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Relying on abrupt phase discontinuities, metasurfaces characterized by a transversely inhomogeneous
surface impedance profile have been recently explored as an ultrathin platform to generate arbitrary wave
fronts over subwavelength thicknesses. Here, we outline fundamental limitations of passive gradient
metasurfaces in molding the impinging wave and show that local phase compensation is essentially
insufficient to realize arbitrary wave manipulation, but full-wave designs should be considered. These
findings represent a critical step towards realistic and highly efficient conformal wave manipulation beyond
the scope of ray optics, enabling unprecedented nanoscale light molding.
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I. INTRODUCTION

Devising physical systems that grant full control of the
distribution of electromagnetic (EM) waves has been an
emerging area of research in the past decades. Photonic
crystals [1] and metamaterials [2] represent the two major
milestones in this direction, and several unusual wave
phenomena have been put forward based on these artifi-
cially engineered structures, most notably negative refrac-
tion and perfect lensing, improved optical fibers, extreme
wave localization, and invisibility cloaks [3–6]. One of
the long-standing challenges in this context, originally
considered at radio frequencies (rf), is to come up with
practical and efficient techniques to arbitrarily mold the
emerging wave front of an antenna or a localized source.
Conventional methods to solve this problem date back to
glass lenses and prisms, which rely on engineering the
gradual accumulation of phase delay as the wave prop-
agates in the device, reshaping the scattered wave front and
beam profile at will. In the context of metamaterials,
transformation optics has become a paradigm to realize
arbitrary wave manipulation in volumetric devices [7–9].
On top of the unavoidable loss induced along the propa-
gation path, often substantial when metamaterial compo-
nents are considered [10], these devices suffer from bulky
profiles and are typically at least several wavelengths thick.
A relevant question we address in this paper is whether it
would be possible to realize a transformation platform
similarly capable of molding wave propagation at will, but

with a much thinner and low-profile geometry, in other
words, over a metasurface.
At rf, low-profile devices for wave-front patterning are

available in the form of arrays of printed antennas, also
known as reflect and transmit arrays, which are used to
modify the spatial distribution of reflected and transmitted
waves over deeply subwavelength thicknesses [11–13]. In
contrast to the gradual transformation of the wave in a
volumetric component, the variations in the spacing and
size of the printed antennas create a transversely inhomo-
geneous surface impedance profile that imposes an effec-
tive field discontinuity, controlling the transverse phase
distribution of the wave as it propagates through the
surface. Such impedance surfaces can be designed with
extremely subwavelength thickness, forming the founda-
tion for a transformation-optics paradigm over two dimen-
sions. Passive printed antenna arrays are at the basis of
planar microwave lenses and mirrors that can replace
inconvenient bulky mirrors in reflector antennas and, at
the same time, can enable fully electric beam steering by
exploiting appropriately engineered surface resonances.
The simplicity of surface-based wave manipulation at rf
has inspired scientists to extend these concepts to shorter
wavelengths, up to the infrared and visible spectrum, using
artificial arrays of subwavelength polarizable particles, or
metasurfaces [14–17]. In analogy to rf patterned surfaces,
optical metasurfaces can be fruitfully modeled with a local
averaged surface impedance [18]. However, different from
their rf counterparts, metasurfaces can largely benefit from
plasmonic effects, allowing their surface constituents, i.e.,
nanoantennas [19], to resonate over spatial scales much
smaller than the free-space wavelength, providing a route to
much larger control of the transverse spatial resolution.
Plasmonic metasurfaces have enabled the concept of
reflect and transmit arrays to shorter wavelengths, under
the assumption that a suitably tailored transverse phase
discontinuity profile imparted over an ultrathin surface may
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redirect an impinging wave toward a new direction, depend-
ing on the lateral phase gradient [20–22]. The abrupt phase
shift introduced by nanoantennas is exploited to compensate
for the phase difference between the incident and desired
wave profile, e.g., linear, circular, and hyperbolic scattering
phases, to create tilted waves, vortex beams, and focusing
lenses. The prospect of full control on the distribution of the
scattered wave with a single ultrathin patterned surface has
created excitement in the scientific community, and the
initial proposals have now been extended to different
frequency ranges, and numerous optimized surface elements
have been studied to provide efficient (i.e., with almost
unitary amplitude) full phase coverage in both reflection and
transmission scenarios [23–27].
In this article, we raise the fundamental question of towhat

extent a phase gradient on a metasurface is sufficient to
guarantee ultimate control of its scattering signature. First, it
is obvious that, different from volumetric metamaterials, a
metasurface can transform a wave front to another one only
provided that both fields are solutions of the source-freewave
equation in the background medium. With rigorous treat-
ment, in this paperwe show that it is not possible to funnel the
incident wave front into an arbitrary solution of choice if we
are limited to using passive metasurfaces, and even basic
functionalities, such as wave deflection, have fundamental
limitations on the overall efficiency of the transformation
process in the ultrathin limit. Second, we show that the
optimal phase distribution thatmaximizes the transformation
efficiency in the case of a passive surface drastically deviates
from the simple phase correction recipe stemming from ray

optics, which has been widely used in the recent literature.
For instance, ray optics predicts a linear phase distribution
along the surface to realize a beam steering metasurface.
However, we show that the complete wave optics picture
requires the ideal abrupt phase discontinuity to be nonlinear.
The deviation, arising from local impedancemismatch on the
surface, is particularly important for extreme cases, such
as large-angle beam deflection or near-field focusing, for
whichmetasurfaces can outperform conventional volumetric
devices or gratings.

II. BEAM STEERING WITH METASURFACES

We start by considering the general problem of EM
wave interactions with a transversely inhomogeneous
metasurface of arbitrary profile, as shown in Fig. 1(a).
We assume that the surface thickness is deeply subwave-
length, d=λ0 → 0, where λ0 ¼ 2π=k0 is the free-space
wavelength and k0 is the corresponding wave number.
The subwavelength thickness of the structure allows us to
describe it, in a local sense, by equivalent transverse surface
electric and magnetic currents Js and Ms, forming local
electric admittance Js ¼ Y

e
ðrÞ · Et and magnetic imped-

ance Ms ¼ Z
m
ðrÞ ·Ht tensors, related to the tangential

components of the local fields over the surface [14,18]. For
simplicity, in the following we assume that the symmetries
of the problem allow us to consider scalar impedances Ye
and Zm for the excitation of interest. It is possible to
characterize the surface also by its local reflection
[R ¼ rðrÞejϕrðrÞ] and transmission [T ¼ tðrÞejϕtðrÞ]

(a)

(c)

(b)

FIG. 1. (a) An arbitrary incident wave front is transformed into the desired scattering profile employing a transversely inhomogeneous
metasurface with local distribution of loss and gain. (b) Metasurface impedance profile and (c) local reflection coefficient RðxÞ ¼
rðxÞejϕrðxÞ required to convert a normally incident wave (θi ¼ 0 deg) into refracted waves at θr ¼ 25; 45; 75 deg. In each example, the
amplitude of the reflected plane wave is jArj ¼

ffiffiffiffiffiffiffiffiffiffiffi
cos θi

p
=

ffiffiffiffiffiffiffiffiffiffiffiffi
cos θr

p
to ensure that total incident and reflected powers are equal towards the

normal direction. The real component of the surface admittance in (b) and nonunitary local reflection amplitudes in (c) indicate
the requirement of loss or gain modulation of the surface.
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coefficients, defined assuming a uniform surface built with
such local impedances and excited at normal incidence. As
shown in Eq. (1), these quantities are directly related to
Ye and Zm [28], and ϕr and ϕt are the phase distributions
imparted on the reflected and transmitted waves at the
metasurface interface, respectively. A lossless ultrathin
surface has locally r2 þ t2 ¼ 1 or, equivalently, Ye and
Zm are purely imaginary,

R ¼ − 2ðη02Ye − ZmÞ
ð2þ η0YeÞð2η0 þ ZmÞ

;

