� is called the bond dimension.
To better understand the role of the bond dimension in

MPS simulations, it is useful to consider the Schmidt
decomposition Eq. (1.1) with respect to the bipartition of
the lattice consisting of the two regions A1ðnÞ ¼
Z½1;…; n� and A2ðnÞ ¼ Z½nþ 1;…; 2N� [56]:

jΨðAÞi ¼
XDðnþ1Þ

α¼1

ffiffiffiffiffiffiffiffiffiffiffi
λαðnÞ

p
jψA1ðnÞ

α ijψA2ðnÞ
α i: ð2:8Þ

Here, jΨA1ðnÞ
α i [jΨA2ðnÞ

α i] are orthonormal unit vectors living
in the tensor product of the local Hilbert spaces belonging to
the region A1ðnÞ [A2ðnÞ], and λαðnÞ, called the Schmidt
values, are non-negative numbers that sum to one. One can
easily deduce that for a generalMPS of the formEq. (2.7), at
most Dðnþ 1Þ Schmidt values will be nonzero [for the cut
at site n [Eq. (2.8)]]. We refer the reader to Appendixes A
and C for the computation of the Schmidt values for the
specific case of our simulations and to Refs. [56,80] for the
general case.We thus see that taking a finite bond dimension
for the MPS corresponds to a truncation in the Schmidt
spectrum of a state. The success ofMPS is then explained by
the fact that ground states of local gapped Hamiltonians can
indeed be approximated very efficiently in D [81] and that
the computation time for expectation values of local
observables scales only with D3, allowing for reliable
simulations on an ordinary desktop computer.
Another advantage of MPS simulations is that one can

work directly in the thermodynamic limit N → ∞ [80,82],

bypassing any possible finite-size artifacts. In the follow-
ing, we work in this limit. In Sec. III, where the
Hamiltonian is invariant under translations (over two sites),
the tensors AκnðnÞ depend only on the parity of the site n,
see Eq. (3.1), while in Sec. IV, the MPS ansatz is not
translational invariant in the bulk, see Eq. (4.1). In that case,
the tensors will be fixed asymptotically (n ≫ 1) to their
ground-state value, anticipating that we approach the
translational invariant ground state of the zero-background
Hamiltonian. In both cases the MPS ansatz depends on a
finite number of parameters. Finally, we note that, in the
thermodynamic limit, the expectation values of local
observables are independent of the boundary vectors vL
and vR.
As explained in Ref. [57], to parametrize gauge-invariant

MPS, i.e., states that obeyGðnÞjΨðAÞi ¼ 0 for every n, it is
convenient to give the virtual indices a multiple index
structure, α → ðq; αqÞ; β → ðr; βrÞ, where q [r] labels the
eigenvalues of Lðn − 1Þ [LðnÞ]. One can verify that the
condition GðnÞ ¼ 0 [Eq. (2.5)] then imposes the following
form on the matrices:

½As;pðnÞ�ðq;αqÞ;ðr;βrÞ ¼ ½as;pðnÞ�αq;βrδqþ½sþð−1Þn�=2;rδr;p; ð2:9Þ

where αq ¼ 1…DqðnÞ, βr ¼ 1…Drðnþ 1Þ. The first
Kronecker delta is Gauss’s law Eq. (2.5) on the virtual
level, while the second Kronecker delta connects the virtual
index r with the physical eigenvalue p of LðnÞ. Because
the indices q [r] label the eigenvalues of Lðn − 1Þ [LðnÞ]
and we retain only the eigenvalues of Lðn − 1Þ in the
interval Z½pminðnÞ; pmaxðnÞ� [of LðnÞ in the interval
Z½pminðnþ 1Þ; pmaxðnþ 1Þ�], we have that DqðnÞ ¼ 0

for q > pmaxðnÞ and q < pminðnÞ. The formal total bond

dimension of this MPS is DðnÞ ¼ PpmaxðnÞ
q¼pminðnÞDqðnÞ, but

notice that, as Eq. (2.9) takes a very specific form, the
true variational freedom lies within the matrices
as;pðnÞ ∈ CDqðnÞ×Drðnþ1Þ.
Gauge invariance is, of course, also reflected in the

Schmidt decomposition Eq. (2.8): for states of the form
Eq. (2.9), the Schmidt values can be labeled with the same
double index α→ ðq;αqÞ. More specifically, the Schmidt
decomposition Eq. (2.8) now reads (see Appendixes A
and C):

jΨðAÞi ¼
Xpmaxðnþ1Þ

q¼pminðnþ1Þ

XDqðnþ1Þ

αq¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λq;αqðnÞ

q
jψA1ðnÞ

q;αq ijψA2ðnÞ
q;αq i:

ð2:10Þ
As before, we observe that taking a finite bond dimen-

sion Dqðnþ 1Þ corresponds to a truncation in the Schmidt
spectrum, now of the charge sector q. The choice for the
different bond dimensions Dqðnþ 1Þ in the different
simulations should then be such that the discarded
Schmidt values for each charge sector are sufficiently small.
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For our simulations with zero background, αðnÞ ¼ 0, in
Ref. [57] we could take Dq ¼ 0 for jqj > 3, i.e., pmin ¼
−3 and pmax ¼ þ3. For the simulations with a nonzero
background field, we find that for the same accuracy it
suffices to consider eight q sectors. But—not surprisingly,
given the first term in the Hamiltonian Eq. (2.6)—we find
the relevant eigenvalues sectors of LðnÞ to be centered
around a dominant sector p0 that can be shifted away from
p0 ¼ 0 for some sites n. The largest Schmidt value in each
q sector decreases as we move farther away from q ¼ p0.
When jq − p0j≳ 4, all the Schmidt values λq;αqðnÞ are
sufficiently small and we can safely take Dq ¼ 0, i.e.,
pmax ≳ p0 þ 4 and pmin ≲ p0 − 4. We refer the reader to
Appendixes A and C for more details on the weight of the
different sectors for the different simulations; see, in
particular, Figs. 12(a), 12(b), 20(c), 20(d) for some
explicit examples.
From the Schmidt spectrum Eq. (2.10), one can

extract different measures for the entanglement. In the
following, we always use the von Neumann entropy [83].
For the half-chain cut at site n, to which we associate
the position z ¼ ðnþ 1=2Þa in physical units, we then
have

SðzÞ ¼ −
X
q

X
αq

λq;αqðnÞ log½λq;αqðnÞ�: ð2:11Þ

III. ASYMPTOTIC STRING TENSION

We first study the large distance behavior of the
potential as captured by the asymptotic string tension
σQ ¼ limL→þ∞VQðLÞ=L. This is the quantity that indicates
whether the probe charges are asymptotically confined
(σQ ≠ 0) or not (σQ ¼ 0). For the Schwinger model, σQ
has been computed analytically in the strong-coupling
expansion [77,86–88]. At the numerical front, the most
successful computation to date used finite-lattice scaling
methods in aHamiltonian formulation [79]. An advantage of
our MPS simulations is that, in contrast to Ref. [79], we can
directly work in the thermodynamic limit (N → ∞), leaving
only the x → ∞ interpolation to extract the continuum
results. The challenge of taking this continuum limit now
lies in the diverging correlation length ξ=a (in lattice units),
as MPS simulations require larger bond dimensions for
growing correlation length [53].
To find the asymptotic string tension, we put a probe

charge −gQ at −∞ and a probe charge gQ at þ∞. As we
explain in the previous section, a probe charge pair trans-
lates to a background electric field αðnÞ in the Hamiltonian
Eq. (2.6). In this case, the background electric field will be
uniform: αðnÞ ¼ −Q, ∀n. The Hamiltonian is then invari-
ant under T2, a translation over two sites. In accordance
with this symmetry, the appropriate MPS variational
ground-state ansatz takes the form

jΨ(Að1Þ; Að2Þ)i ¼
X
κ

v†L

�Y
n∈Z

Aκ2n−1ð1ÞAκ2nð2nÞ
�
vRjκi;

ð3:1Þ
where

κn ¼ ðsn; pnÞ ∈ f−1; 1g × Z½pminðnþ 1Þ; pmaxðnþ 1Þ�;

jκi ¼ jfκngn∈Zi, vL ∈ CDð1Þ×1, vR ∈ CDð1Þ×1, and AκðnÞ ∈
CDðnÞ×Dðnþ1Þ takes the form Eq. (2.9) (n ¼ 1, 2). This
corresponds to a general MPS [Eq. (2.7)] in the thermo-
dynamic limit (N → þ∞), where the tensors AκnðnÞ
depend only on the parity of the site n: Aκ2n−1ð2n − 1Þ ¼
Aκ2n−1ð1Þ and Aκ2nð2nÞ ¼ Aκ2nð2Þ, ∀ n. As a consequence,
DqðnÞ, pminðnÞ and pmaxðnÞ also depend on the parity of n.
As we explain in Appendix A, we are able to accurately

approximate the ground state and its finite energy per site
ϵQ ¼ EQ=2N, with EQ the total infrared divergent energy,
within the class of states Eq. (3.1). Therefore, we perform
imaginary time evolution (dτ ¼ idt) of the Schrödinger
equation, i∂tjΨ(Að1Þ;Að2Þ)i¼HjΨ(Að1Þ;Að2Þ)i, with
the time-dependent variational principle (TDVP) [80,82].
In Appendix A we also explain how we choose the
virtual dimensions fDqð1Þ; Dqð2Þg and fpmin =maxð1Þ;
pmin =maxð2Þg by investigating the Schmidt spectrum. In
Ref. [57], we found the energy of the vacuum E0 ¼ 2Nϵ0 for
the zero-background field αðnÞ ¼ 0. In the same fashion, we
now compute the string tension σQ as the extra energy
density, induced by the uniform background electric field:
σQ ¼ ðEQ − E0Þ=L, where L is the length of our lattice.
In units g ¼ 1, we have L ¼ 2N=

ffiffiffi
x

p
, and, therefore,

σQðxÞ ¼
ffiffiffi
x

p ðϵQ − ϵ0Þ.
From the numerical point of view, it is important to take

the convergence of this UV-finite quantity σQðxÞ as
criterion for halting the imaginary TDVP time evolution.
As we explain in more detail in Appendix A, we compute
values for σQðxÞ in this way, for x ¼ 100, 200, 300, 400,
600, 800, and perform a polynomial extrapolation in 1=

ffiffiffi
x

p
similar to Ref. [79]. This indeed allows us to recover a finite
value for limx→∞σQðxÞ, thereby explicitly verifying that the
UV divergencies in the energy densities

ffiffiffi
x

p
ϵQ and

ffiffiffi
x

p
ϵ0

cancel out.
In Fig. 1(a), we plot our result for the continuum string

tension σQ computed for different values of the mass m=g
as a function of the charge gQ of the external quark-
antiquark pair. Note that we consider only Q values
∈ ½0; 1½, as the string tension is periodic in Q: Q→Q−p
upon LðnÞ → LðnÞ þ p for p ∈ Z in the Hamiltonian
Eq. (2.6). Note also that one can combine this trans-
formation for p ¼ 1 with a CT transformation (C is charge
conjugation):

LðnÞ → 1 − Lðnþ 1Þ; θðnÞ → −θðnþ 1Þ;
σzðnÞ → −σzðnþ 1Þ; σ�ðnÞ → σ∓ðnþ 1Þ: ð3:2Þ
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This transformation gives Q→1−Q in the Hamiltonian
Eq. (2.6) and, therefore, σQ¼σ1−Q. Therefore, for our
calculations, we can restrict ourselves to valuesQ∈ ½0;1=2�.
In practice, we consider the explicit values, Q¼0.05;
0.10;0.15;…;0.45;0.47;0.48;0.5, and perform an interpo-
lating fit.
Our considered values for m=g interpolate between the

strong- and weak-coupling regime. In the strong-coupling
regime m=g ≪ 1, the string tension is computed in mass
perturbation theory from the bosonized field theory up to
order O½ðm=gÞ3� [87]:

σQ
g2

≈
m
g
Σ½1 − cosð2πQÞ� þm2Σ2Eþπ

4g2
½1 − cosð4πQÞ�;

ð3:3Þ

where Σ ¼ 0.15993 and Eþ ¼ −8.9139. As one can
observe in Fig. 1(c) for m=g → 0, our results indeed
converge to this analytic result that is plotted with a dashed
line for m=g ¼ 0.125 and for m=g ¼ 0.25.
In the weak-coupling regime g=m ≪ 1, we can easily

compute the string tension in standard perturbation
theory from the continuum Lagrangian Eq. (2.1) (see

Appendix B). Up to order ðg=mÞ4, we find the string
tension for Q ≤ 1=2:

σQ
g2

≈
Q2

2

�
1 −

g2

m2

1

6π

�
; ð3:4Þ

with the value for Q > 1=2 following from the identifica-
tion σQ ¼ σ1−Q for the compact formulation of QED2 that
we are considering. In Fig. 1(d), one can again observe the
convergence of our numerical results to this analytic result,
now for g=m → 0. Notice here that we subtract the leading
order term of Eq. (3.4).
Comparing the strong- and weak-coupling regime, we

observe an important difference: in the strong-coupling
limit, σQ is differentiable atQ ¼ 1=2, whereas in the weak-
coupling limit, this is not the case. Therefore, there exists a
critical mass ðm=gÞc with the property that σQ is differ-
entiable at Q ¼ 1=2 for ðm=gÞ < ðm=gÞc and not differ-
entiable at Q ¼ 1=2 for ðm=gÞ > ðm=gÞc. This point
ðm=gÞc corresponds to the first-order phase transition for
the Hamiltonian HQ Eq. (2.6) at Q ¼ 1=2 [79]. HQ¼1=2 is
symmetric under the CT transformation Eq. (3.2), and the
point ðm=gÞc separates the unbroken phase m=g < ðm=gÞc
from the spontaneously broken phase m=g > ðm=gÞc that
was originally predicted by Coleman [44]. This relationship
of the breaking of CT symmetry with the nondifferenti-
ability of σQ can be made more concrete by noting that

dσQ
dQ

¼ −
1

2

�X
n¼1;2

½LðnÞ −Q�
�

Q
≡ −

1

2g
EQ; ð3:5Þ

where h� � �iQ denotes the expectation values with respect to
the ground state of HQ. We now have the relation EQ ¼
−E1−Q from the CT transformation Eq. (3.2), which indeed
makes it a good order parameter for the CT breaking
at Q ¼ 1=2.
We perform an independent computation of EQ, again

for Q ¼ 0.05; 0.10; 0.15;…; 0.45; 0.47; 0.48; 0.5, and now
using values x ¼ 100, 200, 300, 400 for our continuum
extrapolation (see Appendix A). Our results are displayed
in Fig. 1(b). AtQ → 1=2, we find form=g¼ 0.3, EQ=g ¼ 0

up to a numerical error of 4 × 10−3, while for m=g ¼ 0.35,
we find EQ=g ¼ 0.314ð2Þ, consistent with the value
ðm=gÞc ≈ 0.33 that was obtained in Ref. [60] and also
consistent with the behavior of σQ in Fig. 1(a).
Finally, we also compute the half-chain entropy S

[Eq. (2.11)] for different values of Q and m=g, which in
this translational-invariant case does not depend on the
position of the cut. As such, the entropy is a UV divergent
quantity, but one expects the divergence to come from the
fermion kinetic term in the Hamiltonian Eq. (2.6) and
therefore beQ independent. Specifically, the general results
of Calabrese and Cardy [89] predict for two fermionic
degrees of freedom a UV divergence (with correlation
length ξ in physical units):

(a) (b)

(c) (d)

FIG. 1. (a) String tension σQ, (b) electric field per site,
(c) comparison with the strong-coupling result Eq. (3.3) (dashed
line) for m=g ¼ 0.125 and m=g ¼ 0.25, and (d) comparison with
the weak-coupling result Eq. (3.4) (dashed line) for m=g ¼ 1, 2,
4. Inset: Zoom-in on the m=g ¼ 4 curve.
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SQðxÞ∼
1

6
log

�
ξ

a

�

¼−
1

6
logð1= ffiffiffi

x
p Þþðfinite terms asx→þ∞Þ; ð3:6Þ

with a ¼ 1=g
ffiffiffi
x

p
the lattice spacing. This is precisely what

we find in our simulations. As an illustration, in Fig. 2(a),
we show a fit of the form ð−1=6Þ logð1= ffiffiffi

x
p Þ þ Aþ C=

ffiffiffi
x

p
through our data of SQðxÞ for Q ¼ 0, Q ¼ 0.45, and
m=g ¼ 0.25. A and B are obtained by a linear fit through
SQðxÞ þ ð1=6Þ logð1= ffiffiffi

x
p Þ; see Appendix A 3. There, we

also explicitly extract the coefficient −1=6 of the loga-
rithmic term by a logarithmic fit to the data. The errors are
of the order of 10−3 for m=g≳ 0.5 and only of order 10−4

for m=g≲ 0.5; see Table IV.
The universality of the logarithmic UV divergence then

allows us to define a UV-finite renormalized entropy
ΔSQ ≡ SQ − S0, with a finite continuum value that can
be obtained by a polynomial extrapolation in 1=

ffiffiffi
x

p
; see

inset of Fig. 2(a). Contrary to the string tension and the
electric field, we find sometimes that the results at x ¼ 100
and the continuum results differ by a factor of order 1 or
have different sign. We refer the reader to Appendix A 3
and, in particular, to Fig. 18 for details about the continuum
extrapolation. In Fig. 2(b), we show this renormalized
entropy ΔSQ as a function ofQ for different values ofm=g.
Most notably, we observe an (almost) divergent behavior
for m=g ¼ 0.3 at Q → 1=2 close to the critical point
Q ¼ 1=2, ðm=gÞc ≈ 0.33. From Eq. (3.6), we indeed expect
a growing entropy for growing correlation length. By the
same argument, one can understand the behavior at smallQ
values: there, the correlation length (inverse mass gap)
increases with growing g=m [90], which is indeed paral-
leled by the behavior of ΔSQ.

IV. FROM SMALL TO LARGE DISTANCES

Now, we consider the situation where the external quark
and antiquark pair are separated over a finite length L. On a

lattice with spacing a and interquark distance L ¼ ka, the
pair introduces a nonuniform background electric field
αðnÞ ¼ −QΘ (0 ≤ n < k) in the Hamiltonian Eq. (2.6). As
the ansatz for our MPS trial state jΦðBÞi for the ground
state, we now write

jΦðBÞi ¼
X
κ

v†L

�Y
n<rL

AκnðnÞ
�

×

�YrR−1
n¼rL

BκnðnÞ
��Y

n≥rR

AκnðnÞ
�
vRjκi; ð4:1Þ

where rL ≪ 0 ≤ k ≪ rR and AκðnÞ ¼ Aκðnmod 2Þ corre-
sponds to the MPS approximation Eq. (3.1) of the ground
state of the zero-background Hamiltonian [αðnÞ ¼ 0] and
depends only on the parity of n. This is a MPS [Eq. (2.7)] in
the thermodynamic limit (N → þ∞), where we take
AðnÞ ¼ BðnÞ for rl ≤ n ≤ rR − 1 and take the AðnÞ cor-
responding to the ground state Eq. (3.1) for αðnÞ ¼ 0 to the
left and to the right of the BðnÞ’s (n < rL and n ≥ rR).
The idea behind this ansatz is that the nonuniform

background electric field changes the vacuum and breaks
translation invariance [all BðnÞ are different], but that
asymptotically (jnj ≫ 1) it does not affect the vacuum.
Again, gauge invariance Eq. (2.5) is imposed if BðnÞ takes
the form Eq. (2.9) with general matrices bs;pðnÞ ∈
CDqðnÞ×Drðnþ1Þ [q∈Z½pminðnÞ;pmaxðnÞ�;p;r∈Z½pminðnþ1Þ;
pmaxðnþ1Þ� ]. Note that we allow different bond dimensions
on different sites. Also, as;pðnÞ is of the formEq. (2.9), as we
impose this to determine the ground state of the zero-
background electric field Hamiltonian.
Because Eq. (4.1) is linear in each of the Bn, we can use

the DMRG method [91] to obtain the best approximation
for the ground state within the manifold of gauge-invariant
states, by optimizing on the UV- and IR-finite quantity
VQðLÞ. By looking at the Schmidt spectrum, we are able to
fix the values of the virtual dimension DqðnÞ and the
minimum and maximum eigenvalues pminðnþ 1Þ and
pmaxðnþ 1Þ of LðnÞ we retain in our numerical scheme
to obtain an accurate approximation of the ground state. The
choices for rL and rR, which vary between −k=2 − 250 ≤
rL ≤ −k=2 − 150 and k=2þ 150 ≤ rR ≤ k=2þ 250, are
checked a posteriori by verifying the convergence of local
observables at large distances to their zero-background
value. We refer the reader to Appendix C for the details.

A. The case m=g= 0: Screening à la Higgs

We first discuss our results for them=g ¼ 0 case. This is a
special case, as the asymptotic string tension σQ vanishes for
all values (integer or fractional) of the charge. Physically,
this is interpreted as a manifestation of a Higgs mechanism
[77], suppressing the long-range Coulomb force and replac-
ing it with a short-range Yukawa force, thereby effectively
screening all charges. Another reason that them=g ¼ 0 case

(a) (b)

FIG. 2. (a) m=g ¼ 0.25, Q ¼ 0.45. Fit of the form
ð−1=6Þ logð1= ffiffiffi

x
p Þ þ Aþ C=

ffiffiffi
x

p
to SQðxÞ and S0ðxÞ. Inset:

Linear fit to ΔSQðxÞ. (b) ΔSQ for different values of m=g.
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is special is that it can be solved analytically [86], which
allows for benchmarking of numerical results. Previous
numerical calculations for this case were performed with
Monte Carlo simulations on the bosonized version of the
theory [92].
In Fig. 3(a), we plot our results for the potential for

m=g ¼ 0 for Q ¼ 1 and Q ¼ 1.5. This can be compared
with the exact continuum result [86],

VQðLÞ ¼
ffiffiffi
π

p
gQ2

2
ð1 − e−Lg=

ffiffi
π

p Þ; ð4:2Þ
which is indeed of the Yukawa type. We find very good
agreement already for x ¼ 100, for both Q ¼ 1 and
Q ¼ 1.5. For Q ¼ 1, we also perform a computation for
x ¼ 400; in the inset of Fig. 3(a), one can observe the rate
of convergence towards the continuum x → ∞ in this case.
The charge density hψ̄ðzÞγ0ψðzÞi of the light quarks is,

of course, also an interesting quantity to compute, as it
explicitly shows the screening of the external probe
charges. The analytical result for the probe charge pair
put at �L=2 reads [86]:

hψ̄ðzÞγ0ψðzÞi ¼ gQ
2

ffiffiffi
π

p ðe−gjzþL=2j= ffiffi
π

p
− e−gjz−L=2j=

ffiffi
π

p Þ:

ð4:3Þ
This indeed corresponds to a charge distribution with two
“clouds” of oppositely charged light (in this case massless)
quarks, around the external quark and antiquark, that for
large distance L have exactly the same total charge �Q as
the external pair. On the lattice, the charge density at z ¼
ð2n − 1=2Þa is computed as

ffiffiffi
x

p hσzð2n − 1Þ þ σzð2nÞi=2.
In Fig. 3(b), we plot this density for Q ¼ 1.5, where the
charges are separated at distances Lg ¼ 5.1 and Lg ¼ 17.3.
Here, too, our results for x ¼ 100 are already very close to
the continuum result.

