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Connecting the collective behavior of disordered systems with local structure on the particle scale is an
important challenge, for example, in granular and glassy systems. Compounding complexity, in many
scientific and industrial applications, particles are polydisperse, aspherical, or even of varying shape. Here,
we investigate a generalization of the classical kissing problem in order to understand the local building
blocks of packings of aspherical grains. We numerically determine the densest local structures of uniaxial
ellipsoids by minimizing the Set Voronoi cell volume around a given particle. Depending on the particle
aspect ratio, different local structures are observed and classified by symmetry and Voronoi coordination
number. In extended disordered packings of frictionless particles, knowledge of the densest structures
allows us to rescale the Voronoi volume distributions onto the single-parameter family of k-Gamma
distributions. Moreover, we find that approximate icosahedral clusters are found in random packings, while
the optimal local structures for more aspherical particles are not formed.
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I. INTRODUCTION

“How many candies can I fit in the jar?” Children and
scientists alike have always been fascinated by packing
problems [1]. Nevertheless, it remains a challenge to
understand how collective properties of packings arise
from microscopic mechanisms on the particle level.
Microscopic interactions are encoded in local structural
motifs comprising a particle and its immediate neighbors.
These structural motifs serve as the building blocks for
extended packings. A pivotal role in the analytic modeling
of granular matter is played by the densest local structure
[2,3]. This structure coincides with the solution of the
kissing problem in mathematics [4,5], so we need to
maximize the number of spherical particles simultaneously
in contact with a central one. The icosahedral cluster,
depicted in Fig. 1, top row, is the most symmetric way to
arrange the twelve kissers, and it maximizes the local
packing density. Ideal icosahedra are about 1% denser
than the best space-tiling arrangements of congruent
spheres, given by stacked hexagonal lattice planes [6].
By embedding distorted icosahedral clusters, disordered
granular packings also locally exceed the density limit for
space-tiling sphere packings.
Much like candies, the particles found in nature and in

industrial applications are not always spherical, and they
are often randomly shaped. For example, pebbles and sand
grains vary widely in size and shape, and the kissing and

packing problems lack rigorous answers. Generalizations
of the sphere-packing problem to congruent aspherical
particles have been intensely studied [7–11], motivated
both by applications in granular matter [12–17] and by
advances in the synthesis of colloidal particles with
prescribed shapes [18,19]. In general, aspherical shapes
pack denser than spheres, and it could be shown that the
sphere is a local pessimum for lattice packing [20,21]. A
convenient shape for studying the effect of asphericity is an
ellipsoid. Even though dense ellipsoid crystals are known
[7], there is currently no mathematical proof of optimality.
The kissing problem has been generalized to tetrahedra

[22], but we are not aware of results for ellipsoidal particles.
Motivated by recent work on the packing properties of
disordered granular ellipsoids [12–15], we consider a
modified kissing problem for uniaxial ellipsoids 1∶1∶α,
also known as spheroids, or ellipsoids of rotation. The
number α is the aspect ratio of the particles; that is, α < 1
(α > 1) corresponds to oblate (prolate) ellipsoids. The
conventional kissing problem maximizes the number C
of particles in contact with a given central particle. Here, we
instead maximize the local packing density ϕl ¼ Vα=V,
defined via the volume V of the central particle’s Voronoi
cell, where Vα ¼ 4πα=3 is the particle volume.
The appropriate generalization of the Voronoi diagram

for aspherical particles is the Set Voronoi diagram [23],
also known as a navigational map [24,25]. The Set Voronoi
diagram allocates space by the distance to the particle
surfaces instead of the distance to particle centers. Typical
Set Voronoi cells are nonconvex and have curved surfaces.
The solution of our modified kissing problem is the
structure minimizing the Voronoi volume V. We define
VminðαÞ as the minimal Voronoi cell volume for each aspect
ratio and ϕmaxðαÞ ¼ Vα=VminðαÞ as the corresponding local
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packing fraction. As a first key result of the present article,
we numerically determine the optimal local structures for
uniaxial ellipsoids of aspect ratios 0.7 ≤ α ≤ 1.4.
The description of granular matter and other out-of-

