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Topological phases of matter are a potential platform for the storage and processing of quantum
information with intrinsic error rates that decrease exponentially with inverse temperature and with the
length scales of the system, such as the distance between quasiparticles. However, it is less well understood
how error rates depend on the speed with which non-Abelian quasiparticles are braided. In general, diabatic
corrections to the holonomy or Berry’s matrix vanish at least inversely with the length of time for the braid,
with faster decay occurring as the time dependence is made smoother. We show that such corrections
will not affect quantum information encoded in topological degrees of freedom, unless they involve the
creation of topologically nontrivial quasiparticles. Moreover, we show how measurements that detect
unintentionally created quasiparticles can be used to control this source of error.
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I. INTRODUCTION

Topological phases of matter can protect quantum
information indefinitely at zero temperature, so long as
all quasiparticles in the system are kept infinitely far apart
and all processes are performed infinitely slowly [1,2]. If
the temperature is not zero and quasiparticles are a finite
distance L apart, then errors will occur with a rate
Γ ∼maxðe−βΔ; e−L=ξÞ, where β is the inverse temperature,
Δ is the energy gap to topologically nontrivial quasipar-
ticles, and ξ ∼ 1=Δ is the correlation length [1,3]. The
exponential suppression of thermal and finite-size errors
makes topological phases a promising avenue for quantum
computing, provided that it is possible to control errors
caused by moving quasiparticles in a finite duration of time.
These “diabatic errors” are the subject of this paper.
For a system in a topological phase, the energy gap to

topologically nontrivial quasiparticles determines a natural
time scale, 1=Δ. In order to avoid unintentionally exciting
quasiparticles, all operations should be performed in a time
top that is much larger than this time scale. On the other
hand, the topological degeneracy of non-Abelian anyons is
not exact, except when all length scales are infinite, as there
will generically be a small energy splitting δE ∼ E0e−L=ξ

between all nearly degenerate states [4]. (Here, E0 is an
energy scale related to the kinetic energy of quasiparticles,
i.e., an “attempt frequency” for quantum tunneling events.)

Rotations between states in this nearly degenerate state
space will only occur so long as braiding is fast compared
to 1=δE. Attempting to drag charged anyons through a
disordered environment presents a similar upper limit on
the braiding time [5]. Therefore, we narrow our focus to the
regime 1=Δ ≪ top ≪ 1=δE and ask the following question:
Within this range of time scales, how does the error rate
decrease as top is increased?
The unitary transformations affected by braiding non-

Abelian quasiparticles in a gapped topological phase can be
understood as a manifestation of the non-Abelian gener-
alization [6] of Berry’s geometric phase [7]. More specifi-
cally, in the adiabatic limit, the unitary time evolution can
be split into contributions from the dynamical phase, the
Berry’s matrix, and the instantaneous energy eigenbasis
transformation. The dynamical phase is top dependent. The
combination of the Berry’s matrix and the instantaneous
energy eigenbasis transformation is known as the holon-
omy and is top independent. Consequently, corrections to
the braiding transformations due to the finite completion
time for a braiding operation can be viewed as a special
case of diabatic corrections to the holonomy. In considering
such corrections, it is important to keep in mind that, away
from the adiabatic limit [8], the time evolution of states
does not cleanly separate into a top-independent holonomy
and a top-dependent dynamical phase. In other words, for
diabatic evolution, what one considers to be the dynamical
phase is somewhat arbitrary. For the purpose of comparing
with the adiabatic limit, it will be most convenient for
us to call the quantity −

R top
0 dtEðtÞ the “dynamical phase,”

where EðtÞ is the instantaneous ground-state energy of the
time-dependent Hamiltonian, even when we are not
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working in the adiabatic limit. Factoring this dynamical
phase out of the (diabatic) time evolution operator, the
remainder will generally depend strongly on the details of
the Hamiltonian and will no longer simply be equivalent to
the holonomy (which it equals in the adiabatic limit). The
deviation of the remainder from its adiabatic limit is
precisely what we wish to analyze for braiding trans-
formations of topological quasiparticles.
Generically, diabatic corrections to the transition ampli-

tude from a ground state to an excited state vanish as
Oð1=topÞ as top is taken to infinity [8]. However, the scaling
of diabatic corrections is sensitive to the precise time
dependence of the parameters in the Hamiltonian. In
particular, the corrections are Oð1=tkþ1

op Þ when the time
dependence is Ck smooth [9–11], and they are exponen-
tially suppressed when the time dependence is analytic
[12–16]. (Infinitely smooth C∞ time dependence may
result in stretched exponential decay of corrections.) As
transitions out of the ground-state subspace may affect the
topological degrees of freedom, diabatic corrections to
braiding do not appear to exhibit the nice topological
protection, i.e., exponential suppression of errors, that
thermal and finite-size corrections exhibit. Moreover, they
seem to depend on details to a worrisome extent, though
one may question whether this dependence is stable against
noise in these parameters, as may arise from coupling to
a bath.
On the other hand, quantum information encoded in a

topological state space is expected to be corrupted only by
the uncontrolled motion of quasiparticles. This is the reason
for the temperature and length dependence of error rates:
The density of thermally excited quasiparticles, which
decohere the topological states by diffusing through the
system, scales as e−βΔ; the amplitude for virtual quasipar-
ticles to be transferred between two quasiparticles sepa-
rated by a distance L scales as e−L=ξ, which generically
splits degeneracies of their topological states. Hence, one
would expect that diabatic corrections to the holonomy
would only affect the overall phase of a state, rather than the
quantum information encoded in it, unless quasiparticles
are created or braided in an unintended manner. In other
words, it seems possible for diabatic corrections to be large,
but only entering as overall phases when there is no
uncontrolled quasiparticle motion, allowing the encoded
quantum information to remain topologically protected.
This is, indeed, the case. Diabatic errors are due to the

uncontrolled creation or motion of quasiparticles; other
diabatic corrections to the holonomy do not affect the
topologically encoded quantum information. Since these
quasiparticles are created by the diabatic variation of
specific terms in the Hamiltonian, they can only occur
in specific places, i.e., in the vicinity of the quasiparticles’
motion paths. These errors can, therefore, be diagnosed by
corresponding measurements and corrected. Such protocols
apply to diabatic errors, but they cannot correct all errors,

such as those due to tunneling or thermally excited
quasiparticles, which must be minimized by increasing
quasiparticle separations and lowering the temperature, or
by engineering a shorter correlation length and larger
energy gap. If all of these different sources of errors were
significant, we would need a full-blown error-correcting
code to contend with them. In this paper, we focus on
corrections that are not exponentially suppressible, and we
leave implicit errors due to nonzero correlation length and
finite gaps.
Previous studies have considered the effects of diabatic

evolution on particular topological systems. References [17–
19] have investigated the stability of Majorana zero modes
(MZMs) [20–22] outside the adiabatic limit, and other
papers have suggested methods of reducing the diabatic
error for MZMs [23,24] and for Kitaev surface codes and
color codes [25]. In this paper, we consider diabatic error for
braiding more broadly. We present results on the magnitude,
origin, and correction of diabatic errors for general anyonic
braiding. We further apply our results to the braiding of
MZMs [26,27]. (See Ref. [28] for an excellent review on
MZMs and proposed physical realizations.) In particular, we
concentrate on MZMs in topological superconducting nano-
wires [22,28–30], both for concreteness and also because
experimentally such systems have been successfully realized
and signatures of MZMs have been observed [31–39]. The
braiding transformations of MZMs in such systems are
implemented in a quasi-one-dimensional geometry by slow
variations of the couplings in a nanowire T junction [40–43].
We will critically analyze the practical aspects of our theory
applied to the braiding and measurement schemes intro-
duced in Refs. [42–44].
This paper is structured as follows. After briefly review-

ing previous literature on quasiadiabatic evolution of
two-level systems in Sec. II A, we investigate the effect
of dissipative coupling to a thermal bath in Sec. II B. In
Sec. III, we consider the motion of one anyon around a
second anyon fixed at the origin within a Chern-Simons
effective field theory with fixed anyon number. We show
that diabatic corrections to the holonomy do not affect the
braiding phase unless diabatic variation of the Hamiltonian
parameters causes the moving anyon to have a nonvanish-
ing amplitude of following trajectories that wind a different
number of times than intended around the stationary anyon.
In Sec. IVA, we compute the diabatic corrections to the
braiding transformation of MZMs. We show that these
corrections are of the form of generic diabatic corrections:
The transition amplitude vanishes as 1=t2op. In Sec. IV B, we
show that these errors can be diagnosed by measurements
and corrected by a repeat-until-success protocol. We gen-
eralize this error-correction protocol to generic non-
Abelian anyon braiding in Sec. V. In Sec. VI, we apply
our results to the proposal of Ref. [43] and introduce a
variation of the qubit therein to facilitate measurements. We
critically assess the feasibility of such a correction scheme
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with current technology in Sec. VII. Finally, we address the
question “how quickly can anyons be braided?” in Sec. VIII.

II. QUASIADIABATIC EVOLUTION
OF TWO-LEVEL SYSTEMS

A. Landau-Zener effect and the dependence
on turn-on and turn-off

Diabatic corrections to the adiabatic limit asymptotically
decrease with the operation time top with a functional form
that depends on the smoothness of the time dependence in
the Hamiltonian. In particular, if the time dependence of the
Hamiltonian is analytic (within a strip around the real axis),
diabatic corrections decay exponentially in the inverse of
the rate at which the Hamiltonian evolves. A classic
example was provided by Landau [45] and Zener [46],
who considered a two-level system with the following time-
dependent Hamiltonian:

HLZðtÞ ¼ ctσz − λσx: ð1Þ

We assume c > 0 in the following. The state of the system
takes the form

jψðtÞi ¼ aðtÞj↑i þ bðtÞj↓i: ð2Þ

We consider a time evolution starting from t ¼ −∞ and
ending at large t, given by

�
aðtÞ
bðtÞ

�
¼

�
S1 S2
−S�2 S�1

��
að−∞Þ
bð−∞Þ

�
: ð3Þ

Then, as we review in Appendix A, the matrix elements are
found to be (dropping subleading contributions)

S1 ¼ e−ðπ=2ÞΛ; ð4Þ

S2 ¼ −2
ffiffiffiffi
π

Λ

r
e−ðπ=4ÞΛ

Γð−i Λ
2
Þ e

iðπ=4Þ−iΦðtÞ; ð5Þ

wherewe have definedΛ¼ðλ2=cÞ andΦðtÞ¼ct2þΛlnj2ctj.
In the above, we take the t → ∞ limit but keep the time
dependence in the oscillatory phase ΦðtÞ as it does not
have a well-defined limit (this does not affect the diabatic
transition probability).
When the system is initially in the ground state, i.e.,

að−∞Þ ¼ 1 and bð−∞Þ ¼ 0, the final state’s probability
for a transition into the excited state is given by

PG→E ¼ jaðt → ∞Þj2 ¼ jS1j2 ¼ e−πðλ2=cÞ: ð6Þ

If the goal is to remain in the ground state, then this is an
error, but it is an error that is exponentially small in Λ, the
inverse of the speed with which the system is moved
through the avoided crossing.

A few comments are in order. In the model in Eq. (1),
the spectral gap goes to infinity at large times. One might
worry that the exponential protection in the Landau-Zener
model is an artifact of an infinite asymptotic gap. Since we
will generally be interested in Hamiltonians that have a
spectral gap that is approximately constant, it is important
to see that such protection applies to such Hamiltonians as
well. To this end, consider the family of Hamiltonians

HθðtÞ ¼ E0 cos (θðtÞ)σz þ E0 sin (θðtÞ)σx: ð7Þ

The Hamiltonian HLZðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 þ λ2

p
is of this form, with

cos (θðtÞ) ¼ ct=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 þ λ2

p
, sin (θðtÞ) ¼ −λ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 þ λ2

p
,

and E0 ¼ 1. A change of variables to ~tðtÞ with d~t=dt ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 þ λ2

p
applied to Schrödinger’s equation brings the

Hamiltonian HLZðtÞ to the form Hθð~tÞ. If the function ~tðtÞ
is bounded by a polynomial, then the protection will remain
exponential in the new time variable, in terms of which the
Hamiltonian has a constant gap. Since ~t ∼ λt for small t and
~t ∼� 1

2
ct2 for large t, this is satisfied.