In Fig. 4, we show the spatial profile of the renormalized
half-chain von Neumann entropy ΔSQðzÞ ¼ SQðzÞ − S0ðzÞ
for different values of Lg. We compute this quantity for
z ¼ ðnþ 1=2Þa with n even and perform an interpolating
fit. When the heavy quarks are close to each other, ΔSQðzÞ
shows a peak in the middle between the charges and falls
off very fast with jzgj; see Fig. 4(a). For larger values of Lg,
a cloud of light quarks forms around each of the heavy
charges, which clearly leaves its imprints on the spatial
profile of the von Neumann entropy; see Fig. 4(b). ΔSQðzÞ
is nonzero around each of the heavy charges and is zero
around zg ≈ 0.
The observed spatial profiles of the von Neumann

entropy, however, are lattice artifacts and vanish in the
continuum limit (x → þ∞). Indeed, from the bosonized
Hamiltonian for m=g ¼ 0, it can be observed that any
position-dependent electric background field can be trans-
formed away [77,93] up to a position-dependent constant.
Therefore, the von Neumann entropy of the ground state
with αðnÞ ≠ 0 and αðnÞ ¼ 0 are the same; hence,
ΔSQðzÞ ¼ 0 for any value of Lg. By investigating the
scaling towards x → þ∞ in Figs. 4(a) and 4(b), we indeed
observe that ΔSQðzÞ tends towards a very small value
for x → þ∞. Note that here we need to perform an
interpolation because we can only take Lg to be an integer
multiple of 1=

ffiffiffi
x

p
. Specifically, we perform simulations for

x ¼ 400 and Lg ¼ 0.85, 5.25, 15.65. For x ¼ 100, 200,
300, we first do simulations for L1g < 0.85; 5.25; 15.65
and L2g > 0.85, 5.25, 15.65. Afterwards, we do a simple
linear interpolation between L1g and L2g to obtain the
curve for Lg ¼ 0.85, 5.25, 15.65. By performing a linear
extrapolation in 1=

ffiffiffi
x

p
through x ¼ 100, 200, 300, 400 and

x ¼ 200, 300, 400, we find that in Fig. 4(a) the continuum
extrapolation of the maxima for zg ≈ 0 yields the estimate
ΔSQð0Þ ≈ 5ð7Þ × 10−4, while extrapolating the maxima in
Fig. 4(b) around zg¼�10 givesΔSQð�10Þ ≈ 2ð5Þ × 10−4,
consistent withΔSQðzÞ ¼ 0. The interpolation to obtain the
curves for Lg ¼ 0.85, 5.25, 15.65 for all values of x leads to
relative large errors such that a continuum extrapolation of

(a) (b)

FIG. 3. m=g ¼ 0. (a) Potential for Q ¼ 1 and Q ¼ 1.5 com-
pared with exact result in the continuum Eq. (4.2). Inset:
Convergence for x → þ∞ to Eq. (4.2) forQ ¼ 1. (b) Distribution
of fermion charge for Q ¼ 1.5 for different separation lengths of
the quark and antiquark for x ¼ 100. The results are compared
with the exact result Eq. (4.3).

(a) (b)

FIG. 4. m=g ¼ 0, Q ¼ 1. Spatial profile of ΔSQ for different
values of L and scaling to the continuum limit (x → þ∞).
(a) Lg ¼ 0.85, (b) Lg ¼ 15.65.
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ΔSQðzÞ for all values of zg is less reliable. Therefore, for
Lg ≤ 0, we perform a linear extrapolation in 1=

ffiffiffi
x

p
through

our values for x ¼ 100, 200, 300, 400 and obtain the results
for Lg ≥ 0 by a reflection of the results for Lg ≤ 0 (green
line). This can be compared with the analytical result
ΔSQðzÞ ¼ 0 (orange line).

B. The case Q= 1: String breaking

For m=g ≠ 0, the asymptotic string tension σQ vanishes
only for integer chargesQ. This is taken to be an indication
for a screening à la QCD [77], where the potential exhibits a
string tension [VQðLÞ ∝ L] at short distances, but flattens
out completely at large distances, at least for integer
chargesQ. At these large distances it becomes energetically
favorable to materialize light (yet massive) (anti)fermions
out of the vacuum that bind to the external quark and
antiquark, resulting in two charge neutral mesons.
Historically, for a QCD, lattice Monte Carlo simulations

succeeded first to calculate numerically the short distance
confining behavior of the potential—in both the quenched
and unquenched approximation—via the expectation value
of the Wilson loop [1,22]. The detection of string breaking
has posed a larger challenge. A main problem with the use
of the standard Wilson loop is the poor overlap with the
broken-string two-meson state. This problem was finally
overcome by including light quark propagators in the
Wilson loop and analyzing its mixing with the standard
Wilson loop [19,94].
For the Schwinger model, the string-breaking phenome-

non has been confirmed in mass perturbation theory [88]
and in a semiclassical approximation of the bosonized
version of the theory [95,96]. At the numerical level, for
Q ¼ 1, lattice Monte Carlo simulations have detected both
the confining and string-breaking behavior of the potential
[92,97]. In Ref. [92], the problem with the Wilson loop was
avoided by computing instead the expectation value of the
bosonized Hamiltonian, while Ref. [97] turned to very high
statistics, thereby explicitly showing the poor overlap of the
Wilson loop with the broken-string ground state.
For the local quantities [charge density, ψ̄ðzÞγ0ψðzÞ;

electric field, EðzÞ] and the potential, we restrict ourselves
from now on to lattice spacing x ¼ 100 (¼ 1=g2a2); from
the previous section, we can expect these results already to
be quite close to the continuum. In Fig. 5(a), we display our
results for the potential, and this for different values ofm=g.
We compute explicitly the ground-state energy at Lg ¼
0.1; 0.3;…; 15.3 and perform an interpolating fit. We
clearly find a transition from the confining behavior,
associated with the string state, towards the constant
behavior associated with the broken-string two-meson
state. This transition happens more suddenly for larger
values of m=g, which is in qualitative agreement with the
semiclassical results from the bosonized theory [95,96].
This is also what one would expect from the nonrelativistic
weak-coupling regime, where the transition can be

understood as a level crossing between the zero-particle
string state and the two-particle broken-string meson state
(see Appendix D). The dashed lines in Fig. 5(b) corre-
sponding to this nonrelativistic result for Estring ¼ Lg2=2
and E2meson ¼ 2mþ 1.0188ðg4=3=m1=3Þ are plotted for
comparison. We can indeed observe the convergence
towards this result for increasing values of m=g.

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Q ¼ 1, x ¼ 100. (a) Quark-antiquark potential for
different values of m=g. (b) Comparison of potential with
nonrelativistic limit result (dashed line) for m=g ¼ 0.25, 0.75,
1, 2. (c) The total charge of the light fermions on the negative axis
Q−ðLÞ for different values of m=g. (d) Electric field for
m=g ¼ 0.75. (e) Charge distribution for m=g ¼ 0.75. For
Lg ¼ 17.3, we compare with the charge distribution of the
nonrelativistic meson state (full red line). (f) Comparison of
the charge density of the left cloud (full line) with that of the
nonrelativistic meson state, Eq. (4.5) (dashed line) for Lg ¼ 17.3,
now for m=g ¼ 0.125, 0.5, 1, 2.
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We further illustrate this behavior in Fig. 5(c), where we
plot the total charge Q− of the light fermions on the
negative z axis:

Q− ¼ g
Z

0

−∞
dzhψ̄ðzÞγ0ψðzÞi: ð4:4Þ

One can observe indeed that the interpolation between
Q− ¼ 0 (string state) for small L andQ− ¼ 1 (meson state)
for large L becomes more and more discontinuous for
growing m=g in accordance with the nonrelativistic level-
crossing picture.
In Figs. 5(d) and 5(e), we investigate the interpolation

from the string state to the string-broken state in more detail
for m=g ¼ 0.75 by plotting the charge density and electric
field. For L=g ¼ 0.5, there is only a very small charge cloud
around the external quark and antiquark; notice also the
very short electric field string displayed at the bottom of
Fig. 5(d). At L=g ¼ 5.1 the clouds start to build up,
lowering the electric field value at the center. At
L=g ¼ 10.1, the string is completely broken, the electric
field at the center has vanished, and we have two clouds of
total charge�1 around the external quark and antiquark. At
L=g ¼ 17.3, the two isolated mesons are simply separated
over a larger distance, with a quasi-identical charge dis-
tribution around the external quarks as for L=g ¼ 10.1.
The full red line in Fig. 5(e) is the charge distribution

�jϕðzÞj2 for the nonrelativistic meson state for Lg ¼ 17.3,
with

ϕðzÞ ¼ NAi½ðg2mÞ1=3jz� L=2j − 1.0188� ð4:5Þ
the ground state of the one-particle problem in a linear
potential (see Appendix D), where Ai is the Airy function
[98] andN is the normalization factor. As one can observe,
the charge distribution from this nonrelativistic picture
matches very well our exact (numerical) result. In Fig. 5(f),
we compare the charge cloud at the negative z axis with the
nonrelativistic result for other values ofm=g. One can again
observe the convergence to the nonrelativistic result for
growing m=g; notice that already for m=g ¼ 0.5 the match
is quite good.
For the renormalized von Neumann entropy ΔSQðzÞ, we

also find a characteristic picture, both for the string state
and for the string-broken state; see Fig. 6 for the case
m=g ¼ 2. For the string state, Lg≲ 9.5, the entropy shows
a constant surplus in between theprobe charges, similar to the
electric field. But notice that this effect becomes very small in
the continuum limit (green line); we find an extrapolated
value: ΔSgðzÞ≈2.0ð5Þ×10−3 for zg∈ ½−2.5;2.5�. For the
string-broken case Lg≳ 10, see Fig. 6(b), we find that the
entropy now shows two clouds around the heavy quark and
the heavy antiquark, similar to the charge density. But notice
that in contrast to the string state, the entropy now survives
the continuum limit, with the x ¼ 100 value already close to
the continuum extrapolation.

C. General Q: Partial string breaking

We now finally turn our attention to the general case
Q ≠ 1. In this case, we should have the interesting
phenomenon of partial string breaking. Indeed, in the
nonrelativistic limit m=g → ∞ of string breaking due to
meson formation, probe charges Q can only be screened by
an integer number:Q → ~Q ¼ Q − n, where n is the number
of light (anti)quarks that bind to the external charges. For
nonzero ~Q, i.e., when Q is noninteger, this still leaves a
string between the two separated meson configurations. A
visualization of this process in the nonrelativistic limit is
shown in Fig. 7.
Our simulations allow us to verify to what extent this

picture is realized for finitem=g. In Fig. 8, we plot our results
for different values of Q, both fractional and integer. We do
indeed recover partial string breaking, largely following the
nonrelativistic picture. To our knowledge, this is the first
successful simulation of partial string breaking in the
Schwinger model; a previous Monte Carlo simulation [97]
failed to detect the phenomenon.

