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It is now well established that photonic systems can exhibit topological energy bands. Similar to their
electronic counterparts, this leads to the formation of chiral edge modes which can be used to transmit light
in a manner that is protected against backscattering. While it is understood how classical signals can
propagate under these conditions, it is an outstanding important question how the quantum vacuum
fluctuations of the electromagnetic field get modified in the presence of a topological band structure. We
address this challenge by exploring a setting where a nonzero topological invariant guarantees the presence
of a parametrically unstable chiral edge mode in a system with boundaries, even though there are no bulk-
mode instabilities. We show that one can exploit this to realize a topologically protected, quantum-limited
traveling wave parametric amplifier. The device is naturally protected against both internal losses and
backscattering; the latter feature is in stark contrast to standard traveling wave amplifiers. This adds a new
example to the list of potential quantum devices that profit from topological transport.
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I. INTRODUCTION

The quantization of the electromagnetic field introduces a
fundamentally new phenomenon into physics: vacuum
fluctuations that permeate all of space. These fluctuations
were initially seen as a basic unalterable feature of space-
time, before it was realized that they could be engineered to
great effect. Simply modifying geometric boundary con-
ditions changes the size of the fluctuations as a function of
position and frequency, leading to phenomena such as the
Purcell enhancement of spontaneous emission. The intro-
duction of nonlinear optical materials gives rise to an even
greater level of control, leading to the possibility of squeezed
vacuum states [1], with important applications to sensing
beyond the limits usually set by quantum mechanics [2–4].
In recent years, new approaches for altering the dynam-

ics of wave fields have gained prominence, based on
engineering periodic materials to elicit topological proper-
ties. Topologically protected unidirectional wave propaga-
tion was originally discovered in the study of 2D electrons
in strong magnetic fields, and underlies the robust quan-
tization of the Hall conductance [5]. The engineering of
topological photonic materials has been the focus of intense
theoretical investigation [6], and various experimental

platforms have already been developed [7–10]. Phononic
topological states have also attracted recent attention
[11–15], and the first experimental steps at the macroscopic
scale have been taken [15–17].
Despite this considerable work in topological photonics

and phononics, using topology to address the engineering of
vacuum fluctuations has not been addressed. Most photonic
and phononic topological systems are based on a single-
particle Hamiltonian that conserves particle number. These
topological states mimic well-known electronic topological
phases such as the quantum Hall phase [7,13,18–25] or the
spin Hall phase [10,16,26–28] and have a trivial vacuum. In
order to modify the properties of the vacuum, one has to
introduce particle nonconserving terms to the Hamiltonian
which can coherently add and remove pairs of particles from
the system; these terms have a formal similarity to pairing
terms in the mean-field description of a fermionic super-
conductor. If the amplitude of these terms is sufficiently
weak, the system remains stable; even in this regime, the
bosonic nature of the particles makes the topological proper-
ties of such Hamiltonians very different from their fermionic
(topological superconductor) counterparts [29–32]. An even
starker difference occurs when the parametric terms lead to
dynamical instabilities [33–35]. These instabilities have no
fermionic analogue and are akin to the parametric instability
in an oscillator whose spring constant is modulated in time.
Here, we consider a situation where parametric driving is

introduced to a system where photons hop on a lattice in the
presence of a synthetic gauge field [see Fig. 1(a)]. We show
how to realize an exotic situation where all bulk modes are
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stable, but where the topologically protected chiral edge
modes that exist in a system with a boundary are unstable.
This leads to an unusual spatially dependent modification
of vacuum fluctuations: when the system is stabilized by
dissipation, quantum fluctuations in the bulk are only
weakly perturbed, whereas those along the system edge
are strongly distorted. The result is not just an unusual
driven-dissipative quantum state, but also a unique kind of
photonic device: as we show in detail, the system serves
both as a topologically protected, nonreciprocal, quantum-
limited amplifier as well as a source of chiral squeezed
light. It thus represents a potentially powerful new kind of
application of topological materials.

II. IDENTIFYING UNSTABLE MODES

Before delving into the details of our proposal, it is
useful to discuss the underlying theoretical ideas in a
general setting. Our main goal is to exploit topological
features of a dynamically unstable Hamiltonian, adding
dissipation to realize a nonthermal steady state. In the
absence of topological considerations, this is a situation
that is ubiquitous in quantum optics. The simplest bosonic
Hamiltonian exhibiting instability is the single-mode
squeezing Hamiltonian:

ĤS ¼ Δâ†âþ i
2
νðâ†â† − â âÞ; ð1Þ

where â is a bosonic annihilation operator. Heuristically,
ĤS describes photons in a single cavity mode (effective
energy Δ) which are subject to coherent two-particle
driving (with amplitude ν). Without dissipation, ĤS
becomes unstable and cannot be diagonalized when the
driving amplitude exceeds the energy cost for creating a
pair of photons, i.e., when ν > jΔj. In this regime, the
dynamics corresponds to an ever-growing, exponential
accumulation of entangled pairs of bosonic particles: there
is no stationary state.
If we now add dissipation, stability can be restored by

offsetting the effective two-particle driving described by ĤS

against the decay rate κ of the mode; one requires
κ > 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − Δ2

p
. The result is a nonthermal stationary state

having a steady flux of excitations flowing from the driven
mode to the dissipative bath (which could be a waveguide
serving as an input-output port). This is precisely the
situation realized in a standard parametric amplifier: the
linear-response properties of this driven-dissipative steady
state allow for quantum-limited amplification of an addi-
tional signal drive. The required two-photon driving in
Eq. (1) is generically realized by using a nonlinearity and
parametric down-conversion of a driven pump mode.

A. Normal mode decomposition
of unstable Hamiltonians

With these preliminaries, we now consider a very general
quadratic Hamiltonian describing bosons on a lattice
subject to parametric driving:

Ĥ ¼
X
kss0

â†k;sμkss0 âk;s0 þ
i
2
ðâ†k;sνkss0 â†kp−k;s0

− H:c:Þ: ð2Þ

Here, the ladder operator âk;s annihilates a boson with
quasimomentum k in the state s, where s; s0 ¼ 1;…; N
label polarization and/or sublattice degrees of freedom. The
first set of terms describes the hopping of photons on the
lattice, and explicitly conserves both particle number and
quasimomentum. It could be diagonalized to yield a
standard band structure: for each quasimomentum k, we
have N band eigenstates. The second set of parametric
driving terms breaks particle number conservation, and, in
general, also breaks the conservation of quasimomentum:
the two-photon driving injects pairs with a net quasimo-
mentum kp, implying that quasimomentum is conserved
only modulo kp. For a realization based on a driven χð2Þ

medium, the two-photon driving terms correspond to the
down-conversion of pump photons with quasimomentum
kp into a pair of photons with quasimomenta k and
kp − k, respectively. Below, we show that having a

Down-conversionSynthetic  
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+
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FIG. 1. Setup figure. (a) Scheme of the basic interactions. (i) Photons hopping anticlockwise around a plaquette pick up a phase Φ that
can be interpreted as a synthetic gauge field flux. (ii) Pump photons with frequency ωp and quasimomentum kp are down-converted into
a photon pair with frequency ωp=2 and quasimomentum kp=2. (b),(c) Combining the two interactions in a finite geometry allows one to
engineer a topologically protected quantum-limited amplifier. A signal injected into the device via a tapered fiber propagates
unidirectionally along the edge. (b) With the appropriate choice of pump frequency ωp and quasimomentum kp, the signal is amplified
while it travels along the upper edge. A second tapered fiber detects the amplified signal. (c) When the input and the output fiber are
exchanged, the signal propagates along a different path where it decays due to the lack of phase matching. This leads to nonreciprocal
amplification.
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nonzero quasimomentum for injected pairs is a crucial
resource for controlling parametric instabilities.
Analogous to the simple Hamiltonian in Eq. (1), the

lattice Hamiltonian in Eq. (2) exhibits instabilities when the
amplitude for creating a pair of photons exceeds the energy
of the pair. Formally, one can introduce a generalized
normal mode decomposition of this generic Hamiltonian
that explicitly separates out stable modes and unstable
modes. One obtains (see Appendix A)

Ĥ ¼
X
k

X
n∈Sk

En;kn̂n;k þ 1

2

X
n∈Uk

Ĥn;k: ð3Þ

For each quasimomentum k in the first Brillouin zone, we
now have both a set of stable modes (indexed by n ∈ Sk)
and a set of unstable modes (n ∈ Uk). The first n sum in
Eq. (3) describes the stable modes: they are described by
canonical bosonic anihiliation operators β̂n;k and enter the
Hamiltonian in the standard manner, as a real energy times
a number operator: n̂n;k ¼ β̂†n;kβ̂n;k. The unstable modes
can also be described by canonical bosonic anihiliation
operators β̂n;k. They, however, enter the Hamiltonian
via unstable two-mode squeezing (parametric amplifier)
Hamiltonians:

Ĥn;k ¼ En;kðn̂n;k − n̂n;kp−kÞ þ iλn;kðβ̂†n;kβ̂†n;kp−k − H:c:Þ;
ð4Þ

where En;k ¼ −En;kp−k and λn;k ¼ λn;kp−k are both real.
This effective Hamiltonian for the unstable modes has a
simple interpretation: pairs of quasiparticles with opposite
energies �En;k are created with an amplitude λn;k. We
stress that for any nonzero λn;k, Ĥn;k is unstable (as the total
energy for creating the relevant pair of excitations is always
zero). The quasiparticle operators β̂†n;k in Eqs. (3) and (4)
are a complete set of Bogoliubov ladder operators.