Although the speed with which the Hamiltonian evolves,
as measured by j _Hj=jHj, is roughly c=λ near the avoided
crossing, the total time of the adiabatic evolution is infinite.
This was the price that we paid in order to evolve the
system in a completely analytic manner. If the time
dependence changes more sharply, so that the total oper-
ation time is finite, then the exponential protection will
disappear. To see an example of this, we modify the
Hamiltonian of Eq. (1) to one in which the time dependence
occurs over a finite interval. There are several ways to do
this; we focus on one that will have relevance to later
sections of the paper. We consider a time-dependent
Hamiltonian of the form

HðtÞ ¼ hðtÞσz − λσx; ð8Þ

with

hðtÞ ¼
8<
:

−ctop for t ≤ −top
ct for −top ≤ t ≤ top
ctop for top ≤ t:

ð9Þ

In the adiabatic limit, this Hamiltonian rotates the state of
the system between nonorthogonal initial and final states.
In the long-time regime, where

ffiffiffi
c

p
top ≫ 1 and ctop ≫ λ,

we find that the time evolution operator acquires a
correction to its diagonal components (see Appendix A
for a derivation):

S1 ¼ e−ðπ=2ÞΛ −
ffiffiffi
π

c

r
e−ðπ=4ÞΛ

Γð−i Λ
2
Þtop

e−iðπ=4ÞþiΦðtÞ: ð10Þ
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The transition probability is given by

PG→E ¼ λ2

4c2t2op
þO

�
e−ðπλ2=2cÞffiffiffi

c
p

top
; e−ðπλ2=cÞ

�
: ð11Þ

Here, we only worry about the corrections that do not decay
exponentially with Λ.
The Oðt−2op Þ diabatic transition probability is character-

istic of any continuous, but otherwise generic, time
dependence. A set of more general results show that errors
become smaller as the evolution becomes smoother [9–11].
If the first k derivatives of the Hamiltonian exist and are
continuous, then the diabatic corrections to the transition
probability vanish as Oðt−2k−2op Þ. Our primary interest will
be diabatic corrections to the holonomy, the scaling of
which we will return to at the end of Sec. III. Previous
studies were done in the context of adiabatic quantum
computing and thus did not address diabatic corrections to
the holonomy.

B. Effects of dissipation due to coupling to a bath

Although this dependence on the differentiability of the
Hamiltonian is mathematically correct, one may worry
about its relevance to experimental solid-state systems,
for which noise and dissipation are unavoidable. At the
turn-on and turn-off of the time dependence, when the time
derivatives of the Hamiltonian are small, but perhaps not
quite zero (hence requiring a discontinuity in the next higher
derivative), noise could wash out some of the sensitivity to
the precise values of these derivatives. Hence, it is interest-
ing to study the effect of coupling to a dissipative bath,
which is effectively like randomly adding discontinuities to
the time dependence of the system Hamiltonian.
In anticipation of our eventual application to MZMs, we

consider the product of two two-level systems, which we
can think of as spins with the corresponding Pauli operators
~σ and ~τ. The two-level systems are coupled to a bath
through bath operators Bj as described by the Hamiltonian

H ¼
X3
j¼1

½−ΔjðtÞð1þ BjÞσj ⊗ τz þHBj�: ð12Þ

The system has an exact twofold degeneracy labeled by
τz ¼ �1, which we think of as distinct “sectors.” The
bosonic bath, which is a proxy for all of the environmental
degrees of freedom other than the two spins, is modeled by
a collection of oscillators through the terms

Bj ¼
X
α

~λjαða†jα þ ajαÞ; ð13Þ

HBj ¼
X
α

ωjαa
†
jαajα: ð14Þ

The bath couplings ~λ are chosen to model a zero-
temperature Ohmic bath. Each spin component σj couples
to a different subset of the oscillators ajα. The crucial
features of this Hamiltonian, which are not generic to all
two-level systems, are that σj is only coupled to the bath
when ΔjðtÞ ≠ 0 and that the bath is uncorrelated for
different σj. The first feature was chosen for reasons that
will become clear in Sec. IVA, when we discuss the
braiding of MZMs; the choice of uncorrelated noise will be
explained in Sec. VI B.
We choose the time dependence of theΔjðtÞ to consist of

three steps through which the instantaneous eigenstates of
H circumscribe an octant of the Bloch sphere, as shown in
Fig. 1. Specifically, we interpolate linearly in time between
ðΔ1;Δ2;Δ3Þ ¼ ð0;Δ; 0Þ at time t ¼ 0 and ðΔ; 0; 0Þ at
t ¼ t1; between ðΔ; 0; 0Þ at t ¼ t1 and ð0; 0;ΔÞ at t ¼ t2;
and finally between ð0; 0;ΔÞ at t ¼ t2 and ð0;Δ; 0Þ at
t ¼ top. This evolution is similar to “adiabatic gate tele-
portation,” as discussed in Ref. [47]. In the τz ¼ 1 sector,
the ground state acquires the holonomic (geometric) phase
−π=4. In the τz ¼ −1 sector, the handedness is reversed,
and the ground state acquires the holonomic phase π=4.
The dynamical phase, on the other hand, is identical for
the two sectors since they are related by an antiunitary
symmetry which takes σj → −σj. Thus, the dynamical
phase can be canceled by comparing the τz ¼ 1 and
τz ¼ −1 sectors, and the τz ¼ −1 sector picks a π=2
holonomic phase relative to the τz ¼ 1 sector during the
time evolution in the adiabatic limit.

FIG. 1. In the τz ¼ 1 sector, the instantaneous eigenstates of
HðtÞ trace out an octant of the Bloch sphere, shown above as
the contour C. At times t ¼ 0, t1, t2, top, only one of the Δi is
nonzero. At these times, σi commutes with the Hamiltonian,
and the corresponding point on the contour is one of the
corners or “turning points”. The holonomic phase at the end of
the evolution is half the solid angle traced out by the contour
C, ½ΩðCÞ=2� ¼ −ðπ=4Þ.
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In order to quantitatively study the effects of the bath,
we initialize the system in a certain superposition of
jσy ¼ þ1; τz ¼ þ1i and jσy ¼ −1; τz ¼ −1i and numeri-
cally solve the master equation derived in Appendix C.
(The results for this initial state should be qualitatively
representative of a general input.) We first compute the
probability of a transition out of the ground-state manifold
into an excited state for the τz ¼ 1 sector, PG→E; the
τz ¼ −1 sector has similar behavior. In Fig. 2, we plot
PG→E as a function of the total evolution time top, both with
and without dissipation. The upper panel shows it for a
stepwise linear time dependence (k ¼ 0). The lower panel
shows it for a smoothed-out time dependence (k ¼ 1)
in which the first derivatives exist and are continuous
everywhere; i.e., they vanish at the beginning and end of
each time step. Details are given in Appendix D. In the
absence of dissipation, the envelope of the decay follows
the expected scaling as t−2op and t−4op for k ¼ 0 and 1,

respectively. As may be seen in the plots, the dissipation
suppresses oscillations in the transition probability. For
k ¼ 0, the dissipative case has the same t−2op falloff at long
times. For k ¼ 1, however, dissipation has an important
qualitative effect at long times: The excitation probability
again goes as t−2op , rather than the t−4op behavior that occurs
without dissipation. This can be understood as follows: The
suppressed excitation rate for the nondissipative k ¼ 1
protocol relies on the smoothness of the time evolution of
the system’s Hamiltonian, i.e., the smoothness of the ΔjðtÞ.
With dissipation, this smoothness is washed out by the
random discontinuities added by the bath. For shorter top,
however, there remains a quantitative difference between
the k ¼ 0 and 1 protocols, which suggests that some level
of engineering the time dependence of the system
Hamiltonian remains beneficial.
If we measure the system and find that it remains in the

twofold-degenerate ground-state manifold, then a phase
gate has been applied to this subspace, due to the sector-
dependent holonomic phase of �ðπ=4Þ. However, there
may have been intermediate diabatic excitations which
relaxed, causing the final state to deviate from the adiabatic
result. This deviation is quantified by ∥ρGðtopÞ − ρA∥,
where ρA is the final density matrix obtained in the
adiabatic limit;

ρGðtopÞ ¼
ΠGρðtopÞΠG

Tr(ΠGρðtopÞ)
ð15Þ

is the density matrix for finite top projected into the ground-
state manifold, where ΠG is the projection operator into the
ground state and ρðtopÞ is the density matrix before the
projection measurement; and ∥…∥ denotes the trace norm.
Here, ∥ρGðtopÞ − ρA∥ measures the deviation of the state
from the ideal or adiabatic limit result. As shown in Fig. 3,
∥ρGðtopÞ − ρA∥ exhibits behavior similar to that of PG→E. In
particular, without dissipation, the long-time asymptotics
exhibit t−2k−2op scaling, while the inclusion of dissipation
suppresses oscillations in ∥ρGðtopÞ − ρA∥ and leads to a
power-law decay t−2op at long times.
We believe that t−2op is universal for diabatic transitions in

the presence of dissipation. A heuristic explanation is to
consider the rate equation for the occupation number
of the excited level NE in the instantaneous basis.
Phenomenologically, we postulate that the time evolution
of NE is governed by the following rate equation:

dNE

dt
¼ hðtÞ − ΓðtÞNE: ð16Þ

Here, hðtÞ describes the generation of excitations due to the
matrix element between the ground state jGi and excited
state jEi, and ΓðtÞ characterizes the relaxation of the
excitations. Importantly, in the model Eq. (12), the bath

FIG. 2. With dissipation (red solid line), transition probability
PG→E vs the gap multiplied by the total evolution time Δtop, due
to diabatic effects for k ¼ 0 (top panel) and k ¼ 1 (bottom panel).
The long time tail is fitted to c0=ðΔtopÞx with x ≈ 2 (brown
dashed line). We choose the cutoff ωc ¼ 10Δ, Ohmic bath at
low temperature T ¼ 1=β ¼ 0.001Δ, and system-bath coupling
λ1 ¼ λ2 ¼ λ3 ¼ 0.01Δ. The black solid line shows the results
without dissipation, and the envelope function for long times is
fitted to c00=ðΔtopÞx with x ≈ 2kþ 2 (blue dashed line).
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coupling is assumed to be synchronized with the time-
dependent couplings of the Hamiltonian, whose time
variation is responsible for diabatic transitions. Therefore,
as a zeroth-order approximation, we can assume that hðtÞ
and ΓðtÞ have the same time dependence. Furthermore,
we have hðtÞ ∼OðjhEj∂tHjGij2Þ. We expect that if top
becomes longer, the speed at which the Hamiltonian
changes on average should decrease as t−1op . To capture
this dependence on top, we make a crude estimate of hðtÞ to
be hðtÞ¼ðΔ=t2opÞfðtÞ, where fðtÞ is a dimensionless func-
tion whose range is [0, 1], and we write ΓðtÞ ¼ ΓfðtÞ. The
rate equation can now be integrated with the initial con-
dition NEðt ¼ 0Þ ¼ 0, and the result is

NEðtÞ ¼
λ

Γt2op
½1 − e−FðtÞ�; ð17Þ

where FðtÞ ¼ R
t
0 dsfðsÞ. It is not hard to see that FðtopÞ

grows at least linearly with top, so asymptotically we find
NEðtopÞ ¼ Oðt−2op Þ.
To summarize, diabatic corrections (to both the transition

probability from the ground state to an excited state and to
the phase acquired if the system remains in the ground

state) are nonuniversal and dependent on the detailed time
dependence of the Hamiltonian in the absence of dissipa-
tion. In the presence of dissipation, however, the scaling of
diabatic corrections appears to become universal in the
limit of large operation time.

