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Entanglement, and, in particular, the entanglement spectrum, plays a major role in characterizing many-
body quantum systems. While there has been a surge of theoretical works on the subject, no experimental
measurement has been performed to date because of the lack of an implementable measurement scheme.
Here, we propose a measurement protocol to access the entanglement spectrum of many-body states in
experiments with cold atoms in optical lattices. Our scheme effectively performs a Ramsey spectroscopy of
the entanglement Hamiltonian and is based on the ability to produce several copies of the state under
investigation, together with the possibility to perform a global swap gate between two copies conditioned
on the state of an auxiliary qubit. We show how the required conditional swap gate can be implemented
with cold atoms, either by using Rydberg interactions or coupling the atoms to a cavity mode. We illustrate
these ideas on a simple (extended) Bose-Hubbard model where such a measurement protocol reveals
topological features of the Haldane phase.
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I. INTRODUCTION

Nowadays, entanglement is a central concept in many
branches of quantum physics ranging from quantum infor-
mation [1] to condensed matter theory [2–4] and high-
energy physics [5]. Given a many-body quantum state ρ, a
fundamental quantity in characterizing the bipartite entan-
glement between two subsystems A and B is the corre-
sponding reduced density operator of a partition, ρA≡
trBfρg [6]. In particular, the entanglement spectrum (ES),
the spectrum of ρA, denoted as σðρAÞ, has proven to be a
powerful theoretical tool to analyze entanglement properties
in a quantum information context [6–8] andhasmore recently
also attracted much interest in condensed matter physics to
characterizemany-body quantum states. For example, as first
pointed out by Haldane and Li [9], the ES can serve as
fingerprint of topological order since it mimics the excitation

spectrum of chiral edge modes [10–15]. In this context, the
central spirit lies in the so-called bulk-edge correspondence of
the ES [12,13], a manifestation of the holographic principle
[3,5,11]. Moreover, the importance of the ES has been
discussed in the context of tensor networks [11,15], quantum
criticality [16], symmetry-breaking phases [11,17,18], and,
most recently, many-body localization [19–21] and eigen-
state thermalization [22]. At the same time, it has been
pointed out in the literature [23] that the ES can contain
nonuniversal features requiring caution in using it as a tool to
locate phase transitions, in particular, for symmetry-breaking
phases. Given the enormous interest in the ES as an important
theoretical concept and powerful numerical tool, an out-
standing challenge, however, is the direct experimental
measurement of the ES in many-body systems, where a full
state tomography is prohibitively expensive or even impos-
sible. At the same time, the rapid development of cold-atom
experiments [24–29] has offered unique opportunities to
access quantities related to entanglement in a many-body
system [30–33]. A remarkable achievement in this context is
the recent measurement of the second Renyi entropy
ðS2¼−logTrρ2AÞ, i.e., the purity of the reduced density
operator in cold-atom experiments in optical lattices
[34,35] following the theoretical proposals in Refs. [30,31].
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Motivated by these recent developments, we present a
protocol on how the ES can be directly measured in a
quantum simulator. In analogy to a many-body Ramsey
interferometry [36–39], where the evolution of a many-body
state is conditioned on an ancilla system, we develop a
scheme where the conditional evolution of the many-body
system is determined by a copy of the density operator, acting
as the Hamiltonian [40]. This is achieved by a sequence of
global swap operations between two copies of the system,
controlled by the ancilla. The Fourier transform of the
ancilla’s Ramsey signal reveals theES and the corresponding
degeneracies.We discuss the physical implementation of this
scheme in a cold-atom setup, relying on a combination of
single-site-resolved addressing techniques in optical lattices
[41,42] and dispersive interactions with an ancilla atom via
the Rydberg blockade mechanism [43–46]. We illustrate our
protocol with an extended Bose-Hubbard model containing
the Haldane phase [47,48]. Our detection of the degeneracies
of the “ground state” in ES and the entanglement gap serves
as a signature [14] of the symmetry-protected topological
phase [49].

II. PROTOCOL

To outline the key idea, we consider two quantum
systems, labeled 1 and 2, in the quantum states ρ1 and
ρ2, respectively. Here, the Hilbert spaces for system 1 and
system 2 are assumed to be isomorphic. The basic building
block of our protocol relies on the identity [40]

tr2fe−iϵSρ1 ⊗ ρ2eiϵSg ¼ ρ1 − iϵ½ρ2; ρ1� þOðϵ2Þ; ð1Þ
where S is the swap operator that interchanges the quantum
state of systems 1 and 2: Sjψ1i ⊗ jψ2i ¼ jψ2i ⊗ jψ1i. The
right-hand side of Eq. (1) describes a coherent evolution of
system 1, which is not generated by a Hamiltonian but
instead by the density operator of the second system, ρ2.
Below, we show how one can reduce the required unitary
USðϵÞ ¼ e−iϵS to a set of simpler operations that can be
implemented in state-of-the-art experimentswith cold atoms.
The central idea is now to repeatedly perform the

operation USðϵÞ and obtain a stroboscopic evolution of
ρ1 with ρ2 according to Eq. (1), using a new copy of ρ2 in
each step. Therefore, after n steps, we obtain the map
ρ1 → Eρ2ðρ1Þ ¼ e−inϵρ2ρ1einϵρ2 . Thus, ρ2 takes the role of a
Hamiltonian for system 1, which evolves “for a time”
tn ¼ nϵ. Monitoring this evolution allows us to access the
spectral properties of ρ2, e.g., via quantum phase estimation
using an ancillary quantum computer [40]. Here, we use a
simple Ramsey technique instead and employ an ancillary
system (with basis states j0i and j1i) to control the
application of USðϵÞ [cf. Fig. 1(a)]:

U0
step ¼ j−ih−j ⊗ USð−ϵÞ þ jþihþj ⊗ USðþϵÞ; ð2Þ

where j�i ¼ ðj0i � j1iÞ= ffiffiffi
2

p
. For an ancilla initially

prepared in the state j0i, the measurement of the operator

Z ¼ j0ih0j − j1ih1j after n such controlled stroboscopic
steps gives hZin ¼ 1

2
trfe−i2tnρ2ρ1 þ ρ1ei2tnρ2g. This expres-

sion is valid for small time steps, such that tnϵ ≪ 1. For the
general expression, we refer to Appendix A. In particular,
for ρ1 ¼ ρ2 ≡ ρ, one gets

hZin ¼ trfρ cosð2tnρÞg ¼
X
α

λα cosð2tnλαÞ: ð3Þ

The set of eigenvalues of ρ, fλαg, can thus be extracted by a
simple Fourier transform of the measurement signal for
different n. Note that the choice of ρ1 ¼ ρ2 ¼ ρ is not
fundamental, but it is a natural one for an experimental
implementation and renders the protocol sensitive to the
largest eigenvalues.
The basic building block of this protocol is the unitary

USðϵÞ ¼ e−iϵS on the joint system of 1 and 2. We note that
the recently implemented schemes to measure the Renyi
entropy of cold atoms [34,35] require a measurement of the
expectation value of the swap operator S. For a many-body
system, S can be decomposed into a product of local swap
operators, such that a measurement is possible by local
operations only [31,32,50]. Here, we aim for a more
ambitious goal since we want to apply a unitary that is
generated by the global swap operator. This is a nontrivial
task since S and, therefore, US are highly nonlocal.
Remarkably, the protocol outlined above can nevertheless
be implemented with operations relying only on exper-
imental tools already available in cold-atom experiments as
discussed below, such as controlled tunneling between

(a) (b)

(c)

FIG. 1. (a) Circuit representation of the protocol to determine
the spectrum of a density operator ρ. It consists of n stroboscopic
steps (operations) that each involve an ancilla system and two
copies of the state under investigation. (b) Each step can be
constructed from three basic operations: tunnel coupling between
neighboring copies (blue), a controlled (dispersive) phase shift
for atoms in the lattice based on the state of the ancilla system
(green), and rotations of the ancilla qubit (red). For a description
of these operations, we refer to the main text [Eqs. (4), (5), and
(7); see also Fig. 2]. (c) Construction of the stroboscopic step
Ustep from these elementary operations. Note that it differs from
the one in Eq. (2) by an additional swap, Ustep ¼ SU0

step. This
additional swap ensures that all processes involve only neighbor-
ing copies (see Appendix A).
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neighboring lattice sites [34], local addressability of indi-
vidual sites [41,42], and dispersive interactions based on
the Rydberg blockade mechanism [43].

III. COLD-ATOM IMPLEMENTATION

While the protocol discussed above is completely general,
we now present an implementation thereof in experiments
with cold atoms in optical lattices. For concreteness, we
consider bosons in a one-dimensional optical lattice
described by a Bose-Hubbard model [51], but the protocol
equally applies to two-dimensional systems. We are inter-
ested in the entanglement (spectrum) between different
lattice sites of an arbitrary state ρ, i.e., the motional degrees
of freedom of the system. A realization of the above Ramsey
interferometer with cold atoms consists of the follow-
ing steps:

(i) Preparation: nþ 1 identical copies of the many-
body state ρ are prepared. Such copies are naturally
realized in experiments with cold atoms in optical
lattices [34], e.g., in parallel one-dimensional (1D)
tubes. Once the states are produced, we freeze the
motion along each lattice for the duration of the
whole protocol by rapidly increasing the lattice
depth and turning off interactions between the
atoms, e.g., via Feshbach resonances [52]. In
addition, an atom, whose internal states represent
the ancilla qubit, is trapped in a separate lattice site,
close to one of the tubes (Fig. 2). We initialize the
ancilla atom in a stable state, representing j0i, and
use a highly excited Rydberg state to represent j1i.

(ii) Stroboscopic steps: A single run of the protocol
consists of n stroboscopic steps. The kth step
(k ¼ 1;…; n) involves only the ancilla atom and
the atoms in the two adjacent lattices k and kþ 1
(Fig. 1). We label the sites in each lattice by
j ¼ 1;…;M, and the bosonic annihilation operator
in the kth copy by aj;k. In each single stroboscopic
step, three types of operations are performed: (a) A
tunnel coupling is induced between all the sites in
lattice k and kþ 1 [Fig. 2(a)]. By lowering the
potential barrier between the two lattices, e.g., using
a superlattice, the atoms are allowed to tunnel between
the two copies, as described by the Hamiltonian:
HBS¼−J

P
M
j¼1ða†j;kaj;kþ1þa†j;kþ1aj;kÞ [34]. After

the time tBS ¼ π=ð4JÞ, the potential is ramped up
again, realizing the so-called “beam splitter,”

UBS ¼ exp (i
π

4

X
j

ða†j;kaj;kþ1 þ a†j;kþ1aj;kÞ): ð4Þ

(b) The second type of process involves a controlled
phase shift

Uc-phase ¼ j1ih1j ⊗ 1þ j0ih0j ⊗ ð−1Þ
P

j∈A
a†j;kaj;k ;

ð5Þ

where a π phase is acquired by the atoms in sites j ∈
A of lattice k depending on the state of the ancilla
atom. To achieve this, we make use of the internal
structure of the atoms in the two chains, which so far
were treated as structureless bosons in a stable internal
state jsai. In order to realize the controlled phase shift,
we couple the atoms in subsystem A of lattice k to a
Rydberg state jsbi using a laser with Rabi frequency
Ω, which is detuned by Δ from the jsai ↔ jsbi
transition. The corresponding ac-Stark shift gives
the required π-phase shift. However, if the control
atom is in theRydberg state j1i, theRydberg blockade
mechanism suppresses this process [see Fig. 2(b)].

k k+1 k+2 k+3k-2 k-1

(a)

(c)

(b)

control 
atom

copy k copy k+1 lattice 
atom(s)

copy

control atom

control 
atom

lattice 
atom(s)

copy 1
copy 2

copy 3
. . . 

