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In a joint experimental and theoretical effort, we report on the formation of a macrodroplet state in an
ultracold bosonic gas of erbium atoms with strong dipolar interactions. By precise tuning of the s-wave
scattering length below the so-called dipolar length, we observe a smooth crossover of the ground state
from a dilute Bose-Einstein condensate to a dense macrodroplet state of more than 2 × 104 atoms. Based
on the study of collective excitations and loss features, we prove that quantum fluctuations stabilize the
ultracold gas far beyond the instability threshold imposed by mean-field interactions. Finally, we perform
expansion measurements, showing that although self-bound solutions are prevented by losses, the interplay
between quantum stabilization and losses results in a minimal time-of-flight expansion velocity at a finite
scattering length.
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I. INTRODUCTION

The extraordinary success of ultracold quantum gases
largely stems from the simplicity with which the physics at
the many-body level can be controlled and described,
allowing access to a wide range of theoretical models of
general interest [1]. Notably, the actual many-body inter-
actions are often very well captured via simple mean-field
(MF) potentials, proportional to the local particle density n
and accounting for the average mutual effect of all
neighboring particles [1]. Moreover, short-ranged inter-
actions, even if complex or unknown, can be simply
accounted for via a contact potential and parametrized
by the sole s-wave scattering length as, which in turn can
be widely tuned by means of Feshbach resonances (FRs)
[2]. The MF treatment of a Bose gas leads to the celebrated
Gross-Pitaevskii equation (GPE) and Bogoliubov–de
Gennes (BdG) spectrum of collective modes, which are
very powerful in describing the physics of an ultracold
bosonic gas: its ground-state properties as a Bose-Einstein
condensate (BEC), as well as its dynamics [1].
Beyond the great achievements of dilute gases as a test

bed for MF theories, the quest for beyond-MF effects has
triggered great interest in the ultracold community. The

general question of how the many-body ground state of
bosons is modified by quantum fluctuations (QFs) of
elementary excitations was first addressed by Lee,
Huang, and Yang (LHY) in the 1950s [3]. The so-called
LHY term, which accounts for the first-order correction to
the condensate energy, scales for a contact-interacting gas
as asn

ffiffiffiffiffiffiffiffi
na3s

p
. While in the weakly interacting regime the

effect of QFs is negligible and difficult to isolate from MF
contributions, it can be sufficiently amplified by increasing
as via a FR. Based on this concept, recent experiments with
alkali have observed clear shifts of the BdG spectrum and
equation of state caused by the LHY term in strongly
interacting Fermi [4–6] and Bose gases [7,8].
While in these measurements the LHY correction does

not modify the qualitative behavior of the gas, it has been
recently pointed out [9] that, in systems with competing
interactions of different origin, the MF interaction can be
made small and the LHY term dominant, so that the latter
dictates the physics of the system, even inweakly interacting
gases. In this regime, a novel phase of matter is expected to
appear, namely, a liquidlike droplet state. For purely contact-
interacting gases, this situation is hard to realize since it
would require, for instance, Bose-Bose mixtures with
coincidental overlapping FRs [9]. In contrast, dipole-dipole
interaction (DDI) genuinely offers this possibility in a
single-component atomic gas by competing with the iso-
tropic MF contact interaction [10,11]. In the pure MF
picture, a paradigm of the competition between DDI and
contact interaction is embodied by the ability of quenching a
dipolar BEC to collapse by varying εdd ¼ add=as, where
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add ¼ μ0μ
2m=12πℏ2 is a characteristic length set by the

DDI, with m the mass and μ the magnetic moment of the
atoms [12,13]. Here, ℏ stands for the reduced Planck
constant and μ0 for the vacuum permeability. In general,
because of the special geometrical tunability of DDIwith the
external trapping potential and dipole orientation, the
stability and phase diagram remarkably depend on
λ ¼ ν∥=ν⊥, where ν∥ (ν⊥) is the trapping frequency along
(perpendicular to) the dipole orientation [11,12,14].
In parallel, recent breakthrough experiments with an

oblate dysprosium (Dy) dipolar BEC (λ > 1) have shown
that when quenching up εdd, the system, instead of collaps-
ing, forms a metastable state of several small droplets
[15,16]. This observation has triggered an intense debate
on the nature of such a state and its underlying stabilization
mechanism [17–23]. Eventually, Dy experiments indicated
QFs as the origin of the stabilization [16], which were
quickly confirmed by theoretical works [20–22].
Furthermore, these theoretical studies highlight the richness
of the dipolar-gas phase diagram, in which a dilute-BEC, a
multidroplet, and a single-droplet phase are found for
distinct as, add, atom number N, and λ. Up to now, droplet
physics has only been investigated in a single setup, using
Dy BEC and exploring a specific region of the phase
diagram: In the considered pancake geometry (λ > 1),
multiple stable solutions—single droplet or multidroplet—
coexist, resulting in the formation of variable mesoscopic
assemblies of a small droplet in the experiments.
In the present work, we (i) demonstrate the generality of