III. DIABATIC CORRECTIONS TO BRAIDING
TRANSFORMATIONS OF ANYONS

In the previous section, we saw that diabatic corrections
to the holonomy are only polynomially suppressed in the
time top of the evolution and, for the system of Eq. (12), can
be as bad as Oðt−2op Þ. This is especially worrisome if the
holonomy in question determines the braiding transforma-
tions in a topological quantum computer. However, we
argue in this section that diabatic corrections to the braiding
transformations of anyons originate from the uncontrolled
creation or motion of anyons.
We justify this claim by studying the diabatic time

evolution for two theories with fixed anyon number, where
one anyon braids around the other. We perform these
calculations using Maxwell-Chern-Simons theory [48],
which has a finite gap to gauge field excitations. In the
first theory, the anyons are forced to move along a specific
trajectory. In this case, we find that the corrections to the
braiding transformations are independent of the braiding
time and are exponentially suppressed by the separation of
anyons. In the second theory, the anyons are transported via
a pinning potential. In this case, the anyons have some
amplitude to tunnel out of the potential trap and possibly
wind around the other anyon a number of times, which does
not match that of the trap motion. The sum over such
topologically distinct trajectories, i.e., with different wind-
ing numbers, destroys the quantization of the braiding
transformation.
Consider an Abelian Maxwell-Chern-Simons theory for

two anyons carrying charges a and b, respectively. Anyon b
sits at the origin for all time, and anyon a sits a distance R
away until time t ¼ 0, at which it circles the origin and then
returns to its initial position. We use x ¼ ðt; rÞ to denote the
space-time coordinates collectively. The action is

S ¼
Z

d3x

�
k
4π

ϵμνλaμ∂νaλ −
1

4g2
fμνfμν − jμaμ

�
: ð18Þ

Between t ¼ 0 and t ¼ top, the moving anyon has current
[in the polar coordinate ðr; θÞ]

j0aðxÞ ¼
a
r
δðr − RÞδ

�
θ −

2πt
top

�
; ð19Þ

jθaðxÞ ¼ a
2πR
rtop

δðr − RÞδ
�
θ −

2πt
top

�
; ð20Þ

and the stationary anyon has current

FIG. 3. The deviation of the density matrix after projection
onto the ground state, ∥ρGðtopÞ − ρA∥, vs the gap multiplied
by the total evolution time, Δtop. The parameters are the same
as in Fig. 2.
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j0bðxÞ ¼ bδð2ÞðrÞ: ð21Þ

All other currents vanish. For a pure Abelian Chern-Simons
theory, we would expect the braiding transformation to be
the phase factor ei2πab=k. Adding the Maxwell term gives
the interaction a nontopological component, which is
exponentially decaying. Hence, the braiding transformation
is expected to have corrections that are exponentially small
in R.
Integrating out aμ gives the effective action

Seff ¼
Z

d3xd3x0
�
jμðxÞGð1Þ

μν ðx; x0Þjνðx0Þ

−
g2

2
jαðxÞGð2Þðx; x0Þjαðx0Þ

�
: ð22Þ

Here, the two propagators are given by

Gð1Þ
μλ ðx; x0Þ ¼

π

k

*
x

����� ϵμνλ∂ν

∂2ð1þ ∂2
g4k2=4π2Þ

�����x0
+
; ð23Þ

Gð2Þðx; x0Þ ¼
*
x

����� 1

∂2 þ g4k2=4π2

�����x0
+
: ð24Þ

Both terms in Eq. (22) can be evaluated by transforming to
momentum space. One can show, as we do in Appendix E,
that the first term in Eq. (22) contributes a braiding
transformation eiΦ, with the phase

Φ ¼ 2πab
k

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
πg2kR
4π

r
e−g

2kR=2π

�

þOðe−g2kR=2πÞ; ð25Þ

which has finite-R corrections but is independent of the
braiding speed. Evaluation of the second term in the action
shows that it grows linearly in top and is the same for all
braiding processes; i.e., it is independent of the charge of
the second anyon at the origin, as is expected for a
dynamical phase. If there are diabatic corrections to
braiding, they must arise from effects not allowed in this
simple theory.
We now modify our theory such that anyon a is

dynamical. Its position is no longer a classical parameter
but is, instead, controlled by a pinning potential. We move
the pinning potential in order to transport anyon a around
static anyon b. We again set b to have fixed position. The
effective action reads

S ¼
Z

dt

�Z
d2r

�
k
4π

ϵμνλaμ∂νaλ − jμaμ

�

þ 1

2
m

�
dq
dt

�
2

− Va(q −RðtÞ)
�
: ð26Þ

Here, q is the coordinate of the particle, which is now a
dynamical variable. RðtÞ parametrizes the trajectory of the
pinning potential Vq.
To proceed, we first integrate out aμ. As before, this will

generate a Hopf term for the worldlines and, in the present
configuration, this term is just the winding number of qðtÞ
around the origin.
We can simplify this problem further by ignoring the

radial motion of particle a, which is an inessential com-
plication, so we only need to keep the polar angle θ. The
above action now can be reduced to the problem of a
particle on a ring with a flux tube in the center. However,
we still have the external “driving” force that moves the
anyon, which is given by the time-dependent pinning
potential Va(qðtÞ −RðtÞ):

S ¼
Z

top

0

dt

�
1

2
I _θ2 þ ab

k
_θ − Va

�
θ −

2πt
top

��
: ð27Þ

Here, I is the effective rotational inertia. In the following,
we assume that the pinning potential is moving with a
constant angular velocity and that the pinning potential
completes one circuit and returns to θ ¼ 0 after
time top. The path-integral representation of the transition
amplitude is

hθ≡ 0jUðtop; 0Þjθ≡ 0i ¼
X∞
n¼−∞

Z
θðtopÞ¼2πn

θð0Þ¼0

DθðtÞeiS:

ð28Þ

Notice that we need to sum over different winding
number sectors for θðtÞ. Let us make the change of
variable θ ¼ ~θ þ ð2πt=topÞ, so that ~θð0Þ ¼ 0 and ~θðtopÞ ¼
2πðn − 1Þ. This yields

S ¼
�
2πI
top

þ ab
k

�
½~θðtopÞ − ~θð0Þ� þ 2π2I

top
þ 2πab

k

þ
Z

top

0

dt

�
1

2
I _~θ

2
− Vað~θÞ

�
: ð29Þ

Let us denote

Sm ¼
Z

θðtopÞ¼2πm

θð0Þ¼0

DθðtÞ exp
�
i
Z

top

0

dt

�
1

2
I _θ2 − VaðθÞ

�	
:

ð30Þ

The transition amplitude is then
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hθ≡ 0jUðtop; 0Þjθ≡ 0i

¼ eið2πab=kÞ
X∞
n¼−∞

eið4π2I=topÞðnþ1
2
Þþið2πabn=kÞSn: ð31Þ

In order to find the braiding transformation, we need to
compare the above transition amplitude with the case where
there is no anyon b sitting at the origin. If we let H0ðtÞ
denote the Hamiltonian in this case, we find

hθ≡ 0jU0ðtop; 0Þjθ≡ 0i ¼
X∞
n¼−∞

eið4π2I=topÞðnþ
1
2
ÞSn: ð32Þ

The braiding transformation is, thus, given by the ratio of
these two amplitudes, resulting in the phase factor

eiΦ ¼ eið2πab=kÞ
P∞

n¼−∞ eið4π2I=topÞneið2πabn=kÞSnP∞
n¼−∞ eið4π2I=topÞnSn

: ð33Þ

The quantization of Φ is destroyed, in general, because the
moving anyon now has some amplitude Sn≠0 of escaping
the pinning potential and tunneling around the static anyon
an additional n times. In the adiabatic limit, the system
remains in the instantaneous ground state at all times, so the
moving anyon remains trapped in the pinning potential. In
this limit, Sn ¼ 0 for all n ≠ 0, and the braiding phase is
quantized to Φ ¼ 2πab=k.
We note that Eq. (33) ignores coupling to an environ-

ment. Realistically, the environment will detect the sectors
associated with distinct winding numbers n since these are
macroscopically different trajectories. This “which-path”
information will remove the interference between n sectors
in Eq. (33), resulting in a decohered state. Presumably, the
bath can help to the extent it relaxes the escaped anyon back
into the moving trap before it is left behind.
Clearly, a theory that does not fix anyon number will also

have diabatic corrections to the braiding transformation.
A pair of anyons with nontrivial topological charge could
be created. If one of the anyons circles a or b before
annihilating with its antiparticle, the braiding transforma-
tion will be affected. If we braid two anyons with a fixed
fusion channel in a non-Abelian Chern-Simons theory, we
can reduce the calculation to a calculation in Abelian
Chern-Simons theory since the result must be a phase. So
long as we do not allow any type of quasiparticle creation
(real or virtual), the fusion channel will remain fixed, so the
preceding calculation is, in fact, completely general and it
pinpoints the source of diabatic errors in the general case.
We have seen that both sources of diabatic corrections

to the braiding transformation arise from transitions out of
the ground-state subspace that result in the uncontrolled
motion of anyons—either the anyon a winds around b too
many or too few times, or else an anyon pair is created and
one of the new anyons winds around a and/or b. We are
now in a position to understand the power-law behavior of

corrections to the braiding transformation shown in Fig. 3.
Corrections to the braiding transformation must be the
result of two transitions: a transition out of the ground
state, causing the error, and a transition back into the
ground state, allowing us to define an operation within
the ground-state subspace. As shown in Refs. [9–11],
for Ck smooth time evolution, the transition amplitude is
Oðt−k−1op Þ; therefore, corrections to the braiding transfor-
mations are Oðt−2k−2op Þ.

IV. CORRECTION SCHEME FOR DIABATIC
ERRORS TO THE BRAIDING OF MZMS

IN T JUNCTIONS

In the previous section, we found that errors in the
braiding transformation caused by diabatic effects originate
from the uncontrolled creation or motion of anyons. We
now use this result to devise a correction scheme for such
diabatic errors. In this section, we focus on the particular
example of braiding MZMs in a T junction and provide
concrete proposals in this context. In Sec. V, we will
generalize our diabatic error correction scheme to systems
supporting arbitrary types of non-Abelian anyons or
defects.

