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Thermal conductivity in dielectric crystals is the result of the relaxation of lattice vibrations described by
the phonon Boltzmann transport equation. Remarkably, an exact microscopic definition of the heat carriers
and their relaxation times is still missing: Phonons, typically regarded as the relevant excitations for thermal
transport, cannot be identified as the heat carriers when most scattering events conserve momentum and do
not dissipate heat flux. This is the case for two-dimensional or layered materials at room temperature, or
three-dimensional crystals at cryogenic temperatures. In this work, we show that the eigenvectors of the
scattering matrix in the Boltzmann equation define collective phonon excitations, which are termed here
“relaxons”. These excitations have well-defined relaxation times, directly related to heat-flux dissipation,
and they provide an exact description of thermal transport as a kinetic theory of the relaxon gas. We show
why Matthiessen’s rule is violated, and we construct a procedure for obtaining the mean free paths and
relaxation times of the relaxons. These considerations are general and would also apply to other
semiclassical transport models, such as the electronic Boltzmann equation. For heat transport, they remain
relevant even in conventional crystals like silicon, but they are of the utmost importance in the case of two-
dimensional materials, where they can revise, by several orders of magnitude, the relevant time and length
scales for thermal transport in the hydrodynamic regime.
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I. INTRODUCTION

The foundations for the theories of lattice thermal
transport were set in place long ago, from the phonon
Boltzmann transport equation (BTE) [1] to Green-Kubo
linear-response theory [2,3]. However, only recently has it
become possible, thanks to our increased computational
capabilities, to solve these transport models with high
accuracy and without resorting to oversimplifying
assumptions [4–15].
In particular, the linear BTE can nowadays be solved

exactly, using empirical or first-principles interactions,
with iterative [4,16,17], variational [7,18–20], or direct
diagonalization algorithms [21–23], none of which needs to
simplify the scattering operator with the often-adopted
single-mode relaxation time approximation (SMA). In the
SMA, each phonon mode relaxes independently to
equilibrium, and it has long been known that this is an
incorrect assumption for solids at low temperatures [18,24].
Importantly, this approximation fails dramatically in lower

dimensions, as first found in graphene [25], boron nitride,
and other two-dimensional (2D) materials [26–28], as well
as in layered crystals [29]. The origin of such failure of the
SMA has been, up to now, a matter of debate, with an
emerging picture of collective phonon excitations being
responsible for heat transfer [26,29–33], while nevertheless
lacking a definition of such excitations.
The microscopic interpretation of thermal transport in

the BTE is based on the kinetic theory of gases, used in
various contexts since its development in the 19th century,
which relates the thermal conductivity to the velocities and
relaxation times of the carriers, with phonons usually being
identified as the relevant gas of excitations. However, as
argued below, this identification is incorrect since only
the adoption of the SMA allows for the definition of a time
interval (i.e., a lifetime) between heat-flux dissipation
events taken as phonon scatterings. Going beyond the
SMA, the full, exact solution of the BTE provides the
correct thermal conductivity (dramatically improving pre-
dictions in 2D materials or at low temperatures) but adds
complexity in its interpretation. In fact, exactly solving the
BTE implies abandoning the concept of phonon relaxation
time and the description of heat being carried by a gas of
phonons. In other words, phonon lifetimes or phonon mean
free paths are no longer relevant quantities to describe
thermal transport since phonons are not the heat carriers
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anymore. Yet, the beauty of the SMA description lies in the
simplicity of its description of transport. A natural question
then arises: Can one define heat carriers, relaxation times,
or mean free paths within the exact treatment of the BTE?
In this work, we provide an answer to these questions.

First, we recall why phonon lifetimes are unrelated to
heat-flux dissipation. Then, we define a set of collective
excitations, termed relaxons, that diagonalize the scattering
matrix. The BTE is rewritten in the basis of these relaxons;
in this representation, each eigenvector represents a
collective excitation consisting of a linear combination of
out-of-equilibrium phonon populations, and it describes the
thermal relaxation of a collective excitation of out-of-
equilibrium lattice vibrations. We show that each relaxon
is characterized by awell-defined relaxation time; in the case
of a homogeneous system, at the steady state, each relaxon
also has a well-defined velocity and mean free path, and the
thermal conductivity can be interpreted exactly as a kinetic
theory of the relaxon gas. As a practical example, we
compare thermal conductivities in graphene and silicon,
contrasting the relaxon and the phonon representations, and
highlight the profoundly different pictures that emerge.

II. APPROXIMATED RELAXATION TIMES

We start our derivation by recalling the microscopic
description of heat transport given by the linearized phonon
BTE [18]:

∂nμðx; tÞ
∂t þ vμ ·∇nμðx; tÞ ¼ −

1

V

X
μ0
Ωμμ0Δnμ0 ðx; tÞ: ð1Þ

This equation describes the out-of-equilibrium dynamics of
the phonon excitation number nμ at position x and time t,
for all possible phonon states μ (in shorthand notation,
μ≡ ðq; sÞ, where q varies over the Brillouin-zone and s
over the phonon branches). Furthermore, vμ is the phonon
group velocity, V is a normalization volume, Ωμμ0 is the
linear phonon scattering operator, andΔnμ ¼ nμ − n̄μ is the
deviation of the phonon distribution from thermal equilib-
rium, i.e., the Bose-Einstein distribution n̄μðx; tÞ ¼
ðeℏωμ=kBTðx;tÞ − 1Þ−1, with ωμ being the phonon frequency
and Tðx; tÞ the local temperature. This linear approxima-
tion, commonly used in most studies of transport, allows
one to describe scattering as a linear operator represented
by the action of the matrix Ωμμ0 on Δnμ: This assumption
holds for small deviations from thermal equilibrium and
will always be used in the rest of the manuscript. The
scattering matrix appearing in Eq. (1) is in its most general
form and describes all possible mechanisms by which a
phonon excitation can be transferred from a state μ to a state
μ0. For the sake of simplicity, here we limit ourselves to the
inclusion of three-phonon processes and isotopic scattering
events [7], whose expressions are reported for complete-
ness in Appendix A.

For later convenience, it is useful to write the left-hand
side of Eq. (1) in terms of the unknown Δnμ:

∂n̄μ
∂T (

∂Tðx; tÞ
∂t þ vμ ·∇Tðx; tÞ)þ ∂(Δnμðx; tÞ)

∂t
þ vμ ·∇(Δnμðx; tÞ)

¼ −
1

V

X
μ0
Ωμμ0Δnμ0 ðx; tÞ; ð2Þ

where T is the reference temperature at which the BTE has
been linearized. To obtain Eq. (2), we substituted nμ ¼
n̄μ þ Δnμ in Eq. (1) and used the fact that the Bose-Einstein
distribution depends on space and time only through the
temperature Tðx; tÞ.
A closed-form solution of the above equation can be

obtained in the SMA, which replaces the scattering
operator with its diagonal terms

1

V

X
μ0
Ωμμ0Δnμ0 ðx; tÞ ≈

Δnμðx; tÞ
τSMA
μ

: ð3Þ

To show that, in this simplified diagonal form, τSMA
μ

indeed represents a relaxation time, let us consider a
system at thermal equilibrium [Tðx; tÞ ¼ T] so that the
phonon distribution is n̄μ everywhere; thus, in Eq. (2),
∇ðΔnμÞ ¼ 0, ð∂T=∂tÞ ¼ 0, and ∇T ¼ 0. If we excite a
single phonon at time t0, its population relaxes back to
equilibrium as ΔnμðtÞ ¼ (nμðt0Þ − n̄μ)e−t=τ

SMA
μ , i.e., with a

characteristic time τSMA
μ .