T ¼ − ð−2þ η0YeÞ
ð2þ η0YeÞ

þ 2ðη02Ye − ZmÞ
ð2þ η0YeÞð2η0 þ ZmÞ

: ð1Þ

In order to highlight the potential and limitations of a
gradient metasurface for wave transformation, we first
consider an ideal planar metasurface whose elements can
be engineered to locally provide unitary transmission, zero
reflection, and full control on the transmission phase, so
that ϕtðrÞ can take any value between 0 and 2π over the
surface. This implies that the metasurface can, in principle,
impart any phase profile to the transmitted wave, with
100% local efficiency. In order to transform a normally
incident plane wave, Ei ¼ ŷE0ejk0z, into an obliquely
transmitted wave, Et ¼ ŷE0ejk0½− sinðθtÞxþcosðθtÞz�, propagat-
ing toward the angle θt in the xz plane (anomalous
refraction, a common target for gradient metasurfaces),
the available literature has so far considered designs
based on phase compensation, which requires that the
metasurface provides a constant phase gradient ϕtðxÞ ¼−k0 sinðθtÞx [20–22]. This is the basis of the so-called
“generalized Snell’s law of refraction,” which allows
challenging the usual refraction response at a transversely
homogeneous interface.
We show in the following that this picture is inherently

approximate, as it does not consider the relevance of
impedance matching in the scattering process [29].
Changing the refraction angle fromnormal to oblique implies
a different ratio of the transverse components of electric and
magnetic fields on the surface, which in turn requires that
the local transmission coefficient t should be different for
local tangential electric and magnetic fields. In other words,
contrary to the common assumptions in recent metasurface
works, a passive-lossless surfacewhose sole role is to imprint
a locally engineered linear momentum to the scattered wave
necessarily fails to generate a plane wave tilted toward an
arbitrary directionwith unitary efficiency, and the impedance
mismatch is expected to grow for steeper angles. This is
consistent with earlier papers analyzing linear gradient
metasurfaces (see, e.g., Ref. [30]), which have commonly
found a degradation of coupling efficiency as the steering
angle grows away from the normal.
It is possible to rigorously derive the impedance require-

ments for a single ultrathin metasurface to transform an

arbitrary impinging wave front ðEi;HiÞ into the scattered
waves ðE1s;H1sÞ in region 1 and ðE2s;H2sÞ in region 2,
with the only assumption that all three field distributions are
valid solutions of source-free Maxwell’s equations in the
respective regions. The averaged induced current distribu-
tions on the metasurface should be suitably designed to
compensate for the field discontinuity across the interface
[28], and surface admittance and impedance need to satisfy
the boundary condition at each point on the surface [23,31],

n̂ × ðH2 −H1ÞjS ¼
1

2
YeðE2t þ E1tÞjS;

n̂ × ðE2 −E1ÞjS ¼ − 1

2
ZmðH2t þH1tÞjS: ð2Þ

Assuming that impinging and scattered fields are known,
Eq. (2) formulates the exact isotropic metasurface boundary
condition that allows converting the impinging wave
front into the desired reflected and transmitted waves,
and the formulation may straightforwardly be extended to
the anisotropic case when polarization coupling is present
[32,33]. The subscript t represents the tangential field
components in each region. The extracted electric admit-
tance and magnetic impedance from Eq. (2) can be directly
used in Eq. (1) to calculate the local reflection and trans-
mission coefficients along the metasurface.
In the particular case of a wave-bending metasurface, the

incident and scattered fields are plane waves propagating in
specified directions. As a basic example, we look into the
case of redirecting an impinging plane wave toward
the desired direction in reflection, with zero transmission.
Incident and scattered fields are linearly polarized
transverse-electric (TE) plane waves with wave vectors
ki ¼ k0½− sinðθiÞx̂þ cosðθiÞẑ� and kr ¼ −k0½sinðθrÞx̂þ
cosðθrÞẑ� in region 1, whereas the total fields are enforced
to be zero in region 2 [Fig. 1(a)]. The metasurface is located
in the xz plane, as shown in the inset of Fig. 3(b). Following
Eq. (2), the required electric surface admittance and surface
magnetic impedance to realize this scattering signature are

Ye ¼ 2
x̂ · ðHiþH1sÞ
ŷ · ðEiþE1sÞ

����
z¼0

¼ 2

η0

cosðθiÞe−jk0 sinðθiÞx−Ar cosðθrÞe−jk0 sinðθrÞx
e−jk0 sinðθiÞxþAre−jk0 sinðθrÞx

;

Zm ¼ 2
ŷ · ðEiþE1sÞ
x̂ · ðHiþH1sÞ

����
z¼0

¼ 2η0
e−jk0 sinðθiÞxþAre−jk0 sinðθrÞx

cosðθiÞe−jk0 sinðθiÞx−Ar cosðθrÞe−jk0 sinðθrÞx
; ð3Þ

in which Ar is the amplitude of the electric field in the
reflected plane wave, normalized to the incident one.
Based on the general condition in Eq. (2), it is possible

to show that total reflection is possible if and only if
YeZm ¼ 4 (see Appendix A), which is indeed satisfied by
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Eq. (3). Figure 1(b) shows the required distribution of Ye
and Zm along the metasurface that ensures anomalous
reflection with unitary power efficiency, plotted for normal
incidence and various reflection angles. Following the
periodicity of the incident and scattered waves, the attained
surface holds a superlattice periodicity X along the x axis,
as shown in Fig. 1(b), related to the incident and reflection
angles by X ¼ jλ0=ðsin θr − sin θiÞj [24]. The reflected
wave, hence, corresponds to the first diffraction order of
the gradient metasurface. To ensure unitary efficiency,
the relative amplitude of the reflected wave should also
be jArj ¼

ffiffiffiffiffiffiffiffiffiffiffi
cos θi

p
=

ffiffiffiffiffiffiffiffiffiffiffiffi
cos θr

p
in Eq. (3) (see Appendix B),

so that incoming and outgoing power flows are equal;
i.e., ẑ · Pincident ¼ −ẑ · Preflected.
Interestingly, the required surface to achieve unitary

efficiency always involves local loss and gain [passive
and active portions correspond to simultaneous positive and
negative values of both Re½Ye� and Re½Zm� in Fig. 1(b)], and
it is not passive in a local sense, consistent with Huygens
transmit arrays introduced in Ref. [23]. This is expected,
since the total power emerging right above the metasurface,
Re½ẑ · PtotalðxÞ� ¼ −1=2Re½EyH�

x�jz→0þ , can be explicitly
calculated from the required field distribution, superposi-
tion of the impinging and reflected waves,

Re½ẑ · PtotalðxÞ� ¼
E2
0

2η0
ðjArj2 cosðθrÞ − cosðθiÞ

þ jArj½cosðθrÞ − cosðθiÞ�
× cosf∠Ar þ k0½sinðθiÞ − sinðθrÞ�xgÞ;

ð4Þ

whose value oscillates from positive to negative values
along x. The only exception is θr ¼ �θi, or accordingly
for the specular and retroreflection, for which
Re½ẑ · PtotalðxÞ� ¼ 0 everywhere. This is expected, as the
incident and reflected local impedances are matched for
these special cases, and, interestingly, a passive-lossless
metasurface is sufficient to fully transform the incident
wave [see Eq. (B5)]. Apart from this condition, the optimal
[34] surface described by Eq. (2) necessarily requires
that the local power absorption or gain oscillates around
zero along x. Interestingly, the requirements on distributed
loss or gain modulation cannot be relaxed in reflecting
metasurfaces that preserve the polarization state of the
wave, even through introduction of surface bianisotropy.
Physically, this limitation also stems from the local imped-
ance mismatch on the metasurface, which remains intact
for polarization preserved reflection. In general, i.e., for
refracting metasurfaces and/or polarization conversion,
bianisotropy may relax the local amplitude modulation
along the surface [35,36]. It follows that the only way to
keep a unitary conversion efficiency towards the desired
direction with a steering ultrathin metasurface is to locally
absorb and pump a portion of the incident power in different

regions within the superlattice (equivalent to nonlocal
operation). At the same time, the surface remains globally
lossless, in the sense that the averaged net power supplied by
the surface, P̄surface¼−ð1=2SÞRSY�

ejEtj2dsþ
R
SZmjHtj2ds,

is identically zero, as required by the choice of jArj to ensure
unitary power efficiency. This raises interesting connections
with the field of parity-time symmetry and balanced loss
and gain [37–39], a feature that has been recently shown
to open exciting opportunities in optics. Highly efficient
steering metasurfaces appears to also require a specific
balance of loss and gain. Details on power absorption
calculations and conditions on the passivity of the surface
are found in Appendix B.
After transforming the derived impedance profile into

local reflection and transmission coefficients using Eq. (1),
we find the local phase and amplitude profiles required to
create the desired wave-front deflection with an ultrathin
metasurface:

RðxÞ ¼ rðxÞejϕrðxÞ

¼−1þ 2ŷ · ðEiþE1sÞ
ŷ · ðEiþE1sÞþ η0x̂ · ðHiþH1sÞ

����
z¼0

; T ¼ 0.