equilibrium particle systems by macroscopic variables in
the spirit of thermodynamics is a currently nascent field. A
convenient characterization of the particle system is given
by Voronoi cell partitions. In particular, distributions of
Voronoi cell volumes are sensitive to structural transitions
in granular assemblies [15,26–32]. The theoretical model-
ing of such distributions remains an open problem. For
noninteracting particles (ideal gas, Poisson point process),
the distribution of Voronoi volumes is almost perfectly
fit by a three-parameter Gamma distribution [33,34]. No
fitting curve of comparable accuracy exists for interacting
particles, let alone dense packings as considered here.
Aste et al. [2,3] proposed a simplified model for sphere
packings. This analytic model yields the full distribution of
the Voronoi volumina but crucially depends on the minimal
cell volume VminðαÞ. Our results for VminðαÞ permit us
to extend this model to random packings of ellipsoidal
particles.
In Sec. II, we discuss the numerical optimization

procedure and the resulting densest local structures.
Section III investigates the occurrence of these motifs as
building blocks of extended random packings. Moreover,
we test the analytic model of Aste et al. for ellipsoidal
particles and discuss future directions.

II. DENSEST LOCAL STRUCTURES

Finding the densest local structure of ellipsoids amounts
to locating the minimum in a complex energy landscape,
with the energy given by the Voronoi cell volume V. The
function V depends on the position and orientation of the N
Voronoi neighbors of the central particle. In order to solve
this optimization problem in 5N variables, we use a two-
stage approach: First, candidate structures are explored by a
simulated annealing scheme; second, the densest candidate
structures found during the annealing phase are optimized
by a downhill algorithm. The numerical optimization
considers only a central (red) particle and the N first-shell
neighbor particles that share a Voronoi facet with it. Since
the optimal number N is not known a priori, we propose
several values of N in separate annealing runs; during one
run, the number N is fixed. While the red particle is
immobile, the other particles can translate and rotate. The
mobile particles have a tendency to drift away and detach
from the central Voronoi cell. Thus, we restrict their centers
to an ellipsoid-shaped arena around the red particle. Each
trial move proposes displacing and rotating a single mobile
particle. The move is rejected if any overlap between the
particles is created. Otherwise, we compute the volume
change ΔV of the Voronoi cell belonging to the central
particle and accept the move with probability expð−κΔVÞ.
The dimensionless pressure κ is 50 initially, and it increases
to 1000 over the 2 × 106 Monte Carlo steps comprising a
run. We keep track of the best (densest) configuration
observed so far, which is restored at the end of the
annealing run. Finally, we use a downhill algorithm to
find a local optimum of the cell volume.
The key feature of the simulated annealing algorithm

is its ability to escape from local optima, but it does not
always return the global optimum. Thus, we perform ten
independent annealing runs for each set of parameters
ðN;αÞ. In cases where multiple structures are in close
competition, the number of independent runs was increased
to 100. The major computational expense of our optimi-
zation procedure is the computation of the Set Voronoi
cell volume. To be able to perform sufficiently many trial
moves in the optimization, the resolution of the Set Voronoi
volume computation must be limited. A typical optimiza-
tion run uses a discretization [35] of 126 Voronoi seeds per
particle (320 for the downhill phase). One evaluation of the
cell volume takes ≈10 ms (up to 50 ms in the downhill
phase) on a Xeon E5-2630 CPU. For the final configura-
tions at the end of the downhill phase, we also compute
high-precision cell volumes and estimate the discretization
error from the difference (see error bars in Fig. 2).
As the result of our numerical optimization scheme,

we identify the presumed optimal structure for each aspect
ratio α and Voronoi coordination number N (see Fig. 2).
In many of the optimal structures, neighbor particles are
related by discrete symmetry operations. These groups of
neighbors share the same color in all figures. The colored

FIG. 1. Densest local structures of ellipsoids. Top row: The
12-neighbor icosahedral cluster of spheres, colored to preserve a
threefold rotational axis and three twofolds (left picture), and
colored to preserve a fivefold axis plus five twofolds (right
picture). Bottom row: Prolate 15-neighbor and oblate 14-neighbor
structures generalizing the above. Black or white belts mark the
equators of the particles. The red line is the central particle’s
distinguished axis. Particles of the same color are related by
symmetry operations. Boxes label the number of particles in the
respective rings.
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boxes indicate the number of particles in a ring, with the
same color code. Black and white belts mark the equator
of each ellipsoid. The distinguished axis of the central
particle is indicated by the red line. To obtain more precise
coordinates, we also perform constrained simulations that
enforce the rotational and mirror symmetries inferred from
some of the discovered structures (see below). The reduced
degrees of freedom lead to improved convergence of the
simulated annealing algorithm [36].
As the particles become more aspherical, a general trend