The thermal conductivity tensor kij (i and j are Cartesian
indices) is defined as the ratio between a heat flux Qi and a
static gradient of temperature ð∇TÞj. Two simplifications
apply in this case. First, a steady-state condition allows one
to simplify the BTE by setting time derivatives to zero.
Second, the spatial gradient can be simplified by taking
∇ðΔnμÞ ¼ 0. This assumption, frequently adopted in the
literature, holds for a homogeneous perturbation of a bulk
crystal (as in our case): If we apply a thermal gradient to a
crystal at temperature T, the response Δnμ should not
depend on the particular position x inside the sample.
Although we will not consider it further here, we note
that this assumption cannot be applied when studying
systems that break translational invariance, involving,
e.g., surfaces or pointlike heat sources. Under these con-
ditions and the SMA, the resulting BTE can be solved
analytically and, using the harmonic approximation for the
heat flux Q ¼ ð1=VÞPμℏωμvμΔnμ [34] and the definition
Qi ¼ −

P
jk

ijð∇TÞj, the thermal conductivity is given by

ðkijÞSMA ¼ 1

V

X
μ

CμviμðΛj
μÞSMA; ð4Þ
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where ðΛj
μÞSMA is the component of the phonon mean free

path in direction j. This expression can be interpreted as
the thermal conductivity of a gas of phonons, each
carrying a specific heat Cμ ¼ð1=kBT2Þn̄μðn̄μþ1ÞðℏωμÞ2 ¼
ð∂n̄μ=∂TÞℏωμ, traveling at velocity viμ and with a mean free

path ðΛj
μÞSMA ¼ vjμτSMA

μ before being thermalized by scat-
tering. Crucially, the definition of phonon lifetime or mean
free path cannot be extended beyond the SMA since the off-
diagonal terms of the scattering operator introduce cou-
plings between phonons, and phonon thermalization stops
being governed by an exponential relaxation.

III. RELAXONS

An exact definition of relaxation times has been formally
derived by Hardy [22], as an auxiliary result in his study of
second sound. To recall this definition, let us first note that
the left side of the BTE in Eq. (2) has a drifting operator
diagonal in μ, whereas the right side has a scattering
operator (determining scattering time scales) that is non-
diagonal. To identify meaningful scattering times, we
proceed with a change of basis that diagonalizes the
scattering operator while allowing the drifting term to
become nondiagonal. To make the symmetries more
apparent within the BTE, we perform the transformations
[22,23,35,36]

~Ωμμ0 ¼ Ωμμ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄μ0 ðn̄μ0 þ 1Þ
n̄μðn̄μ þ 1Þ

s
; ð5Þ

Δ ~nμ ¼ (n̄μðn̄μ þ 1Þ)−1
2Δnμ: ð6Þ

These transformations are introduced to scale quantities
appearing in the BTE in such a way that ~Ωμμ0 ¼ ~Ωμ0μ (the
matrix Ω does not obey this symmetry; see Appendix A
for a detailed explanation). We note that sometimes
these transformations appear in the literature in the
form of hyperbolic sines, by means of the identity
sinhðℏωμ=2kBTÞ ¼ (1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄μðn̄μ þ 1Þp

). Since ~Ω is a real
symmetric matrix, it can be diagonalized, giving eigen-
vectors θαμ and real eigenvalues 1=τα such that

1

V

X
μ0

~Ωμμ0θ
α
μ0 ¼

1

τα
θαμ; ð7Þ

where α is the eigenvalue index. In passing, we define
the scalar product hαjα0i≡ ð1=VÞPμθ

α
μθ

α0
μ that allows us

to define the orthonormalization condition for the eigen-
vectors (hαjα0i ¼ δαα0 ), which will be helpful in the next
algebraic operations. It can be shown [22,35] that ~Ω is
positive-semidefinite, i.e., ð1=ταÞ ≥ 0 ∀α, and that its
eigenvectors are either even or odd, i.e., θαμ ¼ �θα−μ,
where −μ ¼ ð−q; sÞ [22]. Little else is known about the

eigenvalue spectrum of Eq. (7), which therefore has to be
characterized numerically. In contrast with Refs. [21,22],
we remark that the Bose-Einstein distribution is not an
eigenvector with zero eigenvalue: The scattering operator
acts only on the deviation from equilibrium Δnμ; there-
fore, thermal equilibrium (Δnμ ¼ 0) is a stationary
solution (

P
μ0Ωμμ0Δnμ ¼ 0) because it is an algebraically

trivial solution. However, the Bose-Einstein distribution
allows the introduction of a vector of unitary length,

θ0μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄μðn̄μ þ 1Þp

ℏωμffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT2C

p ; ð8Þ

where C ¼ ð1=VÞPμCμ, describing the increase of
temperature. This vector is constructed as the linear
deviation from equilibrium of n̄μðT þ δTÞ, transformed
using Eq. (6) and normalized to 1. Note that θ0μ is not an
eigenvector and that it does not have to be orthogonal to
other eigenstates α.
Any responseΔ ~nμ can be written as a linear combination

of the θαμ eigenvectors [22]

Δ ~nμðx; tÞ ¼
X
α

fαðx; tÞθαμ; ð9Þ

and the BTE can be written in this θα basis (to this aim,
substitute Eq. (9) in Eq. (2) and take the scalar product of
the equation with a generic eigenvector α0), becoming

ffiffiffiffiffiffiffiffiffiffi
C

kBT2

s
(
∂Tðx; tÞ

∂t h0jαi þ∇Tðx; tÞ · Vα)þ ∂fαðx; tÞ
∂t

þ
X
α0
Vαα0 ·∇fα0 ðx; tÞ ¼ −

fαðx; tÞ
τα

; ð10Þ

where Vαα0 ¼ ð1=VÞPμθ
α
μvμθα

0
μ ≡ hαjvjα0i and Vα¼V0α ¼

h0jvjαi. Vαα0 derives from the action of the diffusion
operator on the deviation from equilibrium, while Vα

derives from the action of the diffusion operator on the
equilibrium distribution.
The physical picture encoded in Eq. (10) underlines one

of the key statements of this work: By diagonalizing the
scattering operator, the information about the characteristic
relaxation time of the thermal excitations is now given by
the eigenvalues 1=τα. The eigenvectors θαμ for which this
picture emerges represent collective excitations which we
call relaxons. Each relaxon represents a distribution of
phonon excitation numbers (a wave packet), describing
how the phonon distribution is relaxing to equilibrium. The
coefficients fα are the relaxon occupation numbers, which
are determined by the BTE in the out-of-equilibrium state
and which at equilibrium are all 0, so that the deviation
from equilibrium Δnμ vanishes.
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The name relaxon is easily justified by considering a
system at thermal equilibrium so that ð∂T=∂tÞ ¼ 0,
∇T ¼ 0 and, in terms of relaxons, all states are empty
everywhere; thus, ∇fα ¼ 0 ∀α in Eq. (10). If we excite a
single relaxon α at time t0, its occupation will relax back
to equilibrium as fαðtÞ ¼ fαðt0Þe−t=τα , therefore endow-
ing τα with the meaning of a relaxation time. Although
the theory allows for zero eigenvalues, in our examples,
we find only strictly positive relaxation times so that all
relaxons decay to zero for t → ∞. Using Eq. (9), one can
show instead that phonon populations do not have well-
defined relaxation times: Since each phonon population
decays as a linear combination of relaxon processes
ΔnμðtÞ ¼