B. Unstable Hamiltonians for cold atom systems

A few pioneering works have discussed topological
unstable Hamiltonians for cold atom systems in 1D
[33,35] and 2D [34]. In this framework, a Hamiltonian
of the form of Eq. (2) (for kp ¼ 0) emerges when the
interactions between atoms in the condensed phase are
treated at the mean-field level. In particular, Galilo et al.
[34] discuss the interesting case of a 2D topological
insulator whose only unstable modes are a pair of counter-
propagating edge states. We emphasize that such unstable
Hamiltonians do not describe steady-state behavior, but
rather the transient exponential growth of population in the
unstable modes after a quench. In contrast, the main focus
of our work is on the nontrivial steady state that emerges
when similar instabilities are stabilized by controlled
dissipation.

III. PARAMETRICALLY DRIVEN
HOFSTADTER MODEL

Having established the necessary theoretical framework,
we now show how to engineer a Hamiltonian whose only
unstable Bogoliubov modes β̂†n;k are chiral states copro-
pagating along the physical boundary of a topological
system. We consider photons hopping on a 2D square
lattice in the presence of a synthetic magnetic field flux,
which are also subject to parametric two-photon driving on
each site [see Fig. 1(c)]. Writing the Hamiltonian in the
position basis, we have

Ĥ ¼
X
j

ωjâ
†
j âj −

X
hi;ji

Jijâ
†
i âj þ

i
2
ν
X
j

ðeiθj â†j â†j − H:c:Þ;

ð5Þ

where âj is the photon annihilation operator on site
j ¼ ðjx; jyÞ and ωj are the corresponding on-site energies.
As usual, the synthetic gauge field is encoded in the pattern of
phases ϕij of the nearest-neighbor hopping rates,
Jij ¼ J expðiϕijÞ. We take the synthetic flux per plaquette
to be Φ ¼ π=2. Working in the Landau gauge, we then have
ϕij ¼ 0 for vertical hopping and ϕij ¼ −πjy=2 for right-
wards hopping. The parametric driving amplitude on a given
site j is written νeiθj ; we take the phase to vary as θj ¼ kpjx,
implying the injection of pairs with a quasimomentum
kp ¼ kpex. For a realization based on a driven nonlinear
medium, ν ∝

ffiffiffiffiffi
Ip

p
, where Ip is the power of the pump laser,

and kpex is the quasimomentum of the pump laser photons.
Note that a gauge transformation â0j ¼ âj exp½ifj� would
modify both phase fields ϕij and θj.
When the laser is switched off, ν ¼ 0, and there is no

disorder, ωj ¼ ω0, we have the well-known Hofstadter
model [36]. The band structure of a semi-infinite strip
(extending to the lower-half 2D plane) is shown in
Fig. 2(a). The continuous bulk band structure consists of
four bands (one for each site in the magnetic unit cell). The
top and bottom bands are flat Landau levels separated from
the two central bands by topological band gaps. Because of
the boundary, one finds inside each topological band gap an
edge state (dark line). The net number of these edge states
(the number weighted by the sign of their slope) is a
topologically protected quantity that does not depend on
the shape of the edge and can be calculated from the bulk
Hamiltonian [37].
We now turn on the parametric driving such that the

resulting Hamiltonian can exhibit instability. Our goal is
twofold: we want the system to be unstable only if we have
a boundary, and in this case, the dominant unstable
Bogoliubov modes should be chiral excitations localized
at the system’s boundary. We do this by choosing
the parametric drive parameters so that the only pairs
of photons that can be created in an energy and

TOPOLOGICAL QUANTUM FLUCTUATIONS AND … PHYS. REV. X 6, 041026 (2016)

041026-3



quasimomentum conserving fashion correspond to edge
state excitations of the original (ν ¼ 0) model. For con-
creteness, we focus on exciting the edge mode in the lower
topological band gap [dispersion εEðkÞ]. In the lab frame,
we thus tune the pump photon frequency ωp and quasi-
momentum kp so that a single pump photon can be
converted into two edge excitations with frequency ωp=2
and quasimomentum kp=2. In the rotating frame we use to
write our Hamiltonians, this requirement reduces to
εEðkp=2Þ ¼ 0. If this resonance condition is met, an
arbitrarily weak parametric drive ν will cause instability
of the edge mode. The required tuning is shown in Fig. 2(a).
Because of the approximately linear dispersion relation

of the edge mode, the above tuning guarantees that the
parametric driving can resonantly create a pair of edge
mode photons having momenta kp=2� δk; see the hollow
circles in Fig. 2(b). Thus, even for a weak parametric drive
amplitude, the edge state will exhibit instability over a
range of quasimomenta near kp=2 (corresponding to a finite
bandwidth around ωp=2 in the lab frame); see Fig. 2(c).
Conversely, the energies of two bulk excitations always

add up to a finite value; see Appendix B. In other words, all
bulk parametric transitions have a finite detuning. This
guarantees the bulk stability (even in the presence of
disorder) for a driving amplitude ν below the minimal
value of the bulk detuning.

IV. TOPOLOGICAL NONRECIPROCAL
AMPLIFIER

Having shown how to realize an unstable topological
edge mode, we now want to understand how one can use it.
More precisely, we show that a finite-size array of

nanocavities coupled to simple waveguides can be used
as a new kind of topologically protected, phase-sensitive,
quantum-limited amplifier. The role of the waveguides is
twofold: they serve as amplifier input-output ports and they
stabilize the dynamics.
We consider a realization of our system using a 30 × 12

array of nanocavities, and additionally include three cou-
pling waveguides. Each waveguide is coupled to a site at
the edge of the sample, as shown in Figs. 3(a) and 3(b).
This coupling is described using standard input-output
theory, and is entirely characterized by the three rates κin,
κout, and κsink; see Appendix C. In addition, we take each
cavity to have an internal-loss decay rate κ.
When the small decay rate κ is neglected, and without

parametric driving, the array can be operated as an ideal
circulator where a signal from any waveguide is entirely
transmitted into the next waveguide; see Fig. 3(c). Indeed,
it is always possible to match the impedances at each port to
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FIG. 2. Topological band structure. (a) Band structure of a
semi-infinite strip for the Hofstadter model with a flux of π=2
(when the parametric driving is switched off). The edge states are
plotted in dark blue. The energy is counted off from half of the
pump photon energy. The solid green circle indicates the tuning
of the pump photon quasimomentum kp required to resonantly
excite pairs of down-converted edge state photons with quasi-
momentum kp=2 (at the quasimomentum kp=2 the edge state
should have energy E ¼ 0). (b) Zoom of the band structure for a
finite laser power. In the unstable energy interval highlighted in
green, pairs of Bogoliubov excitations having quasimomenta
kp=2� δk are also excited. The corresponding amplification
amplitude λ is shown in (c). Parameters are ω0 ¼ 2.15J,
Φ ¼ π=2, kp ¼ 2.2. In (b) and (c), ν ¼ 0.08J.