control atom

subsystem 

(d)

FIG. 2. Realization of the elementary operations of the
circuit in Fig. 1 with cold atoms. (a) The beam splitter UBS
[cf. Eq. (4)] can be realized by lowering the barrier between
two copies in order to allow for tunneling between them.
(b) To realize the controlled phase shift, an off-resonant laser
to a Rydberg state jsbi is focused on the lattice sites in
subsystem A of copy k. If the control atom is in the state j0i,
the ac-Stark shift leads to an acquired phase (left); if it is in the
Rydberg state j1i, the Rydberg blockade mechanism leads to a
shift of the state jsbi, suppressing the ac-Stark shift (right).
(c) Illustration of the basic operations in step k to determine
the spectrum of the reduced density operator of only the first
three lattice sites. Note that the blockade radius rB exceeds the
size of the lattice. The rotations of the control atom Uϵ

correspond to Rabi pulses on a Rydberg transition. (d) Analo-
gous setup for 2D systems. Several copies are created in
different layers of a 3D lattice, with the ancillary atom trapped
nearby. All steps in the protocol are the same as in the 1D
case. We note that the subsystem A does not need to be
contiguous.
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On a more formal level, the corresponding Hamil-
tonian for this process reads

H¼
X
j∈A

(−Δb†j;kbj;kþΩðb†j;kaj;kþa†j;kbj;kÞ)

þ
X
j

VðcÞ
j j1ih1j⊗b†j;kbj;k

þ
X
j;l

VðbÞ
j;l b

†
j;kb

†
l;kbl;kbj;k: ð6Þ

Here, we denote the bosonic annihilation operator for
an atom in the Rydberg state jsbi on site j in the kth
copy by bj;k. The second line of Eq. (6) contains the
Rydberg-Rydberg interactions of an atom on site j in
the state jsbiwith the control atom in theRydberg state

j1i (with strength VðcÞ
j ), while the last line contains

interactions between Rydberg atoms in the lattice

(with strength VðbÞ
j;l ). In the fully blocked regime, for

jVðcÞ
j j ≫ jΔj ≫ jΩj ffiffiffiffiffiffiffi

NA
p

for all j ∈ A (where NA is
the number of atoms in A), one can adiabatically
eliminate the state jsbi and obtain, in second-order
perturbation theory, the effective Hamiltonian,
Heff ¼

P
j∈AðΩ2=ΔÞj0ih0j ⊗ a†j;kaj;k. Note that

the distance dependence of the Rydberg interactions

(VðcÞ
j ), as well as interactions between lattice atoms

(VðbÞ
j;l ), drop out in this regime. By applyingHeff for a

time tphase ¼ πΔ=Ω2, one obtains the unitary given in
Eq. (5). Such Rydberg-blockade-based gates have
alreadybeen studied anddemonstrated experimentally
[39,43,46]. We point out that the ac-Stark laser field
has to be applied in a site-resolved way [41,42] only to
the sites in A of copy k. (c) The third operation is a
simple single-qubit rotation,

Uϵ ¼ exp ( − iϵðj0ih1j þ j1ih0jÞ); ð7Þ

as realized by addressing the control atom with a
resonant laser of Rabi frequency Ωc for a time tϵ ¼
ϵ=Ωc [Fig. 2(c)]. The rotation angle ϵ ≪ 1 determines
the stroboscopic step size.
Combining these operations, one obtains

a single stroboscopic step by Ustep ¼
UBSUc-phaseUϵUc-phaseUBS [see Fig. 1(c)], as can
be shown using S2 ¼ 1 [53,54]. Note that this
operation differs from the one given in Eq. (2) by
an additional swap, Ustep ¼ ð1 ⊗ SÞU0

step. This
swap is convenient since it guarantees that, in
each stroboscopic step, a new (unused) copy is
coupled to the state that is propagated according to
Eq. (1) while involving only neighboring copies
(see Appendix A).

(iii) Measurement of the ancilla atom in the Z basis, with
outcomes �1.

The average over many runs gives hZin, and the
eigenvalues of the density operator can be extracted via
a Fourier transform of Eq. (3) over the simulated time tn.
Note that one can choose any subset of modes A by
addressing the corresponding sites with the ac-Stark laser in
step (ii-b). In particular, the addressability allows measur-
ing the spectrum of any reduced state ρA, as well as the
spectrum of the entire state ρ.
We note that in systems with a conserved quantum

number, such as the total number of atoms, it can be useful
to access the ES in a quantum-number-resolved way [55].
In fact, our protocol can be easily adjusted to measure the
ES in different number sectors [56], via a preselection of
the copies by measuring the total number of atoms in
subsystem B in all n copies before step (i). Beyond the
conceptual asset of obtaining richer information about the
entanglement structure, this also has the advantage of
increasing the spectral resolution, as discussed below
and pointed out in calculations of ES from quantum
Monte Carlo simulations [57].
We further point out that our protocol is not limited to the

implementation of the controlled phase shift using an ancilla
atom and the Rydberg blockade mechanism. Alternatively,
one can place the atoms in an optical cavity [58,59] and use
different photon number states as ancillary system. The
different ac-Stark shift experienced by the atoms allows us to
implement the controlled phase gate [60].
While in the above discussion we focused on a one-

dimensional setting, it is easy to see that the protocol equally
applies to other configurations such as two-dimensional
systems. Instead of preparing several copies in one-
dimensional tubes, in step (i) the copies are, in this case,
created in two-dimensional (2D) layers as indicated in
Fig. 2(d). All other steps are identical to the ones described
above. Experimentally, site-resolved addressing is more
challenging in this 2D setting, as it also involves layer-
resolved addressing. This could be achieved, for example, by
combining quantum gas microscopes with individual
addressing techniques using magnetic-field gradients [61].
Probing the ES in such 2D systems would allow us to
diagnose, e.g., topological order in realizations of fractional
quantum Hall states with cold atoms [62,63].