(a) (b)

FIG. 7. Cartoon picture of string breaking in the nonrelativistic
limit m=g → ∞. The electric field gets successively screened by
light quarks (antiquarks) that bind to the external charges with
charge þQ (−Q). This leads to the formation of two mesons: one
meson existing of the heavy quark and light antiquarks with
chargeþ1 and one meson existing of the heavy antiquark and the
light quarks with charge −1. (a) Q ¼ 4.5: The remaining electric
field in between with net charge −0.5 confines the two meson
configurations asymptotically. (b) Q ¼ 5: The electric field is
entirely screened and the meson configurations are deconfined.

(a) (b)

FIG. 6. m=g ¼ 2, Q ¼ 1. ΔSQðzÞ for different values of L and
scaling to the continuum limit. (a) Lg ¼ 5.25, (b) Lg ¼ 10.95.
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In Fig. 8(b), we plot, as in the previous section, the
evolution of the total dynamical chargeQ− at the negative z
axis, for m=g ¼ 1. For all values of Q, this charge Q−
indeed makes quasidiscrete jumps of ΔQ− ≈þ1, which
should correspond to (partial) string breakings. As we see
in Fig. 8(a), these jumps indeed correlate with jumps in the
string tensions in the different regions of the potentials.
For m=g ¼ 0.5, we still find jumps of Q−, but they are
smoothened out, as can be seen in Figs. 8(c) and 8(d). For
m=g ¼ 0.25, the jumps are even more smoothened out, as
can be seen in Figs. 8(e) and 8(f). This smoothened
behavior, similar to what we obtain in the Q ¼ 1 case,

is expected as we go further from the nonrelativistic large
m=g regime. But still note the contrast with the behavior in
the massless limit m=g ¼ 0 of Sec. IVA, where the charge
Q− grows continuously to the external value Q, assuring a
complete screening.
For L going from 0 to ∞, different partial string

breakings should lead to the asymptotic behavior of the
potential that we examine in Sec. III. In Table I, we show
the difference of the slope of the potential around Lg ¼
15.3 with the asymptotic string tension at x ¼ 100 that we
calculate in the previous section. The former is estimated as
the mean of the backward differences,

1

g2
ΔVQ

ΔL
¼ VQð15.3gÞ − VQðLgÞ

Lg

�
≈

1

g2
dVQ

dL

�
; ð4:6Þ

for Lg ¼ 13.7, 14.1, 14.5, 14.9. The error is computed as
the standard deviation of these backward differences. One
observes that for m=g ¼ 1, the string tension has already
converged to the asymptotic result, almost up to the
numerical precision, while for m=g ¼ 0.5, we are already
very close to the asymptotic result, and for m=g ¼ 0.25,
there is a slightly larger (but still very small) difference.
For integer values of Q, the asymptotic string tension

vanishes, so asymptotically we expect Q− → Q, corre-
sponding to a complete screening. For the values Q ¼ 1
and Q ¼ 5 that we consider, this is already almost satisfied

(a) (b)

(c) (d)

(e) (f)

FIG. 8. x ¼ 100. (a) Quark-antiquark potential for m=g ¼ 1 for
different values of Q. (b) Q−ðLÞ for m=g ¼ 1 for different values
of Q. (c),(d) The same quantities for m=g ¼ 0.5. (e),(f) The same
quantities for m=g ¼ 0.25

TABLE I. x¼100. Values for the difference ðΔVQ=ΔL−σQÞ=
g2, where ΔVQ=ΔL is the mean of the backward differences at
Lg ¼ 15.3, with ΔLg ¼ 0.4, 0.8, 1.2, 1.6.

m=g

Q 0.25 0.5 1

0.75 2.5ð6Þ × 10−5 5ð2Þ × 10−7 −7ð2Þ × 10−10

1 8ð2Þ × 10−7 5ð2Þ × 10−9 −4ð4Þ × 10−11

1.75 2.6ð7Þ × 10−4 1.7ð7Þ × 10−5 8ð8Þ × 10−8

2.5 3.0ð1Þ × 10−3 2.5ð5Þ × 10−6 −1ð1Þ × 10−9

3.25 2.2ð1Þ × 10−5 2.1ð8Þ × 10−7 −1ð1Þ × 10−9

4.5 4.0ð2Þ × 10−3 1.0ð2Þ × 10−5 −1ð1Þ × 10−9

5 2.1ð6Þ × 10−4 1.0ð5Þ × 10−5 −2ð2Þ × 10−8

TABLE II. x ¼ 100. Values for Q− at Lg ¼ 15.3 for
m=g ¼ 0.25, m=g ¼ 0.5, and m=g ¼ 1 .

m=g

Q 0.25 0.5 1

0.75 0.9225 0.9675 0.9891
1 0.9995 1.0000 1.0000
1.75 1.9157 1.9665 1.9891
2.5 2.2384 2.0778 2.0223
3.25 3.0748 3.0332 3.0111
4.5 4.2150 4.0770 4.0230
5 4.9922 4.9990 5.0000
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at Lg ¼ 15.3, as can be seen in Table II. In the non-
relativistic limit for general Q, the total dynamical charge
Q− that is produced asymptotically will be the integer
number that minimizes jQ −Q−j. For finitem=g, we expect
corrections to the nonrelativistic limit, but as one can see in
the table, these corrections are still very small for m=g ¼ 1
and m=g ¼ 0.5. Notice also that for the half-integer values
Q ¼ 2.5 and 4.5, for which we have spontaneous symmetry
breaking in the asymptotic limit (see Sec. III), we find Q−
approaching the smallest of the two possible nonrelativistic
values Q− ≈Q − 1=2.

In Fig. 9, we show the spatial charge distribution and
electric field for different distances of the probe quarks. For
Q ¼ 1.75, we have two partial string breakings. The first
one, around Lg ≈ 1.7 (see Fig. 8), brings the electric field
string at the center from E=g ≈ −1.7 to E=g ≈ −0.7. After
the second partial string breaking, around Lg ≈ 9, the probe
charge is “overscreened”,Q− ≈ 2, leading to a final electric
field string with opposite sign E=g ≈þ0.2. Notice that in
contrast to the Q ¼ 1 case, the charge clouds at large
separation of the probe quarks are not symmetric around
the position of the probes. This is expected, as the
remaining confining force between the two (charged)
“mesons” distorts the charge distribution. For Q ¼ 4.5,
we have a similar picture, but now, after the final partial
string breaking, the probe charge is “underscreened”,
Q− ≈ 4, resulting in a final negative electric field string
E=g ≈ −0.4. While for Q ¼ 5 the final string breaking is
complete, the probe charge is screened entirely Q− ≈ 5,
leading to a complete neutralization of the electric field
string E=g ≈ 0 at the center. In this case, for large enough
Lg we expect the charge distributions to become fully
symmetric around the probe charge positions.
In Fig. 10, we show the effect of different partial string

breakings on the entropy profile ΔSQðzÞ, for m=g ¼ 0.5
and Q ¼ 4.5. For the smallest interquark distance
Lg ¼ 0.55, the entropy peaks at the center. At Lg≳ 2.55
(after two string breakings, see Fig. 8), we observe a profile

(a) (b)

(c) (d)

FIG. 10. m=g ¼ 0.5,Q ¼ 4.5.ΔSQðzÞ for different values of L.
We also show the scaling to x → þ∞. (a) Lg ¼ 0.55,
(b) Lg ¼ 2.55, (c) Lg ¼ 7.35, and (d) Lg ¼ 13.25.

(a) (b)

(c) (d)

(e) (f)

FIG. 9. m=g ¼ 0.5, x ¼ 100. Left: Charge distribution for Q ¼
1.75 (a), Q ¼ 4.5 (c), and Q ¼ 5 (e) for different values of the
separation length L. Right: Electric field for Q ¼ 1.75 (b), Q ¼
4.5 (d), and Q ¼ 5 (f) for different values of the separation
length L.
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with two peaks around the positions of the probe charges.
At Lg≳ 7.35 and Lg ≳ 13.15, after four string breakings,
the profile now shows four peaks around the probe quark
positions. In addition, we find an entropy surplus in the
center, which now seems to be stable under the continuum
extrapolation.
In Fig. 11, we show that this characteristic imprint on the

entropy is generic. We plot ΔSQðzÞ for Lg ¼ 15.25 and
different values of Q. For Lg ¼ 15.25, all the partial string
breakings have occurred and the final meson configurations
around the external charge positions are formed. By
counting the peaks, one can again deduce the number of
light elementary quarks (corresponding to the number of
partial string breakings) in the meson states. For instance,
for Q ¼ 4.5, Fig. 11(a), we observe that there are four
partial string breakings, and for Q ¼ 5, Fig. 11(b), we
observe that there are five partial string breakings. The
spatial profiles do in fact differ by only one additional peak
in each of the clouds for Q ¼ 5 around zg ¼ �5. Notice
also the difference in the spatial profile for Q ¼ 1.75 and
Q ¼ 2.5; see Figs. 11(c) and 11(d). In both cases two
partial string breakings lead to the asymptotic meson
state, but in the former case the final electric field is
overscreened, while in the latter case the final electric field
is underscreened. Finally, notice that we can trust these
results to be close to their continuum value, as the variation
for the different x values is very small.

V. CONCLUSIONS

In this paper, we employ theMPS formalism for a detailed
numerical study of the confining mechanism in the static
limit for the massive Schwinger model. Our Hamiltonian
setup gives us direct access to the modified vacuum state in
the presence of two probe charges. This allows us to
compute not only the interquark potential, but also the
spatial profile of the electric field between the probe charges
and the charge concentration of the light fermions. Even for
relatively small m=g, the picture that emerges can be
understood as a smoothened version of the nonrelativistic
limit, with a level crossing between the electric string state
that is the ground state at short distances and the broken-
string two-meson state that is the ground state at large
distances. Here, the two isolated mesons each consist of a
light (anti)quark cloud around the heavy probe charge, that is
well described by the solution to the Schrödinger equation of
the appropriate one-particle problem.
In the case of fractional probe charges, we clearly

observe the expected partial string breaking. Again in
accordance with the nonrelativistic picture, we find the
screening of the probe charges to happen in jumps ΔQ ≈ 1
of the light fermion charge, with these jumps becoming
more and more discrete for growing m=g.
Our tensor network simulations also give us direct access

to the full Schmidt spectrum for the different bipartitions on
the state. The numerical simulations show that the UV
divergence in the corresponding von Neumann entropy is
universal, allowing us to define a UV-finite renormalized
entropy by subtracting the vacuum value. We examine the
imprint of both the string formation and string breaking on
the profile of this renormalized entropy. Most notably, we
find that string breaking leaves a very distinct imprint on
this entropy profile.
We check our results not only against the predictions from

the one-particle Schrödinger equation [Eq. (D3)], but also
against the weak-coupling results from the original
Lagrangian Eq. (2.1) and against the strong-coupling results
from the bosonized field theory [44]. In the appropriate
regimes, we find nearly perfect agreement with these con-
tinuum analytic results. This not only demonstrates the
potential of MPS simulations close to the continuum critical
point of a lattice theory, but it also serves as a nice, if not
unexpected, cross-check of the consistency of all different
descriptions of the Schwinger model.
We restrict ourselves to the study of the static limit of the

confinement mechanism. An obvious future extension of
our work is to consider the dynamical problem, simulating
the real-time hadronization that takes place in a realistic
scattering process. MPS real-time simulations of this type
of problem were considered recently for U(1) and SU(2)
quantum link lattice models in Refs. [58,59]. One could
also approach this problem by first calculating the scatter-
ing eigenstates [99,100]. See also Refs. [101,102] for an
approach in the semiclassical limit.