P
αfαðt0Þθαμe−t=τα , the characteristic time for

the decay depends on the initial conditions of the
thermal excitation and can even display damped oscil-
lations. Conversely, let us excite only one phonon mode
μ at time t0. This initial state can be decomposed as
the sum of different relaxons, each evolving with a
different relaxation time. Therefore, at a subsequent time
t, one will also observe that new phonon modes μ0 ≠ μ
have been excited out of thermal equilibrium. In Fig. 1,
we graphically illustrate our interpretation: Each relaxon
is a collective excitation of phonons, which interact
through scattering events among themselves but are
decoupled from phonons belonging to different relaxons;
owing to their positive relaxation time, relaxons dis-
appear at long times, allowing the system to reestablish
equilibrium.
Velocities appear in Eq. (10) with a matrix Vαα0

coupling different relaxons since it is the phonon basis
that diagonalizes the drifting operator; therefore, one
cannot always identify a relaxon velocity. However, if
we work in an infinite crystal at temperature T and apply
a temperature perturbation homogeneously to the entire
crystal, the response of the system is constant throughout
the space, and we can set ∇fα ¼ 0, ∀α. Therefore, the
BTE simplifies to

∂fαðtÞ
∂t þ

ffiffiffiffiffiffiffiffiffiffi
C

kBT2

s �∂T
∂t h0jαi þ∇T · Vα

�
¼ −

fαðtÞ
τα

:

ð11Þ
Both the drifting and the collision operator are now diagonal
in α, and Vα identifies a well-defined relaxon velocity.
Let us simplify the problem further and consider a steady

state. In this case, time derivatives are set to zero in Eq. (11),
and one can, for small deviations from equilibrium, search
for linear solutions of the form fα ¼

P
if

i
α∇iT, where i is a

Cartesian direction. The BTE reduces toffiffiffiffiffiffiffiffiffiffi
C

kBT2

s
Vi
α ¼ −

fiα
τα

; ð12Þ

whose solution for fiα is trivial. Using the relation
between phonons and relaxon occupation numbers
Δnμ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄μðn̄μ þ 1Þp ðPiα∇iTfiαθαμÞ, we obtain the thermal

conductivity

kij ¼ −1
V∇iT

X
μ

ℏωμv
j
μΔnμ ¼ −

X
α

fiα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT2C

q
Vj
α

¼
X
α

CVi
αV

j
ατα ¼

X
α

CVi
αΛ

j
α; ð13Þ

where we introduced the relaxon mean free path Λα (Λj
α is

the component of Λα in direction j). Therefore, the exact
thermal conductivity in Eq. (13) is expressed in the frame-
work of the kinetic theory of gases, and thermal transport can
be thought of as a flux of relaxons, each carrying a specific
heatC, traveling at velocityVα for an average distance ofΛα

before thermalization occurs.
At variance with the phonon picture, where each phonon

participates in thermal conductivity with a mode specific
heat Cμ, all relaxons contribute with the same specific heat
of the crystal C. Mathematically, the phonon-mode specific
heat is moved in the vector θ0μ (note that ðθ0μÞ2 ¼ ðCμ=CÞ)
and thus is included in the relaxon velocity Vα ¼ h0jvjαi.
To physically interpret this difference, we recall that, from a
thermodynamic point of view, the quantity CδT is the
energy needed by the system to change the temperature by
δT. To observe such a temperature change, all phonon
modes must simultaneously change their occupation num-
ber according to the collective excitation θ0μ. The quantity
CμδT is the decomposition of such energy change in terms
of each phonon mode. However, as explained before,
one cannot excite a single phonon mode and bring it to
a higher temperature without affecting the rest of the
phonon ensemble: Phonon scattering would redistribute the
energy excess of such a mode to the rest of the system. Only
a collective excitation of phonons (θ0μ) leads to a temper-
ature change, and the total energy cost for increasing
temperature is necessarily associated with C; thus, from
a thermodynamic point of view, one could state that the

FIG. 1. Schematic illustration of the equilibration of lattice
vibrations after a thermal excitation. Each relaxon consists of a
linear combination of phonons, which interact through scattering
events among themselves but are decoupled from phonons
belonging to different relaxons. The relaxon decays exponentially
to equilibrium, where it disappears at a rate determined by its
relaxation time.
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mode specific heat Cμ does not have a well-defined
meaning.
It is worth pointing out the role played by the parity of

relaxons. The quantity Vα ¼ h0jvjαi involves the odd
function vμ (−vμ ¼ v−μ) and the even function θ0μ (owing
to ωμ ¼ ω−μ). Therefore, relaxon velocities Vα are different
from zero only for odd relaxons α. Consequently, Eq. (12)
also implies that only odd relaxons are excited in the
steady-state condition and thus contribute to heat flux,
while even relaxons have zero occupation number. The role
of parity is reversed for determining the energy of the
system since the change from equilibrium energy ΔE is

ΔE ¼ 1

V

X
μ

ℏωμΔnμ ¼
1

V

X
μ

ℏωμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄μðn̄μ þ 1Þ

q
Δ ~nμ

¼ 1

V

X
μ

θ0μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT2C

q X
α

fαθαμ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT2C

q X
α

fαh0jαi: ð14Þ

In this case, even relaxons have a nonzero coefficient h0jαi
and contribute to an energy change, but for odd relaxons,
h0jαi ¼ 0 and thus do not change energy. We can thus
deduce that at the steady state defined by Eq. (11), where
only odd relaxons are excited, the energy of the system is
conserved.

IV. GRAPHENE

As a first numerical example supporting these conclu-
sions, we study relaxons in graphene, the material with the
highest known thermal conductivity [37], and contrast the
phonon and the relaxon pictures at 300 K. Because of its
symmetry, graphene’s kij tensor is diagonal and, since
kxx ¼ kyy, it has only one independent component (verified
also numerically); therefore, in the following we will drop
Cartesian indices and compute quantities numerically along
the zig-zag direction. To proceed, we calculate harmonic
and anharmonic force constants using density-functional
perturbation theory [38–44] as implemented in the
Quantum-ESPRESSO distribution [45] and construct the
scattering matrix using three-phonon and isotope-phonon
interactions. The diagonalization of Eq. (7) provides all the
relaxon eigenvectors θαμ; each of them represents, at fixed
relaxon index α, a difference in phonon populations with
respect to thermal equilibrium [provided that it is back-
transformed using Eq. (6)]. Notably, only a few θαμ have
large relaxation times; for example, the longest-lived
relaxon (α ¼ 1) is plotted in Fig. 2 as a function of the
phonon index μ ¼ ðq; sÞ. The first three (s ¼ 1, 2, 3)
branches are shown, corresponding to the out-of-plane,
transverse, or longitudinal acoustic phonons (ZA, TA.
and LA, respectively). This particular relaxon induces a
population difference for the ZA branch mainly located

close to the Brillouin-zone center, whereas TA and LA
modes are altered throughout the Brillouin zone. The
variations of optical modes (s ¼ 4, 5, 6 not shown) are
an order of magnitude smaller. The complex landscape
drawn by these phonon distributions reflects the fact that
out-of-equilibrium lattice properties cannot be described in
terms of single phonon properties, as the action of scatter-
ing tightly couples phonons of any wave vector and branch.
We analyze the entire phonon and relaxon spectrum

in Fig. 3, where the contributions to the SMA or the
exact thermal conductivities are plotted as a function of
the relaxon or phonon relaxation times. The thermal

FIG. 2. Representation of the relaxon θαμ with the longest
relaxation time (α ¼ 1) in graphene at room temperature as a
function of the phonon index μ ¼ ðq; sÞ, where we choose s to be
the out-of-plane, transverse, or longitudinal acoustic mode
(ZA, TA, and LA, respectively). We recall that the relaxon is
a difference in phonon populations with respect to thermal
equilibrium: Overpopulated modes are shown in red; depopulated
ones are in blue. The fine structure of the ridges is a numerical
artifact due to discrete Brillouin-zone sampling.
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conductivities computed in the two pictures differ signifi-
cantly in graphene (in this work, we compute 3894 W=mK
with the exact BTE against 495 W=mK with the SMA);
hence, to have more comparable quantities, we plot the
percentage contribution to thermal conductivity. We first
note that the spectrum of phonon lifetimes (and phonon
velocities and mean free paths) is continuous, with even a
divergence τμ → ∞ for acoustic ZA phonons at the Γ point
in isotopically pure samples [46]. This divergence cannot
be accurately described with a finite mesh of points
sampling the Brillouin zone (in our case, a full mesh of
128 × 128 points), resulting in a sparse tail of long-lived
phonons on the right side of Fig. 3, whose contribution to
kSMA is negligible [46]. Instead, relaxation times for
relaxons are discrete and sparse, in particular, in the region
of large values, so that only a small number of relaxons is
sufficient to describe thermal transport with high accuracy.
This observation is robust with respect to Brillouin-zone
sampling: With an improvement in the integration mesh,
new phonon modes appear in the long-lifetime region;
instead, the longest relaxon relaxation times converge—
from above—to the discretized values shown in the figure.