IV. ILLUSTRATION FOR THE HALDANE CHAIN

In the following, we illustrate this protocol on the
example of a Hubbard model. Here, we focus on an
analysis of the simplest model in one dimension with
symmetry-protected topological (SPT) order [49] and show
that the protocol presented in Sec. III allows us to determine
the largest eigenvalues of the ES, especially its gap and
topological degeneracies. In particular, we consider an
extended Bose-Hubbard model with nearest-neighbor
interactions:
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H ¼ −
X
j

tjða†jajþ1 þ a†jþ1ajÞ þ εjnj

þ
X
j

Unjðnj − 1Þ þ Vjnjnjþ1; ð8Þ

where nj ¼ a†jaj. As illustrated in Fig. 3(a), we consider a
superlattice with a two-site unit cell with the hopping
amplitude tj and the on-site potential εj. The interacting
part of the Hamiltonian contains the standard on-site inter-
action with strength U and nearest-neighbor terms with
strength Vj. Such extended Hubbard models have been
realized recently in experiments with cold atoms, with off-
site interactions stemming from magnetic dipole-dipole
interactions [28]. The ground-state phase diagram of the
Hamiltonian (8) can support a topologically nontrivial
Haldane phase with a nonlocal string order parameter
[64,65]. This can be most easily seen in the “hard-core”
boson limit (U → ∞), where atmost one boson can occupy a
single lattice site. In this limit, the problem can be mapped
into a spin-1

2
chain by a†j → ð−1Þjðσxj þ iσyjÞ=2 (with ~σj the

Pauli operators). For a proper choice of the Hubbard
parameters (cf. Appendix C), the Hamiltonian (8) can be
mapped into the alternating-bond Heisenberg chain [64–66]

Heff ¼
XN=2

j¼1

½Jð~σ2j · ~σ2jþ1Þ þ J0ð~σ2j−1 · ~σ2jÞ�: ð9Þ

In the case of J; J0 > 0, the ground state of Eq. (9) displays
alternating strong-weak antiferromagnetic (AF) bonds in the
chain, as illustrated in Fig. 3(b) by solid and dashed bonds. In
the limit of vanishing coupling on every second bond

ðJ0 ¼ 0Þ, the spins dimerize in spin singlets [indicated by
ellipses in Fig. 3(b)], while the two spins on the end of the
chain are decoupled and hence form free edge states. This
leads to a fourfold degeneracy of the ground state in an open
chain, which survives in the thermodynamic limit also for
finite J0, where the system is analogous to the spin-1 AKLT
model [48].
The Haldane phase in this regime falls into the category

of SPTorder and is protected by dihedral symmetries, time-
reversal symmetry, and inversion symmetry [64]. Its
topological properties can be probed by a direct measure-
ment of the nonlocal string order parameter [64,65]. Here,
we use the Haldane chain as an example to illustrate how
our protocol reveals topological order in terms of the ES,
which is a more generic detection tool, as it also applies to
situations where no such string order parameter exists. The
ES in the ground state shows a fourfold degeneracy if the
chain is bipartitioned along a J bond [65] [cf. Fig. 3(c)]: If
the size of subsystem A is larger than the edge-state
correlation length, ρA can effectively be decomposed into
two parts, ρA ¼ ρedge;A ⊗ ρbulk;A, where ρedge;A describes
the state of the edge mode in subsystem A (i.e., on the left
in Fig. 3) and ρbulk;A the state of the bulk modes in
subsystem A [49]. The edge mode ρedge;A contributes a
(trivial) factor of 2 to the degeneracy in the ES, while
another factor of 2 stems from the entanglement in the bulk
wave function ρbulk;A. This degeneracy can be seen as a
simple illustration of the bulk-edge correspondence in the
ES [12,13]: The bipartition between A and B effectively
frees edge spin(s) in A and forms an “entanglement edge
mode” [Fig. 3(b)]. The gap in the ES, remaining finite in the
thermodynamic limit, separates the physical and entangle-
ment edge modes from bulk excitations and shrinks when
the correlation length increases with J0=J.
In Fig. 4,we illustrate howour protocolwouldmeasure the

ES and detect both the degeneracy of the ground state and the
degeneracy of the reduced system. We plot in Fig. 4(a) the
evolution of hZin as a function of used copies, for different
values of the stroboscopic step size ϵ, applied to a system
describedby amixture of the four degenerate ground states of
the Haldane chain [with J0=J ¼ 0.1, as in Fig. 3(c)], i.e., a
thermal state at a temperature well below the excitation gap.
As shown in Fig. 3(c), the ES is dominated by the fourfold-
degenerate largest eigenvalue λ ≈ 1=4. The Ramsey signal
hZin shows the corresponding characteristic oscillations as a
function of the used copies n. The decay of the signal, which
is not captured by Eq. (3), is due to the higher-order
contributions for a finite step size ϵ (see Appendix A 3 for
an analytical formula). In Fig. 4(b), we show the Fourier
transform of this signal, sðνÞ¼P

nϵhZin cosð2tnνÞ. Because
of the decay of the signal, it does not display sharp peaks at
the eigenvalues of the density operator, but each eigenvalue
λα gives rise to a Lorentzian profile (with width σα ∼ ϵ)
centered around it, sðνÞ≃P

αðλα=4Þ½σα=ðν − λαÞ2 þ σ2α�.
Since the eigenvalues appear as resonance frequencies, but

(a)

(b)

(c)