(a) (b)

(c) (d)

FIG. 11. m=g ¼ 0.5, Lg ¼ 15.25. ΔSQðzÞ for different values
of Q and scaling to x → þ∞. (a) Q ¼ 4.5, (b) Q ¼ 5,
(c) Q ¼ 1.75, and (d) Q ¼ 2.5.
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Of course, it will also be very interesting to bring this type
of analysis to higher dimensions. Specifically, present tech-
niques should already allow one to simulate, e.g., the static
confinement problem for some simple (2þ 1)-dimensional
lattice models (see Ref. [73] for homogeneous ground-state
simulations of a Z2 model and Ref. [74] for simulations of a
U(1) lattice model with dynamical fermions). However, the
current algorithms for Projected Entangled Pair States (PEPS)
simulations scale unfavorablywith thebonddimension [103],
and we therefore expect that the successful simulation of
specific microscopic gauge field Hamiltonians in the con-
tinuum limit will require new techniques. Still, given the
continuous progress of PEPS methods [104–107], we are
hopeful on that front. In any case, in light of the potential for

real-time and finite fermion density simulations, and of the
new insight that might come from understanding the entan-
glement structure, it should certainly beworthwhile to further
explore this direction, hopefully succeeding one day in the
full simulation of the microscopic Hamiltonian of (3þ 1)-
dimensional QCD.
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(a) (b)

(c) (d)

FIG. 12. m=g ¼ 0.75. (a) Q ¼ 0.2, x ¼ 400. Distribution of the 10-base logarithm of the Schmidt values λq;αq among the eigenvalue
sectors q of Lð2nÞ. (b) Same as (a) but now forQ ¼ 0.45. (c)Q ¼ 0.2. Distribution of the bond dimension among the eigenvalue sectors
of Lð2nÞ for different values of x. (d) Same as (c) but now for Q ¼ 0.45.
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APPENDIX A: COMPUTATION OF THE
ASYMPTOTIC STRING TENSION AND

ELECTRIC FIELD

In this Appendix, we discuss the details of the compu-
tation of the asymptotic string tension σQ and the electric
field E. In Appendix A 1, we discuss how to obtain the
electric field EðxÞ and the energy density ϵðxÞ for a fixed
lattice spacing ga ¼ 1=

ffiffiffi
x

p
, and in Appendix A 2, we

discuss how we to extrapolate these quantities to the
continuum limit (x → þ∞).

1. MPS ansatz

To find the electric field EðxÞ and the energy density ϵðxÞ
for a fixed lattice spacing ga ¼ 1=

ffiffiffi
x

p
, we need to find the

ground state of the Schwinger Hamiltonian,

HQ ¼ g
2

ffiffiffi
x

p
�X

n∈Z
½LðnÞ −Q�2 þm

g

ffiffiffi
x

p X
n∈Z

ð−1Þn½σzðnÞ

þ ð−1Þn� þ x
X
n∈Z

½σþðnÞeiθðnÞσ−ðnþ 1Þ þ H:c:�
�
;

ðA1Þ
in an electric background field Q ∈ ½0; 1½. Taking into
account the translation symmetry over two sites, we
propose the following MPS ansatz in the thermodynamic
limit, see Eq. (3.1):

jΨ(Að1Þ; Að2Þ)i ¼
X
κ

v†L

�Y
n∈Z

Aκ2n−1ð1ÞAκ2nð2nÞ
�
vRjκi;

ðA2Þ

(a) (b)

(c) (d)

FIG. 13. Q ¼ 0.3. Continuum extrapolation of the string tension σQ for different values ofm=g. (a) m/g = 0.125. (b) m/g = 0.3. (c) m/g
= 0.5. (d) m/g = 1.
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with

κn ¼ ðsn; pnÞ; sn ∈ f−1; 1g;
pn ∈ Z½pminðnþ 1Þ; pmaxðnþ 1Þ�; jκi ¼ jfκngn∈Zi:

ðA3Þ
Gauss’s law, GðnÞ¼LðnÞ−Lðn−1Þ− ½σzðnÞþð−1Þn�=2,
imposes the following form for Að1Þ and Að2Þ, see
Eq. (2.9):

½As;pðnÞ�ðq;αqÞ;ðr;βrÞ
¼ ½as;pðnÞ�αq;βrδqþ½sþð−1Þn�=2;rδr;p; n ¼ 1; 2; ðA4Þ

q∈Z½pminðnÞ;pmaxðnÞ�;p, r∈Z½pminðnþ1Þ, pmaxðnþ1Þ�,
s ¼ �1, αq ¼ 1…DqðnÞ, βr ¼ 1…Drðnþ 1Þ. The optimal
approximation for the ground state within the class of MPS
with fixed bond dimension is obtained by performing
imaginary time evolution of the Schrödinger equation
using the time-dependent variational principle [82].
When applying the TDVP, the sites 2n − 1 and 2n are
blocked into one effective site n:

(As1;p1
ð1Þ; As2;p2

ð2Þ) → As1;p1;s2;p2
¼ As1;p1

ð1ÞAs2;p2
ð2Þ;
ðA5Þ

where

½As1;p1;s2;p2
�ðq;αqÞ;ðr;βrÞ

¼ ½as1;p1;s2 �αq;βrδp2;p1þðs2þ1Þ=2δp2;rδp1;qþðs1−1Þ=2; ðA6Þ

with as1;p1;s2 ∈ CDq×Dr , Dq ¼ Dqð1Þ. Note that Dq ¼ 0 for
q < pmin and q > pmax, where pmin ¼ pminð1Þ and

pmax ¼ pmaxð1Þ. Gauss’s law implies that pminð2Þ ∈
fpmin − 1; pming and pmaxð2Þ ∈ fpmax − 1; pmaxg.
To check whether the obtained MPS is a good approxi-

mation, we should look at the Schmidt values λq;αqðnÞ
associated with the bipartition fA1ð2nÞ ¼ ðZ½−∞; 2n�;
A2ð2nÞ ¼ Z½2nþ 1;þ∞�g of the lattice. Translation sym-
metry implies that the Schmidt values are independent of the
effective site n: λ2nq;αq ¼ λq;αq , ∀n. Similar to Eq. (2.10), we
have then

jΨðAÞi ¼
Xpmax

q¼pmin

XDq

αq¼1

ffiffiffiffiffiffiffiffiffi
λq;αq

q
jψA1ð2nÞ

q;αq ijψA2ð2nÞ
q;αq i; ðA7Þ

where jψA1ð2nÞ
q;αq i [jψA2ð2nÞ

q;αq i] are orthonormal unit vectors in
the tensor product of the local Hilbert spaces in the region
A1ð2nÞ [A2ð2nÞ]. The Schmidt values λq;αq , which are non-
negative and sum to one, can be obtained as follows: assume
Aκ1;κ2 is brought in a canonical form such that the matrices r
and l corresponding to the right and left eigenvectors of the
largest eigenvalue of the transfer matrix [80],

X
κ1;κ2

Aκ1;κ2r½Aκ1;κ2 �†¼ r;
X
κ1;κ2

½Aκ1;κ2 �†lAκ1;κ2 ¼ l;

�X
κk

¼
X

sk¼−1;1

XpmaxðkÞ

pk¼pminðkÞ
;κk¼ðsk;pkÞ

�
; ðA8Þ

are positive definite and diagonal. Here, we assume that the
largest eigenvalue of the transfer matrix is normalized to one.
Then, because A takes the form Eq. (A6), r and lwill also be
degenerate in the eigenvalues of Lð2nÞ: ½r�ðq;αqÞ;ðr;βrÞ ¼
rq;αqδq;rδαq;βr , ½l�ðq;αqÞ;ðr;βrÞ ¼ lq;αqδq;rδαq;βr . The Schmidt
values λq;αq are now obtained by multiplying r and l:

(a) (b)

FIG. 14. (a) log10ðerrσQÞ as a function of Q. (b) log10ðerrhEiÞ as a function of Q.
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λq;αq ¼ rq;αq lq;αq , where q ∈ Z½pmin; pmax� labels the eigen-
values of Lð2nÞ and αq ¼ 1…Dq labels the variational
freedom of the matrices as1;p1;s2 .
As can be observed from Eq. (A7), truncating to a finite

bond dimension thus corresponds to an effective truncation
in the Schmidt decomposition of the ground state. Ideally
one would want a distribution of Dq values such that the
smallest retained Schmidt value is more or less equal for
each eigenvalue sector of Lð2nÞ. Then, if we want a reliable
MPS approximation for the ground state, these smallest
retained Schmidt values should be sufficiently small, which
corresponds to taking Dq sufficiently large. In practice, we
do several simulations and adapt Dq until the smallest
Schmidt value in each eigenvalue sector of Lð2nÞ is of
order 10−17, i.e., minαqλq;αq ≈ 10−17.

In Figs. 12(a) and 12(b), we plot the distribution of
the Schmidt values among the eigenvalue sectors of
Lð2nÞ for the final MPS ground-state approximations for
m=g ¼ 0.75, x ¼ 400, and Q ¼ 0.2, 0.45. As in Ref. [57],
we observe that the sectors corresponding to q ¼ 0, −1, 1
are the most dominant ones, which justifies our choice of
taking Dq ¼ 0 for jqj > 3. This can be understood physi-
cally from the term proportional to ½LðnÞ −Q�2 in Eq. (A1),
which punishes large eigenvalues of LðnÞ. We also display
the bond dimensions for each sector and for each simulated
value of x in Figs. 12(c) and 12(d). One can observe that as
x increases, we need larger Dq for the same accuracy. This
is explained by the fact that the correlation length diverges
as we approach the continuum limit (x → þ∞), and it is
well known that critical theories require larger bond

(a) (b)

(c) (d)

FIG. 15. Q ¼ 0.3. Continuum extrapolation of the electric field hEi for different values ofm=g. (a) m/g = 0.125. (b) m/g = 0.3. (c) m/g
= 0.5. (d) m/g = 1.
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dimensions for a good MPS approximation. For the same
reason, we also need larger Dq when we are getting closer
to the phase transition at m=g ¼ ðm=gÞc ≈ 0.33 and Q ¼
1=2 [44,79].

2. Continuum extrapolation of the string tension
and the electric field

In the second part of this Appendix, we discuss how we
obtain an estimate for the continuum value of σQ and EQ.
Note that the string tension at x ¼ 1=g2a2 is obtained from
the energy density by

σQðxÞ ¼
ffiffiffi
x

p ½ϵQðxÞ − ϵ0ðxÞ�; ðA9Þ

where ϵQðxÞ is the ground-state energy per site of the
Schwinger Hamiltonian Eq. (A1). As for x→∞,H=ð2g ffiffiffi

x
p Þ

reduces to the XY model we have that

lim
x→þ∞

ϵQðxÞ
2g

ffiffiffi
x

p ¼ lim
x→þ∞

ϵ0ðxÞ
2g

ffiffiffi
x

p ¼ −1
π

; ðA10Þ

and it is argued in Ref. [79] that ϵQðxÞ=
ffiffiffi
x

p
should behave

polynomially as a function of 1=
ffiffiffi
x

p
for large x; we have

ffiffiffi
x

p ϵQðxÞ
g

¼ −
2x
π
þ CQ

ffiffiffi
x

p þ AQ þO
�

1ffiffiffi
x

p
�

ðx ≫ 1Þ;

ðA11aÞ

ffiffiffi
x

p ϵ0ðxÞ
g

¼ −
2x
π
þ C0

ffiffiffi
x

p þ A0 þO
�

1ffiffiffi
x

p
�

ðx ≫ 1Þ:

ðA11bÞ

This means that the energy densities
ffiffiffi
x

p
ϵQðxÞ and

ffiffiffi
x

p
ϵ0ðxÞ

are UV divergent. But as we see, the string tension, which is
the difference of these quantities, is UV finite and, thus, we
should also have CQ ¼ C0. However, from the numerical
point of view, it is clear that small errors in Eq. (A10) or/
and in CQ and C0 would lead to large errors in the
extrapolated continuum value limx→∞σQ. To avoid this
problem, we first calculate ϵ0 and subtract it from the

(a) (b)

FIG. 16. Q ¼ 1=2. Continuum extrapolation of the electric field hEi. (a) m=g ¼ 0.3, (b) m=g ¼ 0.35.