droplet physics, by using a dipolar BECof erbium (Er) atoms
[24], (ii) quantitatively investigate the specific role played by
QFs in dipolar systems, and (iii) explore a pristine region of
the phase diagram, studying a cigar-shaped geometry
(λ ≪ 1), and observe the crossover from a dilute BEC to a
singlemacrodroplet statewhen increasing εdd, as predicted in
Refs. [21,22].Given the complexity of the physics at play,we
combine distinctmeasurements, based on the observations of
the density distributions, collectives excitations, expansion
dynamics, and lifetime of the dipolar quantum gas, which
together offer a comprehensive picture of droplet physics.
The exquisite control of the scattering length gained in our
experiment, together with a direct comparison to parameter-
free simulations includingQF effects, ultimately enable us to
depict in which way QFs dictate the physics at play, beyond
proving their crucial stabilizing role.

II. EXPERIMENTAL PROCEDURES

The atomic properties of Er offer a privileged platform to
explore a variety of interaction scenarios. Besides its
strongly magnetic character and its many FRs [25], Er
has several stable isotopes. This feature adds an important
flexibility in terms of the choice of the background as [26].
In our early work on Er BECs, we employed the 168Er
isotope, which has a background as about twice as large as
the dipolar length, add ¼ 65a0 [27,28].

In the work reported here, we produce and use a BEC of
166Er in the lowest internal state. This isotope provides us
with two major advantages. First, its background as is
comparable to its dipolar length, add ¼ 65.5a0, realizing
εdd ¼ add=as ≈ 1 without the need of Feshbach tuning.
Second, 166Er features a very convenient FR at ultralow
magnetic-field valuesB. To preciselymapas as a function of
B, we use a spectroscopic technique based on the measure-
ment of the energy gap of the Mott insulator state in a deep
three-dimensional optical lattice [28,29]. A detailed descrip-
tion is given in the Supplemental Material [30]. Between 0
and 3 G, we observe a smooth variation of as, which results
from two low-lying FRs whose centers are fitted to 0.05(5)
and 3.0(1) G, respectively; see Fig. 1. This feature gives easy
access into the εdd > 1 regime, allowing variation of εdd
from 0.70(2) to 1.58(18) by changing B from 2.5 to 0.15 G;
see Fig. 1 upper inset. By fitting our data [2], we extract
asðBÞ valid for B in the [0.15, 2.5]-G range, which we use
throughout this paper [30].
We achieve Bose-Einstein condensation of 166Er using

an all-optical scheme very similar to Ref. [27] with cooling
parameters optimized for 166Er [30]. In short, we drive
forced evaporative cooling at a magnetic field B ¼ 1.9 G,
corresponding to as ¼ 81ð2Þa0 [εdd ¼ 0.81ð2Þ]. In this
phase, B is oriented along the vertical z axis. At the end
of the evaporation, we obtain a BEC of N ¼ 1.2 × 105

atoms with a condensed fraction above 80%.
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FIG. 1. Scattering length in 166Er. as as a function of B. The data
points (circles) are extracted from spectroscopic measurements in a
lattice-confined gas and the solid line is a fit to the data with its
statistical uncertainty (gray shaded region [30]). Upper inset:
Zoom-in of εdd as a function of B. The gray dashed line marks
εdd ¼ 1; see also the other figures. The lower inset illustrates the
geometry of our experimental setup, the relevant axes (x, y, z), the
optical-dipole-trap beam (shaded region), the magnetic field
orientation (green arrow) along which the dipoles are aligned,
and the ∥- and ⊥-imaging view axes (blue arrows). The dashed
lines picture the small angles of these axes to y and z [30].
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To reach the λ ≪ 1 regime, we slowly modify, in the
last step of the evaporation, the confining potential to the
final cigar shape, with typical frequencies ðνx; νy; νzÞ ¼
½156ð1Þ; 17.2ð4Þ; 198ð2Þ� Hz. Simultaneously, we decrease
B to 0.8 G [as ¼ 67ð2Þa0] and then change the magnetic-
field orientation to the weak trapping axis (y) while keeping
its amplitude constant [30]. Finally, we ramp B to the
desired target value (and equivalently as) in tr [30], hold for
a time th, and perform absorption imaging of our gas after a
time-of-flight (TOF) of tTOF. Two imaging setups are used
in order to measure the density distribution integrated either
along the dipoles (∥ imaging) or perpendicular to them
(⊥ imaging) [30]. Figure 1 (lower inset) illustrates the final
geometry of our system with ν∥ ¼ νy, ν⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðν2x þ ν2zÞ=2