FIG. 3. Entanglement spectrum of the extended 1D Hubbard
model supporting symmetry-protected topological order in the
ground state. (a) Optical lattice with a two-site unit cell
corresponding to the Hamiltonian (8). The Hubbard parameter
alternate between even and odd sites t2j ≡ t, t2j−1 ≡ t0, and
analogously for εj and Vj. (b) In the hard-core boson regime, this
can be mapped to an alternating-bond spin-1=2 Heisenberg
model (9), with J ¼ t=2 ¼ V=4 and J0 ¼ t0=2 ¼ V 0=4 (see
Appendix C). The strong antiferromagnetic bond (red) favors
the formation of a spin-singlet dimer in the small J0=J limit.
(c) ES λα of a bipartite split of regions A and B, and
corresponding entanglement energies ξα ¼ − lnðλαÞ (inset)
(J0=J ¼ 0.1, on N ¼ 8 sites), for one of the four degenerate
ground states of Eq. (9).
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also as the weight of the peak, one can determine the
degeneracy d of an eigenvalue by the product of the height
and thewidth of the corresponding peak, i.e., the degeneracy
d ¼ 4sðλαÞσα. This product is shown in the inset of Fig. 4(b),
revealing the fourfold degeneracy of λ ¼ 0.25. Note that, for

a time step ϵ ¼ 0.1, this degeneracy is already visible for a
propagation time tnmax

∼ 15, i.e., nmax ∼ 150 copies.

V. SPECTRAL RESOLUTION

In general, the spectral resolution δλ that is achievable
with this protocol is determined by the total evolution time
[δλ ∼ 1=ðϵnmaxÞ]. For a given nmax, the optimal step size
scales as ϵ ∼ 1=

ffiffiffiffiffiffiffiffiffi
nmax

p
, maximizing the total integration

time tnmax
while minimizing the decay of the Ramsey signal

due to Trotter errors (see Appendix A 3). The correspond-
ing spectral resolution scales as δλ ∼ 1=

ffiffiffiffiffiffiffiffiffi
nmax

p
. According

to the Nyquist sampling theorem, the signal hZin needs
to be measured only at times tn with n≃m=ð2ϵÞ
(m ¼ 1; 2;…), such that the total number of measurement
points scales as ∼1=ð2δλÞ. Note that beyond the Fourier
analysis illustrated above, there exist powerful numerical
techniques, based on Prony’s algorithm, that are tailored
to extract frequencies of such damped exponentials
[67]. Moreover, note that shot noise is not a severe limiting
factor in our scheme. The corresponding uncertainty
can be bounded by ΔZn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − hZi2nÞ=Nshot

p
and

Δs≲ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nmax=Nshot

p
, respectively. Thus, the signal-to-noise

ratio for the smallest resolvable peak (at λ ∼ ϵ) can be
estimated as Δs=s ∼ 1=

ffiffiffiffiffiffiffiffiffiffi
Nshot

p
. This result is in striking

contrast to other approaches used to measure the ES based
on measurements of Renyi entropies of different orders
[31,57,68]. In these approaches, the spectrum is deter-
mined by the roots of the characteristic polynomial, whose
coefficients can be expressed in terms of the moments of
the density operator via Newton’s identities. One of the
main difficulties in such an approach is that root-finding
algorithms can be extremely sensitive to noise in the
coefficients of the characteristic polynomial, i.e., shot
noise [69].

VI. CONCLUSION AND OUTLOOK

In this work, we showed how one can access the
spectrum of an arbitrary (reduced) density operator of a
many-body system by implementing a hardware protocol,
instead of full quantum state tomography. While here we
proposed a interferometric scheme that is within techno-
logical reach with upcoming cold-atom experiments, the
scheme could be generalized to other quantum simulation
platforms such as ion trap and circuit-QED architectures.
Moreover, one can envisage it as the main building block of
a full quantum principal component algorithm [40], where
instead of a single Rydberg atom, several ancilla qubits
control the protocol, and the spectrum could be extracted
via quantum phase estimation [1]. While here our analysis
focused on bosonic atoms, we expect that analogous
methods can also be employed for fermionic species
[50]. Finally, we want to point out that the concept of
density matrix exponentiation discussed here has
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FIG. 4. Analysis of the protocol. (a) Ramsey signal as a
function of the stroboscopic evolution time tn for a density
operator with four degenerate eigenvalues λα ¼ 1=4
ðα ¼ 1;…; 4Þ, using different sizes of the time step ϵ. The finite
size of the time step leads to a damping of the signal over a time
τ ∼Oðϵ−1Þ (cf. Appendix A). We indicate the measurement
uncertainty due to shot noise ΔZn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − hZi2nÞ=Nshot

p
for

Nshot ¼ 200 measurements per point. (b) Fourier-transformed
Ramsey signal sðνÞ ¼ P

nϵhZin cosð2tnνÞ, with the uncertainty
Δs ∼ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
nΔZ2

n

p
. Each eigenvalue of the density operator gives

rise to a Lorentzian whose width is determined by the size of the
stroboscopic step. The product of the height and the width of the
peak reveals that it stems from d ¼ 4 eigenvalues at λ ¼ 0.25.
This is depicted in the inset by the circles, where the horizontal
bars correspond to the width of the peak and indicate the spectral
resolution. To observe the signature of the fourfold degeneracy,
around nmax ∼ 150 copies are necessary (ϵ ¼ 0.1). The position
of the maximum, together with the height and the width of the
resonance, allows one to determine the weight of the peak, i.e.,
the degeneracy (d) of the corresponding eigenvalue (see text).
The inset shows the position of the resonance and its degeneracy
d for the peak at λ ≈ 0.25 for the different values of ϵ ¼ 0.1, 0.05,
0.025, 0.01. In all cases, one finds d ∼ 4, as expected for fourfold
degenerate eigenvalues. The horizontal bar indicates the width of
the peak, σα.
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applications beyond spectral estimation as explored
recently in Refs. [70,71].