On average, relaxon relaxation times are larger by at least 2
orders of magnitude with respect to phonon lifetimes. The
large difference between the time scales of phonons and
relaxons appears because a single phonon scattering cannot
thermalize the system [18], as implied by the SMA.
Therefore, while phonons scatter at time scales of about
10–100 ps, heat flux is dissipated by relaxons within
nanosecond and microsecond time scales.
Before analyzing velocities, we note that the sign of Vα is

arbitrary since both θαμ and −θαμ are relaxon eigenvectors.
As a convention, we select the sign of odd eigenvectors
such that Vα is non-negative (as is Λα), noting that in any
case, the contribution to k would be positive (as V2

α).
Phonon velocities can also assume both signs: In the figure,
we plot their absolute values. Figure 4 reveals that the
velocities of relaxons are much smaller than those of
phonons: While the scale of phonon velocities is set by
the speed of sound (the group velocity of the longitudinal
acoustic phonon is about 20 km=s), relaxons are slower by
2 orders of magnitude, indicating that heat is transferred
through the material at 0.1–1 km=s.
Finally, we show the relaxon mean free paths in

Fig. 5 (projected along the transport direction). As other
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time larger than 103 ps, whereas phonons have lifetimes mainly
in the range 10–100 ps. The shaded area is a guide to the eyes to
stress that phonons form a continuous spectrum, while relaxons
are discretized; thermal conductivity can be accurately described
using a small number of relaxons.
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FIG. 4. Comparison of relaxon and phonon velocities and their
contributions to the room-temperature thermal conductivity of
graphene. When approximating phonons as heat carriers, the
velocity scale of thermal transport is set by the speed of sound
(about 20 km=s for longitudinal acoustic phonons in graphene).
Instead, relaxon velocities are at least an order of magnitude
smaller, illustrating how much the phonon scattering slows down
the heat flux.
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first-principles studies reported [8], phonon mean free paths
for graphene are distributed in the 0.1–1 μm region [29]; this
is confirmed here. For relaxons, most contributions to
thermal conductivity come with mean free paths above
0.1 μm, the longest andmost important contributions having
mean free paths up to tens of μm. The contribution to k is
roughly monotonic with the mean free path, and the large
increase in τα is partly compensated by the decreased Vα.
The saturation of relaxons’ mean free paths at tens of μm
appears to be in contrast with recent estimates for saturation
lengths of 100 μm [29] or longer [47]; we will comment on
this discrepancy after discussing the next example.

V. SILICON

As a further test for relaxons, let us now turn our
attention to silicon and examine its thermal transport
properties at room temperature. The thermal conductivity
tensor in silicon is diagonal, and the three Cartesian
directions are equivalent; we therefore only consider trans-
port properties along the (100) direction. At variance with
graphene, here the SMA introduces an appealingly small
error: In our calculations, we find 138 W=mK instead of
141 W=mK for the exact solution; these estimates are in

line with previous first-principles studies [5,6,8]. The small
difference between the two pictures is somehow replicated
in their relaxation times, as reported in Fig. 6. The time
scales covered by phonons and relaxons have approxi-
mately the same range of values, except for one relaxon, not
shown in the graph, that has relaxation time of 2 × 105 ps
but a negligible contribution to thermal conductivity
(10−9%). However, one can note that the two distributions
of values do not perfectly overlap: Even if the scattering
matrix is diagonally dominant, there are small nonzero out-
of-diagonal matrix elements that introduce deviations from
the SMA.
It is enlightening to analyze the different velocity scales

set by the two pictures, depicted in Fig. 7. Once again, most
of the contributions to SMA thermal transport come from
phonons with velocities close to the speed of sound, which
in silicon is approximately 8 km=s. However, relaxon
velocities are 2 orders of magnitude smaller than this
limiting value, reaching merely 60 m=s. Despite the fact
that the instantaneous velocity of a lattice vibration is
determined by the phonon dispersion, the velocity at which
the heat flux propagates can be much different: The
scattering between phonons slows it down.
The mean free paths for relaxons and phonons in silicon

are compared in Fig. 8. The vast difference originating from
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room temperature. The spectrum of phonon mean free paths is
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the velocities is carried over, so while mean free paths of
phonons extend up to 100 μm, in agreement with other
first-principles studies [8,48,49], relaxons travel for a
distance that is 2 orders of magnitude smaller than
phonons. Therefore, it seems puzzling that the two pictures
give such large differences in the estimate of velocities and
mean free paths, despite the fact that thermal conductivities
are essentially identical. To explain this discrepancy, we
compare Eqs. (4) and (13) for thermal conductivity and
recall that specific heat is constant for relaxons and mode
specific for phonons. Also, the SMA conductivity can be
written in a form with constant specific heat for each
phonon, provided that we rescale velocities as vμ →ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðCμ=VCÞ
p

vμ (consequently, the mean free path is scaled
as ΛSMA

μ ¼ vμτSMA
μ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðCμ=VCÞ
p

ΛSMA
μ ). After this trans-

formation, velocities and mean free paths of phonons and
relaxons in silicon are again within the same order of
magnitude, although residual discrepancies still persist (see
Appendix B for the spectra after rescaling). Therefore,
the differences observed in silicon between the two
pictures arise mainly from the different interpretation of
specific heat.

We note that other experimental and theoretical efforts
have estimated heat mean free paths in silicon [8,48–52],
obtaining values that are comparable to those of the
phonon mean free paths and different from the relaxon
mean free paths presented here. It is important to stress,
though, that at least one of these two assumptions was
used: first, that results can be interpreted considering
phonons as the heat carriers, and second, that surface or
grain boundary scattering can be exploited as a tool to
estimate heat mean free paths. In the present work, we
already discussed at length the limitations of the former
assumption; as for the latter one, we cannot compare
our results with studies that rely on surface scattering
since the data presented here pertain to a homogeneous
bulk crystal. It is nevertheless possible to drop the bulk
condition and solve the BTE in the presence of surfaces,
reconciling the different pictures; such a discussion is out
of the scope of the present work and will be presented in
an upcoming study.