towards denser structures and increased N exists (see
Table I, row II). In this sense, the sphere is not only a
worst case of the lattice packing problem [20,21] but also of
the local packing problem. For practical reasons, we limit
our study to moderately aspherical ellipsoids. First, the
pointed tips of very aspherical particles necessitate a fine
discretization in the Set Voronoi computation. Second,
dense structures of very aspherical objects strongly depend
on minute details of the particle shape [10] and are less
generic than the results for moderate asphericity consid-
ered here.
In the densest local structure of spheres [37], the

symmetric icosahedral cluster (ico; see Fig. 1, top row),
the first-shell neighbors do not touch each other, leaving
space to be filled. In fact, the twelve kissing spheres leave

so much space that it is possible for them to switch places
without ever losing contact with the central sphere. Thus,
packing density can be increased in two ways: One can
either expand the neighbors in a direction parallel to the
central sphere’s surface, leading to prolate ellipsoids, or
squash the neighbors in the normal direction, producing
oblates. Thus, for small asphericity, oblate and prolate
ellipsoids prefer different orientations of neighbors with
respect to the central particle’s surface, and they pack

FIG. 2. Dense local structures of ellipsoids: Local packing fraction of the central Set Voronoi cell vs the aspect ratio α of the particles.
We identify several branches of candidate structures, which are distinguished by the number and symmetry of Voronoi neighbors. The
plot symbols mark the number of neighbors (N ¼ 12: filled circle, N ¼ 14: filled triangle, N ¼ 15: filled downward triangle, N ¼ 17:
downward triangle), while different line colors mark a change in symmetry. The solid line at the bottom of the graph represents the
densest-known crystal structure, and “ico” is the icosahedral cluster. Usually, in the optimal structures, the contact number C is equal
to the number of Voronoi neighbors N. One exception is the oblate N ¼ 14 structure, which loses contacts around α ≈ 0.85 (see kink).
A detailed description of the structures is given in the text.

TABLE I. Properties of densest local structures for ellipsoids
with aspect ratio α (see Sec. II). Global packing density ϕg of
disordered Lubachevsky-Stillinger packings analyzed in Sec. III,
and the best-fit parameters of the k-Gamma background (see
text). A fraction m1=m2 of all particles can be attributed to the
background.

α 0.7 0.8 0.9 1.0 1.1 1.25 1.4

II ϕmax 0.781 0.780 0.768 0.755 0.761 0.773 0.784
NðϕmaxÞ 15 14 12 12 12 14 15

ϕg 0.712 0.702 0.679 0.641 0.673 0.700 0.711
III k 15.4 14.9 13.3 13.5 12.3 13.8 17.4

m1=m2 0.95 0.96 0.98 0.99 0.98 0.97 0.97
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densest in two different structures (see Fig. 3). The two
branches cross in the ico configuration at α ¼ 1.
Moving away from the spherical case, the icosahedral

symmetry is broken. Even though the neighbor particles
twist, a threefold rotation axis is preserved for both oblates
and prolates, and the densest structure consists of a
succession of four three-rings (3-3-3-3 structures). While
both oblates and prolates show three twofold axes, the

oblates have dihedral mirror planes (point group D3d),
and prolates preserve an improper sixfold axis (S6). The
evolution of these structures with α is illustrated in Fig. 4.
The icosahedral cluster also features fivefold axes, which
would imply a 1-5-5-1 structure [see Fig. 1 (top right)].
The 1-5-5-1 structure is degenerate with the 3-3-3-3 for
spherelike oblates (see gray and yellow curves in Fig. 2).
For all other aspect ratios, the fivefold symmetry is not
stable with respect to unconstrained global optimization.
In the bottom row of Fig. 1, we illustrate two ways to

generalize the ico cluster towards higher N: to introduce
additional rings of particles (left) or to increase the number
of particles per ring (right). Most of the dense structures
found in this study can be categorized in this fashion (see
Fig. 2). For example, prolate ellipsoids with 1.26≲α≲1.42
pack densest in a structure with threefold symmetry,
composed of five three-rings of particles (3-3-3-3-3, point
group D3). At higher α, a structure with fivefold symmetry
and N ¼ 17 is preferred (1-5-5-5-1, C5h). For some of the
structures, the rotational symmetries of the particle rings
are broken. Consider, for example, the prolate 1-2-4-4-2-1

FIG. 3. Variants of the icosahedral cluster for slightly aspherical
ellipsoids. Left picture: Neighbors squashed in the normal
direction, leading to oblate ellipsoids. Right picture: Neighbors
expanded in the tangential direction, leading to prolate ellipsoids.
The center plot magnifies Fig. 2.