ACKNOWLEDGMENTS

We thank L. Bonnes, E. Kapit, A. M. Läuchli, M. Ozols,
A. Sterdyniak, A. Turner, and F. Verstraete for useful
discussions. H. P. was supported by the NSF through a
grant for the Institute for Theoretical Atomic, Molecular,
and Optical Physics at Harvard University and the
Smithsonian Astrophysical Observatory. The work at
Innsbruck is supported by the ERC Synergy Grant
UQUAM, the Austrian Science Fund through SFB
FOQUS, and the EU FET Proactive Initiative SIQS and
RYQS. The work at the University of Maryland was
supported by ONR-YIP, ARO-MURI, AFOSR, NSF-PFC
at the Joint Quantum Institute, and the Sloan Foundation.
Kavli Institute for Theoretical Physics is supported by NSF
PHY11-25915.
H. P., G. Z., and A. S. contributed equally to this work.

APPENDIX A: PROTOCOL

Here, we outline the derivation of Eq. (3) of the main text
and elaborate on the decomposition of a single stroboscopic
step into processes that can be implemented in cold-atom
experiments.

1. Ramsey interferometer

The unitary giving the Ramsey interferometer with n
steps described in the main text can be compactly written in

the form URamsey ¼
Q

n
k¼1U

ðk;kþ1Þ
step , where we imply an

ordering of the product defined as
Q

n
k¼1 Ak ¼

AnAn−1…A1. Also note that we indicate the copies on
which the operators act in the superscript; e.g., Sðk;lÞ
interchanges the quantum states in copies k and l and
leaves the other copies invariant. As in the main text, we
suppressed this whenever there is no danger of confusion to
simplify notation. Here, we want to prove Eq. (3), which
states

hZin ¼ trfZURamseyðj0ih0j ⊗ ρ⊗ðnþ1ÞÞðURamseyÞ†g
¼ trfρ cosð2tnρÞg ¼

X
α

λα cosð2tnλαÞ: ðA1Þ

To this end, we first note that one can write URamsey ¼
ðQn

k¼1 S
ðk;kþ1ÞÞU0

Ramsey, where we defined U0
Ramsey ≡Qnþ1

l¼2 U0ð1;lÞ
step with

U0ðk;lÞ
step ≡ j−ih−j ⊗ eiϵS

ðk;lÞ þ jþihþj ⊗ e−iϵS
ðk;lÞ

: ðA2Þ

Since Sðk;kþ1Þ are unitary operators acting as the identity on
the ancilla Hilbert space, one can write the measurement
result of the interferometer with n steps, hZin, as

hZin ¼
1

2
Re

�
tr

��Ynþ1

k¼2

eiϵS
ð1;kÞ

�
ρ⊗ðnþ1Þ

�Ynþ1

k¼2

e−iϵS
ð1;kÞ

�†��
:

Using the relation

tr2feiϵSX ⊗ YeiϵSg ¼ cos2ðϵÞXtrfYg − sin2ðϵÞtrfXgY
þ i sinðϵÞ cosðϵÞðXY þ YXÞ;

one can calculate the trace by successively tracing out
copy k ¼ 2; 3;…; n (in this order). This gives hZin ¼
1
2
ðtrfMnðρÞg þ c:c:Þ, where we define the map MðXÞ ¼

ðcosð2ϵÞ þ i sinð2ϵÞρÞX þ sin2ðϵÞðX − ρtrfXgÞ. One can
separate the leading-order contribution in the ϵ ≪ 1 limit
as trfMnðρÞg ¼ trfρðcosð2ϵÞ þ i sinð2ϵÞρÞng þ Rnðρ; ϵÞ,
where the remainder can be bounded as follows:

jRnðρ; ϵÞj ≤
Xn
k¼1

2ksin2kðϵÞ
�
n
k

�
¼ ½(1þ 2sin2ðϵÞ)n − 1�:

Here, we used jtrfρðcosð2ϵÞ þ i sinð2ϵÞρÞkgj ≤ 1 for
k ¼ 0; 1; 2;…. For ϵ → 0 and n such that
tn ¼ nϵ ¼ const, we get jRnðρ; ϵÞj ≤ ðe2ϵtn − 1Þ → 0 for
ϵtn ≪ 1, such that

hZin ¼
1

2
ðtrfρðcosð2ϵÞ þ i sinð2ϵÞρÞng þ c:c:Þ þOðϵ2nÞ

¼
X
α

λα cosð2λαtnÞ þOðϵtnÞ: ðA3Þ

To leading order, this is equal to Eq. (3) given in the
main text.

2. Single stroboscopic step

Here, we explicitly show that the gate sequence
described in the main text indeed gives rise to the
Ramsey interferometer leading to Eq. (3). To this end,
we first note the following identity that can be checked
with straightforward algebra (using S2 ¼ 1), U0

step
ðk;lÞ ¼

Uðk;lÞ
c-swapUϵU

ðk;lÞ
c-swap, decomposing the operator (2) into a

rotation of the ancilla, Uϵ, given in Eq. (7) and the

controlled swap Uðk;lÞ
c-swap (also called Fredkin gate), which

exchanges the quantum state in copies k and l based on the
state of the ancilla qubit as

Uðk;lÞ
c-swap ¼ j1ih1j ⊗ 1þ j0ih0j ⊗ Sðk;lÞ: ðA4Þ

Next, we decompose the Fredkin gate into the three
operations (i)–(iii) given in the main text. To this end, we
recall that for bosons, the local swap operator Sðk;lÞj
interchanging the state of the atoms on site j of the two

involved copies acts as Sðk;lÞj ∶aj;k ↔ aj;l [31]. The global

swap Sðk;lÞ is a product of these local swaps
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Sðk;lÞ ¼ Q
M
j¼1 S

ðk;lÞ
j . Analogously, the swap operator in

subsystem A is given by Sðk;lÞA ¼ Q
j∈AS

ðk;lÞ
j . Each

of the local swaps can be written as Sðk;lÞj ¼
ð ~Uðk;lÞ

BS Þ†ð−1Þa†j;kaj;k ~Uðk;lÞ
BS , where ~Uðk;lÞ

BS is the unitary that
corresponds to the so-called beam splitter, which maps the

symmetric (antisymmetric) modes as ð ~Uðk;lÞ
BS Þ†aj;k ~Uðk;lÞ

BS ¼
ðaj;k − aj;lÞ=

ffiffiffi
2

p
and ð ~Uðk;lÞ

BS Þ†aj;l ~Uðk;lÞ
BS ¼ ðaj;k þ aj;lÞ=

ffiffiffi
2

p
.