VI. FURTHER PROPERTIES

A widely held assumption that is also violated by the
exact BTE is the Matthiessen rule, which states that
the total thermal resistivity (i.e., 1=k) is the sum of the
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their contributions to the thermal conductivity of silicon at room
temperature. The difference between velocities is carried over to
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resistivities of each independent scattering mechanism;
however, the Matthiessen rule is an approximation [18]
relying on the possibility of exactly decoupling scattering
mechanisms. To numerically probe this violation, we
computed the resistivities of normal, Umklapp, and isotopic
processes, or any combination of these, and combined them
according to the Matthiessen rule. In Fig. 9, we show that,
regardless of any particular decomposition, the conduc-
tivity obtained by imposing the Matthiessen sum deviates
significantly from the exact conductivity. The only case in
which a decomposition reproduces the exact result is when
the effect of a separated mechanism is negligible; for the
case shown in the figure, one can separately sum the
resistance due to isotopes only at high temperatures, when
it is small. Finally, one can prove that the total thermal
conductivity is always smaller than or equal to the
Matthiessen sum (see Ref. [18] or Appendix C); this result
is also verified in our calculations. Moreover, at variance
with the case of phonon lifetimes, it is not possible to
identify the contributions to the relaxation times coming
from each scattering mechanism: in fact, when a scattering
matrix is not diagonal, the eigenvalues of the sum of two
matrices are not the sum of the eigenvalues of two matrices.
As an added benefit, the direct diagonalization of the

scattering matrix brings clear insight into the numerical
stability of current methods used to solve the BTE. In
particular, we show in Appendix D that the iterative method
[4,16,17], often used to study 2D materials, is numerically
unstable for graphene at room temperature, because of the
dominant contribution of the out-of-diagonal terms in the
scattering matrix (this is exactly the case when the relaxon
picture differs significantly from the phonon picture).

VII. CONCLUSIONS

In summary, we have shown that by choosing the
eigenvectors of the scattering matrix as a basis, the linear
BTE can be greatly simplified. These eigenvectors are
collective excitations of phonon populations, termed
relaxons, that have well-defined relaxation times and,
in the homogeneous steady-state case, also proper veloc-
ities and mean free paths. Thermal transport can be
described as a kinetic theory of the relaxon gas, thus
with time, velocity and length scales determined by
relaxons. For clarity, we report in Table I a summary
of relaxon characteristics and how they compare with
phonons. This theory is applied here first to graphene at
room temperature where, as is typical of 2D materials or
of 3D solids at low temperatures, the failure of the SMA
and of its picture of phonons as heat carriers becomes
dramatic; and to silicon at room temperature, where,
although the SMA yields reasonable thermal conductiv-
ities, the theory brings new insight in the microscopic
interpretation of heat flux and its typical velocities.
Finally, we have shown that the Matthiessen rule is
violated in the exact BTE, with significant consequences
for all systems in which the SMA does not hold. As a final
remark, the concept of relaxons has been applied in this
work in the context of phonons; however, similar argu-
ments hold for the electron BTE or other semiclassical
transport models.

VIII. METHODS

A. First-principles simulations

Density-functional theory calculations have been per-
formed with the Quantum-ESPRESSO distribution [45],
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using the local-density approximation and norm-conserving
pseudopotentials from the PSLibrary [53]; for graphene, a
plane-wave cutoff of 90 Ry and a Methfessel-Paxton
smearing of 0.02 Ry have been used, and for silicon, a
plane-wave cutoff of 100 Ry has been used. Graphene is
simulated with a slab geometry, using an optimized lattice
parameter a ¼ 4.607 Bohr and a cell height c ¼ 3a; for
silicon, we find an optimized lattice parameter of 10.18
Bohr. The Brillouin zone is integrated with a Gamma-
centered Monkhorst-Pack mesh of 24 × 24 × 1 points for
graphene and 12 × 12 × 12 for silicon. Second- and third-
order force constants are computed on meshes of 16×16×1
and 4 × 4 × 1 points, respectively, for graphene and
8 × 8 × 8 and 4 × 4 × 4 for silicon, and they are later
Fourier interpolated on finer meshes.

B. Thermal conductivity simulations

The scattering matrix ~Ω includes three-phonon inter-
actions and harmonic isotopic scattering [6,7] at natural
abundances [54] (98.93% 12C, 1.07% 14C for carbon, and
92.22% 28Si, 4.67% 29Si, 3.09% 30Si for silicon). For
graphene, the scattering matrix is constructed using the
same computational parameters of Ref. [29] (a Gaussian
smearing of 10 cm−1 and a mesh of 128 × 128 × 1 points
for integrating the Brillouin zone), resulting in a matrix of
order 98304, while for silicon, we use a Gaussian smearing
of 7 cm−1 and a mesh of 30 × 30 × 30, yielding a matrix
of order 162000. Here, ~Ω is diagonalized exactly using
the routine PDSYEV of the Scalapack library [55]. The
simulation cell of graphene is renormalized using the
interlayer distance of bulk graphite (c=a ¼ 1.367), in order
to have a thermal conductivity comparable with the 3D
counterpart. We verified the correctness of the software
implementation ensuring that the thermal conductivity
estimated with the diagonalization solver coincides with
that computed with the variational method of Ref. [7] up to
at least four significant digits. It is worth mentioning
that these calculations are not prohibitively expensive
and could be extended to other systems. The present
software implementation computes ~Ω, diagonalizes it,
and computes the conductivity of graphene in about 5 hours
using 256 CPUs on the Piz Daint supercomputer of the
Swiss National Supercomputer Center (CSCS), for a total

of 1300 CPU hours (1000 of which are spent in the
diagonalization). For silicon, the calculation was completed
in 8 hours on 576 CPUs, for a total of 4600 CPU hours.
Calculations have been managed using the AiiDA materi-
als’ informatics platform [56].
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APPENDIX A: SCATTERING RATES

In this appendix, we report the expressions for building
the scattering matrix using three-phonon and isotope
scattering events, which are discussed in detail in
Ref. [7]. To make a connection with other studies, we
note that most solve the BTE using a phonon deviation
from equilibrium of the form nμ ¼ n̄μ þ n̄μðn̄μ þ 1ÞFμ.
Since the action of the collision operator must not change,
we have the relationX

μ0
Aμμ0Fμ0 ¼

X
μ0
Ωμμ0Δnμ0 ; ðA1Þ

where A is the scattering matrix when it acts on F, related
with the scattering matrices used in our work by

Ωμμ0 ¼ Aμμ0
1

n̄μ0 ðn̄μ0 þ 1Þ ; ðA2Þ

~Ωμμ0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n̄μðn̄μ þ 1Þp Aμμ0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n̄μ0 ðn̄μ0 þ 1Þp : ðA3Þ

The scattering rate for a phonon coalescence event is

Pμ00
μμ0 ¼

2π

Nℏ2

X
G

jVð3Þðμ; μ0;−μ00Þj2n̄μn̄μ0 ðn̄μ00 þ 1Þδqþq0−q00;G

× δðℏωμ þ ℏωμ0 − ℏωμ00 Þ; ðA4Þ

TABLE I. A comparison of the main properties of phonons and relaxons.

Phonon Relaxon

Definition Eigenstate of harmonic Hamiltonian Eigenstate of collision matrix
Physical meaning Collective excitation of atomic displacements Collective excitation of phonon populations

Quantum of vibrational energy Elementary carrier of heat
Exact quantities Lifetime, velocity and mean free

path of the vibration
Relaxation time, velocity and mean free

path of the heat carrier
Quasiparticle (energy, wave vector, dispersion relations) No dispersion relations

Thermal conductivity Only obtained as solution of the BTE Obtained as a kinetic theory of the relaxon gas
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where N is the number of q points, G is a reciprocal lattice
vector, and Vð3Þ is the third derivative of the unit-cell energy
Ecell with respect to atomic displacements,

Vð3Þðμ; μ0; μ″Þ ¼ ∂3Ecell

∂Xμ∂Xμ0∂Xμ00
; ðA5Þ

with

Xqs ¼
1

N

X
lbα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mbωqs

ℏ

r
z�;bαqs ubαðRlÞe−iq·Rl ; ðA6Þ

where b is an index running on the basis of atoms in the unit
cell, Rl is a Bravais lattice vector identifying the lth unit cell
inside the crystal, α is a Cartesian index, Mb is the mass of
atom b, z is the phonon polarization vector, and u is the
vector of atomic displacements. The scattering rate for a
phonon-isotope scattering event is