p
,

giving λ ¼ 0.097ð3Þ, and defines the relevant axes.
Here, we explore the properties of the system when the

repulsive MF contact interaction is weakened enough to be
overcome by the DDI (λ ≪ 1, εdd > 1), after adiabatically
changing (tr ≥ 45 ms) or quenching (tr ¼ 10 ms) as to its
target value [30]. For tr ≥ 45 ms, the system evolves
following its ground state and gives access to the slow
dynamics, whereas for the tr ¼ 10 ms case, we can probe
the fast dynamics and study the relaxation towards an
equilibrium. The key question is whether QFs protect the
system from collapsing. Indeed, in this regime, the MF
treatment would imply that the attractive BEC becomes
unstable, leading to a twofold dramatic consequence [1].
First, some modes of the BdG spectrum acquire complex
frequencies. Second, in a trap, the density distribution of
the cloud undergoes a marked change on short time scales
(≤1=ν⊥), described as a “collapse”, which can develop into
a rapid loss of coherence [12,31], and pattern formations,
such as anisotropic atom bursts (“bosenova”) and special
d-wave-type structures, as observed in rubidium [32] and
dipolar gases of chromium [12,13], respectively. This fast
dynamics has been proved to be well encompassed by GPE
simulation [13,14,33].

III. DENSITY DISTRIBUTION

In a first set of experiments, we study the stability of
our dipolar Er BEC by probing the evolution of the
TOF density distribution for different as. Figures 2(a)–2(c)
show the absorption images acquired with ∥ imaging
[Figs. 2(a)–2(c)] and the corresponding central cuts
(x ¼ 0) of the 2D column density profiles [Fig. 2(d)]. In
striking contrast to the MF predictions, we observe that the
system remains stable for as well below add, with a central
coherent core surviving for times much longer than 1=ν⊥
(from several tens to hundreds of ms). The density distribu-
tion does not exhibit any special patterns,which is typical of a
collapsing cloud [12,13,32].
For as > add [Fig. 2(a)], the density distribution of the

gas shows good agreement with the MF Thomas-Fermi
(TF) profile on top of a broad Gaussian distribution,

accounting for the thermal atoms; see Fig. 2(d), dashed
lines. When lowering as below add [Fig. 2(b)], we observe a
sharpening of the central core, whose profile starts to
deviate from the MF-TF shape (see Ref. [30] for a
quantitative description). When decreasing as even further
[Fig. 2(c)], a similar bimodal structure holds on although
the dense core loses atoms. Because of the high density
reached, three-body (3B) collisions regulate the lifetime of
the central core; see discussion below and Ref. [23]. We
note that we observe a similar qualitative behavior of the
density distribution when using an adiabatic ramp of as.
However, the importance of the central peak is reduced as,
in this case, losses already set in during the ramp.
In contrast with the behavior of the central core, the

distribution of the thermal atoms, encompassed by the
broad Gaussian function of the bimodal fits [see Fig. 2(d),
dotted lines], remains mainly unaffected by the change of
as, highlighting an absence of significant heating and
population transfer, and thus an apparent decoupling of
the evolution of the coherent and thermal parts.
For further analysis, we fit the data to a bimodal

distribution made of the sum of two Gaussian functions,
as it offers a smaller residue than the fit to the MF-TF
distribution for as ≲ 70a0; see Fig. 2(d). We note that the
beyond-MF effects on the density profile are expected to be
more sophisticated than a Gaussian shaping. However,
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FIG. 2. Density profiles in the BEC-to-droplet crossover.
(a)–(c) 2D column density distributions probed with ∥ imaging
and (d) corresponding central cuts along the x ¼ 0 line (dots) for
tr ¼ 10 ms, th ¼ 6 ms (>1=ν⊥), and different as (see legend).
Each distribution is obtained by averaging four absorption images
taken after tTOF ¼ 27 ms. In (d), the lines show the central cuts of
the 2D bimodal fit results, the solid (dashed) lines showing the
two-Gaussian (MF-TF plus Gaussian) distributions and the
dotted lines the corresponding broad thermal Gaussian part.
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theoretical studies show good agreement between the
Gaussian ansatz and the full numerical solution for our
parameter range [22,23].
Being a smoking gun for long-range phase coherence,

the survival of a bimodal profile in the TOF distribution far
beyond the MF instability threshold points to a persistent
coherent behavior. This absence of a collapse advocates the
outbreak of an additional stabilization mechanism, which
we now further investigate by probing global properties of
the gas.