With this (and using the fact that ~Uðk;lÞ
BS acts as the identity

on the ancilla Hilbert space), one can write the Fredkin gate

as Uðk;lÞ
c-swap ¼ ð ~Uðk;lÞ

BS Þ†UðkÞ
c-phase

~Uðk;lÞ
BS , where

UðkÞ
c-phase ¼ j1ih1j ⊗ 1þ j0ih0j ⊗ ð−1Þ

P
j
a†j;kaj;k ðA5Þ

is the gate given in Eq. (5), such that

U0ðk;lÞ
step ¼ ð ~Uðk;lÞ

BS Þ†UðkÞ
c-phaseUϵU

ðkÞ
c-phase

~Uðk;lÞ
BS ; ðA6Þ

where we used ½ ~Uðk;lÞ
BS ; Uϵ� ¼ 0.

Noting that ~U2
BS ¼ S (up to an irrelevant phase), we

obtain the gate sequence given in the main text,

Uðk;lÞ
step ≡ Sðk;lÞU0ðk;lÞ

step ¼ ~UBSUc-phaseUϵ
~Uc-phase

~UBS:

Finally, note that formally the operator ~UBS differs from the
beam splitter given in Eq. (4) by local phase shifts.
However, these local phase shifts are irrelevant in the
presence of an atom-number super-selection rule, such that
we can simply make the replacement ~UBS → UBS.

3. Exponential decay for finite ϵ

The expressions given in Appendix A 1 can be used to
calculate the measurement outcome for any ϵ. However, it
is instructive to consider a simpler circuit where the
evolution with USðϵÞ is only applied to one arm of the
interferometer, while in the other arm of the interferometer,
the state is left unchanged. One can straightforwardly
adjust the protocol to such a setting by using a third
internal level for the ancilla system. Such a modified
scheme is more convenient for an analysis of effects of
a finite ϵ since it allows for an analytical calculation of the
measurement result to all orders in ϵ. This modified
Ramsey interferometer will give a measurement result
hZin ¼ RefEðn; ϵÞg, with

Eðn; ϵÞ ¼ trfUð1;2Þ
S ðϵÞUð1;3Þ

S ðϵÞ…Uð1;nÞ
S ðϵÞρ⊗ðnþ1Þg;

where US;ða;bÞðϵÞ ¼ e−iϵS
ða;bÞ

. Since the products of swaps
can be written as a cyclic permutation, one can use
identities given in Refs. [31,36] to express this in terms
of moments of the density operator:

Eðn; ϵÞ ¼
Xn
k¼0

�
n

k

�
ð−iÞkcosn−kðϵÞsinkðϵÞtrfρkþ1g

¼
X
α

λα( cosðϵÞ − iλα sinðϵÞ)n:

One can easily note that this is a sum of damped
exponentials,

Eðn; ϵÞ ¼
X
α

λαe−σαn−iϕαn; ðA7Þ

with σα ¼ − 1
2
logðcos2ðϵÞ þ λ2α sin2ðϵÞÞ ≥ 0 and ϕα ¼

− arg f½cosðϵÞ − iλα sinðϵÞ�=½ðcos2ðϵÞ þ λ2αsin2ðϵÞÞ1=2�g. A
finite ϵ thus simply gives rise to a damped signal and a
renormalization of the oscillation frequencies. Using
Prony’s analysis [67], one can extract the ϕα’s and the
σα’s from the measurement record, which in turn determine

λα and its multiplicity from λα¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½e−2σα−cos2ðϵÞ=sin2ðϵÞ�

p
and λα ¼ tanðϕαÞ= tanðϵÞ. While these identities giving
damped exponentials hold only when the stroboscopic
evolution is applied just to one arm of the interferometer,
we found (numerically) similar behavior in the two-sided
version presented in the main text, when ϵ is small. In
particular, for the example studied in the main text, the two
versions are identical.

APPENDIX B: EXPERIMENTAL
IMPERFECTIONS

In this section, we analyze the robustness of the protocol
with respect to errors and imperfect implementations of the
individual steps of the protocol. We consider imperfect
beam splitters due to (i) residual on-site interactions U
(with U=J ≪ 1), i.e.,

UBS → exp

�
i
π

4J

X
j

�
Jða†j;kaj;kþ1 þ a†j;kþ1aj;kÞ

þ U
2
ða†j;ka†j;kaj;kaj;k þ a†j;kþ1a

†
j;kþ1aj;kþ1aj;kþ1Þ

��
;

ðB1Þ

and (ii) imperfect timing tBS → π=ð4JÞð1þ ξBSÞ, where
ξBS ≪ 1 quantifies the deviation from the ideal case.
Similarly, we model errors of the controlled phase shift
by an error in the (controlled) phase, i.e., tphase →
πΔ=Ω2ð1þ ξphaseÞ, and the error in the rotations of the
ancilla qubit by ϵ → ϵð1þ ξrotÞ. In all cases, we model ξBS,
ξphase, and ξrot as random variables with zero mean and
standard deviation σBS, σphase, and σrot. The corresponding
Ramsey signal for all four cases is shown in Fig. 5. The
calculations are done for the same parameters as in Fig. 3;
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however, because of the large Hilbert space, we show only
results for small systems of four lattice sites in each copy.
For such small systems, the residual on-site interactions do
not play a crucial role, as one can see in Fig. 5(a). This is
not surprising as the number of particles in the subsystem is
small. One expects that the deviation from the ideal case
and the sensitivity to residual interactions increases with the
number of particles, i.e., with the size of the subsystem.
Among the other imperfections, we find that our protocol is
most sensitive to errors in the controlled phase gate. In the
example shown in Fig. 5(c), the deviations from the ideal
case are visible for fidelities fphase ≡ 1 − σphase ≲ 0.99.
While such fidelities have not yet been achieved with
Rydberg atoms [46], theoretical calculations indicate that
they are within reach [72]. Finally, random errors in the
rotation angle of the ancilla qubit [Fig. 5(d)] can be simply
interpreted as dephasing and lead to a decay of the Ramsey
signal. They thus have a similar effect as Trotter errors
because of a finite time step (see Appendix A 3), and they
eventually limit the maximal spectral resolution.