(a)

(b)

In

100

10-2

c

Out 1

0

-

G
ai

n

10

1

(e)

R
ev

. G
ai

n

(c)

In

Out

Sink

Out

Sink

Sink

In

(d)

-

0

FIG. 3. Linear response of the topological amplifier. (a),(b) The
topological amplifier is formed by a 30 × 12 array of photonic
nanocavities. Three of the cavities at the edge of the sample are
attached to waveguides, the input and output ports of the
amplifier, and an additional sink port. (c) The amplifier has
the geometry of a circulator. (a),(b) The red ellipses represent the
linear response of the field inside the photonic array as a function
of the incoming signal phase. The signal is injected at the port
marked by an inward arrow. (a) A signal injected at the input port
propagates unidirectionally toward the output port. The response
is strongly phase sensitive; a signal with the right phase is
amplified along the way. (d) Transmission power gain for the
amplified quadrature as a function of the frequency of the input
signal (counted off from half of the pump frequency) for a
disordered (light thick line) and a clean sample (dark thin line).
The reflection coefficient at the input is shown in (e) for the
disordered sample. (b) A signal propagating from the output port
toward the input port follows a different path and it is not
amplified. Moreover, an appropriate matching of the impedances
ensures that it leaks out at the sink port. The resulting (small)
reverse transmission from the output to the input of the amplifier
is the blue curve in (e). Parameters are ω0 ¼ 2.14J, Φ ¼ π=2,
ν ¼ 0.08J, kp ¼ 2.2, κ ¼ 0.001J, κin ¼ 2.6J, κout ¼ 3J,
κsink ¼ 4.2J. In the disordered simulations, the offset energies
δωj, represented by the gray scale in (a) and (b), are random
numbers in the interval −0.1J < δωj < 0.1J.
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cancel the backreflection by tuning the corresponding
coupling rate (κin, κout, or κsink). Once inside the array, a
wave in a topological band gap has no alternative but to
chirally propagate along the edge. In addition, the imped-
ance matching ensures that a wave impinging on a wave-
guide from the edge channel will be entirely transmitted.
We harness the robust nonreciprocity of this topological

circulator to design an amplifier. We use the waveguide on
the upper right (left) as an input (output) port of the
amplifier. We choose parametric driving parameters similar
to Fig. 2. In the finite geometry, the quasimomentum
matching will be approximately realized only on the upper
edge. Thus, the amplification occurs mainly in the region
between the input and the output port.
The linear response of the amplifier is investigated

numerically in Fig. 3. A signal injected into the array from
the input port propagates chirally until it leaves the array
through the output port; see Fig. 3(a). Depending on its
phase, it can be amplified or deamplified along the way.
Treating the amplifier as a phase-sensitive amplifier, we
find that the power gain for the amplified signal quadrature
is flat over a large bandwidth, corresponding to the
frequency range over which the edge state dispersion is
purely linear [see Fig. 3(d)]. At the same time, any signals
incident upon the output port will be almost entirely
dumped into the sink port, and not reach the input port;
see Fig. 3(b). The residual reverse gain and input reflection
are much smaller than unity, see Fig. 3(e), ensuring the
protection of a potentially fragile signal source (e.g., a
qubit). Crucially, this strongly nonreciprocal amplifying
behavior is of topological origin and is thus robust against
disorder. We demonstrate this resilience by including
moderate levels of disorder in our simulations (see Fig. 3).
Our numerical results are in qualitative agreement with

analytical results for a model in which a 1D chiral edge
state is coupled to three waveguides; see Appendix D. In
this context, we find simple expressions for the impedance-
matching condition and the maximum power gain,

κi ¼
4v

juðjy ¼ −1Þj2 ; G ≈ exp

�
2νL
v

�
;

respectively. Here, uðjyÞ is the transverse edge state wave
function, v is the edge state velocity, and L is the number of
sites separating the input and the output ports. Thus, we see
that the gain is the exponential of the rate 2ν of creation of
down-converted pairs times the time of flight L=v from the
input to the output port. While we focus here on operation
as a phase-sensitive amplifier, for frequencies different
from ωp=2, one could also use the device as a quantum-
limited phase-preserving (i.e., nondegenerate) amplifier.

A. Quantum-limited amplification

The noise floor of our amplifier is determined by the
spectral density of the amplified quadrature of the field

leaving the output waveguide; see Appendix C for more
details. It is plotted in dark (light) red for a clean
(disordered) sample in Fig. 4(a). The quantum limit on a
phase-sensitive amplifier is to have zero added noise [38],
implying that the noise floor is simply set by the ampli-
fication of the vacuum fluctuations entering the input
port. The added noise (expressed as an equivalent number
of input quanta) is plotted in Fig. 4(b); despite disorder
and noise associated with internal loss, the amplifier is
nearly quantum limited over the entire amplification
bandwidth.
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FIG. 4. Quantum stationary state and noise properties of the
topological amplifier. (a) Noise spectral densities for both the
amplified (red) and squeezed (blue) quadratures of the field
leaving the output waveguide as a function of frequency,
cf. Eq. (C9); the noise is plotted in units of quanta (left-hand
axis), and also in decibels relative to the vacuum noise level
(right-hand axis). The field leaking out of the output waveguide
[top left corner in (c)] is strongly squeezed. We plot results for
both a disordered system (light thick lines) and a clean sample
(dark thin lines). The noise in the amplified quadrature is only
slightly larger than the quantum-limit value for a phase-
preserving amplifier (i.e., the amplified vacuum noise from the
input port). The added noise in the amplified quadrature [in units
of quanta; cf. Eq. (C10))] for both a disordered and a clean sample is
shown in (b). (c) Ellipses representing the Gaussian Wigner
function of state of each site inside the cavity array [cf. Eq. (C11)].
In the bulk, the ellipses have a circular shape and their area is as
small as allowed by the Heisenberg principle, representing a
standard vacuum state. In contrast, the ellipses at the edge are
anisotropic and have areas larger than theminimum required by the
uncertainty principle, implying that one has a thermal squeezed
state. This excess noise does not come from a finite temperature of
the environment, but rather by the amplification of the zero-point
fluctuations (quantum heating). Plotted as a color code is also the
average number of photons on each site. The gray bars indicate the
sites that are attached to coupling waveguides. Parameters are
40 × 12 sites, ω0 ¼ 2.14J, Φ ¼ π=2, ν ¼ 0.08J, kp ¼ 2.2,
κ ¼ 0.001J, κin ¼ 2.6J, κout ¼ 3J, κsink ¼ 4.2J. For the disor-
dered simulations the offset energies δωj are random numbers in
the interval −0.1J < δωj < 0.1J. For all plots, there is only
vacuum noise entering from each waveguide.
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V. TOPOLOGICAL STATIONARY STATE

Next, we investigate the quantum fluctuations in the
stationary state that arise from the steady flow of photons
from the parametric pump to the amplifier ports in the form
of down-converted radiation. Physically, such a flow arises
because vacuum fluctuations entering the input port (within
the amplification bandwidth) are amplified inside the array
before exiting through the output port. The resulting
stationary state of each cavity is Gaussian, and can be
represented by a Wigner function; these are visualized as a
set of noise ellipses in Fig. 4(c). The nonzero eccentricity of
these ellipses indicates that the noise is maximally large in
one direction in phase space (corresponding to the ampli-
fied quadrature), and a minimum in the orthogonal direc-
tion (the deamplified, or “squeezed” quadrature). Each
noise ellipse completely characterizes the steady state of the
corresponding site once all remaining sites and the wave-
guides have been traced out. The areas of the ellipses are
constrained from below by the Heisenberg uncertainty
principle and assume the minimal possible value for pure
states. The bulk sites are all in the trivial quantum ground
state, which is characterized by circular ellipses with the
minimal area and zero photons. On the other hand, the
eccentricity, the area, and the average on-site photon
number (color code) grow while moving from the input
to the output port along the upper edge (the major axis
corresponds to the amplified quadrature). We emphasize
that, in a thermal equilibrium setting, the area of the ellipses
would be equal on all sites and directly reflect the
environment temperature. Here, the excess noise of the
sites on the upper edge has a quantum origin. This
phenomenon has been termed quantum heating [39–41].
Because of quantum heating, the stationary state of each

cavity along the edge corresponds to a thermal squeezed
state, implying that the deamplified, or squeezed, quad-
rature has a larger variance than the minimum required by
the uncertainty principle. Nonetheless, the frequency-
resolved output noise is strongly squeezed below the
vacuum level (for frequencies within the amplification
bandwidth). Remarkably, the quality of the output squeez-
ing is not deteriorated in the presence of disorder. For the
parameters we consider here, more than 15 dB of output
squeezing are predicted in both the case of a clean and a
disordered sample; see the blue curves in Fig. 4(a).

VI. IMPLEMENTATION

Photonic gauge fields have already been realized in
several experimental platforms [7,9,10]. The only addi-
tional ingredient of our proposal is the parametric pumping
with a finite quasimomentum. In the setup of Ref. [10], one
could fabricate the microrings from a nonlinear optical χð2Þ
material and drive them with a single laser impinging at a
finite angle. The implementation of parametric pumping
[32] and synthetic gauge fields [13,20,22,25,32] is in

principle possible in any cavity array platform where a
nonlinear resource is available. These include photonic
crystal microcavities [42] fabricated from nonlinear optical
χð2Þ materials [43–45] or piezoelectric materials, and
optomechanical arrays based on optomechanical crystals
[46,47]. An alternate route would be to use lattices of
superconducting resonators with embedded Josephson
nonlinearities [48]. To that end, we note the recent work
by Anderson et al. [49], which outlines a detailed exper-
imental proposal for constructing a square lattice of low-
loss 3D cavities with exactly the value of synthetic flux
required by our proposal. Crucially, the synthetic flux is
obtained without any time-dependent driving. By adding
Josephson junctions to this setup (as is also proposed in
Ref. [49]), one has an extremely promising venue for
realizing the topological amplifier physics discussed here.
We also note that very recently a proposal for realizing
topological insulator physics in a classical optical network
with nonlinearities was put forward [50]; such a setup could
also be adapted to implement our scheme, as it contains all
the necessary ingredients.