A. Relation between two-level systems
and braiding MZMs at T junctions

Section II focused on the adiabatic evolution of two-level
systems. Since our main interest in this paper is the braiding
of quasiparticles in a topological phase, in particular, the
braiding of MZMs, we pause now to map the braiding and
two-level problems onto each other. With such a mapping
in hand, we can translate the results discussed in Sec. II
to the context of quasiparticle braiding in a topological
phase. More specifically, we consider braiding of MZMs
in a network of topological superconducting wires. The
essential building block of the network is a so-called T
junction.
A T junction is composed of four MZMs. At the initial

and final configurations, two of these MZMs are com-
pletely decoupled (up to exponentially suppressed correc-
tions) and will, in part, comprise the topological qubit,
while the other two MZMs are an ancillary pair that are
coupled to each other. (Eventually, it will be convenient to
have three MZMs replacing the one in the middle,
following Ref. [43], but we will focus on the simpler
situation here.) The braiding operation is partitioned into
three steps that end at time t1, t2, and t3, respectively. (For
simplicity, we will typically let t1 ¼ top=3, t2 ¼ 2top=3,
t3 ¼ top.) Each step changes which MZMs are decoupled
(and correspond to the topological qubit pair) and which
MZMs are coupled (and correspond to the ancillary pair).
We call the configurations at the end of each step a “turning
point.” This sequence is depicted in Fig. 4.
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The Hamiltonian for these MZMs takes the form

H ¼ −
X3
j¼1

ΔjðtÞiγjγ0; ð34Þ

where fγi; γjg ¼ 2δij for i, j ¼ 0, 1, 2, 3 and ΔjðtÞ ranges
from 0 to Δ > 0. In each panel of Fig. 4, the dots represent
MZMs, and the line connecting two dots represents a
Hamiltonian of the form of Eq. (34) with the corresponding
Δi ¼ Δ and all other Δi ¼ 0. By changing which MZM is
coupled to the central MZM in an adiabatic manner, the
topological state information is teleported between MZMs,
so as to always be encoded in the uncoupled MZMs.
Following the indicated sequence of such teleportations
results in a braiding transformation of the topological qubit
pair of MZMs.
We assign the overall fermion parity of these four

MZMs to be even when γ0γ1γ2γ3 ¼ −1 and odd when
γ0γ1γ2γ3 ¼ þ1. If we fix the overall fermion parity of these
four MZMs, they share a two-dimensional topological state
space, which we map to a spin-1=2 system according to the
representation of the Pauli operators σj ¼ iγ0γj for overall
parity even, and σj ¼ −iγ0γj for overall parity odd.
This representation reveals the equivalence between the

MZM Hamiltonian of Eq. (34) and the spin Hamiltonian of

Eq. (12) without the bath coupling. In particular, the
even and odd overall parity sectors of the four-MZM
Hamiltonian are mapped to the τz ¼ þ1 and −1 sectors
of the two-spin Hamiltonian, respectively. The difference
between the holonomies in the sectors of the two-spin
model is mapped to the difference between the holonomies
in the even and odd fermion parity sectors of the MZMs,
giving the relative phase of the braiding transformation.
Let us focus in more detail on the first step of this

process, which transfers the state information initially
encoded in γ1 to γ2, and occurs between t ¼ 0 and
t ¼ t1, as shown in Fig. 4. Consider varying the couplings
linearly during this time segment:

Δ1ðtÞ ¼ Δ
t
t1
; ð35Þ

Δ2ðtÞ ¼ Δ
�
1 −

t
t1

�
; ð36Þ

Δ3ðtÞ ¼ 0; ð37Þ

so that the τz ¼ þ1 sector of the spin Hamiltonian
(corresponding to even fermion parity) takes the following
form for 0 ≤ t ≤ t1:

H ¼ Δ
�
t
t1
σx þ

�
1 −

t
t1

�
σy

�
: ð38Þ

If we define the following unitary transformation

M ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi

2
pp ½iðσz þ σyÞð1þ

ffiffiffi
2

p
Þ − ðiσx þ 1Þ�; ð39Þ

then

MHM† ¼ Δffiffiffi
2

p ½hðtÞσz − σx�; ð40Þ

where hðtÞ ¼ 1 − ð2t=t1Þ. Thus, we obtainMHM† to be in
the same form as the Landau-Zener Hamiltonian in Eq. (8).
As we show in Appendix B, the other steps in the braiding
protocol can also be mapped to Landau-Zener problems
that can be pieced together.
The relation between a MZM T junction and a two-level

system implies that the diabatic errors that we encountered
in the latter case will also arise in the former. Consequently,
if braiding is not done infinitely slowly, the resulting
unitary transformation will generically differ from the
expected adiabatic result by Oð1=topÞ errors. This can be
improved to Oð1=tkþ1

op Þ if the time dependence of the
control parameters of the Hamiltonian is Ck, which requires
fine-tuning the time dependence by setting k derivatives of
the Hamiltonian to zero at the initial and final times. On the
other hand, Sec. III leads us to anticipate that errors in the

FIG. 4. Schematic of the braiding process at a T junction. Each
dot represents a MZM, and the lines connecting dots indicate
which MZMs are in a definite fusion channel at a given time. This
sequence of states can be obtained as the ground states of a
Hamiltonian with nonzero coupling between the pair connected
by a line at each step and by adiabatically tuning the Hamiltonian
from one step to the next. This sequence effectively braids the
MZMs labeled by red and blue dots.
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braiding transformation must be due to the creation or
uncontrolled movement of topological quasiparticles. In the
next section, we show that this is, indeed, the case: If a
sequence of measurements shows that no quasiparticles
have been created at intermediate steps of the evolution,
then the braiding phase is fixed to its topologically
protected value. Moreover, this fact allows us to specify
a protocol for detecting and correcting diabatic error that
would affect the braiding transformation.

B. Error correction through measurement

In this section, we show that projecting the system into
the ground state at the turning points during the T-junction
braiding process is sufficient to fix all diabatic errors within
the MZM system. This suggests an error correction scheme
for braiding MZMs, based on a repeat-until-success pro-
tocol, that produces topologically protected gates. For now,
we focus on errors occurring within the low-energy sub-
space of the four MZMs because we expect these errors to
be the most prevalent. We address diabatic transitions out of
this subspace in Sec. VI B.
We consider the time evolution depicted in Fig. 4. At any

point in the system’s time evolution, the energy levels in the
even-parity sector γ0γ1γ2γ3 ¼ −1 are the same as those of
the odd-parity sector γ0γ1γ2γ3 ¼ þ1. This follows from the
fact that there is always a pair of MZMs that is decoupled
from the Hamiltonian (the one that is unaffected during that
step of the protocol and a linear combination of the other
three), and switching the parity of this pair does not affect
the energy. This correspondence between the spectra in
the two sectors implies that the dynamical phase is identical
for both sectors and, thus, does not affect the braiding
transformation.
At each turning point of the braiding process, there are two

decoupled MZMs that sit at the end points of the T junction:
At t ¼ 0, γ1 and γ3 are decoupled; at t1, γ2 and γ3 are
decoupled; at t2, γ1 and γ2 are decoupled; and, at t3, γ1 and γ3
are decoupled. We can consider the unitary time evolution of
each step between turning points, which we denote asUij, to
indicate that the Hamiltonian starts with γj coupled to γ0 and
γi decoupled, andendswith γi coupled to γ0 and γj decoupled.
In this notation,U12 is the evolution from time t ¼ 0 to t1,U31

is from t1 to t2, andU23 is from t2 to t3. We emphasize that γk
for k ≠ 0, i, j remains decoupled throughout the step
corresponding toUij, as this fact is crucial for the topological
protection of the braiding, and wewill utilize it to analyze the
diabatic error. (By decoupled, we mean up to the residual,
exponentially suppressed couplings due to nonzero correla-
tion length. Such exponentially suppressed corrections can
easily be made arbitrarily small and so are left implicit
throughout this paper.)
Let us first choose a basis for the Hilbert space of the

four MZMs. For calculational purposes, it will be useful to
employ the basis j−γ0γ1γ2γ3 ¼ �1; iγ2γ0 ¼ �1i, specified
by the overall fermion parity of the four MZMs and

the parity of the initial or final ancillary pair of MZMs.
In this basis, the four MZMs have the following matrix
representations:

γ0 ¼ −σy ⊗ σy; ð41Þ

γ1 ¼ σx ⊗ 1; ð42Þ

γ2 ¼ σy ⊗ σx; ð43Þ

γ3 ¼ σy ⊗ σz: ð44Þ

Since the total fermion parity must be conserved (as these
four MZMs only interact with each other for the specified
Hamiltonian), the unitary evolution operators Uij are block
diagonalized into 2 × 2 blocks Ue

ij and Uo
ij corresponding

to even and odd fermion parity sectors, respectively:

Uij ¼
�Ue

ij 0

0 Uo
ij

�
: ð45Þ

The property ½Uij; γk� ¼ 0 for k ≠ 0; i; j yields the relations
between even and odd overall parity sectors,

Uo
12 ¼ σzUe

12σz; ð46Þ

Uo
31 ¼ σxUe

31σx; ð47Þ

Uo
23 ¼ Ue

23: ð48Þ

We now consider what happens if we apply a projective
measurement of the fermion parity eigenstates of the
ancillary pair of MZMs at each turning point (which are
also their energy eigenstates at those points). Later, we will
discuss how to do this in a physical setup; for now, we
simply analyze what happens when such projections are
applied at the turning points of the braiding process. We
define the projection operators

ΠðijÞ
s ¼ 1þ isγiγj

2
; ð49Þ

which projects to the state with definite fermion parity
iγiγj ¼ s ¼ �1 for the pair of MZMs γi and γj. For the
above representation of MZM operators, the projectors of
interest are given by

Πð20Þ
s0 ¼ 1þ s01 ⊗ σz

2
; ð50Þ

Πð10Þ
s1 ¼ 1þ s1σz ⊗ σy

2
; ð51Þ

Πð30Þ
s2 ¼ 1 − s21 ⊗ σx

2
: ð52Þ
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The total evolution operator for the braiding process with
fermion parity measurements of the ancillary pairs at the
turning points is given by

WTotal ¼ Πð20Þ
s3 U23Π

ð30Þ
s2 U31Π

ð10Þ
s1 U12Π

ð20Þ
s0 ; ð53Þ

where sj is the measurement outcome at the jth turning
point. Clearly, this operator is not unitary, in general, since
it involves projective measurements. In order for this
operator to represent a braiding operation, the initial and
final configurations of the ancillary pair must match; that is,
we must have s3 ¼ s0.
Substituting Eqs. (46)–(48) and assuming s3 ¼ s0, we

find

WTotal ¼
�
1 0

0 is0s1s2

�
⊗ W0; ð54Þ

where W0 is given by

W0 ¼ 1þ s3σz
2

Ue
23

1 − s2σx
2

Ue
31

1þ s1σy
2

Ue
12

1þ s0σz
2

:

ð55Þ

We notice thatW0 takes the form w0Πð20Þ
s0 for a scalar w0 that

depends on the precise details of the unitary evolution
operators and measurement outcomes. (This scalar encodes
the probability of the measurement outcomes but is other-
wise unimportant since the quantum state is normalized
after each measurement.)
In order to obtain the effect of this operation on the

topological qubit, it is useful to convert to the more relevant
basis given by jiγ1γ3¼�1;iγ2γ0¼�1i (which is obtained
by a simple permutation of basis states). In this basis, the
total evolution operator is

WTotal ¼ ½R13�s1s2 ⊗ wΠð20Þ
s0 ; ð56Þ

where

R13 ¼
�
1 0

0 i

�
ð57Þ

is the (projective) braiding transformation for exchanging
the MZMs γ1 and γ3 in a counterclockwise fashion. Once
again, w ¼ −is1s2w0 is an unimportant overall scalar. The
parity of the exponent s1s2 ¼ �1, i.e., the measurement
outcomes at the t1 and t2 turning points, determines
whether WTotal acts as a counterclockwise or clockwise
braiding transformation.
The preceding argument shows that the braiding process

with fermion parity measurements of the ancillary pairs
at the turning points acts on the topological qubit pair of
MZMs in the same way as the topologically protected

braiding transformation R13, so long as a neutral fermion
is not created (paying its concomitant energy penalty)
throughout the process. When precisely one of the inter-
mediate measurements finds the ancillary pair to have odd
parity, this means that a fermion is transferred from the
qubit pair to the ancillary pair during the preceding time
step and then transferred back during the following time
step.
This process can be understood diagrammatically from

the arguments of Refs. [49–51], as summarized in Figs. 5
and 6. (These figures are shown with labels from the Ising
anyon theory, but the same essential arguments hold for
MZMs.) It follows from the properties of the Ising anyon
model that a braiding exchange of two Ising σ non-Abelian
anyons with a neutral fermion transferred between them is
equivalent to their inverse braid with no fermion transfer,
up to an overall phase, as shown in Fig. 5. (The same
property is true for MZMs.)
At a T junction governed by the Hamiltonian of Eq. (34),

the emitted fermion can only be transferred to one place,
the ancillary pair of MZMs, since the Hamiltonian does
not couple any other degrees of freedom. A pair of such
transfers of fermions, which corresponds to the measure-
ments finding the ancillas in their excited state at both t1

FIG. 5. The effect of a diabatic error, which transfers a neutral
fermion from the qubit to the ancillas, on the braiding. For Ising
anyons, it turns a counterclockwise braiding into a clockwise one,
up to an overall phase.