Pisot
μμ0 ¼

π

2N
ωμωμ0

�
n̄μn̄μ0 þ

n̄μ þ n̄μ0

2

�

×
X
b

gb

����X
α

z�;bαμ zbαμ0

����2δðωμ − ωμ0 Þ; ðA7Þ

where gb ¼ ððMb − hMbiÞ2=hMbi2Þ.
Combining these scattering rates, the scattering

matrix A is

Aμμ0 ¼
�X
μ00;μ000

�
Pμ00
μμ000 þ

1

2
Pμ
μ00μ000

�
þ
X
μ0
Pisot
μμ0

�
δμμ0

−
X
μ00

ðPμ0
μμ00 − Pμ00

μμ0 þ Pμ
μ0μ00 Þ þ Pisot

μμ0 : ðA8Þ

In the numerical implementation, the Dirac delta conserving
the energy is replaced by a Gaussian smearing. As the
authors of Ref. [7] noted, the above expression guarantees
that the scattering matrix A is symmetric and positive-
definite also in the presence of a Gaussian smearing (other
expressions, which would be equivalent to a Dirac delta
function, may introduce spurious negative eigenvalues). By
virtue of Eqs. (A2) and (A3), it follows that ~Ω is symmetric
but not Ω, hence the necessity of the transformations (5)
and (6).
Finally, we recall that phonon lifetimes are related to the

diagonal elements of the scattering matrix as

Aμμ ¼
n̄μðn̄μ þ 1Þ

τμ
; ðA9Þ

~Ωμμ ¼
1

τμ
: ðA10Þ

APPENDIX B: SILICON THERMAL PROPERTIES

In this appendix, we study the effect of the scaling of
specific heat on velocities and mean free paths. While

relaxon properties are as defined in the main text, phonon
velocities and mean free paths are scaled as

vμ →

ffiffiffiffiffiffiffi
Cμ

VC

r
vμ; ðB1Þ

ΛSMA
μ →

ffiffiffiffiffiffiffi
Cμ

VC

r
ΛSMA
μ : ðB2Þ

With this choice of scaling, we can write the SMA thermal
conductivity as

ðkijÞSMA ¼
X
μ

CviμðΛj
μÞSMA; ðB3Þ

which treats specific heat in the same way as Eq. (13). In
Fig. 10, we report the comparison of these scaled phonon
quantities with the relaxon properties in silicon. One can
readily see that the 2-orders-of-magnitude differences that
appeared in Figs. 7 and 8 have almost disappeared. Most of
the discrepancy is thus due to the usage of specific heat.
Nevertheless, the largest phonon velocities are still a factor
of 3 smaller than those of relaxons, and the two pictures do
not perfectly overlap.

APPENDIX C: MATTHIESSEN RULE

Here, we recall a known result [18] that proves that the
application of the Matthiessen rule results in an overesti-
mation of the exact thermal conductivity. The BTE for a
homogeneous system under a static gradient of temperature
can be written in a matrix form (see, for example, Ref. [18]
or more recently Ref. [7]):

Aϕ ¼ b; ðC1Þ

where A is related to the scattering matrix Ω via
Aμμ0 ¼ Ωμμ0 n̄μ0 ðn̄μ0 þ 1Þ, b ¼ −ð∂n̄μ=∂TÞvμ, and ϕ is the
deviation from equilibrium defined as nμ ¼ n̄μ þ
n̄μðn̄μ þ 1Þ∇Tϕμ.
Another way of solving the BTE, besides the diagonal-

ization approach discussed in the main article, is via the
variational principle [18]. In particular, the solution of
the BTE can be found from the minimization of the
functional [18]

F ½ϕ� ¼ hϕjAjϕi
ðhϕjbiÞ2 : ðC2Þ

Let ϕ be the function minimizing F . The minimum of F is
directly proportional to the thermal resistivity ρ [18];
therefore, we write

ρ ¼ 1

k
¼ F ½ϕ�: ðC3Þ

THERMAL TRANSPORT IN CRYSTALS AS A KINETIC … PHYS. REV. X 6, 041013 (2016)

041013-11



Now, let us separate the scattering matrix into two different
components (for example, three-phonon and isotopic
scattering),

A ¼ A1 þ A2: ðC4Þ

The exact resistivity is given by

ρ ¼ hϕjA1jϕi þ hϕjA2jϕi
ðhϕjbiÞ2 : ðC5Þ

The function ϕ that minimizes the functional defined by A
will not, in general, be the function that minimizes
the functionals F 1 and F 2 defined by A1 or A2 only.
The functionals F 1 and F 2 instead will be minimized
by the functions ϕ1 and ϕ2, respectively. By the variational
principle,

ρ ¼ hϕjA1jϕi
ðhϕjbiÞ2 þ hϕjA2jϕi

ðhϕjbiÞ2

≥
hϕ1jA1jϕ1i
ðhϕ1jbiÞ2

þ hϕ2jA2jϕ2i
ðhϕ2jbiÞ2

¼ ρ1 þ ρ2: ðC6Þ
Alternatively, this can be written as

1

k
≤

1

k1
þ 1

k2
; ðC7Þ

showing that the Matthiessen rule is a special case where
the equalities hold exactly. More generally, its application
leads to an overestimation of thermal conductivities.

APPENDIX D: ITERATIVE METHOD

In this appendix, we examine the convergence properties
of the iterative method for solving the BTE. Such a
method can be formalized as follows. The steady-state
homogeneous BTE in the phonon basis is
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FIG. 10. Top panel: Comparison of relaxon velocities with
scaled phonon velocities. Bottom panel: Same as the top panel
but for mean free paths.
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∇T · vμ
∂n̄μ
∂T ¼ −

1

V

X
μ0
Ωμμ0Δnμ0 : ðD1Þ

This is a linear algebra problem of the form AF ¼ b,
where bμ ¼ −vμℏωμn̄μðn̄μ þ 1Þ=kBT2, F is defined by
nμ ¼ n̄μ þ n̄μðn̄μ þ 1Þ∇TFμ, and Ωμμ0 ¼ Aμμ0 n̄μ0 ðn̄μ0 þ 1Þ.
The iterative solution for F [4,16,17] can then be recast [7]
as a geometric series F ¼ P∞

j¼0½−ðAdÞ−1Aod�jðAdÞ−1b,
where Ad and Aod are, respectively, the diagonal and the
off-diagonal parts of A. This series is convergent if and only
if all the eigenvalues λ of ½ðAdÞ−1Aod� are jλj< 1. In Fig. 11,
we show that, in graphene, jλj > 1 for more than half of the
spectrum, proving that the iterative method is numerically
unstable for graphene at room temperature. In general, one
might expect convergence issues for the iterative method
whenever the relaxon picture differs significantly from the
phonon picture and the contribution of the off-diagonal part
is large compared to the diagonal part.

[1] R. Peierls, Zur Kinetischen Theorie der Wärmeleitung in
Kristallen, Ann. Phys. (N.Y.) 395, 1055 (1929).

[2] M. S. Green, Markoff Random Processes and the Statistical
Mechanics of Time-Dependent Phenomena. II. Irreversible
Processes in Fluids, J. Chem. Phys. 22, 398 (1954).

[3] R. Kubo, Statistical-Mechanical Theory of Irreversible
Processes. I. General Theory and Simple Applications to
Magnetic and Conduction Problems, J. Phys. Soc. Jpn. 12,
570 (1957).

[4] D. A. Broido, A. Ward, and N. Mingo, Lattice Thermal
Conductivity of Silicon from Empirical Interatomic Poten-
tials, Phys. Rev. B 72, 014308 (2005).

[5] D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D. A.
Stewart, Intrinsic Lattice Thermal Conductivity of Semi-
conductors from First Principles, Appl. Phys. Lett. 91,
231922 (2007).

[6] J. Garg, N. Bonini, B. Kozinsky, and N. Marzari, Role of
Disorder and Anharmonicity in the Thermal Conductivity of
Silicon-Germanium Alloys: A First-Principles Study, Phys.
Rev. Lett. 106, 045901 (2011).