IV. COLLECTIVE OSCILLATION

In a second set of experiments, we unveil the origin of
the stabilization mechanism by studying the elementary
excitations of the coherent cloud. This is a very powerful
probe of the fundamental properties in quantum degenerate
gases [1,34]. In particular, collapse is intimately related
to the softening of some collective modes at the MF-
instability threshold. We focus here on the axial mode,
which is the lowest-lying excitation in the system above the
dipole mode. It corresponds to a collective oscillation of the
condensate length along y (R∥) with frequency νaxial.
The axial oscillation comes along with a smaller-amplitude
oscillation of the radial sizes in phase opposition; see
Fig. 3(a). As a result, this mode has a mixed character
between a compression and a surface mode [1]. The
compression character is particularly relevant since it
involves a change in the density and it is therefore sensitive
to the LHY corrections [35].
We excite the axial mode either by ramping B during the

final preparation stage or by transiently increasing the power
of the vertical optical dipole trap beam, after ramping B to
Bf. Here, ν∥ is abruptly changed from 17 Hz to typically
21 Hz, kept at this higher value for 8 ms, and finally set back
to 17 Hz. Following the excitation, we let the cloud evolve
for a variable th and image its TOF density distribution with
⊥ imaging. To extract νaxial, we probe the axial width R∥ of
the central coherent component of the gas [30] with th and fit
it to a damped sine; see inset of Fig. 3(b).
Figure 3 shows the observed νaxial normalized to the

trapping frequency ν∥ [36] as a function of as for adiabatic
[Fig. 3(b)] and nonadiabatic [Fig. 3(c)] ramps. Both cases
exhibit a similar qualitative behavior. For as > add, the
oscillations show a smooth dependence on εdd, with νaxial
increasing by about 5% with an average value of 1.70ν∥
[37]. When lowering as, the oscillation of the coherent part
remains visible well below the εdd ¼ 1 threshold and νaxial
exhibits a marked increase. νaxial=ν∥ grows up to 2.6(1) at
as ¼ 54a0 for tr ¼ 100 ms [Fig. 3(b)]. For tr ¼ 10 ms
[Fig. 3(c)], νaxial=ν∥ first increases similarly to the adiabatic
case [Fig. 3(b)], reaches a maximum of ∼2.13ð7Þ at 57a0
(εdd ¼ 1.15), and finally decreases for even smaller as
(open squares). The latter behavior can be explained by the
fact that the larger quenches in the interaction excites

additional high-energy modes while it drives the system
away from the linear response regime [38]. A similar
behavior is found from our theory predictions including the
LHY term (see below), thus highlighting a qualitative
agreement even in this small-as range.

V. THEORY

To account for our observation and discern between the
MF instability picture and QF mechanisms, we develop a
beyond-MF treatment of our system at T ¼ 0. The coherent
gas is described here by means of the generalized nonlocal
nonlinear-Schrödinger equation (gNLNLSE), which
includes the first-order correction from QF effects, i.e.,
the LHY term, and 3B loss processes. The gNLNLSE
reads as [20,23]

iℏ
∂ψ
∂t ¼

�
Ĥ0 þ μMFðn; ϵddÞ þ Δμðn; ϵddÞ − iℏ

L3

2
n2
�
ψ ;

ð1Þ
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FIG. 3. Axial mode. (a) Illustration of the axial mode in our
experimental setup. The black arrows sketch the oscillations of
the widths of the coherent gas along the characteristic axes of the
trap, with weights indicating their relative amplitudes. (b),
(c) Measured νaxial=ν∥ (squares) as a function of as together
with the theoretical predictions, including (solid line) or not
(dashed lines) the LHY term for tr ¼ 100 ms (b) and tr ¼ 10 ms
(c). Theoretical predictions are obtained from RTE (see text) for
as varied from 50a0 to 95a0. In the MF case, predictions fail for
as ≤ ac (orange area) due to the occurrence of the collapsing
dynamics which rules out the collective excitation picture.
ac ¼ 57a0 [ac ¼ 64a0] in (b) [(c)]. In (c), νaxial cannot be reliably
extracted for quenches to as ≤ 56a0, nor from the experiment
(open squares) or from the LHY theory (open circles, thin line).
The inset in (b) exemplifies a measurement of R∥ (triangles) and
its fit to a damped sine (solid line) for as ¼ 80a0. We typically fit
4–5 oscillations for all our as.
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where Ĥ0 ¼ ½ð−ℏ2ΔÞ=2m� þ VðrÞ is the noninteracting
Hamiltonian and VðrÞ ¼ 2π2m