TABLE III. Electric field at Q ¼ 1=2 for different values of
m=g.

m=g hEi=g hEi=g [60]

0.125 3 × 10−4 � � �
0.25 2 × 10−4 � � �
0.3 0.0014 0.0(3)
0.35 −0.313ð2Þ � � �
0.5 −0.42041ð3Þ −0.421ð1Þ
0.75 −0.46145ð2Þ � � �
1 −0.47692ð2Þ −0.4769ð5Þ
2 −0.49364ð3Þ � � �
4 −0.49834ð3Þ � � �

TABLE IV. The largest value in magnitude of B0 þ 1=6 obtained from the fit Eq. (A18) through the largest five x values and the fits
Eqs. (A18) and (A19) through all our data. According to Ref. [89], we should have B0 þ 1=6 ¼ 0.

m=g 0.125 0.25 0.3 0.35 0.5 0.75 1

B0 þ 1=6 1 × 10−4 3 × 10−4 5 × 10−4 5 × 10−4 8 × 10−4 1.3 × 10−3 2 × 10−3
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Hamiltonian Eq. (A1): HQ←HQ −
P

n∈Zϵ0. The string
tension is then computed as σQðxÞ ¼ g

ffiffiffi
x

p
ϵQðxÞ, where

ϵQðxÞ is the ground state of the renormalized Hamiltonian.
As follows from Eq. (A11), for large x, σQðxÞ should
scale as

σQðxÞ
g2

¼AQþBQffiffiffi
x

p þCQ

x
þ DQ

x3=2
þEQ

x2
þO

�
1

x5=2

�
: ðA12Þ

In our simulations, we compute σQðxÞ for x ¼ 100, 200,
300, 400, 600, 800. Our estimate σestQ is obtained by fitting
the σQðxÞ corresponding to the five largest x to

f1ðxÞ ¼ AQ þ BQffiffiffi
x

p þ CQ

x
þ DQ

x3=2
ðA13Þ

and taking σestQ ¼ g2AQ.
In Fig. 13, we plot our results for the string tension as a

function of 1=
ffiffiffi
x

p
for Q ¼ 0.3 and m=g ¼ 0.125, 0.3, 0.5,

1. The numerical results are represented by circles, and our
polynomial fit Eq. (A13) through the largest five x values is
shown by a full line. The star represents our continuum
estimate. It is clear that the string tension indeed behaves
polynomially as a function of 1=

ffiffiffi
x

p
. For larger values of

m=g, one can also deduce that we are already very close to
the continuum limit at 1=

ffiffiffi
x

p ¼ 0.1. Indeed, for m=g ¼ 1,
the difference of our estimate with σQðxÞ at x ¼ 100 is only
of order 10−5.
The continuum extrapolation depends on the chosen

interval and the chosen fit. Therefore, we also compute the

continuum estimates by fitting all the data to f1ðxÞ [see
Eq. (A13)] and all our data to

f2ðxÞ ¼ AQ þ BQffiffiffi
x

p þ CQ

x
þ DQ

x3=2
þ EQ

x2
: ðA14Þ

The error errσQ is taken to be the maximum of the difference
of σestQ with these two other estimates. In Fig. 14(a), we
show the log10 of errσQ as a function ofQ form=g ¼ 0.125,
0.3, 0.35, 0.5, 1. It is clear that these errors are quite small.
We have the largest error for m=g ¼ 0.3 and Q ¼ 0.5,
which is explained by the fact that the gap is very small
there, as we are in the vicinity of a phase transition [60]. As
mentioned above, it is well known that for smaller mass
gaps, for a given bond dimension, the error on the ground-
state MPS approximation will be larger.
The continuum extrapolation of the electric field,

hEi
g

¼ 1

2N

�X
n∈Z½1;2N�½LðnÞ −Q�

�
Q

ðN ¼ jZjÞ;

ðA15Þ

is found in a similar way. Now, we use the values computed
at x ¼ 100, 200, 300, 400 and perform a linear fit,

g1ðxÞ ¼ AQ þ BQffiffiffi
x

p ; ðA16Þ

through the three largest x values. The fact thatwe again have
analytical behavior as a function of 1=

ffiffiffi
x

p
can be observed

(a) (b)

FIG. 17. Q ¼ 0. (a) m=g ¼ 0.125. Fit of the form ð−1=6Þ logð1= ffiffiffi
x

p Þ þ Aþ C=
ffiffiffi
x

p
through S0ðxÞ. Inset: Linear extrapolation of

S0ðxÞ þ ð1=6Þ logð1= ffiffiffi
x

p Þ based on the largest five x values, x ¼ 200, 300, 400, 600, 800, to obtain the coefficients A and C. (b) Same as
(a) but now for m=g ¼ 0.75.
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fromFig. 15,wherewedisplay the electric field as functionof
1=

ffiffiffi
x

p
. It is also a consequence of the fact that hEðxÞi ¼

−dσQðxÞ=dQ, andwe already argued that σQðxÞ is analytical
as a function of x. To make our estimate more robust against
the choice of the interval and the fitting function,we compute
estimates by a linear fit Eq. (A16) through all the points
(x ¼ 100, 200, 300, 400) and a quadratic fit,

g2ðxÞ ¼ AQ þ BQffiffiffi
x

p þ CQ

x
; ðA17Þ

wthrough all the points. Again, the error errhEi is taken to
be the maximum of the difference with these two estimates.

The log10 of errhEi is displayed in Fig. 14(b). The errors are
quite small but become larger again around the phase
transition at the critical mass ðm=gÞc ≈ 0.33 when going
towards Q ¼ 1=2.
At Q ¼ 1=2, we do not display our error, because this is

a special case. For m=g < ðm=gÞc, the CT symmetry is not
broken and, thus, we should have hEi ¼ 0, and this for all
values of x. Therefore, a continuum extrapolation of hEi is
useless; see Fig. 16(a). To obtain an error bound, we
take the largest value in magnitude of hEðxÞi for x ¼ 100,
200, 300, 400. It is displayed in Table III. When
m=g > ðm=gÞc, we have two different vacua with opposite
sign for the electric field. We will always take the negative

(a) (b)

(c) (d)

FIG. 18. Q ¼ 0.3. Continuum extrapolation of the renormalized half-chain von Neumann entropy for different values of m=g. (a) m/g
= 0.125. (b) m/g = 0.3. (c) m/g = 0.5. (d) m/g = 1.
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sign, which comes down to taking the vacuum in the limit
Q → 1=2 forQ < 1=2. In this case, it is possible to perform
a polynomial extrapolation; see Fig. 16(b). The results are
given in Table III. If possible, we compare with Ref. [60].

3. Continuum extrapolation of the half-chain von
Neumann entropy

Using the Schmidt values λq;αq , see Eq. (A7), we can
compute the half-chain von Neumann entropy SQðxÞ,

SQðxÞ ¼ −
Xpmax

q¼pmin

XDq

αq¼1

λq;αq logðλq;αqÞ;

for a particular value of x. As already mentioned in the
main text, because the Schwinger model is equivalent to a
noncritical boson theory [44], the half-chain von Neumann
entropy should diverge as ð−1=6Þ logð1= ffiffiffi

x
p Þ [89] when

x → þ∞.
Let us check this for Q ¼ 0. Inspecting S0ðxÞ þ

1
6
logð1= ffiffiffi

x
p Þ as a function of x, we observe that it behaves

linear as a function of 1=
ffiffiffi
x

p
; see insets of Figs. 17(a)

and 17(b). Therefore, we should be able to fit S0ðxÞ to a
function of the form

f1ðxÞ ¼ A0 þ B0 log

�
1ffiffiffi
x

p
�
þ C0

1ffiffiffi
x

p ðA18Þ

and find B0 ¼ 1=6. Specifically, we fit our data corre-
sponding to the largest five x values, x ¼ 200, 300, 400,
600, 800, against f1 to obtain a first estimate for B0. To
have some robustness against the choice of fitting interval
and the fitting function, we also include our result for
x ¼ 100 and fit all our data against f1 and against

f2ðxÞ ¼ A0 þ B0 log

�
1ffiffiffi
x

p
�
þ C0

1ffiffiffi
x

p þD0

1

x
: ðA19Þ

This gave us two other estimates for B0. In Table IV, we
give the results for B0 þ 1=6. The value that is shown is the
largest value for B0 þ 1=6 (in magnitude) from the three
fits, i.e., the largest error on the predicted result of Ref. [89].
As one observes, these errors are at most 2 × 10−3, and for
small values of m=g only of order 10−4, which is a nice
cross-check on our results. In the insets of Figs. 17(a)
and 17(b), we show a linear fit of the form fðxÞ ¼ Aþ
Cð1= ffiffiffi

x
p Þ through S0ðxÞ þ ð1=6Þ logðxÞ. Here, we estimate

A and C by taking into account the largest five x values. In
the main figures, we also show the fit ð−1=6Þ logðxÞ þ fðxÞ
through S0ðxÞ. As expected, given the results in Table IV,
this fit matches our data very well. In Fig. 17, we show
results form=g ¼ 0.125 andm=g ¼ 0.75. A similar plot for
m=g ¼ 0.25 is shown in Fig. 2(a).
Because the coefficient of the logarithmic divergence of

the von Neumann entropy is universal, the renormalized
entropy ΔSQ ¼ SQ − S0 should be UV finite. In Fig. 18,

we plot ΔSQðxÞ as a function of 1=
ffiffiffi
x

p
and observe that

this scales linearly in 1=
ffiffiffi
x

p
to the continuum limit. A

continuum result for different values of Q and m=g is
obtained in exactly the same way as for the electric field.
The results are shown in the main text; see Fig. 2(b). The
errors originating from the choice of fitting interval and
fitting function are relatively small.
For the electric field and the string tension, we have that

our results at x ¼ 100, or equivalently, ga ¼ 1=
ffiffiffi
x

p ¼ 0.1,
only differ from the continuum result by at most 10%; see
Figs. 13 and 15. In contrast, for the entropy this is not the
case at all; see Fig. 18: the result at x ¼ 100 and the
continuum result differ by a factor of order 1 and sometimes
also have a different sign. Themain lesson is that, contrary to
other quantities like the electric field and the string tension,
we should be careful when extrapolating results at finite x of
the renormalized entropy to the continuum limit. In par-
ticular, for the nonuniform case, see Sec. IV, one should
always check how the results scale for different values of x.