[7] G. Fugallo, M. Lazzeri, L. Paulatto, and F. Mauri, Ab Initio
Variational Approach for Evaluating Lattice Thermal
Conductivity, Phys. Rev. B 88, 045430 (2013).

[8] K. Esfarjani, G. Chen, and H. T. Stokes, Heat Transport in
Silicon from First-Principles Calculations, Phys. Rev. B 84,
085204 (2011).

[9] A. Ward, D. A. Broido, D. A. Stewart, and G. Deinzer,
Ab Initio Theory of the Lattice Thermal Conductivity in
Diamond, Phys. Rev. B 80, 125203 (2009).

[10] M. N. Luckyanova, J. Garg, K. Esfarjani, A. Jandl, M. T.
Bulsara, A. J. Schmidt, A. J. Minnich, S. Chen, M. S.
Dresselhaus, Z. Ren, E. A. Fitzgerald, and G. Chen, Coher-
ent Phonon Heat Conduction in Superlattices, Science 338,
936 (2012).

[11] D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan,
K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan,

A. Majumdar et al., Nanoscale Thermal Transport. II.
2003–2012, Appl. Phys. Rev. 1, 011305 (2014).

[12] D. Donadio and G. Galli, Atomistic Simulations of Heat
Transport in Silicon Nanowires, Phys. Rev. Lett. 102,
195901 (2009).

[13] A. J. H. McGaughey and M. Kaviany, Quantitative Vali-
dation of the Boltzmann Transport Equation Phonon
Thermal Conductivity Model under the Single-Mode Relax-
ation Time Approximation, Phys. Rev. B 69, 094303 (2004).

[14] S. G. Volz and G. Chen, Molecular Dynamics Simulation of
Thermal Conductivity of Silicon Nanowires, Appl. Phys.
Lett. 75, 2056 (1999).

[15] G. Zhang and B. Li, Thermal Conductivity of Nanotubes
Revisited: Effects of Chirality, Isotope Impurity, Tube
Length, and Temperature, J. Chem. Phys. 123, 114714
(2005).

[16] M. Omini and A. Sparavigna, Heat Transport in Dielectric
Solids with Diamond Structure, Nuovo Cimento D 19, 1537
(1997).

[17] M. Omini and A. Sparavigna, Beyond the Isotropic-Model
Approximation in the Theory of Thermal Conductivity,
Phys. Rev. B 53, 9064 (1996).

[18] J. Ziman, Electrons and Phonons: The Theory of Transport
Phenomena in Solids, Oxford Classic Texts in the Physical
Sciences (Oxford University Press, New York, 2001).

[19] R. A. H. Hamilton and J. E. Parrot, Variational Calculation
of the Thermal Conductivity of Germanium, Phys. Rev. 178,
1284 (1969).

[20] G. P. Srivastava, Derivation and Calculation of Comple-
mentary Variational Principles for the Lattice Thermal
Conductivity, J. Phys. C 9, 3037 (1976).

[21] R. A. Guyer and J. A. Krumhansl, Solution of the Linearized
Phonon Boltzmann Equation, Phys. Rev. 148, 766 (1966).

[22] R. J. Hardy, Phonon Boltzmann Equation and Second
Sound in Solids, Phys. Rev. B 2, 1193 (1970).

[23] L. Chaput, Direct Solution to the Linearized Phonon
Boltzmann Equation, Phys. Rev. Lett. 110, 265506 (2013).

[24] J. Callaway,Model for Lattice Thermal Conductivity at Low
Temperatures, Phys. Rev. 113, 1046 (1959).

[25] L. Lindsay, D. A. Broido, and N. Mingo, Flexural Phonons
and Thermal Transport in Graphene, Phys. Rev. B 82,
115427 (2010).

[26] A. Cepellotti, G. Fugallo, L. Paulatto, M. Lazzeri, F.
Mauri, and N. Marzari, Phonon Hydrodynamics in Two-
Dimensional Materials, Nat. Commun. 6, 6400 (2015).

[27] L. Lindsay and D. A. Broido, Enhanced Thermal Conduc-
tivity and Isotope Effect in Single-Layer Hexagonal Boron
Nitride, Phys. Rev. B 84, 155421 (2011).

[28] A. Jain and A. J. H. McGaughey, Strongly Anisotropic
In-Plane Thermal Transport in Single-Layer Black Phos-
phorene, Sci. Rep. 5, 8501 (2015).

[29] G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N.
Marzari, and F. Mauri, Thermal Conductivity of Graphene
and Graphite: Collective Excitations and Mean Free Paths,
Nano Lett. 14, 6109 (2014).

[30] M. Gill-Comeau and L. J. Lewis, On the Importance of
Collective Excitations for Thermal Transport in Graphene,
Appl. Phys. Lett. 106, 193104 (2015).

THERMAL TRANSPORT IN CRYSTALS AS A KINETIC … PHYS. REV. X 6, 041013 (2016)

041013-13

http://dx.doi.org/10.1002/andp.19293950803
http://dx.doi.org/10.1063/1.1740082
http://dx.doi.org/10.1143/JPSJ.12.570
http://dx.doi.org/10.1143/JPSJ.12.570
http://dx.doi.org/10.1103/PhysRevB.72.014308
http://dx.doi.org/10.1063/1.2822891
http://dx.doi.org/10.1063/1.2822891
http://dx.doi.org/10.1103/PhysRevLett.106.045901
http://dx.doi.org/10.1103/PhysRevLett.106.045901
http://dx.doi.org/10.1103/PhysRevB.88.045430
http://dx.doi.org/10.1103/PhysRevB.84.085204
http://dx.doi.org/10.1103/PhysRevB.84.085204
http://dx.doi.org/10.1103/PhysRevB.80.125203
http://dx.doi.org/10.1126/science.1225549
http://dx.doi.org/10.1126/science.1225549
http://dx.doi.org/10.1063/1.4832615
http://dx.doi.org/10.1103/PhysRevLett.102.195901
http://dx.doi.org/10.1103/PhysRevLett.102.195901
http://dx.doi.org/10.1103/PhysRevB.69.094303
http://dx.doi.org/10.1063/1.124914
http://dx.doi.org/10.1063/1.124914
http://dx.doi.org/10.1063/1.2036967
http://dx.doi.org/10.1063/1.2036967
http://dx.doi.org/10.1103/PhysRevB.53.9064
http://dx.doi.org/10.1103/PhysRev.178.1284
http://dx.doi.org/10.1103/PhysRev.178.1284
http://dx.doi.org/10.1088/0022-3719/9/16/011
http://dx.doi.org/10.1103/PhysRev.148.766
http://dx.doi.org/10.1103/PhysRevB.2.1193
http://dx.doi.org/10.1103/PhysRevLett.110.265506
http://dx.doi.org/10.1103/PhysRev.113.1046
http://dx.doi.org/10.1103/PhysRevB.82.115427
http://dx.doi.org/10.1103/PhysRevB.82.115427
http://dx.doi.org/10.1038/ncomms7400
http://dx.doi.org/10.1103/PhysRevB.84.155421
http://dx.doi.org/10.1038/srep08501
http://dx.doi.org/10.1021/nl502059f
http://dx.doi.org/10.1063/1.4921127


[31] S. Lee, D. Broido, K. Esfarjani, and G. Chen, Hydro-
dynamic Phonon Transport in Suspended Graphene, Nat.
Commun. 6, 6290 (2015).

[32] G. Barbarino, C. Melis, and L. Colombo, Intrinsic Thermal
Conductivity in Monolayer Graphene Is Ultimately Upper
Limited: A Direct Estimation by Atomistic Simulations,
Phys. Rev. B 91, 035416 (2015).