P
η¼x;y;zν

2
ηη

2 the harmonic
confinement. The MF chemical potential, μMF½nðrÞ; ϵdd� ¼
gnðrÞ þ R

d3r0Vddðr − r0Þnðr0Þ, results from the competi-
tion between short-range interactions, controlled by the
coupling constant g ¼ 4πℏ2as=m, and the DDI term with
VddðrÞ ¼ ½ðμ0μ2Þ=4πr3�ð1 − 3cos2θÞ and θ the angle sus-
tained by r and the dipole moment μ. Here, nðrÞ ¼ jψðrÞj2.
The beyond-MF physics is encoded in the LHY term,
leading to an additional repulsive term in the chemical
potential, Δμðn; ϵddÞ ¼ ½32=ð3 ffiffiffi

π
p Þ�gn

ffiffiffiffiffiffiffiffi
na3

p
FðϵddÞ. The

function FðϵddÞ ¼ 1
2

R
dθk sin θk½1þ ϵddð3 cos2 θk − 1Þ�5=2

is obtained from the LHY correction in homogeneous 3D
dipolar BECs [39–41] using local-density approximation
[42]. The last non-Hermitian term in Eq. (1) accounts for
3B loss processes [43]. In our calculations, we use the
experimentally determined values of the 3B recombination
rate of the condensate L3ðasÞ [30].
As discussed in Refs. [22,23], due to the repulsive LHY

term, Eq. (1) sustains stable ground-state solutions for any
as and λ. For pancake traps (λ > 1), the solution of Eq. (1)
is not unique. The phase diagram reveals three types of
solutions: the one of a dilute BEC, a single droplet solution,
and a third one, which separates the previous two phases,
that corresponds to a metastable region of multidroplet
states. The latter has been observed in Dy experiments [15].
However, the single-droplet solution appears difficult to
access because of the overhead multidroplet state and the
stringent 3B loss mechanisms. Remarkably, in cigar-shaped
traps (λ < 1), Eq. (1) has only one possible solution. In the
εdd parameter space, the corresponding wave function
exhibits a smooth crossover from a dilute BEC to a single,
high-density, macrodroplet solution for increasing εdd. It is
worth noting that the crossover physics, e.g., the formation
and lifetime of the droplet state, is expected to crucially
depend on the 3B collisional processes. In the following,
we concentrate on the λ < 1 case, which corresponds to our
experimental setting.
The continuous and smooth change of the static proper-

ties of the system with increasing εdd is consistent with
our observations on the evolution from a dilute into an
high-density state; see Fig. 2.
Based on Eq. (1), we theoretically investigate the

dynamics of the coherent gas. In order to compare as close
as possible the theory to our experimental results, we
precisely account for the experimental sequence by perform-
ing real-time evolution (RTE) starting from the ground state
of Eq. (1) at as ¼ 67a0 with N ¼ 1.2 × 105 atoms. We
simulate a linear ramp in as from 67a0 to a variable final
value of as in tr, followed by a compression of the axial
trap from ν∥ ¼ 17.3 to 21 Hz during 8 ms. We then record
the axial width from the standard deviation of nðrÞ,
σy ¼

ffiffiffiffiffiffiffiffi
hy2i

p
, as a function of the subsequent holding time.

The evolution of σy is well fitted by a sinusoidal function,

whose frequency constitutes our theoretical prediction
of νaxial.
In Fig. 3, we present our calculations with and without

the LHY term. The MF simulations reveal a critical
scattering length ac < add below which the system collap-
ses, thus ruling out the collective mode excitation picture
for as < ac. This is in qualitative disagreement with
the experimental observations. Moreover, for decreasing
as ≥ ac, the MF predictions of νaxial are sizably shifted
compared to our measurements. In contrast, the experiment
shows an excellent match with the theory including the
LHY term, thus ruling out the MF scenario and demon-
strating the crucial role played by QFs in stabilizing the
system. Then, QFs qualitative modify the phase diagram
and drive the formation of a special coherent state, namely,
a single macrodroplet [20–23]. The lowering of ac ¼ 57a0
found in Fig. 3(b) compared to Fig. 3(c) (ac ¼ 64a0) arises
from the more stringent interplay between QFs and 3B
losses within this longer ramp, both mechanisms being able
to drive the system out of the instability region.