FIG. 6. The measurement-only protocol for braiding. The
resulting operation depends on the fusion channels s1 and s2 of
the intermediate measurements (which can take the values i or ψ ).
If s1 ¼ s2, the result is a counterclockwise braid; otherwise it is the
inverse braid.
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and t2, essentially cancel each other. In this case, we have
s1s2 ¼ 1, and the braiding transformation is still R13.
In summary, we can understand the correction of diabatic

errors via measurement from the general viewpoint of
measurement-only protocol for braiding [49–51], as
depicted in Fig. 6. One can clearly see that the resulting
operation affected by the protocol depends on the outcomes
of the two intermediate fusion channel measurements, in
agreement with the result we found in Eq. (57). This
analysis reveals that diabatic transition errors that occur
between the turning points can be corrected, and topologi-
cal protection of the resulting operation will be recovered if
we introduce measurements at the turning points of the
braiding process. If the measurements do not produce the
desired outcomes, the resulting operation, though topo-
logically protected, may not be the intended braiding
transformation. Hence, we would like to impose a protocol
that guarantees that we obtain the desired outcomes and
braiding operation. For this, we now devise a generalization
of the “forced measurement” scheme introduced in
Ref. [49].
First, let us recall the original forced measurement

protocol in the context of this braiding process. Suppose
that the first measurement of the fermion parity iγ1γ0
returns the undesired outcome s1 ¼ −1with probability p0.
We can recover from such an undesired outcome by
measuring the fermion parity of iγ2γ0, which now has
equal probability of measurement outcomes iγ2γ0 ¼ s00 ¼
�1 (projecting with Πð20Þ

s0
0
), and then repeating the meas-

urement of iγ1γ0, which now also has equal probability of
measurement outcomes iγ1γ0 ¼ s01 ¼ �1 (projecting with

Πð10Þ
s0
1
). This process can be repeated as many times as

necessary until we obtain the desired measurement out-
come s1 ¼ 1. Each recovery attempt has probability 1=2 of
succeeding or failing; thus, the probability of needing n
recovery attempts for the forced measurement process in
order to obtain the desired outcome of s1 ¼ þ1 is
pn ¼ p02

−n, and the average number of recovery attempts
needed for this is hni ¼ 2p0. A similar protocol can be used
for each of the three segments of the braiding process if the
corresponding measurements do not initially yield the
desired outcome.
The original forced measurement protocol may be less

efficient than is desirable if the measurement times are
relatively long, as each recovery attempt only has 1=2
probability of success. In this case, it may be preferable to
utilize a hybrid approach that combines the use of nearly
adiabatic evolution with the forced measurement scheme in
order to generate a high probability of success for each
recovery attempt. Consider, again, the situation where
we reach the first turning point with Hamiltonian H ¼
−iΔγ1γ0 (we assume Δ > 0), and perform a measurement
of the fermion parity iγ1γ0 and obtain the undesired

outcome s1 ¼ −1 with probability p0. We can now follow
the hybrid adiabatic-measurement recovery protocol:
(1) Change the sign of the coupling between γ0 and γ1

so that the Hamiltonian goes from H ¼ −iΔγ1γ0
to H ¼ iΔγ1γ0.

(2) Nearly adiabatically tune the Hamiltonian fromH ¼
iΔγ1γ0 to H ¼ −iΔγ2γ0, and then to H ¼ −iΔγ1γ0.

(3) Measure the fermion parity iγ1γ0. If the outcome is
s1 ¼ −1, go to step 1. If the outcome is s1 ¼ þ1,
stop.

In step 1, we emphasize that the Hamiltonian only
involves the MZMs γ0 and γ1, so the process of changing
the sign of the coupling does not change the state; i.e., the
state remains in the iγ1γ0 ¼ −1 state during this process
because of the conservation of fermion parity. It just goes
from being an excited state to being a ground state. Note
that ancillary MZM states iγ1γ0 ¼ �1 will temporarily
become degenerate in this step when the Hamiltonian
passes through zero. Clearly, this means that this step will
not be adiabatic (nor nearly adiabatic) with respect to the
energy difference between the iγ1γ0 ¼ �1 states, but we
also want to make sure that it is fast with respect to any of
the exponentially suppressed energy splittings between
topologically degenerate states. Of course, if the MZMs
are embedded in a superconductor, then we must also
ensure that the process is slow enough not to excite
states above the superconducting gap. In other words, if
this process is carried out in time tflip, then we require
Δ−1

SC ≪ tflip ≪ 1=δE.
In step 2, we really just want any adiabatic path from

H ¼ iΔγ1γ0 to H ¼ −iΔγ1γ0. Taking a path that passes
through H ¼ −iΔγ2γ0 and that only involves γ0, γ1, and γ2
is most convenient because it limits the possible diabatic
errors to transitions involving the three MZMs that we are
already manipulating and measuring in this segment of the
braiding process. Moreover, as we will discuss later, we
may need to pause atH ¼ −iΔγ2γ0 during this step in order
to flip the sign of the possible coupling between γ0 and γ1,
while its magnitude is at zero and can be done without
affecting the state. As long as the Hamiltonian is changed
slowly and smoothly (near adiabatically) during this step,
the system will remain in the ground state with high
probability. In this case, the subsequent measurement in
step 3 will have a high probability of obtaining the desired
measurement outcome s1 ¼ þ1. If the probability of
obtaining the undesired outcome s1 ¼ −1 after one such
hybrid recovery attempt is p, the probability of needing n
recovery attempts in order to obtain the desired outcome
s1 ¼ þ1 is pn ¼ p0pn−1ð1 − pÞ, and the average number
of recovery attempts needed for this is hni ¼ ðp0=1 − pÞ.
In this hybrid scheme, p can be made arbitrarily small by
making the nearly adiabatic evolution take a longer amount
of time and by making the Hamiltonian time dependence
smoother.

CHRISTINA KNAPP et al. PHYS. REV. X 6, 041003 (2016)

041003-12



If the system is coupled to a dissipative bath of the type
described in Sec. II B, there is yet another generalization
of forced measurement protocol. There is some rate Γ for
relaxation to the ground state which vanishes at the turning
points and is largest midway between two turning points. In
this case, after performing a measurement of the fermion
parity iγ1γ0 with the undesired outcome s1 ¼ −1, we can
follow the dissipation-assisted hybrid recovery protocol:
(1) Nearly adiabatically tune the Hamiltonian from

H ¼ −iΔγ1γ0 to H ¼ −iΔ 1
2
ðγ1γ0 þ γ2γ0Þ.

(2) Pause for an amount of time approximately equal
to Γ−1.

(3) Nearly adiabatically tune the Hamiltonian from
H ¼ −iΔ 1

2
ðγ1γ0 þ γ2γ0Þ to H ¼ −iΔγ1γ0.

(4) Measure the fermion parity iγ1γ0. If the outcome
is s1 ¼ −1, go to step 1. If the outcome is s1 ¼ þ1,
stop.

The effectiveness of this strategy strongly depends on
the system-bath coupling. It has the advantage over the
previously described hybrid strategy that it does not require
the ability to change the sign of the couplings.
We have outlined three approaches to correcting

diabatic errors at each turning point: the forced measure-
ment, hybrid, and dissipation-assisted hybrid protocols. As

described above, we can employ one of these recovery
schemes as soon as we measure the system in its excited
state at each turning point of the braiding process. This is
outlined in the left panel of Fig. 7. A slightly more efficient
method is to procrastinate correcting certain errors. If we
measure s1 ¼ s2 ¼ −1, then as long as we measure
s3 ¼ s0, we will obtain the correct braiding transformation.
In other words, two wrongs make a right. Thus, if we
measure s1 ¼ −1, there is some chance that, if we continue
to evolve, we will find s2 ¼ −1 and s3 ¼ s0, in which case
the system has made the right number of errors to correct
itself. The likelihood of such self-correction can be
increased by changing the sign of the coupling between
γ0 and γ3 so that the Hamiltonian is taken from H ¼
−iΔγ1γ0 at time t1 to H ¼ iΔγ3γ0 at time t2. In this way, if
there is no diabatic transition during the second braiding
segment, the system will stay in the excited state and yield
s1 ¼ s2 ¼ −1. If a diabatic error does occur during this
segment, yielding the measurement outcome s2 ¼ þ1, then
we apply a recovery protocol. This procrastination method
is shown in the right panel of Fig. 7.

V. CORRECTION SCHEME FOR DIABATIC
ERRORS TO THE BRAIDING OF ANYONS

We now explain how the previous section’s correction
scheme for diabatic errors to braiding MZMs can be
generalized to the braiding of generic non-Abelian anyons.
We first consider braiding transformations generated using
a T-junction-type setup with tunable couplings between
non-Abelian anyons at fixed locations, as described in
Ref. [51]. At the end of this section, we will explain how to
correct for diabatic errors in the more general scenario of
transporting anyons through a two-dimensional space.
It is straightforward to generalize the MZM braiding

protocol depicted in Fig. 4 to the braiding of two non-
Abelian anyons of topological charge a in the T junction
shown in Fig. 8 [52]. For the sake of simplicity, we assume
that the anyons a and ā obey the fusion rule

a × ā ¼ 0þ c; ð58Þ

Simple Method Procrastination Method

FIG. 7. The above flowchart outlines the two methods of using
forced measurement or its generalizations for recovery protocols,
as discussed in the text. The one-directional arrows (black)
indicate a process that yields a desired or acceptable outcome
for which we do not apply a recovery protocol. The bidirectional
arrows (red) indicate a process that yields an undesired or
unacceptable outcome for which we apply a recovery protocol.
We can schematically think of the recovery protocol as back-
tracking and trying the process again, with a new probability of
obtaining a desired outcome. The simple method applies a
recovery protocol whenever a turning point measurement out-
come indicates that a diabatic transition occurred to an excited
state. The procrastination method will accept either measurement
outcome at the first turning point. However, when the first
measurement outcome is s1 ¼ −1, if we procrastinate, we must
require the second turning point to have measurement outcome
s2 ¼ −1 because we need two wrongs to make a right.