VII. CONCLUSIONS AND OUTLOOK

In this work, we introduce a means to tie the squeezing
and amplification of vacuum fluctuations to topological
properties of a band structure. Our work represents a new
design principle for a nonreciprocal quantum-limited
amplifier that has topological protection. Nonreciprocal
amplifiers have the potential to revolutionize experiments
with superconducting qubits, as they could eliminate the
need for ferrite-based circulators and the accompanying
insertion losses that limit current experiments. A variety of
(nontopological) designs based on multiple parametric
interactions have been proposed recently [51,52], and even
realized experimentally [53,54], including a traveling wave
parametric amplifier built using an array of over 2000
Josephson junctions [55]. In such a conventional traveling
wave parametric amplifier, the reverse transmission is at
best unity, and even small amounts of disorder can lead to
large amounts of unwanted reflection gain. In contrast, the
topological underpinnings of our design ensure reverse
transmission and input reflection coefficients that are well
below unity even in the presence of disorder. Our design
also has advantages over cavity-based approaches,
namely, the lack of any fundamental constraint on its
gain-bandwidth product.
More generally, our topological amplifier differs mark-

edly from other proposed topological devices, such as
isolators or nonamplifying circulators [6], in that it has
some protection against internal losses: in the large gain
limit, only the loss (and corresponding noise) in the
immediate vicinity of the input port hinders quantum-
limited operations, as it is only this noise that is amplified to
any significant degree (see Appendix D for a quantitative
discussion of this point).
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In conclusion, our work shows how utilizing the topo-
logical properties of an unstable bosonic Hamiltonian
provides a new route for both engineering electromagnetic
vacuum fluctuations and, correspondingly, constructing a
new kind of topologically protected, nonreciprocal quan-
tum amplifier. It opens the door to future studies, pursuing
both other kinds of novel applications as well as more
fundamental issues (e.g., the effects of additional photon-
photon interactions in such systems).

ACKNOWLEDGMENTS

V. P. and F. M. acknowledge support by an ERC Starting
Grant OPTOMECH, by the DARPA project ORCHID, and
by the European Marie-Curie ITN network cQOM. M. H.
and A. A. C. acknowledge support from NSERC. We thank
Ignacio Cirac, Sebastian Huber, and André Xuereb for
discussion.

APPENDIX A: GENERALIZED NORMAL
MODE DECOMPOSITION

We consider the generic Hamiltonian Eq. (2).
We group all ladder operators with quasimomentum
k in a vector of ladder operators, jâki ¼
ðâk;1;…; âk;N; â

†
kp−k;1;…; â†kp−k;NÞT . The Heisenberg

equation of motion for jâki reads
d
dt

jâki ¼ −iσzhkjâki; ðA1Þ

where

σz ¼
�
1N 0

0 −1N
�

and hk is the Bogoliubov–de Gennes (BdG) Hamiltonian

hk ¼
� μk iνk

−iν†k μkp−k

�
:

In the following, we explicitly construct a complete set of
Bogoliubov operators β̂n;k, leading to the generalized normal
mode decomposition Eq. (3), from the solutions of the
eigenvalue problem:

σzhkjkn;li ¼ Λk;n;ljkn;li: ðA2Þ

We note that we need to find only N annihilation operators
while the eigenvalue problem has dimension 2N. However,
the equations for quasimomentum kp − k are not indepen-
dent from the equations for quasimomentum k. One set of
these equations can be obtained from the other by taking the
adjoint. This doubling of the degrees of freedom accom-
panied by an embedded particle-hole symmetry occurs
because we are effectively applying a single-particle

formalism to a problem where the number of excitations
is not conserved.
From Eq. (A2) it is easy to prove that eigenvalues that are

not related by complex conjugation, Λn;l;k ≠ Λ�
n0;l0;k, have

σz orthogonal eigenvectors, hkn;ljσzjkn0;l0 i ¼ 0. Moreover,
the eigenvectors with real eigenvalues have a nonzero
symplectic norm, hkn;ljσzjkn;li ≠ 0 (which can also be
negative). We assign the label l ¼ þ to the positive norm
eigenvectors. We construct a set of orthonormal
Bogoliubov creation operators from these positive norm
solutions with the definition

β̂n;k ≡ hkn;þjσzjâki: ðA3Þ

We note that the scalar product between a standard vector
and a vector of operators is an operator. Moreover, we have
to normalize the positive vectors jkn;li according to
hkn;þjσzjkn;þi ¼ 1 such that ½β̂n;k; β̂†n0;k� ¼ δnn0 . By taking
the time derivative of Eq. (A3) and plugging Eq. (A1) and
the adjoint of Eq. (A2), we immediately find

_̂βn;k ¼ −ihkn;þjσzσzhkjâki ¼ −iΛn;þ;kβ̂n;k:

Thus, β̂n;k is the annihilation operator of a harmonic
oscillator with energy En;k ¼ Λn;þ;k. In the same way,
one could construct a set of creation operators β̂†n;kp−k from

the negative norm eigenvectors jkn;−i. However, it is
possible to focus only on the positive norm solutions
because of the particle-hole symmetry: the information
encoded in the negative norm solutions jkn;−i is also
encoded in the positive norm solutions jðkp − kÞn;þi.
The remaining eigenvectors have zero norm,

hkn;�jσzjkn;�i ¼ 0. They appear whenever the
Hamiltonian is unstable. In this case, the matrix σzhk has
pairs of complex conjugated eigenvalues, Λn;þ;k ¼ Λ�

n;−;k.
For concreteness, we indicate with the label þ the eigen-
values with positive imaginary part. The pair of eigenvectors
jkn;�i are not orthogonal to each other, hkn;þjσzjkn;−i ≠ 0.
In this case, we define a pair of commuting ladder
operators as

β̂n;k ≡ 1ffiffiffi
2

p ðhkn;−j þ ihkn;þjÞσzjâki; ðA4Þ

β̂†n;kp−k ≡ 1ffiffiffi
2

p ðhkn;−j − ihkn;þjÞσzjâki: ðA5Þ

The bosonic commutation relations are recovered by requir-
ing the normalization hkn;−jσzjkn;þi ¼ i. By taking the time
derivative of Eq. (A4) and using Eq. (A1), the transpose of
Eq. (A2), and Eq. (A5), we find

_̂βn;k ¼ −iRe½Λn;þ;k�β̂n;k þ Im½Λn;þ;k�β̂†n;kp−k:
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Likewise, we find

_̂β
†
n;kp−k ¼ −iRe½Λn;þ;k�β̂†n;kp−k þ Im½Λn;þ;k�β̂n;kp−k:

The corresponding Hamiltonian is the two-mode squeezing
Hamiltonian [Eq. (4)], with energies En;k ¼ −En;kp−k ¼
Re½Λn;þ;k� and amplification amplitude λn;k ¼ Im½Λn;þ;k�.
When the matrix σzh is diagonalizable, the set of

Bogoliubov annihilation operators defined in Eqs. (A3)
and (A4) is complete. The pathological case where the
matrix σzh is not diagonalizable occurs only exactly at the
threshold of an instability.

APPENDIX B: DETAILS OF THE CALCULATION
OF THE BAND STRUCTURE

1. Stability of the bulk Hamiltonian

In the main text, we explain that a bosonic Hamiltonian
with anomalous pairing terms is unstable when it allows the
creation of a pair of Bogoliubov excitations without any net
energy change. In other words, the sum of two quasiparticle
energies should be zero. We also claim that for the
parameters of Fig. 2 the bulk Hamiltonian is stable because
no combination of bulk states whose energies add up to
zero exists. This is not immediately obvious from the plot
of the standard band structure. In order to visually illustrate
the absence of such a combination of bulk states, one has
to, rather, plot the corresponding Bogoliubov–de Gennes
band structure; see Fig. 5. For each value of kx, the latter is
formed by both the quasiparticle energies En;kx (blue bands)
as well as the energies −En;kp−kx (gray bands). In analogy to
the descriptions of quasiparticles in fermionic supercon-
ductors, one refers to the former (latter) as the particle
(hole) bands of the system. The absence of crossings
between particle and hole bands for the chosen pump laser
frequency implies that there is no combination of a pair of
bulk quasiparticles whose energies add up to zero while at
the same time the corresponding quasimomenta add up to

kp. In the limit of vanishing parametric driving (ν ¼ 0), the
minimal distance between particle and hole bands is the
minimal detuning of a parametric transition involving two
bulk states.
In the presence of weak disorder, there is no selection

rule for the quasimomenta of the pair of quasiparticles
created in a parametric transition. Nevertheless, all possible
parametric transitions are still detuned because the band
gap separating particle and hole bands is not merely locally
defined (for a fixed kx) but rather extends to the whole
Brillouin zone. Thus, the stability of the bulk Hamiltonian
is a robust feature.
As we explain in Appendix A, the Bogoliubov–de

Gennes band structure can be calculated by diagonalizing
the matrix σzhðkxÞ, where hðkxÞ is the first-quantized
Bogoliubov–de Gennes Hamiltonian equivalent to the
second-quantized Hamiltonian Eq. (5) of the main text
in the presence of periodic boundary conditions both in the
x and y directions.