VI. LOSS DYNAMICS

To further investigate the respective roles of 3B losses
and QFs, we study the time evolution of the atom number
of both the central core (Ncore) and thermal (Nth) compo-
nents along the BEC-to-droplet crossover. Since in the
droplet regime the core density ncoreðrÞ dramatically
increases, 3B losses are expected to play an important
role even for moderate and low values of L3 [23].
Notwithstanding, 3B losses and QFs exhibit different power
dependencies on nðrÞ [see Eq. (1)] and, thus, the atom-loss
dynamics should disclose their competition: while QFs tend
to stabilize a high-density state, namely the droplet, 3B
losses favor lower densities.
Figures 4(a) and 4(b) show Ncore and Nth, extracted from

the double-Gaussian fit as a function of as after a non-
adiabatic [Fig. 4(a)] and adiabatic [Fig. 4(b)] change of as.
Both cases show a similar evolution. When lowering as,
Ncore is first constant for as > add, then shows a sharp drop
starting around as ∼ add, and finally curves up for lower as.
We note that in the adiabatic case, Ncore decreases faster as
compared to the nonadiabatic one and finally saturates
around 7 × 103 at lower as. We attribute these to the longer
timing involved, and we observe a similar trend as well as a
similar saturation value for longer th [see, e.g., Fig. 4(c)].
Remarkably, Nth remains mainly unaltered over the

whole range of as and the whole system does not show
any appreciable heating. This suggests that the condensed
atoms, which are ejected from in the core, leave the trap
instead of being transferred to the thermal component,
confirming a picture in which the thermal and the con-
densed component have uncoupled dynamics.
We now compare the experiment with the theory, which,

as previously, precisely accounts for the experimental
sequence and its timing by performing RTE along
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Eq. (1). Here, we compute the final atom number N ¼R
nðrÞd3r as a function of as with and without the LHY

term. Remarkably, the observed evolution of Ncore is very
well reproduced by our beyond-MF calculations (solid
lines), whereas in the absence of the LHY stabilization, the
calculations predict losses in the condensed core to occur at
values of as too large compared to the measured ones; see
Figs. 4(a) and 4(b).
The observed evolution of Ncore is well reproduced by

our beyond-MF calculations (solid lines). The agreement is
particularly remarkable for the quench [Fig. 4(a)] while it is
slightly degraded in the adiabatic ramp [Fig. 4(b)], with an
overestimation of the remaining Ncore at small as. This can
be explained by noting that, due to the longer time during
which the losses set in, a more acute importance is given to
L3, and by considering the effects of QFs on its value.
Indeed, it is of interest to note that many-body effects
modify the 3B correlation function g3 [44], leading to an
enhanced loss rate. This then justifies the larger predicted
Ncore in our simulation based on the simple noninteracting

value g3 ¼ 1 [30] compared to the experiment (we estimate
g3 ∼ 1.3 for our typical parameters), and the increased
discrepancy with decreasing as, where QFs are doomed to
prevail. In contrast, the MF calculations deviate from the
experiment with enhanced losses in the as ∼ add region. We
note that the abrupt and high saturation ofNcore at as < add,
distinct from the experimental observations, is a signature
of the collapse, reestablishing lower density in the gas via
fast “explosive” dynamics.
Finally, we investigate the in-trap time evolution of Ncore

after quenching as in the droplet regime; see Fig. 4(c). Our
measurements reveal three different time scales for the
losses. At very short th (≈0–3.5 ms), Ncore is roughly
constant, which we attribute to the time needed for the
high-density state to develop. It follows a fast decay
(≈3.5–25 ms), in which the atoms are ejected from the
high-density core via 3B losses, and witnesses the for-
mation of a high-density coherent state. The steepness of
this fast decay appears to critically depend on as, with a
marked acceleration below the MF instability threshold.
Then, the loss dynamics substantially slows down
(≈25–1000 ms) while a coherent central core is still visible
in the density profile (with Ncore ∼ 104 atoms).
From the loss curves [Fig. 4(c)] and using the general 3B

loss relation ð1=NcoreÞðdNcore=dthÞ ¼ −L3n̄2, we are able
to extract the mean in situ density n̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hncoreðrÞ2i