ð5Þ

These are visualized in Fig. 1(c), which shows the local
reflection phase ϕrðxÞ and amplitude rðxÞ at the metasur-
face, highlighting alternating regions with local loss and
gain, with r > 1 and r < 1, respectively. While unitary
power conversion efficiency is possible only using local
gain and loss elements, it is interesting that the phase
requirements are also quite different from the simple linear
distribution predicted by ray optics.
Equations (3)–(5) and Fig. 1 show the first important

conclusion of our analysis: efficient beam steering towards
arbitrary angles with an ultrathin surface cannot be
achieved using passive-lossless linear phase profiles.
Interestingly, when the anomalous reflection angle is close
to specular reflection, linear phase compensation along the
surface provides a very good approximation for the optimal
surface. However, as we increase the deflection angle, and
we get into the regime in which metasurfaces can outper-
form conventional gratings in terms of efficiency, thanks to
their subwavelength control of the transverse resolution,
our rigorous solution significantly deviates both in ampli-
tude and phase from the linear phase approximation
commonly used in the literature.
In the following, we focus on passive metasurfaces in

order to avoid the requirement of active elements, which
may be difficult to realize and may introduce challenging
stability limitations. First, it is interesting to notice that,
while the previous analysis shows that balanced gain and
loss is necessary to achieve ideal energy steering with a
metasurface, it may still be possible to route all the
scattered energy towards a preferred direction with proper
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design. The requirement of unitary power efficiency implies
that the power density steered towards the desired angle
grows as cos θi= cos θr, simply following the projection of
the wave vector to the surface normal. If we allow the
scattered power in the normal direction to be less than the
incident one, the surface will provide a net absorption,
ReðP̄surfaceÞ < 0, up to the point for which the ideal surface
would exhibit only lossy components (i.e., at all points
r ≤ 1), implementing a distributed loss pattern over the
surface similar toRef. [40]. Interestingly,we rigorously show
in Appendix B that selective coupling to the desired
diffraction order can be achieved with a passive-lossy sur-
face, provided that the relative amplitude of the reflected
wave is equal to or lower than jArjmax ¼ min½1; cosðθiÞ=
cosðθrÞ�, valid for both TE and TM waves. This indicates
that, using Eq. (3), it is possible to design a passive-lossy
surface that steers a normally incident beam exclusively to an
arbitrary direction of choice, while preserving the amplitude
of electric and magnetic fields, i.e., jArj ¼ 1. This surface
would necessarily lose a portion of the impinging power
since the outgoing power is less than the impinging one, but
scattering to other diffraction orders can be made identically
zero at the cost of efficiency. Figures 2(a) and 2(b) illustrate
the required reflection phase and amplitude for three reflec-
tion angles in this scenario. As expected, the local reflection
amplitude varies along the surface; yet, its maximum value is
limited to unity, rmax ¼ 1. In accordance with our previous
discussion, as the reflection angle increases, the required
local reflection phase along the surface departs from the
linear approximation.

There is a wide range of metasurface configurations
that may physically implement high-resolution phase
elements in various setups, from microwave to infrared
and optical frequencies. Plasmonic and dielectric nano-
antennas, composite particles, printed circuits, multilayered
meta-atoms, and wire antennas [20,23–26,41–43] provide
fertile ground for local phase (and also amplitude) manipu-
lation. The desired reflection profile RðxÞ and zero trans-
mission may also be implemented without relying on a
series impedance distribution ZmðxÞ, which would inher-
ently require magnetic effects, by simply using a gradient
nonmagnetic surface admittance backed by a ground plane
[24,30,31], as schematically shown in the inset of Fig. 3(b)
(see Appendix C for more discussion on all-electric
implementation of Huygens surfaces). This would signifi-
cantly facilitate the synthesis of the desired response in a
practical design, especially in the optical range for which
magnetic responses are typically weak. Based on such
implementation for the calculated local reflections in
Figs. 2(a) and 2(b), Figs. 2(c)–2(e) show the corresponding
normal component of the magnetic field distribution (which
is present only in the reflected beam), showing full
coupling towards the desired direction, and zero scattering
toward unwanted directions. The synthesis of amplitude
modulation along the surface, as in Fig. 2(b), may be
achieved either by varying locally absorbing elements or by
using anisotropic inclusions and modulating the cross-
polarization coupling or loss, as recently suggested in
Refs. [40,44], to simultaneously realize desired amplitude
and phase modulation with a metasurface.

(a) (c) (d) (e)

(b)

FIG. 2. (b) Local reflection coefficient RðxÞ ¼ rðxÞejϕrðxÞ required to convert a normally incident wave (θi ¼ 0 deg) into (a) refracted
waves at θr ¼ 45; 80; 88 deg while preserving its amplitude, i.e., jArj ¼ 1. Distribution of the scattered magnetic field Hz,
for θi ¼ 0 and (c) θr ¼ 45, d ¼ λ0=20, (d) θr ¼ 80, d ¼ λ0=20, (e) θr ¼ 88, d ¼ λ0=200, for the passive-lossy surfaces illustrated
in (a) and (b). Panels (c)–(e) correspond to overall efficiencies of 70.6%, 17.3%, and 3.5%, respectively. All plots are normalized
to the amplitude of the incident magnetic field and the metasurfaces are realized in an all-electric grounded setup, as shown in the
inset of Fig. 3(b).
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The designs of Fig. 2 provide the maximum coupling
efficiency to achieve exclusive scattering in a desired
direction of choice with a passive-lossy metasurface. As
described in the caption, the efficiency may become
drastically low for large steering angles (an efficiency of
3.49% is available for a steering angle of 88 deg), which
may not be desirable or practical. These results, however,
show again the relevance of going beyond the ray-optics
approximation, and properly tailor amplitude and phase of
the local reflection coefficient to design efficient gradient
metasurfaces. Yet, in several applications it may be
important to maximize the amount of power coupled
towards the desired direction with a lossless surface, even
though this may require coupling a small portion of it
towards other diffraction orders [45]. Since we proved that
no passive metasurface can achieve unitary power effi-
ciency beam steering in near and far field, next we explore
what impedance profile is needed to boost its overall
coupling. In such a case, loss over the surface should be
avoided, and we focus therefore on lossless impedance
profiles.
Considering normal incidence, Fig. 3 shows the simu-

lated power distribution scattered from lossless surfaces
designed to steer towards θr ¼ 45; 80; 88 deg at the design
frequency f0, while the response considers the natural
frequency dispersion of the grounded metasurface related
to the finite distance between the surface and ground plane.
Solid lines indicate the percentage of incident power
coupled into the desired diffraction order, while dashed
lines indicate the portion of power scattered into other
orders, based on the superlattice periodicity of the beam
steering surface [Figs. 1(b) and 1(c)]. The black lines refer

to the case in which the structure is designed to impart the
phase profile extracted from Eq. (5), as in Fig. 1(c), while
the local reflection amplitude is unitary. As we discuss
above, the imparted phase gradient in this case is different
from the phase difference between incident and reflected
waves, especially for steep deflection angles. The blue
curves refer to the case in which the metasurface is
designed by simply discarding the real part of the imped-
ance profiles in Fig. 1(b) (and thus the reflection amplitude
is once more unitary). Finally, the red curves refer to the
case when the linear phase predicted from ray optics is
imprinted over the surface, as in most conventional
metasurface designs. Details on the metasurface design
and scattering calculation are provided in Appendix B.
Quite predictable from our previous discussions, for a

deflection angle θr ¼ 45 deg, the constraints on loss and
gain are moderate, and all cases provide very large con-
version efficiencies. Yet, as the deflection angle increases,
the linear phase approach fails to follow the desired
scattering profile, and at θr ¼ 80 and 88 deg, only 50%
and 13% of power is coupled to the desired directions,
respectively. With the phase profile retrieved from Eq. (5),
on the other hand, around 87% and 50% efficiency can be
attained. Pushing down the thickness of the structure, the
reflecting surface better mimics a metasurface, and the
coupling efficiency to θr ¼ 88 deg grows to over 76%,
as shown in Fig. 3(d). Despite the clear difference between
the approximate phase profile and our approach, both
profiles are quite smoothly varying [Fig. 1(c)] and the
coupling efficiency is predicted to be robust to spatial
discretization of the surface profile, even for large deflection
angles, as we study in the next section. Clearly, for larger