FIG. 4. Evolution of the densest structural motifs with aspect ratio α. In addition to the number of particles in each ring (color-coded
boxes), we give the point group for each structure. The oblate structures markedN ¼ 15 andN ¼ 14 have no nontrivial symmetries. The
1-5-5-1 structures (gray) never exceed the 3-3-3-3.
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structure with N ¼ 14 neighbors, which is optimal in the
range 1.19≲ α ≲ 1.26. In this structure, the rings are not
stacked along the central particle’s axis. Consequently, the
rotational symmetry is lifted by the central particle, and
only two mirror planes are preserved (C2v).
Oblate particles below α ≈ 0.86 form a 14-coordinated

structure instead of the icosahedral cluster (see Fig. 2).
The full sixfold symmetry is reached only for α≲ 0.85
(1-6-6-1, D6), where all neighbors touch the central
particle (contact number C ¼ 14). Above α ≈ 0.85,
because of steric constraints, not all of the Voronoi
neighbors can touch the central particle; hence, C < 14.
The sixfold symmetry is lost, and the packing fraction of
the N ¼ 14 structures declines rapidly. Once the packing
fraction falls below the N ¼ 12 branch, the cluster
tends to expel a particle (orange particle in Fig. 2). For
very oblate ellipsoids, α≲ 0.76, 15 neighbors without
any obvious symmetry pack densest around the central
particle (labeled N ¼ 15 in Figs. 2 and 4). We conjecture
that, for even larger asphericities than those considered
here, the densest structures are typically disordered
without any symmetries.

III. DENSE RANDOM PACKINGS

Having established the densest local structures for each
aspect ratio, we proceed to analyze the occurrence of these
motifs in dense disordered packings. We generate, for each
aspect ratio, at least 100 random packings of 5000 mono-
disperse ellipsoids, each using the Lubachevsky-Stillinger-
Donev protocol [38,39]. The packing generation protocol
does not implement gravity, and consequently, the packings
are essentially free of orientational order [40]. We set
the expansion rate of the particles to 3 × 10−6…10−5 times
the thermal velocity, which produces dense packings but
avoids the eventual formation of crystalline domains. Thus,
our packings are representative of the random close-packed
(or maximally random jammed) state for the respective
aspect ratio [12,13]. Our data are consistent with published
tomography experiments and numerical sedimentation data
for oblate ellipsoids [15]. Figure 5(a) shows the distribu-
tions of the local packing fraction. Because of high
statistics, we can resolve the fringes of the distribution
which are not yet accessible in experiment. The standard
deviations σ of the local packing fractions ϕl plotted
as function of the global packing fraction ϕg ¼ 1=h1=ϕli
are in very good agreement with earlier data for oblate
ellipsoids [gray data points in Fig. 5(b)]. Moreover,
Fig. 5(b) demonstrates a surprising symmetry between
ellipsoids of reciprocal aspect ratios: Both ϕg and σ
approximately coincide. This finding continues a series
of unexplained correspondences between oblate and prolate
ellipsoidal particles, for example, the equilibrium phase
diagram [9] and packing fractions ϕcry of the densest
known crystals [7].

Figure 6 displays the frequency of Voronoi cells in our
dense disordered packings with a given coordination
number N and packing fraction ϕl. The bold vertical
bars indicate, for each Voronoi coordination number, the
maximal packing fraction found in Fig. 2. At small
asphericity, the densest local structure is the icosahedral
cluster. Random packings of spheres are known to contain
distorted variations of icosahedral clusters [41], while the
probability for perfect ico clusters vanishes [30]. Our data
for α ¼ 0.9, 1.0, 1.1 in Fig. 6 confirm these results for
packings of moderate asphericity. More aspherical ellip-
soids (α ≤ 0.8 and ≥ 1.25) could pack denser with 14 or
more neighbors. As Fig. 6 demonstrates, such structures are
not formed in significant amounts. Instead, the densest
clusters are again N ¼ 12 cells. Visual inspection and a
quantitative analysis using Minkowski structure metrics
[42] (see the Appendix) confirm that very aspherical
particles tend not to form their optimal structures but do
form distorted variations of the N ¼ 12 optimal structures.
The densest clusters in a random packing readily exceed the
best known ellipsoid crystals of packing fraction ϕcry.
These supracrystalline clusters (ϕl > ϕcry) are almost uni-
formly distributed in the packing. The presence of a
supracrystalline structure implies a reduced packing frac-
tion in its vicinity, as these motifs cannot be periodically
continued. The radial distribution function gðrÞ of supra-
crystalline clusters is reminiscent of a hard-core fluid
with short-range repulsion and quickly decays to unity
(see top right plot in Fig. 6). We return to this point in the
Conclusion.
While Voronoi diagrams are a powerful tool for char-