[33] C. de Tomas, A. Cantarero, A. F. Lopeandia, and F. X.
Alvarez, From Kinetic to Collective Behavior in Thermal
Transport on Semiconductors and Semiconductor Nano-
structures, J. Appl. Phys. 115, 164314 (2014).

[34] R. J. Hardy, Energy-Flux Operator for a Lattice, Phys. Rev.
132, 168 (1963).

[35] R. J. Hardy, Lowest-Order Contribution to the Lattice
Thermal Conductivity, J. Math. Phys. (N.Y.) 6, 1749 (1965).

[36] J. A. Krumhansl, Thermal Conductivity of Insulating
Crystals in the Presence of Normal Processes, Proc. Phys.
Soc. 85, 921 (1965).

[37] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D.
Teweldebrhan, F. Miao, and C. N. Lau, Superior Thermal
Conductivity of Single-Layer Graphene, Nano Lett. 8, 902
(2008).

[38] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi,
Phonons and Related Crystal Properties from Density-
Functional Perturbation Theory, Rev. Mod. Phys. 73, 515
(2001).

[39] P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni,
Ab Initio Calculation of Phonon Dispersions in Semi-
conductors, Phys. Rev. B 43, 7231 (1991).

[40] A. Debernardi, S. Baroni, and E. Molinari, Anharmonic
Phonon Lifetimes in Semiconductors from Density-
Functional Perturbation Theory, Phys. Rev. Lett. 75, 1819
(1995).

[41] L. Paulatto, F. Mauri, and M. Lazzeri, Anharmonic Proper-
ties from a Generalized Third-Order Ab Initio Approach:
Theory and Applications to Graphite and Graphene, Phys.
Rev. B 87, 214303 (2013).

[42] M. Lazzeri and S. de Gironcoli, First-Principles Study of the
Thermal Expansion of Be(1010), Phys. Rev. B 65, 245402
(2002).

[43] S. Baroni, P. Giannozzi, and A. Testa, Green’s-Function
Approach to Linear Response in Solids, Phys. Rev. Lett. 58,
1861 (1987).

[44] X. Gonze and J.-P. Vigneron, Density-Functional Approach
to Nonlinear-Response Coefficients of Solids, Phys. Rev. B
39, 13120 (1989).

[45] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.
Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni,
I. Dabo et al., QUANTUM ESPRESSO: A Modular and

Open-Source Software Project for Quantum Simulations of
Materials, J. Phys. Condens. Matter 21, 395502 (2009).

[46] N. Bonini, J. Garg, and N. Marzari, Acoustic Phonon
Lifetimes and Thermal Transport in Free-Standing and
Strained Graphene, Nano Lett. 12, 2673 (2012).

[47] Y. Kuang, L. Lindsay, and B. Huang, Unusual Enhancement
in Intrinsic Thermal Conductivity of Multilayer Graphene
by Tensile Strains, Nano Lett. 15, 6121 (2015).

[48] J. Garg, N. Bonini, and N. Marzari, First-Principles
Determination of Phonon Lifetimes, Mean Free Paths,
and Thermal Conductivities in Crystalline Materials: Pure
Silicon and Germanium, in Length-Scale Dependent Pho-
non Interactions Topics in Applied Physics Vol. 128, edited
by S. L. Shind and G. P. Srivastava, Length-Scale Depen-
dent Phonon Interactions (Springer, New York, 2014).

[49] P. Jiang, L. Lindsay, and Y. K. Koh, Role of Low-Energy
Phonons with Mean-Free-Paths > 0.8 μm in Heat Con-
duction in Silicon, J. Appl. Phys. 119, 245705 (2016).

[50] J. Cuffe, J. K. Eliason, A. A. Maznev, K. C. Collins, J. A.
Johnson, A. Shchepetov, M. Prunnila, J. Ahopelto, C. M.
Sotomayor Torres, G. Chen, and K. A. Nelson, Reconstruct-
ing Phonon Mean-Free-Path Contributions to Thermal
Conductivity Using Nanoscale Membranes, Phys. Rev. B
91, 245423 (2015).

[51] A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani,
M. S. Dresselhaus, K. A. Nelson, and G. Chen, Thermal
Conductivity Spectroscopy Technique to Measure Phonon
Mean Free Paths, Phys. Rev. Lett. 107, 095901 (2011).

[52] K. T. Regner, D. P. Sellan, Z. Su, C. H. Amon, A. J. H.
McGaughey, and J. A. Malen, Broadband Phonon Mean
Free Path Contributions to Thermal Conductivity Measured
Using Frequency Domain Thermoreflectance, Nat. Com-
mun. 4, 1640 (2013).

[53] A. Dal Corso, PsLibrary, http://qe‑forge.org/gf/project/
pslibrary (2012).

[54] M. E. Wieser, N. Holden, T. B. Coplen, J. K. Boehlke, M.
Berglund, W. A. Brand, P. De Bièvre, M. Groening, R. D.
Loss, J. Meija et al., Atomic Weights of the Elements 2011
(IUPAC Technical Report), Pure Appl. Chem. 85, 883
(2013).

[55] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J.
Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. Petitet et al., ScaLAPACK Users’ Guide (Society for
Industrial and Applied Mathematics, Philadelphia, PA,
1997).

[56] G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, and B.
Kozinsky, AiiDA: Automated Interactive Infrastructure and
Database for Computational Science, Comput. Mater. Sci.
111, 218 (2016).

ANDREA CEPELLOTTI and NICOLA MARZARI PHYS. REV. X 6, 041013 (2016)

041013-14

http://dx.doi.org/10.1038/ncomms7290
http://dx.doi.org/10.1038/ncomms7290
http://dx.doi.org/10.1103/PhysRevB.91.035416
http://dx.doi.org/10.1063/1.4871672
http://dx.doi.org/10.1103/PhysRev.132.168
http://dx.doi.org/10.1103/PhysRev.132.168
http://dx.doi.org/10.1063/1.1704719
http://dx.doi.org/10.1088/0370-1328/85/5/310
http://dx.doi.org/10.1088/0370-1328/85/5/310
http://dx.doi.org/10.1021/nl0731872
http://dx.doi.org/10.1021/nl0731872
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/PhysRevB.43.7231
http://dx.doi.org/10.1103/PhysRevLett.75.1819
http://dx.doi.org/10.1103/PhysRevLett.75.1819
http://dx.doi.org/10.1103/PhysRevB.87.214303
http://dx.doi.org/10.1103/PhysRevB.87.214303
http://dx.doi.org/10.1103/PhysRevB.65.245402
http://dx.doi.org/10.1103/PhysRevB.65.245402
http://dx.doi.org/10.1103/PhysRevLett.58.1861
http://dx.doi.org/10.1103/PhysRevLett.58.1861
http://dx.doi.org/10.1103/PhysRevB.39.13120
http://dx.doi.org/10.1103/PhysRevB.39.13120
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1021/nl202694m
http://dx.doi.org/10.1021/acs.nanolett.5b02403
http://dx.doi.org/10.1063/1.4954674
http://dx.doi.org/10.1103/PhysRevB.91.245423
http://dx.doi.org/10.1103/PhysRevB.91.245423
http://dx.doi.org/10.1103/PhysRevLett.107.095901
http://dx.doi.org/10.1038/ncomms2630
http://dx.doi.org/10.1038/ncomms2630
http://qe-forge.org/gf/project/pslibrary
http://qe-forge.org/gf/project/pslibrary
http://qe-forge.org/gf/project/pslibrary
http://dx.doi.org/10.1351/PAC-REP-13-03-02
http://dx.doi.org/10.1351/PAC-REP-13-03-02
http://dx.doi.org/10.1016/j.commatsci.2015.09.013
http://dx.doi.org/10.1016/j.commatsci.2015.09.013