2. Band structure of a strip

Figure 2 represents the band structure and the amplifi-
cation amplitudes of a semi-infinite strip. Those are derived
from the Bogoliubov–de Gennes band structure and the
amplification rates of a strip with two physical edges, as we
explain below.
We simulate a finite strip of widthM ¼ 40 magnetic unit

cells. For each value of the quasimomentum kx, the set of
energiesEn;kx and−En;kp−kx forming the BdG band structure
and the corresponding amplification rates λnðkxÞ are calcu-
lated bydiagonalizing the relevant4M × 4MmatrixσzhðkxÞ.
While, strictly speaking, the energy spectrum is discrete, the
spacing between subsequent bulk states is not visible on
the figure scale. The resulting band structure and the
corresponding amplification rates are shown in Figs. 5(b)–
5(c) and Fig. 5(e), respectively. By inspecting the corre-
spondingwave functions, one can easily distinguish between
particle and hole bands (plotted in blue and gray,

c
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FIG. 5. Bogoliubov–de Gennes band structures. (a) BdG band structure for a system without boundaries. Here and in (b) and (c), the
particle (hole) bands are plotted in blue (gray). The stability of the bulk is protected by the complete band gaps separating neighboring
particle and hole bands. (b),(c) BdG band structure of a finite strip of widthM ¼ 40 magnetic unit cells. The upper- (lower-)edge states
are represented as thick solid (dashed) lines. (d) Corresponding amplification amplitudes λn. The parameters are the same as for Fig. 2
(ω0 ¼ 2.15J, Φ ¼ π=2, kp ¼ 2.2, ν ¼ 0.08J).
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respectively), edge and bulk states (plotted by the thick dark
and thin light lines, respectively), and upper- and lower-edge
states (solid and dashed lines, respectively).
Since the hole bands are not independent from the

particle bands and refer to the same set of normal modes,
we do not display the hole energies in the plots in the main
text. Moreover, we show only the edge states localized on
the upper edge. Removing the edge states localized on the
lower edge effectively corresponds to plotting the band
structure of a semi-infinite strip extending to the lower-
half plane.
We note that the particle (hole) edge states cross the hole

(particle) band. Thus, a pair formed by an edge and a bulk
excitation can in principle also be resonantly excited.
However, the corresponding matrix element is very small
and the resulting amplification rate is not visible on the
scale of the figure.

3. Analytical derivation of edge state
dispersion and amplification rate

Here, we outline a direct derivation of the edge state
dispersion for a semi-infinite strip.
We first consider the case where the parametric driving is

switched off (ν ¼ 0). This first part of the derivation
follows the approach of Ref. [56]. The Hamiltonian in
terms of the annihilation operators âjy;kx of a plane wave
with quasimomentum kx on the jjyjth row reads

Ĥ ¼
X
jy;kx

½ω0 − 2J cosðkx þ πjy=2Þ�â†jy;kx âjy;kx

− Jðâ†jy−1;kx âjy;kx þ â†jy;kâjy−1;kxÞ: ðB1Þ

Since the strip extends to the lower-half plane, the jyth
sum runs over the negative integers. By definition of the
normal modes α̂n;kx and eigenenergies En½kx�, we have

Ĥ¼Pn;kxEn½kx�α̂†n;kx α̂n;kx , or, equivalently, ½α̂n;kx ; Ĥ� ¼
En½kx�α̂n;kx . By plugging the ansatz α̂†n;kx ¼P

jyun;kx ½jy�â†jy;kx , we arrive to the first-quantized time-

independent Schrödinger equation, which we set in the
matrix form:

�
un;kx ½jy − 1�
un;kx ½jy�

�
¼ ~Mjyðϵn½kx�Þ

�
un;kx ½jy�

un;kx ½jy þ 1�
�

¼
�−ϵn½kx� − 2 cosðkx þ πjy=2Þ −1

1 0

�

×

�
un;kx ½jy�

un;kx ½jy þ 1�
�
: ðB2Þ

Here, we define ϵn½kx� ¼ ðEn½kx� − ω0Þ=J. In principle, the
above equation holds for jy ≤ −2 but not for jy ¼ −1,
because there is no row corresponding to jy ¼ 0. One can

circumvent this problem by formally adding the row jy ¼ 0

together with the boundary condition un;kx ½0� ¼ 0. Thus, one
immediately finds

�
un;kx ½jy�

un;kx ½jy − 1�
�

¼
Y

jj0yj<jjyj
~Mj0yðϵn½kx�Þ

�
un;kx ½−1�

0

�
: ðB3Þ

Next, we focus on the edge state solutions. In the following,
wedrop the subscriptn because there is only one edge state in
each band gap; see below. For the edge states, we have to
enforce the boundary condition

lim
jy→−∞

ukx ½jy� ¼ 0: ðB4Þ

Equivalently, one can require

lim
m→∞

�
ukx ½−4m − 1�
ukx ½−4m�

�

¼ lim
m→∞

½Mðϵ½kx�Þ�m
�
ukx ½−1�

0

�
¼ 0; ðB5Þ

whereMðϵ½kx�Þ is the transfer matrix by a full magnetic unit
cell (four sites),

Mðϵ½kx�Þ ¼ ~M−4ðϵ½kx�Þ ~M−3ðϵ½kx�Þ ~M−2ðϵ½kx�Þ ~M−1ðϵ½kx�Þ:
ðB6Þ

Equation (B5) is fulfilled if and only if the vector (1,0) is an
eigenvector of the 4-site transfer matrix Mðϵ½kx�Þ whose
eigenvalue has modulus smaller than unity. In other words,
the edge state dispersion is determined by the conditions

M2;1ðϵ½kx�Þ ¼ −ϵð−4þ ϵ2 þ 2 cos½2kx�Þ
þ 2 cos½kx�ðϵ2 − 4 sin½kx�2Þ ¼ 0; ðB7Þ

jM1;1ðϵ½kx�Þj ¼ jϵ4 − 7ϵ2 − 2ϵðcos½kx� þ sin½kx�Þ
þ 3þ 2 sin½2kx� − 4 cos½4kx�j < 1: ðB8Þ

Equation (B7) is a third-order polynomial in the dimension-
less energy ϵ. Thus, it has three roots for each value of kx.
Each root corresponds to a solution inside one of the three
band gaps (lower, middle, or upper). By plugging the
analytical expression of each root of Eq. (B7) into
Eq. (B8), we find the range of kx where the corresponding
edge state is defined: the interval −π < kx < 0 for the upper
edge state, 0 < kx < π for the lower edge state, and the two
intervals −π=2 < kx < 0 and π=2 < kx < π for the edge
state in the local band gap between the two central bands. In
order to enforce the bosonic commutation relations
½α̂kx ; α̂†kx � ¼ 1, we have to appropriately normalize the

single-particle wave functions
P

jy jukx ½jy�j2 ¼ 1. This
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condition fixes the modulus of the wave function on the
initial siteukx ½−1�. The complex phase ofukx ½−1� is arbitrary.
For concreteness, we choose ukx ½−1� to be real.
Next, we show how the edge state is modified by the

parametric pump. The pump drive written in terms of the
annihilation operators âjy;kx reads

Ĥpump ¼ i
ν

2

X
jy;kx

ðâ†jy;kx â
†
jy;kp−kx − âjy;kx âjy;kp−kxÞ: ðB9Þ

Before pursuing an exact numerical solution, we adopt a
semianalytical treatment. We focus on the lower band gap
edge state, which is resonantly driven for the parameters of
Fig. 2. As in the main text, we consider the case where the
frequency and quasimomentum of the pump laser are
chosen to resonantly excite a pair of edge photons with
quasimomentum kp=2:

ω0 ¼ −Jε½kp=2�: ðB10Þ

In this case, it is convenient to introduce the quasimomen-
tum δk ¼ kx − kp=2 counted off from kp=2. We rewrite the
full Hamiltonian (including the pump) in terms of the
ladder operators of the eigenstates of the Hofstadter
Hamiltonian (without the pump). We focus on the edge
state’s ladder operators α̂δk and neglect pump interactions,
which include bulk modes and the other edge modes (the
dominating interaction is that which resonantly excites a
pair of edge state photons). Doing so, we find,

HðedgeÞ ¼PδkH
ðedgeÞ
δk =2,

HðedgeÞ
δk ¼ ~EnðδkÞðα̂†δkα̂δk − α̂†−δkα̂−δkÞ

þ Δ½δk�ðα̂†δkα̂δk þ α̂†−δkα̂−δkÞ
þ iV½δk�ðα̂†δkα̂†−δk − α̂δkα̂−δkÞ: ðB11Þ

Here, we expand the edge state energy Eq. (B10) around
kp=2 and group all excitation conserving terms into two

contributions whose amplitudes ~EnðδkÞ and ΔnðδkÞ are an
odd and even function of δk, respectively:

~EnðδkÞ ¼ J
X
n≥1

d2n−1ε
dk2n−1x

����
kp=2

δk2n−1

ð2n − 1Þ! ; ðB12Þ

ΔðδkÞ ¼ J
X
n≥1

d2nε
dk2nx

����
kp=2

δk2n

ð2nÞ! : ðB13Þ

Note that ΔðδkÞ is the quasi-momentum-dependent detun-
ing of the parametric transition creating pairs of photons
with quasimomentum kp=2� δk. The corresponding para-
metric coupling, expressed in terms of the edge state wave
function, is given by

VðδkÞ ¼ ν
X
jy

uδk½jy�u−δk½jy�: ðB14Þ

Next, we expand the above formula in powers of δk. The
leading term is ν because the wave functions uδk are
normalized. Moreover, V is obviously an even function
of δk (it is invariant if δk is replaced by −δk). Thus, the
expansion has the form

VðδkÞ ¼ ν −
X
n≥1

νnδk2n: ðB15Þ

The edge state is unstable over the finite quasimomentum
interval where VðδkÞ > jΔðδÞj. Following the general
procedure presented in Appendix A, we find the eigene-
nergies and amplification amplitude of the Bogoliubov
edge state normal modes

EðδkÞ ¼ ~EðδkÞ;
λðδkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½VðδkÞ�2 − ½ΔðδkÞ�2

q
; ðB16Þ

and

EðδkÞ ¼ ~EðδkÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ΔðδkÞ�2 − ½VðδkÞ�2

q
; ðB17Þ

in the unstable and stable quasimomentum ranges,
respectively.
We can recover the edge state dispersion and line shape

of the amplification amplitude obtained numerically and
shown in Fig 2 by keeping the leading-order contributions
in Eqs. (B12), (B13), and (B15):

VðδkÞ ≈ ν − ν1δk2; ν1 ¼ 0.014; ðB18Þ

~EðδkÞ ≈ vδk;
v
J
¼ dε

dkx

����
kp=2

¼ −1; ðB19Þ

ΔðδkÞ ≈ J
d2ε
dk2x

����
kp=2

δk2

2
;

d2ε
dk2x

����
kp=2

¼ 1.4: ðB20Þ

APPENDIX C: INPUT-OUTPUT FORMALISM

We include the effects of dissipation using the standard
input-output formalism [1]. Each site is described by the
Langevin equation:

_̂aj ¼ i½Ĥ; âj� − κjâj=2þ ffiffiffiffi
κj

p
âðinÞj : ðC1Þ

Here, κj is the decay rate on site j. On the sites coupled to
waveguides, the decay rates κin, κout, and κsink are induced
by the coupling to the waveguides and are chosen to
achieve impedance matching. In this case, the input fields

âðinÞj describe the field impinging on site j from the
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corresponding waveguide including the field vacuum

fluctuations. The field âðoutÞj leaking out of the waveguide
is given by the input-output relations

âðoutÞj ¼ âðinÞj − ffiffiffiffi
κj

p
âj: ðC2Þ

On the remaining sites (i.e., those not coupled to wave-
guides), we assume a small uniform decay rate κðκj ¼ κÞ
corresponding to internal loss; âðinÞj describes the corre-
sponding incident vacuum fluctuations associated with this
loss port.
The linear response and the noise properties of the array

are simple functions of the retarded Green’s functions:

~GEðω; j; j0Þ ¼ −i
Z

∞

−∞
dtΘðtÞeiωth½âjðtÞ; â†j0 ð0Þ�i; ðC3Þ

~GIðω; j; j0Þ ¼ −i
Z

∞

−∞
dtΘðtÞeiωth½â†jðtÞ; â†j0 ð0Þ�i: ðC4Þ

We calculate the above Green’s functions numerically for a
finite array.

1. Response ellipses

In Fig. 3(a) [Fig. 3(b)], we show the linear response of
the pair of quadratures,

X̂j ¼
1ffiffiffi
2

p ½eiθj=2â†jðtÞ þ e−iθj=2âjðtÞ�;

Ŷj ¼
iffiffiffi
2

p ½eiθj=2â†jðtÞ − e−iθj=2âjðtÞ� ðC5Þ

to a classical field of frequency ωp=2 injected at the input
(output) port as a function of the field phase ϑ,

hâðinÞj0 i ¼ ffiffiffiffiffi
κj0

p
eiϑ;

where j0 indicates the site attached to the relevant injection
waveguide [j0 ¼ jin for Fig. 3(a), j0 ¼ jout for Fig. 3(b)].
The response on each site is represented by the ellipse

� hX̂ji
hŶji

�
¼
�
cos γjj0 − sin γjj0

sin γjj0 cos γjj0

�� rþjj0 cosðϑ − ηjj0 Þ
r−jj0 sinðϑ − ηjj0 Þ

�
;

where

r�jj0 ¼ κj0 ðj ~GEð0; j; j0Þj � j ~GIð0; j; j0ÞjÞ

are the major and minor semiaxes of the ellipse, and

γjj0 ¼ arg

�
GEð0; j; j0Þ
GIð0; j; j0Þ

�
=2 − θj=2 ðC6Þ

is the angle parametrizing the orientation of the major
semiaxis. In the figure, the reference angle γjj0 ¼ 0 is
rotated by π=2 compared to the page vertical. The maxi-
mum (minimum) response rþjj0 (r

−
jj0 ) at site j to an input

field at the port j0 is obtained for the driving phase ϑ ¼ ηjj0
(ϑ ¼ ηjj0 þ π=2):

ηjj0 ¼ π=2 − arg½ðGEð0; j; j0ÞGIð0; j; j0Þ�=2: ðC7Þ

2. Gain, reverse gain, and input reflection

As we analyze our amplifier in the phase-sensitive mode
of operation, it is useful to consider its scattering properties
in a quadrature representation, using optimal quadrature
basis for the fields in the input and output waveguides. The
relevant scattering between these waveguides is described
by

X̂out½ω� ¼ sX ;U ½ω�Û in½ω� þ sX ;V ½ω�V̂ in½ω� þ � � � ;
Ŷout½ω� ¼ sY;U ½ω�Û in½ω� þ sY;V ½ω�V̂ in½ω� þ � � � ;

where we omit writing terms describing contributions from
vacuum noise incident from the internal loss ports, as well
as terms describing the reflection of noise incident from the
output waveguide (due to slightly imperfect impedance
matching). We define the quadratures of the output wave-
guide as

X̂outðtÞ ¼
1ffiffiffi
2

p ½eiθout âðoutÞ†jout
ðtÞ þ e−iθout âðoutÞjout

ðtÞ�;

ŶoutðtÞ ¼
iffiffiffi
2

p ½eiθout âðoutÞ†jout
ðtÞ − e−iθout âðoutÞjout

ðtÞ�;

while the quadratures of the input waveguide are defined as

Û inðtÞ ¼
1ffiffiffi
2

p ½eiθin âðinÞ†jin
ðtÞ þ e−iθin âðinÞjin

ðtÞ�;

V̂ inðtÞ ¼
iffiffiffi
2

p ½eiθin âðinÞ†jin
ðtÞ − e−iθin âðinÞjin

ðtÞ�:

We define both the quadrature basis in each coupling
waveguide so that jsX ;U ½ω ¼ 0�j is maximal. This implies
that the largest amplification of a narrow-band signal
centered at zero frequency (ωp=2 in the lab frame) occurs
when the incident signal is in the Û in quadrature of the input
waveguide, with the amplified output being contained in
the output field X̂out quadrature of the output waveguide. It
also follows naturally that for vacuum noise inputs, Ŷout
will be the optimally squeezed quadrature. An explicit
calculation of the scattering matrix in terms of the Green’s
functions introduced above shows that the angles defining
these preferred input and output quadratures are given by

θin ¼ ηjoutjin ; θout ¼ γjoutjin þ θjout=2; ðC8Þ
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see Eqs. (C6) and (C7). The fact that, in general, θin ≠ θout
is a simple reflection of the fact that our system can both
perform phase-sensitive amplification of incident signals as
well as simply rotate incident signals in phase space.
The frequency-dependent power gain is then by defi-

nition given by the transmission probability:

GðωÞ ¼ jsX ;UðωÞj2
¼ κinκoutjeiðθin−θoutÞGEðω; jðoutÞ; jðinÞÞ
þ eiðθinþθoutÞGIðω; jðoutÞ; jðinÞÞ
þ eiðθout−θinÞG�

Eð−ω; jðoutÞ; jðinÞÞ
þ e−iðθinþθoutÞG�

I ð−ω; jðoutÞ; jðinÞÞj2=4:

The reverse gain is obtained similarly by exchanging the
two indices of the Green’s functions in the above formula
and in Eq. (C8). Finally, the input reflection probability
describes the reflection of signals incident in the (ampli-
fied) U quadrature of the input port