p
of the

high-density component in the BEC-to-droplet crossover.
Here, we estimate NcoreðthÞ and ðdNcore=dthÞ from an
empirical fit to our data and compute n̄ using an indepen-
dent measurement of the 3B loss coefficient L3 [30].
Figure 4(d) shows our results for th ¼ 4, 16 ms. We
observe a prominent increase of n̄ across the threshold
as ∼ add, and a surviving high-density state deep into the
MF instability regime.
The formation of the droplet state is particularly visible

for the th¼4ms case. Here, n̄ grows from 6.2ð9Þ ×
1020 m−3 at as¼67a0 to a maximum of 35ð7Þ×1020m−3

at as¼ 57a0, while it is slightly reduced to ∼24 × 1020 m−3

at as ∼ 46a0. This direct estimate of n̄ advocates the
activation of the LHY term when lowering as; additionally,
its magnitude as well as its evolution are in good agreement
with our simulations including the LHY correction.
Our results together with the good agreement between

theory and experiments provide an alternative confirmation
of the central role of beyond-mean-field physics. The
lifetime of the high-density core reveals, on the one hand,
the activation of the LHY term and the crossover toward a
dense droplet state, and on the other hand, the counteracting
role of 3B losses in regulating the maximum density in the
droplet regime.

VII. EXPANSION DYNAMICS

Besides their dissimilar stability diagram, collective
excitations, and density distribution, a dilute BEC in the
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FIG. 4. Lifetime and in situ density of the high-density core. (a),
(b) MeasuredNcore (squares) and Nth (circles) versus as after (a) a
nonadiabatic (tr ¼ 10 ms, th ¼ 8 ms) and (b) an adiabatic
(tr ¼ 45 ms, th ¼ 0 ms) ramp. The data show a better agreement
with the theory with the LHY term (solid line) as compared to the
MF theory (dashed line). (c) Time decay of Ncore for as ¼ 65a0
(triangles), 57a0 (circles), and 50a0 (squares) after quenching as
(tr ¼ 10 ms). We fit a double exponential function to the data
(solid lines) [30]. (d) From the fit, we deduct the mean in situ
density of the core n̄ (see text) for th ¼ 4 ms (triangles) and
16 ms (squares) and as a function of as. The error bars include the
statistical errors on the fit and on L3. The solid lines show results
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MF regime and a quantum droplet are also expected to
exhibit a markedly different expansion dynamics. While the
first is confined by an external trapping potential and thus
freely expands in its absence, a droplet state is self-bound
(SB) by its underlying interaction in analogy with the
He-droplet case [20–23]. As in our previous discussions,
the evolution from a trap-bound to a self-bound solution is
expected to be regulated by the interplay between QFs and
3B loss processes.
We investigate the expansion dynamics of our system for

various as. To preserve the high density of the coherent
component, our measurements focus on short time scales
with tr ¼ 10 ms and th ¼ 5 ms. After preparing the system
at the desired as, we abruptly switch off the optical dipole
trap, let the gas expand for a variable tTOF, and probe the
cloud width using the ∥ imaging. We fit the observed
density distribution to a double-Gaussian function, as
previously described. To extract the width ση of the
high-density core (ncore), we compute the second moments
σ2η ¼

R
η2ncoreðrÞdr along η ¼ x, z, where ncore is extracted

from the double-Gaussian fit. Figure 5(a) exemplifies the
TOF evolution of ση¼x at as ¼ 93a0, 64a0, and 55.5a0.
When entering the εdd > 1 regime, atoms in the high-
density core exhibit a marked slowing-down of the expan-
sion dynamics, which cannot be explained within the MF
approach.
To systematically study this effect, we repeat the above

measurements for different values of as (i.e., εdd). From
σηðtTOFÞ, we extract the value of the expansion velocity vη

by fitting the data to σηðtTOFÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2η;0þv2ηt2TOF

q
. Figure 5(b)

shows vx in an εdd range from 0.7 to 1.5. When the system
approaches the droplet regime with decreasing scattering
length (as < add), vx undergoes a strong reduction and
drops to a minimum equal to vx ¼ 0.40ð2Þ μm=ms at about
56a0 (εdd ∼ 1.17). For further lowering of as, vx starts to
increase again. A similar behavior is observed for vz. We
note that only the high-density component reveals this
intriguing dependency on as, whereas the thermal part
shows an almost constant expansion velocity [45].
Considering the fit-free character of our simulations as