acterizing granular packings, there is currently no estab-
lished theory for aspherical particles. Aste et al. propose
an analytic model [2,3] that predicts, under simplifying
assumptions, the full distribution of Voronoi cell volumina.
They find a so-called k-Gamma distribution, with proba-
bility density ΓkðxÞ ∝ xk−1 expð−kxÞ, where the quantity x
is the rescaled volume

FIG. 5. (a) Distributions of the rescaled variable ðϕl−ϕgÞ=σ.
For reference, a Gaussian distribution is shown (black
dotted curve). (b) Behavior of the standard deviation of local
packing fractions σ. The gray points are reference data from
Ref. [15].
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x ¼ V − VminðαÞ
hVi − VminðαÞ

: ð1Þ

For jammed spheres, the parameter k varies between 11 and
15, which agrees with typical neighbor counts [2]. The
value of k has been linked to a granular temperature [3].
The shape of the k-Gamma distributions strongly depends
on VminðαÞ, which was previously unknown for ellipsoids.
Combining our present results for VminðαÞ and the k-

Gamma model, we can now predict the full distribution
of Voronoi volumina, with only a single parameter k.
Figure 7(a) contrasts our data for dense random packings
with the predictions from the k-Gamma model. Both for
spheres and ellipsoids, the model curves satisfactorily
reproduce the skewed distributions of the data. Upon closer
inspection, however, the data exhibit a shoulder at small
volumes, which deviates from the k-Gamma curve. The
position of the shoulder is lowest for spheres and shifts into

the main peak (larger x) for aspherical particles. A similar
feature is also present in packings of bidisperse disks (see
Figs. 2 and 3 in Ref. [28]) and random-close-packed
colloidal particles (see Fig. 4 in Ref. [43]).
In order to isolate the origin of the shoulder contribution,

we fit an unnormalized k-Gamma probability density,
m1Γkðm2xÞ, to the upper portion of the data (x > 0.6 or
x > 0.8, depending on α). The majority of Voronoi cells,
m1=m2 ≥ 95%, can be attributed to the k-Gamma-
distributed background. For our packings, the best-fit
value for k is between 12 and 17 (see Table I, row III).
In general, k increases with asphericity, while the average
Voronoi neighbor count stays almost constant, hNi ≈ 14.
Figure 7(b) shows the residual after subtracting the k-
Gamma background from the Voronoi volume distribu-
tions. We find an excess of Voronoi cells at low volumes,
indicating that there are “attractor” motifs at these packing
fractions which are preferentially formed. This excess
mainly stems from N ¼ 12 cells, which show a bimodal
ϕl distribution (see Fig. 6, bottom row). Evidently, the
attractors that cause our packing to deviate from the k-
Gamma model are the N ¼ 12 motifs for the relevant
aspect ratio. Excluding such specific packing motifs, the
k-Gamma model provides useful and accurate parametri-
zation of dense frictionless ellipsoid packings.

FIG. 7. Distribution of rescaled Set Voronoi cell volumina in
random ellipsoid packings. (a) Data for different aspect ratios α,
compared with two k-Gamma distributions with k ¼ 13 and
k ¼ 17. The inset shows the same data on a linear scale.
(b) Residual after subtracting a best-fit k-Gamma distribution
(see text).
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FIG. 6. Distribution of Voronoi neighbor count and local
packing fraction. The bold vertical bars indicate the densest
local structures for each N (see Fig. 2). The vertical dashed line
marks the densest known crystalline packing ϕcry [7], and the
triangular tics on the axes mark the global packing fraction and
mean Voronoi neighbor count of the dense disordered packings.
Bottom row: Marginal distributions of the above for different N.
Top right plot: Radial distribution of the supracrystalline clusters,
ϕl > ϕcry.
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IV. CONCLUSION