R½ω� ¼ jsU;UðωÞj2 ¼ fjeiθin ½1 − iκinGEðω; jðoutÞ; jðinÞÞ�
þ e−iθin ½1þ iκinG�

I ð−ω; jðoutÞ; jðinÞÞ�j
þ jeiθin ½1 − iκinGIðω; jðoutÞ; jðinÞÞ�
þ e−iθin ½1þ iκinG�

Eð−ω; jðoutÞ; jðinÞÞ�jg2=4:

3. Noise spectral densities and amplifier added noise

In general, the output of an amplifier will consist of the
amplified input signal (including its intrinsic fluctuations)
plus extra fluctuations generated by the amplifier [38]. It is
standard to express these extra output fluctuations as an
effective number of noise quanta inserted at the amplifier
input: this is the “added noise quanta of the amplifier." For
a phase-sensitive amplifier like ours (which only amplifies
one quadrature of an input signal), quantum mechanics
allows the added noise to be arbitrarily small. Approaching
this limit of zero added noise thus represents the “amplifier
quantum limit" for this kind of amplifier. See, e.g.,
Ref. [57] for an extended pedagogical discussion of these
topics.
The symmetrized noise spectral densities for the ampli-

fied and deamplified output-waveguide output field quad-
ratures [as shown in Fig. 4(a)] are defined as

SX ;X ðωÞ ¼
Z

∞

−∞

dt
2
eiωthfX̂outðtÞ; X̂outð0Þgi; ðC9aÞ

SY;YðωÞ ¼
Z

∞

−∞

dt
2
eiωthfŶoutðtÞ; Ŷoutð0Þgi: ðC9bÞ

To obtain the amplifier added noise at a given frequency [as
shown in Fig. 4(b)], we take the output noise in the
amplified quadrature at this frequency, divide through by

the gain at this frequency (so as to have an effective amount
of noise at the input of the amplifier), and then subtract off
the contribution due to vacuum noise entering through the
input port (as this is part of the input signal, as opposed to
noise added by the amplifier). We thus obtain

SaddðωÞ≡ SX ;X ðωÞ
GðωÞ −

1

2
: ðC10Þ

This quantity approaches zero for a quantum-limited phase
preserving amplifier.

4. Noise ellipses

In Fig. 4(c), the stationary state of each site j is
represented as a noise ellipse. The noise ellipse on a
particular site j is obtained by diagonalizing the corre-
sponding covariance matrix,

Vj ¼
 hX̂2

ji hX̂jŶj þ ŶjX̂ji
hX̂jŶj þ ŶjX̂ji hŶ2

ji

!

¼
�

cos ~γj sin ~γj
− sin ~γj cos ~γj

�� ð~rþj Þ2 0

0 ð~r−j Þ2
�

×

�
cos ~γj − sin ~γj
sin ~γj cos ~γj

�
; ðC11Þ

and identifying the square root of its eigenvalues ~rþj and ~r−j
as the ellipse semiaxes and the angle ~γj as the ellipse
rotation angle (the reference angle ~γj ¼ 0 is rotated by π=2
compared to the page vertical).

APPENDIX D: EFFECTIVE MODEL FOR THE
EDGE STATE COUPLED TO WAVEGUIDES

Here, we derive an effective quantum field theory for the
edge state coupled to a waveguide.Wewant to model a finite
system that will then support a single edge state with a ring
geometry (i.e., periodic boundary conditions). We adopt the
simplest possible approach valid when the input signal has a
bandwidth well within the amplifier bandwidth. In this case,
we can approximate the edge state velocity and amplification
rates to be constant, ~E ≈ vδk,Δ ≈ 0, and VðδkÞ ≈ ν, respec-
tively. Moreover, we can neglect the quasimomentum
dependence of the edge state transverse wave function.
We thus arrive at the edge state ladder operator,

ĉðj∥Þ¼
ffiffiffiffi
1

N

r XN
n¼1

eiδknj∥ α̂δk≈e−iκpj∥=2
X
j⊥

u½j⊥�âj∥;j⊥ ; ðD1Þ

where N is the number of sites along the edge and
the indices j∥ and j⊥ (j⊥ ≥ 1) label the position in the
directions parallel and longitudinal to the edges (for the edge
state along the upper edge described above, j∥ ¼ jx and
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j⊥ ¼ −jy). Moreover, uðj⊥Þ is the transverse edge state
wave function, uðj⊥Þ≡ ukp=2ð−j⊥Þ; see Eqs. (B3)
and (B7). The periodic boundary conditions ĉðj∥Þ ¼
ĉðN þ j∥Þ are enforced by the quasimomentum quantization
δkn ¼ 2πn=N.
We consider awaveguide attached to a single site along the

edge in the longitudinal position j∥ ≡ jex. The coupling to
the waveguide as described by standard input-output theory
is entirely characterized by the decay rate κ. Since the edge
state is the only state within the amplifier bandwidth, the
coupling of the waveguide to a single site is equivalent to a
direct coupling to the edge state at the same longitudinal
position jex with the renormalized decay rate
κ0 ¼ κju½j⊥ ¼ 1�j2. The resulting Langevin equation reads

_̂cðj∥Þ ¼ i½ĤðedgeÞ; ĉðj∥Þ� −
κ0

2
δj∥;jex ĉðj∥Þ þ

ffiffiffiffi
κ0

p
δj∥;jex â

ðinÞ;

ðD2Þ

with the input-output relations

âðoutÞ ¼ âðinÞ −
ffiffiffiffi
κ0

p
ĉðjexÞ: ðD3Þ

Next, we take the continuum limit by defining the chiral
edge field

ĉðzÞ ¼
ffiffiffiffi
1

L

r X∞
n¼−∞

eiδknj∥ α̂δk; ðD4Þ

where L is the edge length, and the periodic boundary
conditions ĉðzÞ ¼ ĉðzþ LÞ follow from the quasimomen-
tum quantization δkn ¼ 2πn=L. From Eq. (B11) with
~E ¼ vδk, Δ ¼ 0, and VðδkÞ ¼ ν, and Eq. (D2), we find
the field equations

ð∂t þ v∂zÞĉðzÞ ¼ νĉ†ðzÞ − κ0

2
δðz − zexÞĉðzÞ

þ
ffiffiffiffi
κ0

p
δðz − zexÞâðinÞ: ðD5Þ

We note that, due to the point interaction with the wave-
guide, the field ĉðzÞ is not continuous at the position
z ¼ zex where the waveguide is attached, ĉðzex þ 0þÞ ≠
ĉðzex þ 0−Þ (0þ and 0− are infinitesimal positive and
negative numbers, respectively). Keeping this in mind,
the input-output relation in the continuous limit reads

âðoutÞ ¼ âðinÞ −
ffiffiffiffi
κ0

p
½ĉð0þÞ þ ĉð0−Þ�=2: ðD6Þ

1. Impedance matching and gain

Before investigating the interaction with the waveguide,
we first discuss the propagation inside the ring. For con-
creteness, we consider v > 0, such that ĉðzex þ 0þÞ
[ĉðzex þ 0−Þ] is the field immediately after [before] the

interaction with the waveguide. A signal travels an almost
complete round-trip from z¼ zexþ0þ to z¼Lþ zexþ0þ ¼
zexþ0− in the time t ¼ L=v. During this time no interaction
with the waveguide takes place. From Eq. (D5), one readily
finds

X̂ðzex þ 0−; L=vþ t0Þ ¼ eνL=vX̂ðzex þ 0þ; t0Þ;
Ŷðzex þ 0−; L=vþ t0Þ ¼ e−νL=jvjŶðzex þ 0þ; t0Þ:

Here, we introduce the amplified and deamplified quadra-
tures, X̂ ¼ ðĉ† þ ĉÞ= ffiffiffi

2
p

and Ŷ ¼ iðĉ† − ĉÞ= ffiffiffi
2

p
, respec-

tively. We can conclude that a signal with the right phase
during a complete round-trip inside the ring experiences a
power gain

G ¼ e2νL=v: ðD7Þ

Next,we discuss the interactionwith thewaveguide.An input
signal from the waveguide will be partly reflected and partly
transmitted into the ring at z ¼ 0þ. Then, it will propagate
inside the ring until it has completed a round-trip. A signal
with the right phase will be amplified along the way. Before
starting a new round-trip, part of the amplified signal returns
into the waveguide. If the signal remaining in the ring at the
beginning of the second round-trip is smaller compared to
the signal in the ring at the beginning of the first round-trip,
the signal will decay after few round-trips. In this regime, the
waveguide stabilizes the edge state. By integrating the
Heisenberg equations [Eq. (D5)] close to z ¼ 0, we find