FIG. 8. In the T junction shown here, anyons a1, a2, and a3
have topological charge a, and anyon a0 has topological charge ā.
Similar to the protocol for braiding MZMs, at times t ¼ 0 and
t ¼ top, anyons a0 and a2 (both in black) form the ancillary pair
of anyons. We exchange the positions of the red and blue anyons
using a protocol identical to that shown in Fig. 4, with the labels
γi replaced by ai.
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where 0 is the vacuum topological charge and c is some
nontrivial topological charge.
As with the example of braiding MZMs, we partition the

braiding operation into three steps that end at times top=3,
2top=3, and top, which we call the turning points. At each
turning point, two anyons are coupled with each other, and
the other two anyons are decoupled. Each step interpolates
between the turning points, changing which two anyons are
coupled (or decoupled). The sequence is identical to that in
Fig. 4, with the labels γi replaced by ai. The corresponding
Hamiltonian governing this (sub)system of four anyons can
be written as

H ¼ −
X3
j¼1

ΔjðtÞZj; ð59Þ

Zj ¼ jaj; a0; 0ihaj; a0; 0j − jaj; a0; cihaj; a0; cj; ð60Þ

where jaj; a0; 0i and jaj; a0; ci correspond to the states in
which the anyons aj and a0 are in the 0 and c fusion
channels (i.e., have collective topological charge of the
corresponding values), respectively. The energy splittings
given byΔjðtÞ reflect which pairs of anyons are coupled, as
was the case for MZMs. For the (near) adiabatic braiding
process, the nonzero values of ΔjðtÞ at the turning points
are Δ2ð0Þ, Δ1ðtop=3Þ, Δ3ð2top=3Þ, and Δ2ðtopÞ.
We assume these energy scales are much smaller than

the bulk gap of the system, jΔjðtÞj ≪ Δbulk, so the
dominant diabatic errors will be transitions to excited
states within the fusion state space of these four anyons,
rather than to states with additional bulk quasiparticle
excitations. Assuming only such dominant diabatic errors,
this discussion follows that of Sec. IV B. In particular,
when a diabatic error occurs in a given step of the braiding
process, the ancillary (decoupled) pair of anyons at the end
of the step will be in the c fusion channel, rather than the 0
fusion channel corresponding to the ground state. In
accordance with Sec. III, where we demonstrated that
diabatic errors result from uncontrolled creation and
movement of anyons, we can interpret such errors as
corresponding to an unintended transfer of topological
charge c between the anyon being transported and the
ancillary pair. (There is nowhere else for the topological
charge to come from or go to, in the state level of
approximation, since the Hamiltonian does not couple
to any other degrees of freedom.) If we project the ancillary
pair of anyons to their vacuum fusion channel after each
step, we recover the braiding transformation for adiabatic
evolution. Thus, as we saw with MZMs, a measurement-
based error correction protocol can correct all diabatic
errors within the four anyon subspace.
Let us focus on the situation where we are tuning

between the initial configuration at t¼0 with H¼−ΔZ2

and the first turning point at t ¼ top=3 with H ¼ −ΔZ1.

When we reach the first turning point, we perform a
measurement of the fusion channel of the pair of anyons
a1 and a0 and obtain outcome s1. (The precise method of
measurement will depend on the details of the system in
which the anyons exist.) The desired measurement out-
come, corresponding to no diabatic error occurring, is
s1 ¼ 0. Let us assume that the outcome s1 ¼ c, corre-
sponding to a diabatic error, occurs with probability p0. In
the event of this diabatic error, we can apply the following
hybrid adiabatic-measurement diabatic error correction
protocol:
(1) Change the sign of the coupling between a0 and a1

so that the Hamiltonian goes from H ¼ −ΔZ1 to
H ¼ ΔZ1.

(2) Nearly adiabatically tune the Hamiltonian from
H ¼ ΔZ1 to H ¼ −ΔZ2, and then to H ¼ −ΔZ1.

(3) Measure the fusion channel of a0 and a1. If the
outcome is s1 ¼ c, go to step 1. If the outcome is
s1 ¼ 0, stop.

The above steps are identical to the hybrid adiabatic-
measurement recovery protocol outlined for MZMs in
Sec. IV B. In step 1, the Hamiltonian only involves anyons
a0 and a1, so the process of changing from H ¼ −ΔZ1 to
H ¼ ΔZ1 does not change the state. It just takes it from
being an excited state to being a ground state. In doing so,
the fusion channels 0 and c will temporarily become
degenerate; thus, this step will not be adiabatic (nor nearly
adiabatic) within the four-anyon subspace.
Step 2 really just requires any nearly adiabatic path from

H ¼ ΔZ1 to H ¼ −ΔZ1. The path we described limits the
possible diabatic errors to involving the three anyons that
we are already manipulating and measuring in this segment
of the braiding process. As long as the Hamiltonian is
changed nearly adiabatically during this step, the system
will remain in the ground state with high probability. In this
case, the measurement in step 3 will have a high probability
of obtaining the desired measurement outcome of s1 ¼ 0.
If the probability of an undesired measurement outcome
s1 ¼ c after one such hybrid recovery attempt is p, the
probability of needing n recovery attempts in order to
correct the diabatic error is pn ¼ p0pn−1ð1 − pÞ, and the
average number of recovery attempts needed for this will be
hni ¼ ðp0=1 − pÞ. In this hybrid scheme, p can be made
arbitrarily small by making the nearly adiabatic evolution
take a longer amount of time and by making the
Hamiltonian time dependence smoother.
Similarly, one can also adapt the dissipation-assisted

hybrid recovery protocol of Sec. IV B to apply to non-
Abelian anyons, but we will not repeat the details. Of
course, we could alternatively use other methods, such as a
measurement-only protocol, if they provide preferable
time costs.
It is straightforward to generalize the above discussion

to the case of general fusion rules a × ā ¼ P
cN

c
aāc (note

that we always have N0
aā ¼ 1, by definition), as it simply
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involves keeping track of additional energy levels corre-
sponding to the additional fusion channels and multiplic-
ities. It does, however, require having greater control over
the system parameters because errors corresponding to the
different undesired fusion channel measurement outcomes
(sj ≠ 0) will require tuning the couplings in a manner that
is specific to the particular fusion channel.
We note that, for general non-Abelian anyons, one

cannot always use the procrastination method, described
in Sec. IV B, for reducing the number of diabatic error
correction protocols applied during a complete braiding
operation. It can only be used when the undesired fusion
channel measurement outcome at intermediate turning
points s1 ¼ s2 ¼ c is an Abelian topological charge.
If the diabatic errors associated with creation of

quasiparticles in the bulk, i.e., transitions to states above
the bulk gap, are not negligible (as we have previously
assumed), then we require additional machinery to correct
such errors. By locality, such diabatic errors will create
quasiparticles in the vicinity of the “transport path,” which
is to say, along the two legs of the T junction connecting
the three anyons involved in a given step. We must
monitor the bulk region along this path to detect whether
there is an unintentional creation of a bulk quasiparticle
that leaves the T junction. (If the unintentionally created
quasiparticle remains in the T junction, we will use the
previous diabatic error correction protocols.) In the event
that an emitted quasiparticle is detected, it must be trapped
and fused back into the anyons involved in the corre-
sponding transport process.
This protocol also applies more generally to the case

where an anyon is being physically transported through the
2D system by some arbitrary method, e.g., being dragged
around by a moving pinning potential. This can be under-
stood schematically from the diagrams shown in Fig. 9,
where we show a moving anyon of topological charge a
that emits an anyon of topological charge c. If we trap
anyon c and fuse it back into anyon a, the process is
equivalent (in the topological state space) to the process
where anyon a is moved without emitting anyons, up to
unimportant overall phase factors.

VI. IMPLEMENTATION OF
MEASUREMENT-BASED CORRECTION IN A

FLUX-CONTROLLED ARCHITECTURE
FOR MANIPULATING MZMS

A. Review of the top-transmon

We now adapt the diabatic error correction scheme of
Sec. IV B to a particular MZM device in which the
Hamiltonian parameters are tuned by varying the magnetic
flux. The idea is to embed a MZM T junction [40,42] or π
junction [43] inside a system of superconductors, coupled
to each other with split Josephson junctions. Changing the
magnetic flux through a junction changes the Coulomb
couplings between MZMs on the same island. This
proposal is appealing both because it does not require
careful control over local parameters, as would be neces-
sary to move topological domain walls, and because the
sophistication of superconducting qubit technology can
be easily transferred to a combined superconductor-
topological qubit system. In particular, superconducting
qubit experiments are able to carefully control the time
evolution of the magnetic flux through a split Josephson
junction, so it is feasible to set multiple time derivatives of
the flux time dependence to zero at the beginning and end
of the evolution.
The minimal braiding setup is the T junction shown in

Fig. 10. The minimal setup that encodes a topological qubit
is the π junction in Fig. 11, but most of the underlying
physics is already captured by the T junction. We review

FIG. 9. The left side shows the braiding diagram corresponding
to the diabatic error correction protocol addressing the creation of
a bulk quasiparticle. The anyon a can emit an anyon c, which we
need to detect, trap, and then fuse back together with a. The right
side shows that this process is equivalent to the intended braid,
up to an unimportant overall phase. Note that the b line is not
actually necessary for this statement.

FIG. 10. Top panel: The simplest flux-tunable MZM
braiding setup, following Refs. [42,43]. The black lines are
nanowires hosting MZMs (red dots) at their end points. We
tune the Josephson junctions’ flux values jΦij between 0 and
Φmax<

1
2
Φ0 to change the strength of the Coulomb coupling

between the MZM pairs γi and γ0i. Bottom panel: Flux values at
the four turning points. When jΦij ¼ Φmax, Δi is maximized and
γi is coupled to the center MZM γ0, formed out of a linear
combination of γ01, γ

0
2, and γ03.
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the braiding scheme for the T junction and discuss the
diabatic errors to which this setup is susceptible. We then
propose a modification to the superconducting system that
allows for correction of the most common diabatic errors.
Finally, we show how this modification can be easily
extended to the π junction.
Figure 10 shows three superconducting islands, each

hosting a semiconductor nanowire tuned to have a MZM on
either end, connected via split Josephson junctions to a
superconducting phase ground. The island hosting MZMs
γ1 and γ01 is referred to as the “bus” and is assumed to be
much larger than islands 2 and 3. The nanowires form a T
junction, with γ1, γ2, and γ3 located at the end points of the
T and γ01, γ

0
2, and γ03 situated at the center of the T.

The γ0j’s are coupled to each other through a Majorana-
Josephson potential of strength EM, which couples the
three MZMs in the low-energy subspace, leaving behind a
single MZM that we denote as γ0, which is a linear
combination of γ01, γ02, and γ03 that commutes with the
six-MZM Hamiltonian, given in Eq. (F9).
If we ignore the excited states associated with γ01, γ

0
2, and

γ03, then the low-energy Hamiltonian (up to small correc-
tions that we, for now, assume to be negligible) is

Heff ¼ −
X
j

Δjiγjγ0: ð61Þ

Hence, the low-energy effective Hamiltonian of this system
is the Hamiltonian of Eq. (34) that we analyzed in Sec. IV.
The couplings Δi are [43]

Δi ¼ 16

�
EC;iEJ;iðΦiÞ3

2π2

�
1=4

× e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJ;iðΦiÞ=EC;i

p
cosðqiπ=eÞfðαÞ; ð62Þ

where fðαÞ is a function depending on the Aharanov-Bohm
phase shifts, which isOð1Þ during the braiding process, and
qi is the induced charge on island i, controlled through
electrostatic gates. The Josephson energy associated with
junction i is

EJ;iðΦiÞ ¼ EJ;ið0Þ cos
�
π
Φi

Φ0

�
; ð63Þ

and EC;i is the single-electron charging energy of junction i.
The system operates in the regime EJ;i ≫ EC;i. Thus, when
we tune Φi ≈ 0, the ratio EJ;iðΦiÞ=EC;i is maximized and
the coupling Δi is exponentially suppressed. A reasonable
parameter choice is EJ;ið0Þ=EC;i ∼ 50 [53], indicating that
Δi can be tuned to a minimum value ∼e−20. This justifies
our approximation in Sec. IV B that the system
Hamiltonian commutes with γk when Δk is tuned to its
minimum value. When we tune flux Φi ¼ Φmax ≲ ðΦ0=2Þ,
EJ;iðΦiÞ=EC;i is minimized and Δi reaches its maximum
value. Note that the sign of Δi, which determines which
ancilla parity state corresponds to the ground state, depends
on the induced charge qi. By tuning the fluxes according to
the schedule shown in Fig. 10, we can vary the Hamiltonian
with time in the manner considered in Sec. IV.
To enable measurements of the system, the setup in

Fig. 10 is capacitively coupled to a transmission-line
resonator, as shown schematically for the π junction in
Fig. 11. The frequency of the resonator is shifted by the
state of the superconducting-MZM system. This results in
an energy-dependent transmission amplitude of a micro-
wave sent down the transmission line, which can be used to
extract the state of the superconducter-MZM system [54].
A system of a superconducting bus and ground coupled
to each other through a split Josephson junction and
capacitively coupled to a transmission-line resonator is a
particular type of superconducting qubit, known as a
“transmon” when operated in the regime EJ ≫ EC [53].
The system described here embeds a topological qubit
within a transmon. When this system is tuned such that all
islands are either phase locked to the bus or the ground, it
forms a “top-transmon” [42–44]. The top-transmon pro-
posal and the measurement scheme are discussed in further
detail in Appendixes F and G, respectively.