well as the experimental challenge of accurately estimating
the expansion velocities [46], we conclude that our obser-
vations agree well with the theory predictions including the
LHY term; see solid line in Fig. 5(b). The TOF evolution is
calculated using a multigrid numerical scheme [30]. We
record the evolution of ση with tTOF and extract the
corresponding expansion velocities from the asymptotic
behavior of dση=dtTOF. Our simulations show a slowing-
down with a minimum of vx ¼ 0.32 μm=ms at as ∼ 56a0
(εdd ∼ 1.17), followed by an increase at lower as. In
contrast, calculations in the absence of beyond-MF cor-
rections fail to reproduce the experimental data. Here, the
velocity is first slightly more reduced above the MF
instability threshold εdd ∼ 1 than is expected with LHY

corrections, it then already increases at this threshold. The
first point relies on the trivial slowing-down of a BEC
whose mean repulsion energy is weakened (by reducing as
or decreasing its population Ncore). The second point
reveals a collapsing behavior that gives rise to an explosive
evolution of the density profile. The minimal velocity is
found here to be vx ¼ 0.56 μm=ms at as ¼ 68a0, which is
a much higher value than both our experimental results and
our theory predictions including the LHY correction.
The expansion behavior can be qualitatively well under-

stood considering the so-called released, or internal, energy
ER. This is the energy of the system when subtracting the
energy related to the confinement [1]. In the MF scenario,
ER > 0, as long as the ground state is stable. The BEC
expands ballistically and vη decreases for decreasing as and
N. In the unstable regime, the expansion velocity depends
crucially on the value of th at which the trap is switched off
due to the occurrence of an in situ collapse dynamic. On the
contrary, in the presence of QF, a stable ground state always
exists. The sharp variability in th is expected to be
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(triangles). The lines are fit to the data using

σxðtTOFÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x;0 þ v2xt2TOF

q
, from which we extract vx. (b) vx

as a function of as (squares). For comparison, the as-independent
expansion velocities of the thermal component are also shown
(circles). The experimental data are in very good agreement with
our parameter-free theory from RTE simulations including the
LHY term (solid line) and rule out the MF scenario (dotted line).
For clarity, we show only vx; similar results are found for vz.
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suppressed. Assuming a fixedNcore (i.e., no 3B losses), one
can show that ER decreases with decreasing as and even-
tually reachesER < 0 for as < aSB, marking the onset of the
SB solution (e.g., aSB ¼ 56a0 for N ¼ 1.2 × 105) [30].
However, in stark contrast to the MF case, ER increases
with decreasingNcore in the droplet regime.We note that aSB
is then shifted to lower valueswhenNcore gets reduced by 3B
losses, thus affecting the lifetime of the self-bound solution.
The existence of a minimal expansion velocity is thus a

direct consequence of the competition between the decrease
ofER for decreasingas at a fixedNcore and the increase ofER
for decreasing Ncore in the droplet regime. In the crossover
regime, the system smoothly evolves towards a fully self-
bound state (vη ¼ 0) until 3B losses, occurring in the trap or
in the initial phase of the expansion, set in to unbind the
system and to reduce the lifetime of the droplet state.

VIII. CONCLUSION

In summary, we demonstrate the existence of the cross-
over from a dilute BEC to a quantum droplet state driven by
QFs. Our experiments not only demonstrate that LHY
stabilization is a general feature of strongly dipolar gases,
but also thoroughly investigate the driving role of QFs in
dictating the system properties, in particular, its collective
mode, its atom losses, and expansion dynamics. This clear
and quantitative demonstration of the impact of QFs in
dipolar gases intrinsically relies on our unique and precise
knowledge of as that alone enables a direct comparison to a
parameter-free theory, which is based on a generalized GPE
with LHY correction. Our combined experimental and
theoretical results ultimately offer an experimental valida-
tion of the modeling proposed in Ref. [20] and thus of the
latter results of Refs. [21–23].
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the configuration where both components have similar sizes
(short TOF). We note that at long tTOF the thermal sizes are
nearly constant, while a trend in their evolution with as
appears at short tTOF. Because they are less subject to
artifacts, the long tTOF are expected to more reliably estimate
v and we hence conclude that the observed slight heating is,
at least mainly, an artifact.

[46] The observed slight overall shift of the experimental data
compared to the theoretical predictions may be attributed to
experimental artifacts coming from (i) the restricted range of

tTOF experimentally accessible, (ii) artifacts of the expansion
fit arising, in particular, from the interplay of the two fit
parameters, the empirical expression of the fit, or the finite
range of expansion time [cf. (i)], or (iii) artifacts coming
from the empirical double Gaussian fit used here to extract
σ. This may lead to misassessment of the size of the
coherent part and of its evolution with tTOF.
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