APPENDIX B: PERTURBATIVE
CALCULATION OF σQ

To compute σQ in the weak-coupling expansion, we start
from the Lagrangian Eq. (2.1) and include a current
jμ ¼ gϵμν∂νQ, with Q constant everywhere in the bulk,
andQ → 0 only at the boundaries at infinity (see Ref. [77]):

L ¼ ψ̄ ½γμði∂μ þ gAμÞ −m�ψ −
1

4
FμνFμν − Aμjμ

¼ ψ̄ ½γμði∂μ þ gAμÞ −m�ψ −
1

4
FμνFμν −

1

2
FμνF̄μν;

ðB1Þ
where on the last line we perform a partial integration
and F̄μν ≡ ϵμνgQ.
The effective action, obtained by integrating out both the

fermion and the gauge fields in the path integral, will then
have the general form:

Seff ¼
Z

d2xLeff ¼
Z

d2x C0

�
g
m

�
F̄μνF̄μν

þ C1

�
g
m

� ðF̄μνF̄μνÞ2
m2

þ � � � ; ðB2Þ

where we can exclude derivative terms since F̄μν is
constant. At next-to-leading order, we find for the first
coefficient C0:

C0 ¼ −
1

4
þ g2

24πm2
: ðB3Þ

The zero-order term here is the tree-level result while the
g2=m2 term follows from the one-loop Feynman diagram
on the first line of Fig. 19, which can be calculated with
standard techniques (see, e.g., Ref. [108]). Furthermore,
one can see that all other nonzero diagrams will lead to
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contributions to the coefficients Ci that are at least order
g4=m4. Finally, we can then identify Seff ¼

R
d2xσQ,

leading to the result Eq. (3.4).

APPENDIX C: DETAILS ON THE
IMPLEMENTATION OF THE

DMRG OPTIMIZATION FOR THE
NONUNIFORM CASE

Consider the Schwinger Hamiltonian,

H ¼ g
2

ffiffiffi
x

p
�X

n∈Z
½LðnÞ þ αðnÞ�2

þm
g

ffiffiffi
x

p X
n∈Z

ð−1Þn½σzðnÞ þ ð−1Þn�

þ x
X
n∈Z

½σþðnÞeiθðnÞσ−ðnþ 1Þ þ H:c:�
�
; ðC1Þ

in a nonuniform background field αðnÞ and assume we
already computed aMPS approximation jΨ(Að1Þ; Að2Þ)i of
the form Eq. (3.1) with virtual dimensions ~Dð1Þ and ~Dð2Þ
for the zero-background Hamitonian [αðnÞ ¼ 0] [57], i.e.,

jΨ(Að1Þ; Að2Þ)i ¼
X
κ

v†L

�Y
n∈Z

Aκ2n−1ð1ÞAκ2nð2nÞ
�
vRjκi;

ðC2Þ

where

κn ¼ ðsn; pnÞ; sn ∈ f−1; 1g;
pn ∈ Z½ ~pminðnþ 1 mod 2Þ; ~pmaxðnþ 1 mod 2Þ�;
jκi ¼ jfκngn∈Zi ðC3Þ
is a ground state of Eq. (C1) with αðnÞ ¼ 0. Note that the
tensors AðnÞ take the form

½As;pðnÞ�ðq;αqÞ;ðr;βrÞ ¼ ½as;pðnÞ�αq;βrδqþ½snþð−1Þn�=2;rδr;p;

αq ¼ 1… ~Dqðn mod 2Þ;
βr ¼ 1… ~Drðnþ 1 mod 2Þ; ðC4Þ

q ∈ Z½ ~pminðn mod 2Þ; ~pmaxðn mod 2Þ�; ~p; ~r ∈ Z½ ~pminðnþ
1 mod 2Þ; ~pmaxðnþ 1 mod 2Þ� in order to enforce Gauss’s
law, GðnÞjΨ(Að1Þ; Að2Þ)i ¼ 0, with

GðnÞ ¼ LðnÞ − Lðn − 1Þ − σzðnÞ þ ð−1Þn
2

¼ 0; ðC5Þ

to the state [see Eq. (2.9)]. We now consider a constant
background electric field αðnÞ, which has compact support:
αðnÞ ¼ α ∈ R for n ∈ N½0; k�, αðnÞ ¼ 0 for n∉N½0; k�. The
MPS trial state as an ansatz for the ground state of this
Hamiltonian that we consider is, see Eq. (4.1),

jΦðBÞi ¼
X
κ

v†L

�Y
n<rL

AκnðnÞ
��YrR−1

n¼rL

BκnðnÞ
�

×

�Y
n≥rR

AκnðnÞ
�
vRjκi; ðC6Þ

where rL ≪ 0 ≤ k ≪ rR and AκðnÞ ¼ Aκðn mod 2Þ cor-
responds to the MPS approximation Eq. (C2) of the ground
state of the zero-backgroundHamiltonian.We take rL and rR
odd. To enforce Gauss’s law, GðnÞjΦðBÞi ¼ 0, the BðnÞ
must take the form [Eq. (C4)]:

½Bs;pðnÞ�ðq;αqÞ;ðr;βrÞ ¼ ½bs;pðnÞ�αq;βrδqþ½snþð−1Þn�=2;rδr;p;

αq ¼ 1…DqðnÞ;
βr ¼ 1…Drðnþ 1Þ; ðC7Þ

q∈Z½pminðnÞ;pmaxðnÞ�; p;r∈Z½pminðnþ1Þ;pmaxðnþ1Þ�,
where DqðrLÞ ¼ ~Dqð1Þ, DqðrRÞ ¼ ~Dqð1Þ, pmin =maxðrLÞ ¼
pmin =maxðrRÞ ¼ ~pmin =maxð1Þ. The formal virtual dimen-

sions of this MPS are DðnÞ ¼ PpmaxðnÞ
q¼pminðnÞDqðnÞ. Later in

this Appendix, we come back to the issue of which values to
take for DqðnÞ and pmin =maxðnÞ.
To obtain the best approximation within this class of

states of the ground state of the Hamiltonian Eq. (C1), we
have to minimize

FIG. 19. Diagrams for the effective action from Eq. (B1). On
the first line we have the tree-level and the next-to-leading-order
g2=m2 contribution to C0 Eq. (B3). Evaluation of the first
diagram on the second line would give a g4=m4 correction to
C0, while the other diagram would give the leading g4=m4

contribution to C1.
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Hðb̄; bÞ ¼ hΦðB̄½b̄�ÞjHjΦðB½b�Þi
hΦðB̄½b̄�ÞjΦðB½b�Þi ; ðC8Þ

with respect to bðrLÞ;…; bðrR − 1Þ. This is a perfect
problem to tackle with the DMRG [91]. We briefly sketch
how this works in our case.
The DMRG first minimizes Hðb̄; bÞ with respect to

bðrLÞ while keeping bðrL þ 1Þ;…; bðrR − 1Þ fixed, then
minimizes Hðb̄; bÞ with respect to bðrL þ 1Þwhile keeping
bðrLÞ; bðrL þ 2Þ;…; bðrR − 1Þ fixed, and so on until

bðrR − 1Þ. After this sweep, it will sweep back: minimizing
Hðb̄; bÞ with respect to bðrR − 1Þ while keeping
bðrLÞ;…; bðrR − 2Þ fixed, then minimizing Hðb̄; bÞ with
respect to bðrR − 2Þ while keeping bðrLÞ;…;bðrR−3Þ;
bðrR−1Þ fixed, and so on until bðrLÞ. The algorithm keeps
sweeping until convergence of the quantity Hðb̄; bÞ is
reached.
Let us now discuss how to minimiseHðb̄; bÞwith respect

to bðmÞ (rL ≤ m ≤ rR − 1). It is convenient to use the
gauge freedom [109] of the matrices,

Aκð1Þ → Uð1ÞAκð1ÞUð2Þ−1; Að2Þ → Uð2ÞAκð2ÞUð1Þ−1; BκðnÞ → VðnÞBκðnÞVðnþ 1Þ−1;
VðrLÞ ¼ Uð1Þ; VðrRÞ ¼ Uð1Þ; ðC9Þ

to bring Eq. (C6) in the following form:

jΦðBÞi ¼
X
κ

v†L

�Y
n<rL

LκnðnÞ
��Ym−1

n¼rL

BðLÞ
κn ðnÞ

�
BκmðmÞ

� YrR−1
n¼mþ1

BðRÞ
κn ðnÞ

��Y
n≥rR

Rκn
n

�
vRjκi; ðC10Þ

where LðnÞ, BðLÞðnÞ are in the left-canonical form:
P

κ(LκðnÞ)†LκðnÞ ¼ 1,
P

κ(B
ðLÞ
κ ðnÞ)†BðLÞ

κ ðnÞ ¼ 1, and Rn, BðRÞðnÞ are
in the right-canonical form:

P
κR

κ
nðRκ

nÞ† ¼ 1,
P

κB
ðRÞ
κ ðnÞ(BðRÞ

κ ðnÞ)† ¼ 1 [
P

κ ¼
P

s¼−1;1
PpmaxðnÞ

p¼pminðnÞ; κ ¼ ðs; pÞ]. In this

case, the norm of the state is N½BðmÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΦðB̄ÞjΦðBÞi

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
κtr½(BκðmÞ)†BκðmÞ�

p
, which can be put to one by rescaling

BðmÞ: BðmÞ → BðmÞ=N½BðmÞ�. Note that LðnÞ and RðnÞ depend only on the parity of n. Furthermore, we can use the
remaining gauge freedom in the matrices to find positive-definite diagonal matrices ΛðnÞ with tr½ΛðnÞ� ¼ 1, such that

X
κ

Lκð1ÞΛðrLÞ(Lκð1Þ)† ¼ ΛðrL − 1Þ;
X
κ

Lκð2ÞΛðrL − 1Þ(Lκð2Þ)† ¼ ΛðrLÞ;
X
κ

BðLÞ
κ ðnÞΛðnÞ(BðLÞ

κ ðnÞ)† ¼ Λðn − 1ÞðrL ≤ n ≤ m − 1Þ; ðC11aÞ

and

X
κ

(BðRÞ
κ ðnÞ)†Λðn − 1ÞBðRÞ

κ ðnÞ ¼ ΛðnÞðmþ 1 ≤ n ≤ rRÞ;
X
κ

(Rκð1Þ)†ΛðrR − 1ÞRκð1Þ ¼ ΛðrRÞ;
X
κ

(Rκð2Þ)†ΛðrRÞRκð2Þ ¼ ΛðrR þ 1Þ: ðC11bÞ

Because the tensors R, L, and B take the form Eqs. (C4) and (C7), the diagonal elements of Λn can be labeled by the
eigenvalues q of LðnÞ:

½ΛðnÞ�½ðqαqÞ;ðrβrÞ� ¼ δαq;βrδq;rλq;αrðnÞ;

αq; βq ¼ 1…Dqðnþ 1Þ; 0 ≤ λq;Dqðnþ1ÞðnÞ ≤ λq;Dqðnþ1Þ−1ðnÞ ≤ � � � ≤ λq;1ðnÞ ≤ 1;
Xpmaxðnþ1Þ

q¼pminðnþ1Þ

XDpðnþ1Þ

αq¼1

λq;αqðnÞ ¼ 1;

ðC12Þ

q; r ∈ Z½pminðnþ 1Þ; pmaxðnþ 1Þ�. These diagonal elements of ΛðnÞ are the Schmidt values associated with the bipartition
fA1ðnÞ ¼ Z½−∞; n�;A2ðnÞ ¼ Z½nþ 1;þ∞�g of the lattice. More specifically, we have that the Schmidt decomposition
with respect to this bipartition reads, see Eq. (2.10),
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jΦðBÞi ¼
Xpmaxðnþ1Þ

q¼pminðnþ1Þ

XDqðnþ1Þ

αq¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λq;αqðnÞ

q
jψA1ðnÞ

q;αq ijψA2ðnÞ
q;αq i; ðC13Þ

where jψA1ðnÞ
q;αq i [jψA2ðnÞ

q;αq i] are orthonormal unit vectors in the tensor product of the local Hilbert spaces in the region A1ðnÞ
[A2ðnÞ]. At the boundaries (n < rL and n ≥ rR), the Schmidt values will depend only on the parity of n; more specifically,