B. Diabatic errors in a top-transmon

We now consider diabatic errors that could occur in
the device of Fig. 10. The errors of the type analyzed in
Sec. IV can occur: The system remains within the low-
energy subspace governed by Eq. (61), and errors can be
identified and corrected by the protocol of Sec. IV B.

FIG. 11. The π junction proposed by Ref. [43]. The MZM
system sits inside a superconducting qubit formed by the bus and
ground islands. The topological qubit is embedded into a trans-
mission-line resonator to allow read-out of the qubit state.
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In Sec. VI D, we discuss how the necessary measurements
can be carried out.
It is also possible for the system to transition out of the

low-energy subspace described by Eq. (61). The low-
energy subspace includes the ground and first excited
states, separated by energy gap OðΔÞ. The gap separating
these two lowest-lying states from the higher excited states
is OðEMÞ, where EM is the energy scale of the Majorana-
Josephson coupling between γ01, γ

0
2, and γ03 that splits their

shared degeneracy. As discussed in Sec. II, the probability
of diabatic transitions to excited states of energy Egap scales
with the operational time as O½1=ðtopEgapÞ2kþ2�, for Ck

smoothness of the time evolution. Hence, the relative
likelihood of errors due to diabatic transition to the second
or third excited states [at energies OðEMÞ] compared to
errors due to diabatic transition to the first excited states [at
energies OðΔÞ], which are correctable by the protocol of
Sec. IV B, will scale as ðΔ=EMÞ2kþ2.
Other errors can occur from transitioning to even higher

energy levels on the order of the Josephson energy EJ or the
bulk superconducting gap ΔSC. One possibility is diabatic-
induced quasiparticle poisoning, which can be understood
as follows. Tuning the flux at a Josephson junction
decreases the energy gap to the continuum for the
Andreev bound state (ABS) at that junction. If the ABS
transitions to the continuum and travels into the super-
conducting island i, it changes the induced charge of that
island, flipping the sign ofΔi and thereby interchanging the
ground and first excited states. However, we expect the
probability of such errors to be suppressed because of both
the larger energy scale and the fact that the time evolution
of each Josephson junction is “more adiabatic” than the
evolution of the six-MZM system. This second point is
because the Josephson energies in Eq. (63) depend less
sensitively on changes in the flux than the Coulomb

couplings, which depend roughly as e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJ;iðΦiÞ=EC;i

p
.

One might also worry that despite the larger gap and the
less dramatic time dependence, diabatic transitions above
the superconducting gap would be significant because of
the continuum of available states. The following argument
suggests that the continuum of states above the gap does
not introduce significant errors. The system’s time depend-
ence arises from changing the Josepshon energy, which is a
local quantity. Thus, we expect a diabatic transition to
excite a quasiparticle state localized near the junction.
Provided the junction is spatially separated from the
MZMs, the effect of this excited state on the MZM
subspace is very small. In other words, the spectral weight
for the local density of states near the MZM wires is small
and finite, which implies that the matrix elements between
excitations above the superconducting gap and the state
of the system are small. The integral of these matrix
elements over the continuum of available states will still
be small. Combined with the suppressed probability of
such a transition, we thus expect diabatic transitions above

the superconducting gap to be much less significant than
errors within the MZM system. Hence, we satisfy ourselves
by correcting the latter. We note that, if we were to braid the
MZMs by physically moving them around each other, we
would need to take into account diabatic transitions to the
continuum of states above the superconducting gap, as such
excitations would be localized near the MZMs. Such errors
could be dealt with using the quasiparticle trap method
described schematically at the end of Sec. V.
Finally, we note that the magnetic fluxes threaded

through the split Josephson junctions control the time
evolution. Each flux is tuned independently from the
others. Thus, noise introduced in one junction will be
uncorrelated with noise associated with the flux in a
different junction. This justifies our choice of system-bath
coupling in Eq. (12) and demonstrates that the analysis of
Sec. II B applies to a top-transmon.

C. Extension to the π junction

The same analysis holds for π junctions, with the
modification that there are now always four decoupled
MZMs. For instance, in Fig. 11, γb and γg are always
decoupled, as are two of the remaining four MZMs (γ01, γ

0
2,

and γ03 are Majorana-Josephson coupled and so effectively
comprise one MZM, as is the case with γ1, γ0b, and γ0g). In
the effective six-MZM picture, the two MZMs appearing in
the Hamiltonian form the ancilla, and the four decoupled
MZMs comprise the topological qubit. The two energy
levels are determined by the parity of the ancilla. If we
fix total parity, each energy level is twofold degenerate;
e.g., for total parity even, at the first turning point, the
ground state corresponds to ancilla parity even and two
degenerate qubit states, j0i¼ jiγgγb ¼þ1; iγ2γ3¼þ1i and
j1i ¼ jiγgγb ¼ −1; iγ2γ3 ¼ −1i.

D. Error detection through projective measurement

We now explain how to carry out the projective mea-
surements needed for our error correction protocol. We
modify the experimental architecture from that shown in
Fig. 10 to that of Fig. 12. The braiding protocol is the same
up to the minor change that the Coulomb couplings of
islands 1 and 3 now depend on the magnetic flux tuned
through two junctions: Δ1ðΦA;Φ1Þ;Δ3ðΦB;Φ3Þ (recall that
Δi couples the MZMs γi and γ0i in Fig. 12). The essential
feature that each Δi can be independently tuned between
exponentially separated minimum and maximum values is
unchanged (see Appendix F 3 for more details). As before,
we write the maximum and minimum values of jΔij as Δ
and 0, respectively.
The benefit of the geometry of Fig. 12 is that, at each

turning point, the system can be turned into a top-transmon
[44], allowing for measurement of the parity of the ancillary
pair of MZMs. This is accomplished by decoupling the bus
and the ground and connecting each MZM to either the bus
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or the ground. The measurement tells us the parity of the
MZMs connected to the bus.
The table in Fig. 12 shows the necessary flux values that

one must have to perform the measurements at each turning
point. In order to measure iγ1γ0, we couple island 1 to the
bus and islands 2 and 3 to the ground. Similarly, to measure
iγ3γ0, we connect island 3 to the bus and islands 1 and 2 to
the ground. To measure iγ2γ0, we connect islands 1 and 3 to
the bus and island 2 to the ground. Assuming the total
parity of the system is fixed, one can infer the parity of
iγ2γ0 from this measurement. In Appendix F 3, we explain
how this assumption can be relaxed, and one can explicitly
check the total parity by introducing additional super-
conducting islands, as shown in the structure of Fig. 17.
In Sec. IV B, we discussed several approaches for

correcting diabatic error by utilizing measurements: the
forced measurement, hybrid, and dissipation-assisted
hybrid protocols. We emphasize that utilizing the forced
measurement protocol in the architecture of Fig. 12
involves tuning fluxes in order to isolate different pairs
of MZMs for subsequent measurements. We can implement
the hybrid approach if we are able to flip the sign of Δi for
each island independently. This can be done if the induced
charge on each island is independently controlled by
external electrostatic gates, as flipping the sign of Δi
corresponds to changing qi → qi � e. Note that this swaps
the ground and first excited states of the MZMs but does
not introduce electrons into the system and, therefore, does
not affect the total fermion parity of the system.We can also

use the dissipation-assisted hybrid protocol, which does not
require tuning the induced charge, if the system is coupled
to a dissipative bath.
Consider the recovery step for the hybrid protocol for the

architecture of Fig. 12. If we measure s1 ¼ −1, we first
need to change the sign of Δ1. This is done by tuning
q1 → q01 ¼ q1 � e. We then reverse the time evolution back
to Hð0Þ. At this point, γ1 is decoupled from the other
MZMs, so when we tune q01 → q01 � e, it has no effect on
the energy levels of the system. This is in contrast to the
initial change of q1 to q01, which is intentionally done while
γ1 and γ01 are coupled, in order to swap the energy level of
the occupied level from an excited state to a ground state.
We then evolve back to Hðt1Þ and remeasure s1.
Once the appropriate islands are coupled to the bus or

ground, one measures the state of the system with the
transmission-line resonator (see Appendix G for more
details). The system with fixed parity, say, even, has four
energy levels: the ground and first excited states, separated
by energy OðΔÞ, and the second and third excited states,
with energy OðEMÞ above the ground state (energy sub-
spaces are discussed in Appendix F 2). ForΔ > 0, at the first
turning point, the ground state and the second excited state
correspond to iγ1γ0 ¼ þ1, while the first and third excited
states correspond to iγ1γ0 ¼ −1 [43]. By sending a micro-
wave through the transmission-line resonator and measuring
the shift in the resonant frequency, one can infer the parity of
iγ1γ0. If the system has remained in the lowest two energy
states, one can also infer the parity of the qubit.
Noise broadens the effective frequency of the resonator

into a normal distribution; thus, measurement will only
distinguish the different parity states of iγ1γ0, provided the
peak spacing is sufficiently larger than the width of the
distributions. We obtain a rough estimate of the measure-
ment time as follows: The difference in the resonator’s
effective frequencies determines the peak spacing of the
distributions, which in turn sets an upper bound on the
width (in frequency) of each distribution. The uncertainty
principle allows us to translate an upper bound on the width
of the distribution to a lower bound on the measurement
time.
For the system under consideration, the measurement

must resolve a frequency splittingOðg2δþ=δω2Þ, where g is
the coupling strength of the transmon to the resonator,
δω ¼ Ω0 − ω0 is the detuning, Ω0 is the transmon fre-
quency, and ω0 is the bare resonator frequency. Also, δþ is
the average dispersion of the transmon energy levels (see
Appendix F for an explicit definition). For the frequency
estimates given in Ref. [43], this frequency splitting
corresponds to a lower bound on the measurement time of

tmeas ≫ 20 ns: ð64Þ

Provided with the experimental details of the resonator,
we could calculate the photon transmission probability T�

Time Junctions with Junctions with max

0 2, A, B 0, 1, 3

2, 3, A 0, 1, B

1, 2, B 0, 3, A

2, A, B 0, 1, 3

FIG. 12. Top panel: Modified T-junction structure designed to
allow for parity measurements at each turning point. Bottom
table: Flux values for measurement at the turning points. Note
that a junction with Φ ¼ 0 maximizes the Josephson energy and
phase locks its neighboring superconductors, while a junction
with jΦj ¼ Φmax minimizes its Josephson energy and essentially
decouples the neighboring superconductors. At time t1, islands 2
and 3 are phase locked to the ground and decoupled from the bus,
while island 1 is phase locked to the bus and decoupled from the
ground.