� ffiffiffiffiffiffijvjp
ĉð0þÞ

âðoutÞ

�
¼
�

r t

−t r

�� ffiffiffiffiffiffijvjp
ĉð0−Þ

âðinÞ

�
; ðD8Þ

where r and t are the reflection and transmission probability
amplitudes:

r ¼ 4 − g2

4þ g2
; t ¼ 4g

4þ g2
; g ¼

ffiffiffiffi
κ0

v

r
: ðD9Þ

To prevent instability, we require that the transmission t be
large enough that the field in the edge-mode ring does not
grow with each round-trip. The simplest case is where we
tune thedecay rate κ so that all of the incidentwave in the edge
mode ends up in the coupling waveguide; i.e., r ¼ 0, t ¼ 1.
This requires g ¼ 2, or in terms of the decay rate κ, the edge
state velocity v, and the edge state transversal wave function
at the edge uðj⊥ ¼ 1Þ, we find

κ ¼ 4v
juðj⊥ ¼ 1Þj2 ≡ κid: ðD10Þ

If this impedance-matching condition is met, signals incident
from thewaveguide in the X̂ quadraturewill be reflected back
with a power gain G ¼ Gmax independent of frequency. The
impedance matching ensures that multiple traversals of the
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ring are impossible, which both precludes instability and also
prevents the formation of standing wave resonances and a
strongly frequency-dependent gain.
We note that the effective model we describe above can

be straightforwardly extended to describe a chiral edge
state coupled to several waveguides. In particular, we
consider a setup with two impedance-matched waveguides
at position z ¼ zin and z ¼ zout (zout − zin ¼ L), respec-
tively. A signal from the first waveguide entering the edge
state at position z ¼ zin is entirely transmitted into the
second waveguide at position z ¼ zout. For the appropriate
phase of the input signal, we have

Û inðtÞ ¼ ffiffiffi
v

p
X̂ðzin þ 0þ; tÞ; ðD11Þ

where ÛðinÞ is the input quadrature. We denote X̂ out, the
corresponding amplified quadrature at z ¼ zout:

X̂outðtÞ ¼ −
ffiffiffi
v

p
X̂ðzout þ 0−; tÞ: ðD12Þ

From Eq. (D5), one finds

jX̂outðtþ L=vÞj2 ¼ GjÛoutðtÞj2; ðD13Þ

where the gain G is given by Eq. (D7).

2. Impedance mismatch

If the coupling waveguides are not perfectly impedance
matched as per Eq. (D10), signals incident on the wave-
guides from the edge state can be transmitted past the
waveguide, and multiple traversals of the edge become
possible. If such transmission becomes too strong, one can
have instabilities. Using the effective 1D model with
coupling to the three waveguides (as introduced above),
we find that in the presence of impedance mismatch, the
stability condition is

e2νL=v
�
1 − κin

κid

1þ κin
κid

�2�1 − κout
κid

1þ κout
κid

�2�1 − κsink
κid

1þ κsink
κid

�2

< 1; ðD14Þ

where the ideal impedance-match value of the couplings is
κid [cf. Eq. (D10)]. This condition simply corresponds to
requiring that there is no net gain for waves that success-
fully complete a round-trip along the edge. Considering the
worst-case scenario, where all impedance mismatches are
the same, and writing κcoupling=κid ¼ 1þ ϵ, the stability
condition becomes �

ϵ

2
þ ϵ

�
3

<
1ffiffiffiffi
G

p ; ðD15Þ

whereG is the forward photon number gain of the amplifier
defined in Eq. (D7). For a gain of roughly 20 dB, we see
that mismatches of ≈� 15% do not lead to instabilities.
Furthermore, for mismatches of −10%, impedance

mismatch induces small ripples (on the order of �1) in
the frequency-dependent gain (see Fig. 6). For even larger
gains, one could stabilize the system engineering more
sophisticated sinks. For example, one could have two or
more impedance-matched sink waveguides. The gain after
a round-trip will then decrease exponentially with the
number of waveguides and will be reduced below unity,
thus stabilizing the system in the presence of a sufficient
number of waveguides. Thus, the lack of perfect impedance
matching does not set any fundamental limit to the
achievable gain.

3. Added noise

In order to show that our quantum amplifier design offers
some degree of resilience to intrinsic losses and the
corresponding noise, we calculate the added noise in the
effective model. We consider a loss channel on each site
and denote the corresponding decay rate as κðlossÞj ðzÞ. In the
continuous limit, and with the same approximations as
above, we find the quantum field equations valid in the
region between the input and output port:

ð∂t þ v∂zÞX̂ðz; tÞ

¼ ½ν − κðlossÞðzÞ=2�X̂ðz; tÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κðlossÞðzÞ

q
X̂ðlossÞðz; tÞ;

ðD16Þ

where X̂ðlossÞðz; tÞ is the vacuum noise: hX̂ðlossÞðz; tÞi ¼ 0
and

hX̂ðlossÞðz; tÞX̂ðlossÞðz0; t0Þi ¼ 1

2
δðz − z0Þδðt − t0Þ: ðD17Þ

We Fourier transform into frequency space and find the
solution

0

20

40

60

80

100

120

G
ai

n

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

FIG. 6. Gain profile obtained in the effective 1D model with
impedance-matched (black dashed line) and impedance-
mismatched (red solid line) waveguides. Small (almost invisible)
ripples appear in the gain for the impedance-mismatched case.
Parameters are total length 80 sites, length of the amplification
region 30 sites, ω0 ¼ 2.14J, Φ ¼ π=2, ν ¼ 0.08J, κ ¼ 0.001J,
impedance mistmatch ϵ ¼ −0.1).
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X̂½z;ω� ¼ e
½ðiωþνÞðz−zinÞ−

R
z

zin
κðlossÞðz0Þdz0=2�=v

X̂ðzin þ 0þ;ωÞ

þ 1

v

Z
z

zin

dz0e½ðiωþνÞðz−z0Þ−
R

z

z0 κ
ðlossÞðz00Þdz00=2�=v

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κðlossÞðz0Þ

q
X̂ðlossÞðz0;ωÞ: ðD18Þ

Putting together Eq. (D18) for z ¼ zout − 0− with
Eqs. (D11) and (D12), we can relate the output signal
X̂out to the input signal Û in of the amplifier:

X̂out½ω� ¼ −e
½ðiωþνÞL−

R
zout
zin

κðlossÞðz0Þdz0=2�=v
ÛðinÞ½ω�

þ 1ffiffiffi
v

p
Z

zout

zin

dz0e½ðiωþνÞðzout−z0Þ−
R

zout
z0 κðlossÞðz00Þdz00=2�=v

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κðlossÞðz0Þ

q
X̂ðlossÞðz0;ωÞ: ðD19Þ

The added noise SaddðωÞ in noise quanta is, by definition,

SaddðωÞ ¼
SX ;XðωÞ
GðωÞ −

1

2
; ðD20Þ

where SX ;XðωÞ is the symmetrized noise at the output port,

SX ;X½ω�δðωþ ω0Þ ¼ 1

2
hfX̂ ½ω�; X̂ ½ω0�gi; ðD21Þ

and GðωÞ is the gain. We note that in our simple approach
SX ;X, G, and Sadd are frequency independent. From
Eqs. (D19) and (D17), we find

G ¼ e
½2νL−

R
zout
zin

κðlossÞðz0Þdz0�=v ðD22Þ

and

Sadd ¼
1

v

Z
L

0

dre−½2νr−
R

L

0
κðlossÞðrþzinÞdr0�=vκðlossÞðrþ zinÞ:

ðD23Þ

From this expression, we see that for 2ν > κðlossÞðzÞ the
noise added at position rþ zin is cut off exponentially as a
function of the distance r from the input. In particular, in
the large gain limit and assuming that κðlossÞðzÞ is smooth
close to z ¼ zin, we can approximate

Sadd ≈
κðlossÞðzinÞ

2ν
: ðD24Þ

Note, crucially, that as one increases the length L of the
amplifying channel, the gain increases exponentially, while
the added noise remains constant. We thus see explicitly
that the amplifying channel is immune to the majority of the
internal loss noise in the system.

4. Comparison between finite-size simulations
and effective model

In the regime where our effective theory applies (for
signals well within the amplifier bandwidth), it can repro-
duce well the simulations of finite arrays. There are some
quantitative differences due to well-understood finite-size
effects. For instance, the edge state velocity is not constant
in the finite-size array but rather decreases close to the
edges where the edge state propagation changes direction.
For this reason the gain does not depend only on the
number of sites separating the input and the output port but
also on the precise position of the ports. We place the input
and output port close to the edges to enhance the gain.
Indeed, the gain in the finite-size simulations is slightly
larger than predicted by Eq. (D7). Because of the position-
dependent edge state velocity, also the value of the decay
rate required to obtain impedance matching depends on the
position where the waveguide is attached (and is lower at
the edges).
We note that the analytic continuum model can be

extended to capture the frequency dependence of the gain
and noise of our traveling wave amplifier; one needs,
however, to incorporate into the model the leading-order
quasimomentum dependence of the edge state velocity
(which creates an effective pump detuning for the relevant
parametric process). This will be presented in a future
work.
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