λq;αqð2n − 1Þ ¼ λq;αqðrLÞð∀ n∶2n − 1 ≤ rLÞ; λq;αqð2nÞ ¼ λq;αqðrL − 1Þð∀ n∶2n ≤ rL − 1Þ; ðC14aÞ

λq;αqð2n − 1Þ ¼ λq;αqðrRÞð∀ n∶2n − 1 ≥ rRÞ; λq;αqð2nÞ ¼ λq;αqðrR þ 1Þð∀ n∶2n ≤ rR þ 1Þ: ðC14bÞ

These Schmidt values correspond to those of the ground state Eq. (C2) of the zero-background Hamiltonian and were
already computed before (see Appendix A 1 for details).
With the MPS in the form Eq. (C10), Hðb̄; bÞ is minimized with respect to bm by finding the smallest eigenvalue E0 and

the corresponding eigenvector of the matrix HðmÞ with components

½HðmÞ�ðs1;p1;α1;β1Þ;ðs2;p2;α2;β2Þ ¼
∂

∂½b̄s1;p1
ðmÞ�α1β1

∂
∂½bs2;p2

ðmÞ�α2β2
hΦðB̄½b̄�ÞjHjΦðB½b�Þi; ðC15Þ

where sk ∈ f−1; 1g; pk ∈ Z½pminðmþ 1Þ; pmaxðmþ 1Þ�; αk ¼ 1…Dpk−½skþð−1Þk�=2ðmÞ; βk ¼ 1…Dpk
ðmþ 1Þ (k ¼ 1, 2).

Because we are interested in only the smallest eigenvalue E0 and its eigenvector, we can use the Lanczos iteration
[110]. For this we need only the action ofHðmÞ on bðmÞ. Exploiting the gauge-invariant structure of the tensorsR, L, and B,
see Eqs. (C4) and (C7), the computation time of every sweep scales as

O
� XrRþ1

n¼rL−1

XpmaxðnÞ

q¼pminðnÞ
(DqðnÞÞ3

�
∼OfðrR − rL þ 2Þmax

n
½pmaxðnÞ − pminðnÞ�½max

n;q
(DqðnÞ)�3g:

We conclude this Appendix by discussing how to fix
pmin =maxðnÞ and DqðnÞ. As choosing finite values for these
quantities means an effective truncation in the Schmidt
decomposition Eq. (C13), we need to look at the weight of
the Schmidt values λq;αqðnÞ over the sectors q corresponding
to the eigenvalues of LðnÞ for any n with rL ≤ n ≤ rR.
Assuming that the ground-state approximations for n < rL
and n > rR are accurate (see Appendix A 1), we do not have
to care about the Schmidt values [Eq. (C14)] at the boundary.
In practice, we start with a certain distribution of Dq

values for each n, anticipating that the dominant eigenvalue
sector of LðnÞ will shift from q ¼ 0 at large n to q ≈Q at
the center. After a first full DMRG optimization, the initial
Dq values are updated: increased in the case that the
minimal retained Schmidt value in the particular eigenvalue
sector is larger than λmin ¼ 10−18, decreased in the case that
the minimal retained Schmidt value is smaller. This is
repeated a few times until all retained minimal Schmidt
values are smaller than or of the same order as λmin. As for
the choice of rL and rR, we verify a posteriori that the
inhomogeneous interval of the MPS [Eq. (C10)] is taken to
be large enough, by verifying the convergence of local
observables at large distances to their value for the
homogeneous ground state.

Let us give a specific example. In Figs. 20 and 21, we
show some details of the simulation of the ground state for
m=g ¼ 0.25, Q ¼ 5, x ¼ 100, Lg ¼ 10.1. In our setup,
with lattice spacing 1=g2

ffiffiffi
x

p ¼ 0.1=g, this corresponds to a
distance of 101 sites between the external antiquark with
charge −gQ and the external quark with charge gQ.
Specifically, we put the antiquark at site 151 and the quark
at site 252, and we reserve 150 sites on the left of the
antiquark and 150 sites on the right for the nonuniform part
of our MPS ansatz. In total, we thus have 151þ 101þ
150 ¼ 402 tensors Bn that need to be optimized. By
looking at the 10-base logarithm of the expectation value
of some local quantities with respect to the Schwinger
vacuum, see Fig. 20(a), we observe that we take the range
of the nonuniform part large enough: the errors by taking a
finite range for the nonuniform part are of order 10−6. In
Fig. 20(b), we show the distribution of the minimum charge
pminðnÞ and maximum charge pmaxðnÞ we use. For
q < pminðnÞ and q > pmaxðnÞ, we thus put DqðnÞ ¼ 0.
The pminðnÞ and pmaxðnÞ we take at the boundaries, i.e.,
n≳ 1 and n ≲ 402, correspond to the pmin and pmax of the
Schwinger vacuum, i.e., the vacuum without external
charges, that we simulated in Ref. [57]. Between the
boundaries and the external charges we anticipate the
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increasing electric field and raise pmaxðnÞ to 4þQ ¼ 9,
anticipating the dominant eigenvalue sector p0 ≈Q at the
center.
In Figs. 20(c) and 20(d), we plot the distribution of the

Schmidt values among the eigenvalues sector q of LðnÞ at
the sites n ¼ 150 [Fig. 20(c)] and n ¼ 200 [Fig. 20(d)]. As
we explain above, we adapt the bond dimensions such that
for each site n and at each eigenvalue sector p of LðnÞ,
minαq λq;αqðnÞ≲ 10−18. Comparing with Figs. 12(a)
and 12(b) we observe that the dominant eigenvalue sector

is shifted to q¼2 for n¼150 and to q¼5 for n ¼ 200. One
can also see that our pminðnÞ and pmaxðnÞ are not entirely
optimal: for certain charge sectors, the largest Schmidt
value is still well below 10−18, and these sectors could have
been discarded altogether. As we can see by looking at
Fig. 21(a), the most dominant eigenvalue sector of LðnÞ,
i.e., the eigenvalue sector q with the largest value forPDqðnÞ

αq¼1 λq;αqðnÞ, shifts from q ¼ 0 to q ¼ 5 as we go from

the left boundary to the middle and then decreases to q ¼ 0

(a) (b)

(c) (d)

FIG. 20. m=g ¼ 0.25, x ¼ 100, Q ¼ 5, Lg ¼ 10.1. The stars represent the external charges. Between them the electric background
field −Q ¼ −5 is applied. (a) 10-base logarithm of the expectation values of some local quantities with the Schwinger vacuum value
subtracted. At the boundaries one observes that they are sufficiently small, indicating that we take the nonuniform range wide enough.
(b) Maximum and minimum eigenvalues pmaxðnÞ and pminðnÞ of Lðn − 1Þ we take into account in our numerical scheme on every site.
(c) Distribution of the 10-base logarithm of the Schmidt values λq;αqðnÞ among the eigenvalue sectors q of LðnÞ for n ¼ 150.
(d) Distribution of the of the 10-base logarithm of the Schmidt values λq;αqðnÞ among the eigenvalue sectors q of LðnÞ for n ¼ 200.
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as we go to the right boundary. We also show the maximum
bond dimension maxqDqðnÞ in Fig. 21(b). The largest bond
dimension is required in the region where the electric
background field is applied.

APPENDIX D: STRING STATE AND
BROKEN-STRING STATE FOR Q= 1
IN THE WEAK-COUPLING LIMIT

As we mention in the Introduction, a major difference
between QCD and QED2 is that the latter theory is already
confining at the perturbative level, as the Coulomb potential
is linear in 1þ 1 dimensions. This also allows us to under-
stand the transition from the confining state to the broken-
string two-meson state in theweak-coupling limitm=g ≫ 1.
In this nonrelativistic limit, one can obtain the ground state by
diagonalizing the Hamiltonian in subspaces of the different
(fermion) particle sectors. The zero-particle sector simply
consists of the Fock vacuum of the free Dirac field and
corresponds to the confining string state with an energy

Estring ¼ g2L=2; ðD1Þ

for probe chargeQ ¼ 1 and separation lengthL. The broken-
string statewill correspond to theground state in the subspace
of all states containing one (light) quark antiquark pair. For
this state, the light antiquark will bind to the external probe
quark and vice versa. We can make this more quantitative by
considering the effective Hamiltonian in the nonrelativistic
limit for this particle sector:

Hqq̄ ¼ 2m −
∇2

A

2m
−
∇2

B

2m
þ g2

2
jxA þ L=2j

þ g2

2
jxB − L=2j þ g2

2
jxA − xBj −

g2

2
jxA

− L=2j − g2

2
jxB þ L=2j þ g2

2
L: ðD2Þ

Here, xA and xB are the coordinates for the light antiquark and
quark, andweput the probe quark atx ¼ −L=2 and the probe
antiquark at x ¼ L=2. Anticipating binding of the light
fermions to the probe charges for large L, we can assume
xA < xB, xA < L=2, and xB > −L=2 leading to a cancella-
tion of the last four potential terms Hqq̄ ≈HA þHB, with

HA ¼ m −
∇2

A

2m
þ g2

2
jxA þ L=2j;

HB ¼ m −
∇2

B

2m
þ g2

2
jxB − L=2j: ðD3Þ

A ground-state solution will therefore be of the form
ΨðxA; xBÞ ¼ ϕAðxAÞϕBðxBÞ, where now ϕAðxAÞ and
ϕBðxBÞ are both ground states of the nonrelativistic one-
particle problem for a linear potential. All eigenstates for this
nonrelativistic Hamiltonian HA (and similar for HB) can be
written in terms of the so-called Airy function Ai [98]:

ϕðnÞ
A ðxAÞ ¼ NAi

�
ðg2mÞ1=3jxA þ L=2j − 2En

m1=3

g4=3

�
; ðD4Þ

(a) (b)

FIG. 21. m=g ¼ 0.25, x ¼ 100, Q ¼ 5, Lg ¼ 10.1. The stars represent the external charges. Between them the electric background

field −Q ¼ −5 is applied. (a) Dominant eigenvalue sector of LðnÞ, i.e., eigenvalue q of LðnÞwith largestPDqðnÞ
αq¼1 λq;αqðnÞ.DqðnÞ is taken

such that the smallest Schmidt value is around 10−18. (b) maxqDqðnÞ: Largest bond dimension among the eigenvalue sectors of LðnÞ at
every site n.
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where N is the normalization factor and En is the (kinetic)
eigenenergyof the eigenstate. These energies follow from the
continuity requirement onϕA andϕA

0 at xA ¼ −L=2, leading
to either even or odd ϕA under xA þ L=2 → −ðxA þ L=2Þ.
The ground-state wave function is even and the ground-
state energy E0 is related to the first zero of the first
derivative of the Airy function, Ai0ðx1Þ ¼ 0, at
x1 ≈ −1.0188: E0 ¼ −ðx1=2Þðg4=3=m1=3Þ. So, in the non-
relativistic approximation, we find:

E2meson ¼ 2mþ 1.0188
g4=3

m1=3 : ðD5Þ

Note that relativistic corrections to this approximation will
necessarily involve quantum field contributions from other
particle sectors. The relativistic one-particle Dirac equation
has no bound state solutions for a linear (vector) potential
[111,112].
Finally, in the nonrelativistic approximation, we can then

understand the transition from the string state to the broken-
string state as a level crossing at the critical length L,
where Estring ¼ E2meson.
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