APPENDIX C: EXTENDED-BOSE-HUBBARD
MODEL AND ALTERNATING-BOND

XXZ SPIN CHAIN

We begin with the extended-Bose-Hubbard (EBH)
model with an alternating-strength nearest-neighbor hop-
ping and interaction:

H ¼
XN=2

j¼1

½ð−ta†2ja2jþ1 − t0a†2j−1a2j þ H:c:Þ

þ Va†2ja2ja
†
2jþ1a2jþ1 þ V 0a†2j−1a2j−1a

†
2ja2j

− εa†2ja2j − ε0a†2j−1a2j−1� þ
XN
j¼1

Ua†ja
†
jajaj: ðC1Þ

Here, t; t0 > 0 captures alternating nearest-neighbor hop-
ping and V; V 0 > 0 captures alternating nearest-neighbor
repulsive interactions, while U and ε; ε0 represent on-site
repulsion and on-site potential energy, respectively. In the
infinite-U limit, i.e., “hard-core” boson regime, the model
we consider here can be mapped into a spin-1

2
chain by

setting a†j → ð−1Þjσþj and a†jaj →
1
2
ðσzj þ 1Þ. The defini-

tion of spin operators with an alternating sign (equivalent to
a gauge transformation) is to remove the negative signs in
front of t and t0. At half filling (adjusting ε ¼ V and
ε0 ¼ V 0), one can get the alternating-bond XXZ model
[64–66] described by the following Hamiltonian:

Heff ¼
XN=2

j¼1

�
Jðσx2jσx2jþ1 þ σy2jσ

y
2jþ1Þ þ

V
4
σz2jσ

z
2jþ1

þ J0ðσx2j−1σx2j þ σy2j−1σ
y
2jÞ þ

V 0

4
σz2j−1σ

z
2j

�
; ðC2Þ

where we have defined J ¼ 1
2
t and J0 ¼ 1

2
t0. Because of the

open boundary conditions, one needs an extra on-site
potential in the first and last sites (j ¼ 1 and j ¼ N) of
δε ¼ V=2 for the mapping to be exact. The Haldane phase
and fourfold degeneracy in the “ground state” of the ES
exist in this model and can survive even in the limit of zero
zz coupling, i.e., V;V 0 ¼ 0 [65]. For simplicity, in the main
text, we have chosen the off-site interactions to be V ¼ 4J
and V 0 ¼ 4J0 such that we realize an isotropic alternating-
bond Heisenberg model. However, we note that such fine-
tuning is not essential for the observation of the degeneracy
in the ES and its relation to topological order.
The ground states for J0 < 0 and 0 < J0 < J are in the

same Haldane phase and can be adiabatically connected. At
the quantum critical point J ¼ J0 ¼ 1, one recovers the
Heisenberg model, which leads to a gapless phase. For
J0 > J, one enters another Haldane phase with twofold
entanglement degeneracy if we cut on the J bond and a
fourfold entanglement degeneracy if we cut on the J0 bond.
In the XXZ spin model, the total magnetization along

Sz ¼
P

jσ
z
j is a good quantum number, ½Heff ; Sz� ¼ 0,

corresponding to the conserved number of atoms in the
extended Hubbard model, Ntot ¼

P
jnj. Therefore, in the

absence of external magnetic field, the fourfold degeneracy
can be divided into different Sz (Ntot) sectors. In the simple
limit J0 ¼ 0, the edge modes just involve the two spins in
the end of the chain and are composed of the four basis
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FIG. 5. Effects of imperfect implementations of the individual
operations on the Ramsey signal, for the same system parameters
as in Figs. 3 and 4 (with N ¼ 4 sites in each copy). We separately
show the effects of (a) residual interactions in the beam-splitter
steps, (b) uncertainty of the tunnel times in the beam-splitter
steps, (c) fluctuations in the phase acquired during the controlled
phase gates, and (d) fluctuations in the rotation angle for single-
qubit rotations (see text). For (b) and (c), we perform an average
over different error realizations. The statistical uncertainties are
indicated by the dashed lines. The size of the stroboscopic time
step is ϵ ¼ 0.07 in all cases.
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states j↑iLj↑iR, j↑iLj↓iR, j↓iLj↑iR, and j↓iLj↓iR. Here,
L=R refer to the left/right edge mode at site j ¼ 1 and
j ¼ N, respectively. When mapped to bosons for the cold-
atom realization, the four basis states become j1iLj1iR,
j1iLj0iR, j0iLj1iR, and j0iLj0iR. The four states can
obviously be divided into three different number sectors,
with total boson number on the edges being n ¼ 0, 1, and 2.
While the n ¼ 0 and n ¼ 2 sectors are not degenerate, the
n ¼ 1 sector is twofold degenerate. The same counting
applies to the case when J0 ≠ 0 and the edge mode becomes
extended. Therefore, in the cold-atom experiments, if the
total number of particles is fixed to N=2, the ground-state
degeneracy is actually twofold at exactly half filling.
Nevertheless, in this case, the entanglement degeneracy
is still fourfold because of the contribution from both the
physical and entanglement edge modes.
Since the SPT phase is short-range entangled, a disen-

tangling into product states is always possible with a local
unitary transformation or, equivalently, a finite-depth
quantum circuit [49]. Therefore, as long as the system
size is much larger than the correlation length, we are
always allowed to decouple the edge and bulk states, i.e.,
ρA ¼ ρedge;A ⊗ ρbulk;A, after a local unitary transformation.
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