(a) (b)

(c) (d)

e,surface

FIG. 3. Frequency variation of the power reflected into the desired diffraction order for θi ¼ 0 and (a) θr ¼ 45, d ¼ λ0=20,
(b) θr ¼ 80, d ¼ λ0=20, (c) θr ¼ 88, d ¼ λ0=50, (d) θr ¼ 88, d ¼ λ0=200. The inset of (b) shows the geometry of an all-electric
grounded metasurface. Solid lines indicate the percentage of power coupled into the desired direction. All examples correspond to
passive-lossless metasurfaces with different approximations indicated in the inset of (a).
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angles the superlattice footprint shrinks and proper quan-
tization requires smaller surface granularities to maintain
high efficiency. While no passive ultrathin surface may
provide unitary power efficiency, a design that considers the
impedance mismatch of the deflected wave makes it indeed
possible to steer a significant portion of the impinging wave
towards an arbitrary angle, in both near and far fields, well
beyond the limits of conventional gratings.
The striking features of the proposed wave-shaping

metasurfaces may be better appreciated by investigating
the field distributions plotted in Fig. 4, corresponding to the
designs in Figs. 3(a) and 3(b), and 3(d). Still relying on
lossless gradient metasurfaces, and without ad hoc opti-
mization but simply following Eq. (2) and neglecting the
amplitude modulation, we are able to efficiently rotate the
incident wave vector (normal) toward extremely oblique
angles, with minimal unwanted scattering. The key factor
to achieve these close-to-optimal efficiencies is to go
beyond the ray approximation and linear phase gradients,
and instead to engineer the phase distribution following the
previous formulation.
Imparting the phase profile extracted from Eq. (5)

also allows us to go beyond the maximum efficiencies
attainable from multimode Huygens metasurfaces
[29,42]. Multimode metasurfaces rely on the presence
of one or more additional scattering modes to ensure
surface passivity, and they may suffer from low efficien-
cies and a large number of evanescent modes close to the
metasurface, particularly at large deflection angles.
Designing the metasurface in the near field, however,
allows us to create efficient wave-shaping metasurfaces
that maintain their performance even in the proximity of
the surface. This property allows us to achieve complex
near-field operations, such as near-field focusing, as
discussed in Sec. V.

III. PHYSICAL IMPLEMENTATION AND
EFFECTS OF DISCRETIZATION OF THE IDEAL

METASURFACE PROFILE

The nonlinear, relatively fast-varying phase profiles in
Fig. 1(c) raise important questions regarding the stability of
the response to surface discretization, which may be
necessary in a practical implementation. To investigate
this effect, we design, based on the previous formulation, a
metasurface reflect array to convert a normally incident
plane wave into a plane wave propagating towards
θr ¼ 75 deg, with minimal coupling to spurious modes
in near and far field. The reflection phase and amplitude
of this surface are shown as solid blue lines in Figs. 1(c)
and 1(d). Each period of the surface is then divided into NQ

segments, where we set NQ ¼ 4, 8, 16, and we enforce
unitary local reflection coefficient, implementing a passive
lossless approximation of the ideal metasurface. Figure 5(a)
illustrates the spatial distribution of the surface electric
admittance Ye;surface over one period of the grounded
metasurface [shown in Fig. 1(b)], calculated for NQ ¼ 8

and d ¼ λ0=20. The corresponding continuous and quan-
tized local reflection phases on the surface are also shown
in Fig. 5(b). Analogous to the examples provided in Sec. II,

(a) (b) (c)

FIG. 4. Distribution of the scattered magnetic field Hz, for
θi ¼ 0 and (a) θr ¼ 45, d ¼ λ0=20, (b) θr ¼ 80, d ¼ λ0=20,
(c) θr ¼ 88, d ¼ λ0=200, for the lossless approximation scenario.
All plots are normalized to the amplitude of the incident magnetic
field, and panels (a)–(c) correspond to overall power conversion
efficiencies of 98.5%, 87.1%, and 76.2%, respectively. The loss
and gain profile of the optimal metasurface is approximated by its
local reflection phase, i.e., RðrÞ ¼ 1ejϕrðxÞ.

(a)

(c)

(b)

FIG. 5. (a) Spatial distribution of admittance profile and (b) local
reflection coefficient of the grounded metasurface designed to
redirect a normal TE incident plane wave towards θr ¼ 75 deg.
The admittance layer is at d ¼ λ0=20 distance from the ground
plane and the passive, lossless approximation is considered, i.e.,
RðxÞ ¼ 1ejϕrðxÞ. The amplitude of the reflected planewave is set at
jArj ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos 75°

p
in Eq. (3). Solid lines show the discretized

profiles for NQ ¼ 8 and dashed lines correspond to the original
continuous pattern. (c) Frequency variation of the power reflected
into different diffraction orders of the quantized metasurface. Red,
blue and black lines correspond to θr ¼ 75, 0, −75 deg at the
center design frequency f ¼ f0. Dashed lines indicate the coupling
efficiency of the continuous metasurface.
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full-wave simulations of the periodic setup are used to
evaluate the percentage of power coupled toward each
Floquet harmonic, shown in Fig. 5(c). For easier compari-
son, we also report the efficiency of the continuous (non-
quantized) surface in the same panel with dashed lines.
We observe over 94%, 90% [shown in Fig. 5(c)], and

87% coupling efficiency toward the desired direction,
respectively, for NQ ¼ 4, 8, and 16. Quite interestingly,
the original continuous gradient surface provides 85%
overall efficiency and the quantized profiles appear to be
closer to the best possible profile for a passive lossless
wave-bending metasurface. This improved performance is
associated with the elimination of singular impedance
values due to the discretization of the impedance profile,
and it appears quite favorable for experimental implemen-
tation of these surfaces. In addition, the stability of the
response to a rough discretization implies that, with the
implementation of the local impedances in a realistic setup,
one can expect increasingly improved performance for
metasurfaces designed based on our analytical solution in
comparison to those designed based on the ray-optics
approximation.
We demonstrate these findings by implementing the

structure studied in Fig. 5 in a realistic setup, designed for
operation at 1 GHz. Each of the eight admittance or phase
steps in Figs. 5(a) and 5(b) are realized using four
individual inductor-capacitor (LC) series resonators, placed
on a 10-mm-thick (¼ λ0=30) Eccostock®PP foam [46], as
shown in Fig. 6(a). Each period of the gradient metasurface,
thus, contains 32 surface resonators in the x direction and

one resonator in the y direction. The LC components are
electrically connected through metallic patches placed on
the foam and the entire structure is grounded at the back
surface. To design the gradient metasurface, we first
calculate the local reflection phase on the top surface of
each building block for commercially available chip
inductors and capacitors [47], in a periodic setup.
Subsequently, the element values are appropriately selected
in accordance with Fig. 5(b). Columns two and three in
Table I list the final design parameters. For comparison, we
also repeat the same procedure to design another metasur-
face based on the ray-optics approximation, i.e., using a
linear local reflection phase (columns four and five in
Table I), as commonly done in conventional gradient
metasurface designs.
The overall performance for the two cases is evaluated

through full-wave simulations, and the percentage of total
incident power coupled into each propagating Floquet
harmonic is shown in Fig. 6(b). As expected, the perfor-
mance of the metasurface designed based on our analytical
approach significantly outperforms the metasurface
designed based on the linear phase approximation [shown
with dashed lines in Fig. 6(b)], using similar discretization.
Specifically, at the center frequency, our technique provides
around 89% coupling from a normally incident wave to the
n ¼ 1 Floquet mode, while ray optics provides only around
59% efficiency. It is quite fascinating that, although we
implement each admittance or phase step with only four
elements, our realistic metasurface design provides com-
parable performance to a quantized surface implemented