In the present article, we explored the influence of
asphericity α on local packing motifs. Opening a new
chapter in the story of the classical kissing problem, we
propose a modification for arbitrarily shaped particles
which is tractable by numerics. We present the results of
an extensive numerical search for optimal structures.
Surprisingly, many of our densest structures exhibit a high
degree of symmetry. With increasing asphericity, we find a
trend towards higher coordination numbers and packing
fractions. Even though we do not maximize the contact
number, in most of our optimal structures, all neighbor
particles touch the central one, i.e., C ¼ N. One exception
is the oblate N ¼ 14 structure which loses contacts for
particles that are too spherical (see kink in Fig. 2). Our
optimal structures also are good candidates for solving the
classical kissing problem for ellipsoidal particles. A
numerical approach similar to ours was recently employed
to study clusters of Platonic solids with interesting physical
properties [44]. The continuous degree of freedom present
in our ellipsoid clusters could be useful in realizing new
kinds of symmetries and tailoring the structure to
applications.
Furthermore, we connect these densest motifs to the

properties of disordered ellipsoid packings. Knowledge
of the minimal cell volume VminðαÞ permitted us to rescale
our data of aspherical particle packings onto the curves
predicted by the k-Gamma model. The rescaled distribu-
tions of Voronoi volumina are well described by the model
curves. The remaining small deviations can be explained by
the excess formation of certain types of N ¼ 12 clusters.
The success of the k-Gamma model is unexpected, as it
includes correlations between neighboring particles only
via the minimum packing volume. In particular, mechanical
stability of a packing would also imply an upper cutoff
Vmax for the Voronoi cell volume distribution, not included
in the model. Vmax would also depend on additional
microscopic parameters such as friction and hence would
be even more difficult to establish than Vmin. We expect that
Vmax will be essential for the description of loose packings;
in the present random-close-packed limit, low compactivity
effectively masks this effect.
The local packing motifs studied here can be regarded as

the building blocks of disordered packings and are analo-
gous to the atoms in a solid. The interaction between
neighboring “atoms” is of similar complexity as the energy
landscape of glasses, and the treatment of disordered
phases in granulates, glasses, and complex fluids remains
a challenging task. However, the frequency and spatial
distribution of supracrystalline motifs may provide some
insight into the hidden structure of packings. Interestingly,
only variations of icosahedral clusters are preferentially
formed in our random packings. The optimal structures of
our more extreme ellipsoids are not realized in random
packings, an effect which increases with asphericity. One

could imagine that slight polydispersity might amplify
the formation of optimal motifs. Supracrystalline clusters
exhibit nontrivial correlations on length scales above the
particle scale (see inset in Fig. 6), which require further
investigation. It will be interesting to see whether and how
the history of packing formation, such as sedimentation
under gravity or compaction by shaking, is reflected in
these signatures, and what additional information they can
reveal about the architecture of the packing.
As demonstrated here, ellipsoids are a useful testing

ground for the effects of variations in grain shape. Our
findings are immediately relevant for the realistic modeling
of granular materials consisting of aspherical, polydisperse,
and randomly shaped grains. Such materials are found in
geological processes such as the dynamics of dunes or tali,
and industrial applications.
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APPENDIX: MORPHOMETRIC STRUCTURE
ANALYSIS OF RANDOM PACKINGS

The appearance of distorted variation of the N ¼ 12
optimal structures can be demonstrated by a morphometric
analysis using Minkowski structure metrics [42]. We com-
pute, for each Set Voronoi cellK in the random packing, the
Minkowski structure metrics (MSM) ql, defined via

qlmðKÞ ≔ 1

AðKÞ
Z
∂K

d2rYlmðθ;φÞ; ðA1Þ

qlðKÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

Xl

m¼−l
jqlmj2

vuut ; ðA2Þ

where AðKÞ is the surface area of the cell K, ∂K is its
boundary, and Ylm are spherical harmonics with the spheri-
cal coordinates θ;φ taken with respect to the particle center
of mass. The MSM are translation- and rotation-invariant
metrics of the shape of the individual Voronoi cells. The
distance of each individual Set Voronoi cell from a reference
structure can be quantified by considering the pseudo-
distance function
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ΔðKÞ ≔
X7
l¼2

(qlðKÞ − qlðrefÞ)2; ðA3Þ

with the MSM for the reference structure, qlðrefÞ. Figure 8
shows the distribution of the morphometric distances Δ and
local packing fractions ϕl in random packings of α ¼ 0.8
ellipsoids (other aspect ratios show the same result). On the
left, the reference structure is the 3-3-3-3 structure for
α ¼ 0.8. A continuum of local structures approaches the
reference motif (green bullet on the horizontal axis). On
the right-hand side, the reference structure is the optimal
1-6-6-1 motif. The particles show no propensity to form this
structure in a random packing.
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