(a) (b)

FIG. 6. (a) Schematic of the microwave building block to implement gradient metasurfaces designed to redirect a normal incident
plane wave toward θr ¼ 75 deg at 1 GHz. Each block consists of a 10-mm-thick Eccostock®PP foam with relative permittivity
εr ¼ 1.06 placed on a perfect electric conducting (PEC) layer. Elements are assumed to be passive and lossless, and the local reflection
phase on top of each element is controlled by varying the surface capacitors and inductors. Thirty-two blocks are utilized in order to
implement one supercell period of the intended gradient metasurfaces, and X ¼ jλ0=ðsin θr − sin θiÞj ≈ 310.6 mm. (b) Distribution of
the reflected power toward different Floquet harmonics. Solid lines indicate the performance of the gradient metasurface designed based
on the passive, lossless approximation of our analytical solution, i.e., RðxÞ ¼ 1ejϕrðxÞ, and the dashed lines demonstrate analogous
results for the metasurface designed based on the ray-optics approximation, i.e., RðxÞ ¼ 1e−j2πx=X. Except for the LC surface
components listed in Table I, all physical properties of the two metasurfaces are similar. Red lines indicate the percentage of power
successfully redirected in the direction of the first Floquet harmonic, i.e., θr ¼ 75 deg at f ¼ 1 GHz. The inset shows a time snapshot of
Hz at 1 GHz for the metasurface designed based on our approach, demonstrating the clean scattered wave profile even in close proximity
to the surface. The field amplitude is normalized to the incident plane wave.
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with ideal surface profile (Fig. 5). In this regard, the
predicted efficiency of an ideal quantized surface with
similar substrate material and overall thickness is 90% for
our approach and 59% for the ray optics solution.
Following these results, it is expected that, with appro-

priate implementation of the surface impedance, and even
with quite rough discretization of NQ ¼ 4, 8, it is possible
to design highly efficient metasurfaces for wave-front
transformation. For instance, for the aforementioned exam-
ple of bending a normally incident beam toward 75 deg, at
λ0 ¼ 500 nm and NQ ¼ 4, each surface element is approx-
imately 130 mm wide, which can be practically imple-
mented using subwavelength high-index nanoparticles.
Over visible wavelengths, the strong mutual interactions
between adjacent particles (which can be calculated ana-
lytically for dissimilar surface components [48]), and the
enhanced local density of states combined with low
absorption, make high-index dielectric metasurfaces an
excellent choice, with the intriguing prospect of tunability
[43,49,50]. Another particularly interesting scenario is the
case of graphene ribbons or patches, which may be able
to model one-atom-thick tunable impedance sheets at
terahertz frequencies. Graphene-based metasurfaces may
be an ideal implementation of the structure envisioned in
Fig. 3(b), and may be fabricated with deeply subwave-
length resolution and rigorously designed based on our
accurate analytical model [51]. For instance, at 1 THz and
for NQ ¼ 16, each surface element is over 19 μm wide,
which is well above the state-of-the-art fabrication reso-
lution for graphene metasurfaces [52,53].

IV. METASURFACE COUPLERS

An extreme example of beam steering is the case in
which we aim at converting a propagating wave into a
bound state, as in a surface coupler, which corresponds to
the case of complex θr in our previous formulation. As θr
approaches 90 deg, the reflection wave vector ~kr ¼ −k0x̂
will be solely along the tangential direction, with transverse

momentum equal to the free-space wave number. Beyond
this point, the wave vector is larger than k0, which can be
conveniently modeled by a complex reflection angle
θr ¼ 90þ jjαrj. This problem has been approached in
the literature using gratings or linear phase gradient meta-
surfaces, providing the required momentum mismatch
between incident and guided waves [54–58]. Artificial
symmetry breaking in the scattering properties of the graded
surface, along with proper optimization of the coupling
structure, has been exploited to enhance the coupling
efficiency [59,60]. However, following the previous dis-
cussion, we can rigorously explore the conditions to achieve
optimal couplingwith a gradientmetasurface, andwe expect
a linear phase gradient to be far from optimal. Similar to
Eq. (3), given the incident and scattered wave profiles, the
required surface impedances to couple a normally incident
plane wave into a guided mode along the x direction with
transverse momentum βx ¼ −k0 coshðαrÞ equals

Ye ¼
2

η0

k0 þ Arkzejkxx

Ark0ejkxx þ k0
; Zm ¼ 4=Ye; ð6Þ

in which βz ¼ jj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2x − k20

p
j. The required surface imped-

ance is in this case complex, with alternating regions of loss
and gain depending on the relative amplitude of the guided
wave Ar. Notice that this infinite surface coupler is an
extreme example, inherently ill posed, presented here to
confirm the generality of our proposed theory: while the
gradient metasurface supports the desired guided mode
along the surface, the normal incident power ẑ · Pincident
cannot contribute to the power propagating in the lateral
direction, since the power flowing along the surface is
constant for a guided mode over an infinite periodic
structure. Indeed, in the infinite metasurface coupler
described by Eq. (6), the net power absorbed by the surface
Re ð−P̄surfaceÞ over each superlattice period is equal to the
incident power, independent from Ar (see Appendix D),
consistent with power conservation. The surface inhomo-
geneous loss or gain profile is then responsible for generat-
ing the desired guided mode under the excitation of such a

TABLE I. Design parameters for the wave-bending metasurface to redirect a normal TE incident plane wave toward θr ¼ 75 deg.
Metasurface consists of 32 surface series resonators and is designed at 1 GHz. The lossless approximation is considered here as
RðxÞ ¼ 1ejϕrðxÞ, and the ray optics approximation is implemented with the linear local phase RðxÞ ¼ 1e−j2πx=X. All local phases are
calculated on top of the surface. Capacitor and inductor values are specified in pF and nH, respectively.

Element types
and numbers

Local phase
for RðxÞ ¼ 1ejϕrðxÞ

Element values
for RðxÞ ¼ 1ejϕrðxÞ

Local phase for
RðxÞ ¼ 1e−j2πx=X

Element values
for RðxÞ ¼ 1e−j2πx=X

ðC1–4; L1–4Þ 117.1° (1.1, 10) 157.5° (0.1, 2.2)
ðC5–8; L5–8Þ 69.5° (1.7, 4.7) 112.5° (1.5, 4.3)
ðC9–12; L9–12Þ 39.7° (1.3, 10) 67.5° (1.8, 3.9)
ðC13–16; L13–16Þ 13° (1.9, 4.3) 22.5° (1.2, 12)
ðC17–20; L17–20Þ −13° (1.9, 4.7) −22.5° (1.3, 11)
ðC21–24; L21–24Þ −39.7° (1.6, 7.5) −67.5° (1.8, 6.2)
ðC25–28; L25–28Þ −69.5° (1.5, 9.1) −112.5° (1.5, 10)
ðC29–32; L29–32Þ −117.1° (2.2, 4.7) −157.5° (3.6, 2.2)
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plane wave. For a beam of finite cross section, on the other
hand, we can expect efficient coupling to the desired modal
profile, using Eq. (2).
Interestingly, even limiting ourselves to passive surfaces,

the required surface scattering phase is far from linear, as

shown in Fig. 7(a) for βx ¼ −1.5k0. Here, the relative
amplitude of the guided mode is chosen to assure passivity
of the surface, following the previously discussed approach
[Fig. 7(b)]. It can be shown that the gradient coupling
surface is locally passive and lossy over all lateral points, as
long as jArj < k0=jβxj, as shown in Appendix D. A linear
scattering phase approximation may allow coupling a
portion of incident power to a guided wave with parallel
wave vector [56–58], similar to a conventional grating.
However, it fails to provide the optimal surface profile to
maximize the coupling efficiency [55]. Conversely, as
shown in Fig. 7(c), the rigorous formulation described
here is capable of creating a pure secondary guided wave
with the desired distribution using a patterned metasurface,
and zero coupling into other scattering orders.
We conclude this section noting that this approach can be

extended to the practical problem of the design of finite-sized
surface couplers. In this case, the excitation field is not an
infinite plane wave, but the finite incident beam profile that
excites the coupler. At the same time, the desired scattered
wave should be a gradually growing surface wave that
adiabaticallymatches the mode profile of the fedwaveguide.
Quite distinct from infinite couplers, the total power carried
by the incident wave is finite in this case, and it matches the
total guided mode power. In addition, the normal component
of the incident wave directly feeds the guided mode.
Interestingly, a ray-optics approach is unable to provide
any adaptation on the size or profile of the coupler based on

(a)

(b)

(c)

FIG. 7. (a), (b) Metasurface local reflection coefficient
RðxÞ ¼ rðxÞejϕrðxÞ, required to convert a normally incident wave
(θi ¼ 0 deg) into a guided wave with βx ¼ −1.5k0, in a passive-
lossy metasurface, i.e., jArj ¼ k0=jβxj. (c) Distribution of the
scattered magnetic field Hz, for θi ¼ 0 and βx ¼ −1.5k0,
d ¼ λ0=20, for the all-passive surface illustrated in (a) and (b).
The field is normalized to the amplitude of the incident
magnetic field.

(a)

(b)

FIG. 8. Comparison between the scattering properties of ideal (solid lines) and ray-optics-based (dashed lines) metasurface reflecting
lenses with local distribution of loss and gain and (a) NA ¼ 0.9578 and (b) NA ¼ 0.9981. Amplitude and phase of the local reflection
coefficient RðxÞ ¼ rðxÞejϕrðxÞ are plotted along the lens surface for (a) α ¼ π and (b) α ¼ π=2 (see Appendix E). Metasurface lenses are
extended between x ¼ ð−L; LÞ, excited by a plane wave propagating along the −z direction.
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these specifications, and is thus limited in overall coupling
efficiency and in impedance matching to the fed waveguide.
Consequently, ray-optics-based couplers are typically lim-
ited to low conversion efficiencies, analogous to traditional
grating-based couplers [55]. While a specific design of a
surface wave coupler goes beyond the scope of this paper,
the required surface profile is expected to have amplitude
modulation and to enable significantly enhanced coupling
efficiencies.

V. METASURFACE LENSING AND FOCUSING

The approximations of the ray-optics approach high-
lighted in the previous section are not limited to wave
bending and coupling. Here, we examine the design of an
ultrathin planar lens with extreme focusing properties.
Reducing the volumetric size of a dielectric lens into a
single patterned surface is of great interest in nano-optics

and integrated photonics, and the local phase compensation
approach has been incorporated in the designs of numerous
flat focusing structures [27,61]. To generate a spherical
outgoing phase front from an incident plane wave, ray
optics suggests a hyperboloidal phase profile to be
imprinted over the surface (i.e., all normally incident rays
will be redirected towards the desired direction and
collimate at the focal point). However, the previous results
suggest that this approach would provide a reasonable
performance only in the limit of small numerical apertures
(NA), and when the focal point is located far from the lens.
Under such a condition, the rays traced from the corner of
the lens, which experience the largest local deflection
angle, are far from the grazing angle and the phase
difference between scattered and incident waves is close
to the phase (and amplitude) profile of the optimal surface.
For NA < 0.96, the cone angle of the lens is smaller than
73 deg and, as illustrated in Fig. 8(a), the hyperboloidal

to
ta

l

to
ta

l

(a) (b)

(c) (d)

(e) (f)

FIG. 9. Comparison between the power distribution in passive-lossless planar lenses with optimal (a), (c) and hyperbolic (b), (d) lateral
phase profiles. Plots in the same row have the same color bar, and all metasurfaces have equal thickness, d ¼ λ0=50. Imparted local
reflection coefficients RðxÞ ¼ 1ejϕrðxÞ are calculated for (a) α ¼ π and (c) α ¼ 4.4 rad (see Appendix E). Metasurface lenses in (a), (b)
and (c), (d) are designed to collimate the normally incident plane wave at f1 ¼ 3λ0 and f2 ¼ 0.25λ0, respectively. (e), (f) Field profile
along the x and z directions across the focal points corresponding to (c) and (d), respectively. For better comparison, the plots are all
normalized to the same value.
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interfacial phase pattern (dashed line) mimics the exact
surface profile (solid lines) with about 35-deg error range,
while the ideal reflection amplitude oscillates around unity.
As we increase the numerical aperture to ranges that are not
achievable with conventional diffraction elements, the line
shape of the optimal phase drastically deviates from a simple
hyperbolic pattern and we find over 70-deg error range for
NA ¼ 0.998. To design the optimal surface in accordance
with Eq. (2), a normally incident plane wave is transformed
into an outgoing cylindrical wave. In Appendix E, we
determine the optimal amplitude and phase of the secondary
wave in each case to ensure unitary focal efficiency; i.e.,
Reðẑ · P̄reflectedÞ ¼ Reð−ẑ · P̄incidentÞ. As we move toward
higher numerical apertures, as expected, the optimal surface
requires extremely localized loss and gain segments, and the
scattering phase significantly diverges from the hyperbol-
oidal approximation. We stress that these limitations are
independent of the resolution of the gradient metasurface,
and a surface designed based on local phase compensation
inevitably exhibits unwanted spherical aberrations and fails
to create focusing effects in the near-field region.
In accordance with the previous results on wave bending,

the optimal active or passive surface can be approximated by
its passive-lossless counterpart to preserve the ideal phase
pattern, and provide an improved passive-lossless low-
aberration, high-numerical-aperture lens design, by sacrific-
ing a small portion of the focused energy. This is illustrated
in Fig. 9, where we compare two lenses with overall
lengths of 20 λ0 and 8 λ0, designed to focus the incident
wave at f1 ¼ 3λ0 and f2 ¼ 0.25λ0, with NA ¼ 0.958 and
NA ¼ 0.998, respectively. Both lenses are lossless, and
implementedwith grounded all-electricmetasurfaces, shown
in Fig. 3(b). The first column illustrates the power distribu-
tion above the reflecting lenses that are designed based on the
optimal phase distributionon the surface. The second column
shows the power distribution when a hyperbolic phase
distribution is imprinted over the surface. As expected,
for a small numerical aperture and reasonably large focal
distance, ray optics provides a very good approximation of
the exact solution, yet it fails to create near-field focusing
effects [Fig. 9(d)]. On the contrary, the passive-lossless
metasurface lens, designed based on our analytical solution,
provides strong near-field focusing effects, as shown in
Fig. 9(c). Compared to the ideal lens, the focal point is
slightly shifted from the intended position (less than 0.06λ0),
toward the þz direction. This minor deviation is associated
with the lossless approximation of the ideal lens, as well as
the absence of an active drain at the focal point. Quite
interestingly, we also find that the half-power beam width
of the focal image is similar in both approaches, and it is
approximately 0.32 λ0 [Figs. 9(e) and 9(f)].

VI. CONCLUSIONS

In this paper, we investigate the theoretical limitations and
potentials of passive gradientmetasurfaces for arbitrarywave
manipulation. Our study is based on a rigorous treatment of

the wave equation, which allows deriving relevant results for
the field of gradient metasurfaces and wave manipulation
over a surface. First,we prove thatwave transformations over
an ultrathin surface, even in their simplest form, e.g., for
beam steering, inherently require the presence of balanced
loss and gain to achieve unitary efficiency. Then, we derive a
bound on the maximum coupling efficiency that allows
exclusively coupling to the desired diffraction order, and we
derive a path towards maximizing the coupling efficiency to
the wave front of choice, showing the inaccuracy of conven-
tional ray-optics approximations commonly used in the
literature to realize wave transformations not achievable
with conventional diffraction gratings.
We inspect practical examples of anomalous wave

deflection, coupling from propagating waves to surface
bounded modes, and lenses, showing that passive-lossless
metasurfaces following the derived gradient profiles can
significantly outperform designs based on conventional
design rules derived from ray optics. We further study the
effect of surface quantization on the overall performance of
the device and provide a realistic implementation of a
gradient metasurface at microwave frequencies, designed
following our analytical derivation. Our findings confirm a
considerable improvement of 30% to the overall efficiency
for an extreme-angle wave-bending metasurface, compared
to a similar metasurface designed using the conventional
ray-optics approach. For simplicity, here we consider two-
dimensional reflection scenarios, yet similar restrictions
may be derived for three dimensions, polarization coupling
surfaces, and transmitting metasurfaces. Our results shed
light on the physical limitations of passive metasurfaces
and provide a practical route toward highly efficient wave-
shaping metasurfaces, beyond the extent attainable from
current techniques based on ray optics.
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APPENDIX A: THEORETICAL FORMULATION
OF REFLECTING WAVE-SHAPING

METASURFACES

In the first part of the theoretical discussions in Sec. II, we
derive suitablemagnetoelectric surface impedance profiles to
achieve arbitrary wave-front transformation [Eq. (2)]. With
the intention of arbitrarily manipulating the reflected wave
with zero transmission, Eq. (2) reduces to

n̂ × ðH1ÞjS ¼ − 1

2
Y

e
· ðE1tÞjS;

n̂ × ðE1ÞjS ¼
1

2
Z
m
· ðH1tÞjS; ðA1Þ
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with the total fields set at zero inside region 2. We set
the local right-handed coordinate system on the surface as
ðn̂; t̂1; t̂2Þ, with n̂ indicating the normal unit vector as
shown in Fig. 1(a), and ðt̂1; t̂2Þ are the two orthogonal
transverse unit vectors along the surface. In the most general
format, the surface may be anisotropic with admittance
dyadic profile Y

e
¼ Ye;t1 t̂1 t̂1 þ Ye;t2 t̂2t̂2 and impedance

Z
m
¼ Zm;t1 t̂1 t̂1 þ Zm;t2 t̂2t̂2. Rewriting and decomposing

Eq. (A1), we get

Ye;t2 ¼ −2 t̂1 ·H1

t̂2 ·E1

; Zm;t1 ¼ −2 t̂2 ·E1

t̂1 ·H1

;

Ye;t1 ¼ þ2
t̂2 ·H1

t̂1 · E1

; Zm;t2 ¼ þ2
t̂1 · E1

t̂2 ·H1

: ðA2Þ

Equation (A2) demonstrates the relation Ye;t2Zm;t1 ¼
Ye;t1Zm;t2 ¼ 4 between electric and magnetic properties
of a general surface operating in reflection mode. In an
isotropic surface, this condition simplifies to YeZm ¼ 4, as
given in the main text. Under this condition, the local
transmission coefficient T, as defined in Eq. (1), is also zero
along the surface.

APPENDIX B: POWER, EFFICIENCY,
AND SCATTERING ANALYSIS
OF METAREFLECT ARRAYS

A homogenous interface, such as the boundary between
two plain dielectrics, supports specular reflection. This
means that, when illuminated by a plane wave, any
percentage of power reflected by such an interface is
funneled into the single wave propagating away from the
surface in the mirror direction. This wave is highlighted
as the n ¼ 0 arrow in Fig. 10. When the interface is not

homogenous, the scattered wave is, in general, a combi-
nation of all plane waves in the radiation continuum, and
for a periodic structure, their integral sum straightfor-
wardly reduces to discrete waves propagating toward
specific directions (the discrete diffraction orders). As
pointed out in the main text, a surface designed to
transform an incident plane wave into another plane wave
with different wave vector is inherently periodic.
Therefore, one appropriate measure to determine the
performance of the surface is to calculate the percentage
of power coupled to each of these diffraction orders when
illuminating the structure. This is shown in Fig. 3, where
we sum over all undesired orders and compare it to the
power coupled into the intended one. In our frequency
range of interest, each surface couples non-negligible
power to a maximum of three orders n ¼ 0;�1, with
n ¼ þ1 referring to the desired plane wave [solid arrows
in Figs. 3(b) and 10].
The required surface properties are extracted from

Eqs. (2) and (A1), considering the appropriate distribution
of incident and scattered waves as

ðEi;HiÞ ¼
�
ŷ;
x̂ cos θi þ ẑ sin θi

η0

�
E0e−j sin θik0xej cos θik0z;

ðE1s;H1sÞ ¼ Ar

�
ŷ;
−x̂ cos θr þ ẑ sin θr

η0

�

× E0e−j sin θrk0xe−j cos θrk0z; ðB1Þ

where the term Ar¼
ffiffiffiffiffiffiffiffiffiffiffi
cosθi

p
=

ffiffiffiffiffiffiffiffiffiffiffi
cosθr

p
takes care of ensuring

that the power reflected in the direction normal to
the surface is equal to the impinging power, assuming
TE illumination. The averaged total power supplied by
the surface can be expressed as P̄surface ¼ −ð1=ð2XÞÞR
X ðY�

ejEtj2 þ ZmjHtj2Þdx [62], in which X ¼ jλ0=
ðsin θr − sin θiÞj is the surface superlattice [24]. After some
algebraic simplification, the supplied electric and magnetic
power can be written in terms of the incident and scattered
angles as

P̄surface;e ¼ P̄surface;m

¼ − E2
0

4η0X

Z
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos θi sec θr

p

× ðcos θie−2jπx=X0 − cos θre2jπx=X
0 Þdx; ðB2Þ

both equal to zero ½X0 ¼ λ0=ðsin θr − sin θiÞ�. This property
further verifies that the metasurface as a whole does not
pumpanypower into the scatteredwaveor absorb any part of
it, but rather transforms the incident wave to the desired field
by proper, locally distributed, balanced absorption and gain.
The averaged net power emerging from the surface is
equivalently zero in this scenario:

surface

FIG. 10. Trajectory of a plane wave illuminating a periodic
gradient metasurface with incident wave vector ki ¼
k0½− sinðθiÞx̂þ cosðθiÞẑ�, and the desired reflected plane wave
(solid arrows) with wave vector kr ¼ −k0½sinðθrÞx̂þ cosðθrÞẑ�.
Dashed arrows indicate other allowed scattering directions in
such configuration. The metasurface is realized as an electric
admittance surface mounted in a subwavelength distance from
the ground plane.
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P̄surface ¼
1

X

Z
X
½Reðẑ · PtotalÞz→0þ�dx

¼ −E2
0½cosðθiÞ − jArj2 cosðθrÞ�

2η0
¼ 0. ðB3Þ

Equation (B3) also verifies that for
jArj ¼

ffiffiffiffiffiffiffiffiffiffiffi
cos θi

p
=

ffiffiffiffiffiffiffiffiffiffiffiffi
cos θr

p
, the net power generated by the

surface is zero and the wave-bending efficiency is 100%.
As we discuss in the main text, the reflection amplitude

may be chosen so that all surface components are passive
(no gain portions), yet we couple just to the desired
diffraction order, given that we allow absorbing a portion
of the incident energy. The local passivity of the metasur-
face can be enforced considering either its local admittance,
i.e., ∀x, Re½YeðxÞ andZmðxÞ� > 0, or the local emerging
power, i.e., ∀x, Reðẑ · PtotalÞz→0þ < 0. The first condition
implies that, if the surface possesses any resistive compo-
nent, it must be positive to avoid local power generation. The
second condition, equivalently, requires that at no point
along the surface the total power flows toward the outgoing
direction from the surface. This means that, locally, the
metasurface is either lossless [corresponding to r ¼ 1 points
in Fig. 2(b)] or absorptive [corresponding to r < 1 points in
Fig. 2(b)]. Following Eq. (B1), the local emerging power on
the surface is found as [Eq. (3) in the main text]

Reðẑ · PtotalÞz→0þ ¼ E2
0

2η0
ðjArj2 cosðθrÞ − cosðθiÞ

þ jArj½cosðθrÞ − cosðθiÞ�
× cosf∠Ar þ k0½sinðθiÞ − sinðθrÞ�xgÞ:

ðB4Þ
Enforcing Reðẑ · PtotalÞz→0þ < 0 and solving Eq. (B4), the
maximum acceptable reflection amplitude is found to be
jArjmax ¼ min½1; cosðθiÞ= cosðθrÞ�. The conversion effi-
ciency of the surface under this condition may be found
by calculating the incident and reflected power along the z
direction:

η¼ Reðẑ ·PreflectedÞ
Reð−ẑ ·PincidentÞ

¼ cosθr
cosθi

jArj2 ¼min

�
cosθr
cosθi

;
cosθi
cosθr

�
;

ðB5Þ

consistent with the reciprocity theorem [63]. A similar
argument holds for TM waves, where we have

ðEi;HiÞ¼
�
−x̂cosθi− ẑsinθi;

ŷ
η0

�
E0e−jsinθik0xejcosθik0z;

ðE1s;H1sÞ¼Ar

�
x̂cosθr− ẑsinθr;

ŷ
η0

�

×E0e−jsinθrk0xe−jcosθrk0z; ðB6Þ

with Ar ¼
ffiffiffiffiffiffiffiffiffiffiffi
cos θi

p
=

ffiffiffiffiffiffiffiffiffiffiffiffi
cos θr

p
. The general format of power,

as presented in Eqs. (B3)–(B4), also holds for the TM
polarization of incident and scattered waves with the same
upper bounds on the scattering amplitude.

APPENDIX C: ALL-ELECTRIC
IMPLEMENTATION OF HUYGENS

METASURFACES

We implement all of our designed configurations follow-
ing the method exploited in Refs. [24,31], exclusively
based on a grounded electric surface admittance, as
shown in Fig. 10. It has been proved that in the limit of
subwavelength thickness, d=λ0 → 0, a grounded surface
with Ye;surface ¼ Ye=2þ j cotðk0dÞ=η0 is equivalent to a
reflecting magnetoelectric interface [31]. The structures are
then simulated in COMSOL Multiphysics 4.4 in a periodic
setup to calculate the percentage of power coupled to each
Floquet harmonic. No frequency dispersion is embedded in
Ye;surface; i.e., Ye;surface is assumed constant over the entire
spectral range. After analytically calculating the required
surface admittance, reflection amplitude, and reflection
phase, we approximate the ideal metasurface with two
different lossless surfaces. First, the real part of the surface
admittance is simply ignored; i.e., Ye;surface is replaced with
jIm½Ye;surface�. Second, passive Ye;surface is evaluated so that
the surface supports the reflection phase as the ideal
surface, but with a unitary amplitude, i.e., R ¼ 1ejϕrðxÞ:

Ye;surface ¼
1 − ejϕrðxÞ þ jð1þ ejϕrðxÞÞ cot k0d

η0ð1þ ejϕrðxÞÞ : ðC1Þ

In both cases, as we enforce lossless condition, the total
reflected power is equal to the incident one. The portion of
the incident wave that does not couple in the desired
direction because of the passive approximation and finite
thickness of the system inevitably couples to other Floquet
harmonics, indicated by the dashed lines in Fig. 3.

APPENDIX D: COUPLING FROM
PROPAGATING INTO GUIDED MODES:
METASURFACE INFINITE COUPLERS

Increasing the deflection angle beyond θr ¼ 90 and
towards complex angles is equivalent to coupling to a
surface mode. Under this condition, the propagation con-
stant of the scattered wave is purely imaginary along the
normal z axis and the lateral momentum of the guided
mode is larger than the free-space wave number. For
θr ¼ 90þ jjαrj and under normal illumination, the inci-
dent and scattered fields can be generally expressed as
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ðEi;HiÞ ¼
�
ŷ;

x̂
η0

�
E0ejk0z;

ðE1s;H1sÞ ¼ Ar

�
ŷ;
x̂βz − ẑβx

k0η0

�
E0ejβxxejβzz; ðD1Þ

with βx¼−k0coshðαrÞ and βz¼jj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β2x−k20

p
j¼jsinhðjαrjÞ.

The net power absorbed by the surface is calculated as

Reð−P̄surfaceÞ ¼ Re

�
1

2X

Z
X
ðY�

ejEtj2 þ ZmjHtj2Þdx
�

¼ E2
0

2η0
; ðD2Þ

with X ¼ 2π=βx. The graded surface absorbs the entire
incident power independent of the amplitude of the
scattered bound states Ar, consistent with the power
conservation. To ensure passivity of the gradient metasur-
face, the reflection amplitude jArj is chosen so that the local
emerging power on the surface is always negative; i.e., ∀x,
Reðẑ · PtotalÞz→0þ < 0. Following Eq. (D1), the local emerg-
ing power on the surface can be simplified as

Reðẑ ·PtotalÞz→0þ

¼− E2
0

4πη0
f2πþjArjβxλ0 sin½∠Arþβxx− tan−1ðk0=jβzjÞ�g:

ðD3Þ

Enforcing Reðẑ · PtotalÞz→0þ < 0, the maximum tolerable
reflection amplitude is found to be jArjmax ¼ k0=βx.

APPENDIX E: PLANAR LENS

As the final example, we discuss in the main text planar
lenses designed based on our rigorous solution of wave
equation to convert plane waves with flat phase fronts into
cylindrical waves, in order to focus the incident energy. An
optimal scattered wave can be considered as the time
reverse of the wave radiated by a line source (point source
in a two-dimensional lens), and fields take the general
format [64]

ðEi;HiÞ ¼
�
ŷ;

x̂
η0

�
E0ejk0z;

E1s ¼
−I0k0η0

4
Hð1Þ

0

�
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðz − fÞ2

q �
ŷ;

H1s ¼
−jI0k0

4
Hð1Þ

1

�
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðz − fÞ2

q �

×
�

x̂ðz − fÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðz − fÞ2

p − ẑxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðz − fÞ2

p
�
:

ðE1Þ
We note that the field distributions in Eq. (E1) are

accurate if an ideal drain, i.e., the time-reversed equivalent

of the line source, is also positioned in the focal point. In
practice, the absence of such a point may reduce the overall
performance of the designed lens.
The metasurface lens is placed in the xz plane with the

focal point at z ¼ f, and Hð1Þ
n ½r� refers to the Hankel

function of type 1 with order n. Assuming a finite length of
2L for the lens, power conservation determines the relation
between E0 and I0, so as the surface on the whole is
lossless,

−jPincidentj ¼ −E0
2

2η0
2L;

jPreflectedj ¼
tan−1ðL=fÞ

π
ðpower radiated by current I0Þ

¼ I02k0η0
8π

tan−1ðL=fÞ; ðE2Þ

which simplifies to the relation jE0j ¼ jI0jη0 ×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½tan−1ðL=fÞ=π�ðk0=8LÞ

p
. The relative phase of the fields

is determined by the focusing properties of the surface. In
fact, any relative phase betweenE0 and I0, α ¼ ∠E0 − ∠I0,
transforms the incident planewave into the cylindrical wave
with the corresponding phase. However, since we are
working in reflection, we want to create a hot spot for the
total field, and not only the scattered field. This means that,
for a given α, the scattered cylindrical beam can construc-
tively or destructively add to the incident wave at the focal
point. To achieve the sharpest focus, we theoretically predict
the optimal phase difference for the design process. The total
power flowing toward the focal point in its vicinity equals
Pκ ¼ κ̂ · Ptotalðx ¼ δ cos γ; z ¼ f þ δ sin γÞjδ→0;−π<γ<0, in
which we define κ̂ as the radial unit vector around the focal
point. After somemathematical simplification and replacing
Hankel functions by their approximation around zero, the
derivative of Pκ versus α is found to be proportional to
ðdPκ=dαÞ ∝ −4 sinðk0f þ αÞ. The local power toward the
focal point is then maximized for α ¼ π − k0f. This
optimum value of α is valid for a lossy or gainy metasurface
lens, and when we approximate the surface as lossless (by
ignoring the amplitude modulation), the best value of α
changes. To account for this lossless approximation, the
finite thickness of the lens, and also the absence of a sink at
the focal point, in Fig. 9 we tune this relative phase in
Eq. (E1) to maximize the total power at the focal point.
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