CHRISTINA KNAPP et al. PHYS. REV. X 6, 041003 (2016)

041003-18



corresponding to the parity states iγ1γ0 ¼ �1. Let the
probability that N photons pass through the resonator
during a measurement time tmeas when the system is in
the state iγ1γ0 ¼ �1 be denoted PðN; tmeasjiγ1γ0 ¼ �1Þ.
As described in Ref. [43], this probability distribution is
Poissonian, and at long measurement times, it approaches a
normal distribution:

PðN; tmeasjiγ1γ0 ¼ �1Þ ¼ PoisðN; λ�Þ

≈
e−½ðN−λ�Þ2=2λ��ffiffiffiffiffiffiffiffiffiffi

2πλ�
p ; ð65Þ

where λ� ∝ T�tmeas. We see that the peak spacing between
the distributions grows linearly in time, while the width of
each distribution grows as a square root in time. Because of
the finite overlap of the two possible distributions, there is
some probability of incorrectly interpreting a measurement
outcome; this separation error decreases exponentially with
increasing measurement time. Thus, we expect that a
measurement time of 100 ns is sufficient to satisfy the
bound in Eq. (64).
Recall that γ0 is a linear combination of γ01, γ

0
2, γ

0
3. There

are two other Majorana operators, composed of different
linearly independent combinations of γ01, γ

0
2, γ

0
3. It is the

parity of these two additional Majorana operators that
determines whether or not the MZMs are in the low-energy
subspace. These Majorana operators couple less strongly to
the resonator, and thus, greater resolution is necessary to
determine their parity. In order to detect a transition to the
second or third excited state, the measurement needs to
resolve a frequency splittingOðg2δþδ−=δω2EMÞ, where δ−
is half the difference of the dispersion of the transmon
energy levels (see Appendix F). For this resolution, the
lower bound on the measurement time increases to

tmeas ≫ 1 μs: ð66Þ

Measurement details are discussed in Appendix G, and the
bounds on the measurement time are derived in Appendix I.
As discussed in Appendix F 2, coupling the system to a
cold bath can relax the second and third excited states to the
first excited state and the ground state, respectively. Thus,

in the presence of a dissipative bath and with sufficiently
slow evolution, the system will relax into the lowest two
energy levels, and the more precise measurement resolution
is unnecessary.
Finally, we note that we can easily generalize from a T

junction [42] to a π junction [43] while still maintaining the
ability to measure the parity at each corner of the braiding
process. This generalization is shown in Fig. 13.

VII. FEASIBILITY ESTIMATES

The proposed platform for demonstrating non-Abelian
braiding takes advantage of some well-established methods
in superconducting qubit experiments. In particular, careful
control over the time evolution of the system can reduce
diabatic errors, and the measurement scheme used to read
out the collective fermionic parity of MZMs can be used to
detect and subsequently correct diabatic errors. Moreover,
the usual decoherence times, i.e., the relaxation time T1 and
decoherence time T2, that plague superconducting qubits
do not apply to the MZM-based qubits and operations
considered in this paper since we simply want the transmon
to remain in its ground state. However, the modifications
presented here and in Ref. [43] introduce new challenges,
which we now address.
The time dependence of the combined MZM-transmon

system enters entirely through the magnetic flux threaded
through the split Josephson junctions. As mentioned in
Sec. II, setting time derivatives of the Hamiltonian to zero at
the beginning and end of the evolution significantly
decreases the diabatic error. A benefit of using the transmon
architecture is that control over the time evolution
of the flux is excellent, and current experiments can easily
set _ΦðtÞ ¼ 0 at the beginning and end of each time
step [55,56].
Transmon experiments do not control the bias flux

directly but rather set the value of a digitally controlled
voltage source for an external circuit, which induces a flux
through the split Josephson junction via the mutual
inductance [53]. Each additional split Josephson junction
complicates the experiment because of unwanted cross-talk
between the wrong bias circuit and junction. There exist
clever schemes to minimize the off-diagonal terms in the
mutual inductance matrix through the geometry of the
system. It might be possible to achieve the topology of
Fig. 12 using external circuits. However, doing so while
maintaining the ability to independently tune the strength
of each junction would undoubtedly be challenging. A
possible solution is to use a qubit that relies on voltage
rather than magnetic field to tune the ratio of EJ=EC
[57,58]. This would eliminate the need for bias circuits
while still retaining careful control over the time evolution.
The necessary energy resolution for the top-transmon is

Oðg2δþ=δω2Þ, while for the transmon it is Oðg2=δωÞ.
When operated strictly in the transmon regime, EJ≫EC,
the required resolution for the top-transmon is orders of

FIG. 13. A π junction designed to allow fermion parity
measurements at each turning point.

THE NATURE AND CORRECTION OF DIABATIC ERRORS … PHYS. REV. X 6, 041003 (2016)

041003-19



magnitude larger than for the transmon. However, during
measurement, the top-transmon is tuned out of the trans-
mon regime, and δþ can be comparable to δω. We expect
measurement times for the top-transmon to be comparable
to those of the transmon.
The hybrid approach for error correction relies on

independently tuning the induced charge for each MZM
island. Such control can be achieved by gating each island
and changing the gate voltage. One can also avoid the
additional complication of adding electrostatic gates by
using other error correction schemes, such as the dissipa-
tion-assisted hybrid protocol, as described in Sec. IV B.

VIII. DISCUSSION

With the preceding analysis in hand, we are now in a
position to answer the question posed in the introduction,
“how quickly can anyons be braided?”. As we have shown,
diabatic errors occur when anyons are unintentionally
created or move in an uncontrolled way. Such errors can
be suppressed by making the time dependence of the
Hamiltonian as smooth as possible and by coupling to a
dissipative bath. They can be further reduced by measuring
and correcting for the unwanted creation or motion of
anyons, which can be done without measuring the encoded
quantum information that we wish to manipulate. Let us
suppose that we can tolerate a probability ε0 of a diabatic
error per braiding step. The value of ε0 will depend on the
task we wish to accomplish and whether or not we hope to
carry out a computation without additional error correction.
This error probability (assuming, for the moment, that there
are no other sources of error, apart from diabatic errors) can
be achieved by performing the unitary evolution slowly and
smoothly. However, if the time required by this strategy
exceeds the time needed for a measurement, then it may be
advantageous to utilize a hybrid strategy that involves a
faster “nearly adiabatic” evolution together with measure-
ments that detect the occurrence of errors from diabatic
transitions.
We assume that the process of nearly adiabatically tuning

the Hamiltonian between any two turning points is carried
out with the same time tu. We denote the diabatic transition
error probability associated with each segment of nearly
adiabatic unitary evolution as ε½tu�. In the case of no
dissipation,

ε½tu� ¼
c½k�

ðΔtuÞ2kþ2
; for tu > tth; ð67Þ

where tth ¼ ð10c½k�Þ½1=ð2kþ2Þ�Δ is the threshold time above
which the transition probability is bounded by a power law
(see Fig. 2). Recall that Δ is the maximum Coulomb
coupling between MZMs on the same island and that the
gap separating the ground and first excited states is OðΔÞ.
Here, k is the number of vanishing time derivatives at the
beginning and end of the unitary evolution, and c½k� is some

k-dependent constant. If we can tolerate an error probability
of ε0 for one-third of the braiding process, the time needed
for a braid with unitary evolution is

top ¼
3

Δ

�
c½k�
ε0

�½1=ð2kþ2Þ�
: ð68Þ

For very small ε0, this will become a slow process. We
could, instead, perform the evolution faster and correct
errors using, for instance, the hybrid protocol discussed in
Sec. IV B. There is no benefit to performing the unitary
evolution arbitrarily fast since the likelihood of diabatic
errors will be high and several measurements will be
necessary. If we perform the unitary evolution much more
slowly than the measurement time tmeas, then we fail to take
advantage of the benefits of performing measurements.
This can be made more quantitative as follows.
Let top=3 be the total time needed to evolve the system

between two turning points (one-third of the total time for a
braid), including possible diabatic-transition-error recovery
steps. As discussed in Sec. VI D, this time will be divided
between unitary evolution, measurement, and flipping the
sign of the couplings by changing the induced charge on
the MZM island of interest. We assume that each segment
of nearly adiabatic unitary evolution (from one corner point
to the next) takes the same amount of time tu and that the
time needed to flip the sign of the coupling on any given
island takes the same amount of time tflip. We also assume
that measurement is a relatively slow process, i.e.,
tmeas ≫ tu, tflip. For the moment, we ignore errors asso-
ciated with measurement, transitions to the second and
third MZM excited states, and flipping the sign of the
couplings; we will address these concerns later.
One diabatic-transition-error recovery step involves the

following sequence of processes, to be performed at the
desired turning point, after a syndrome measurement of
the ancillary pair of MZMs that detected a diabatic
transition error: (1) Flip the induced charge on the ancillas’
island (say, island i), (2) near adiabatically tune the
Hamiltonian to the previous turning point, (3) flip the
induced charge on island i, (4) near adiabatically tune
the Hamiltonian to the desired turning point, and (5) per-
form a syndrome measurement on the ancillary pair of
MZMs. Consequently, the time required to perform one
recovery step is

trec ¼ 2tu þ tmeas þ 2tflip: ð69Þ

The corresponding probability that the process of evolv-
ing between two turning points will be completed with n
recovery steps (i.e., that the initial near-adiabatic evolution
and subsequent n − 1 recovery attempts had a diabatic
transition error but that the nth recovery process was
successful), for n ≥ 1, is
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pn½tu� ¼ ε½tu�½2ε½tu�ð1 − ε½tu�Þ�n−1ð1 − 2ε½tu� þ 2ε½tu�2Þ;
ð70Þ

and, clearly, p0 ¼ 1 − ε½tu�. In Eq. (70), the first factor of
ε½tu� is the probability of a diabatic transition error on
the initial attempt; each factor of 2ε½tu�ð1 − ε½tu�Þ is the
probability of a diabatic transition error occurring on one of
the two near-adiabatic evolution segments associated with a
recovery step; and the final factor of 1 − 2ε½tu� þ 2ε½tu�2 is
the probability of successfully completing one recovery
step without a diabatic transition error (i.e., with either zero
or two diabatic transitions occurring during the two near-
adiabatic evolution segments).
The average number of recovery steps needed to evolve

between two turning points without error is thus

hn½tu�i ¼
X∞
n¼0

npn½tu� ¼
ε½tu�

1 − 2ε½tu� þ 2ε½tu�2
: ð71Þ

Hence, the average time needed to evolve between two
turning points with the diabatic transition errors corrected is

htop½tu�i
3

¼ tu þ tmeas þ hn½tu�itrec

¼ tu þ tmeas þ
ð2tu þ tmeas þ 2tflipÞε½tu�

1 − 2ε½tu� þ 2ε½tu�2
: ð72Þ

This average operation time is minimized by some optimal
choice of the time tu, subject to the constraint that tu > tth,
which is straightforward to compute when the other
quantities are specified.
We now apply this to the system discussed in Sec. VI.

Reference [43] estimates Δ ∼ 10 GHz, for which we find
tmeas ≫ 20 ns. We satisfy this inequality by setting tmeas ¼
100 ns (see discussion in Appendix I). We use c½0� ¼ 2.2
and c½1� ¼ 162.5, obtained from the data shown in Fig. 2.
As a rough approximation, we set EM ¼ 50 GHz and
tflip ¼ 10=EM ¼ 0.2 ns. In Tables I and II, we compare
the average operation time for a braid with error correction
to the time for a braid with nearly adiabatic unitary
evolution and target error probabilities ε0 ¼ 10−4, 10−6,
and 10−8.
We can also consider the effects of dissipation (written

“diss.” in Tables I and II), as discussed in Sec. II B. Fitting
to the data shown in Fig. 2 with system-bath coupling
λ ¼ 0.01Δ, we see that the error probability for unitary
evolution for k ¼ 0 is

εk¼0½tu� ¼
0.52

ðΔtuÞ1.97
; for εk¼0½tu� < 10−3; ð73Þ

and for k ¼ 1, it is

εk¼1½tu� ¼
( 162.5

ðΔtuÞ4 10−2 > εk¼1 > 10−5

0.05
ðΔtuÞ1.95 εk¼1 < 10−5:

ð74Þ

Using these expressions, we estimate the braiding times
with dissipation for unitary evolution and for the hybrid
error correction scheme in Tables I and II.
Tables I and II give rough estimates of the braiding times

for MZMs in a flux-tunable architecture. We see that, if we
use an error correcting protocol involving measurements,
our braiding operation time is limited by the measurement
time. When tu > tth, the initial syndrome measurement at
each turning point has a high probability of finding the
desired outcome and projecting the system into its ground
state, so we rarely need to implement the recovery
procedure. With error correction, the times do not depend
strongly on k nor on whether the system is coupled to a
dissipative bath. For nearly adiabatic unitary evolution,
there is a significant improvement in braiding time for

TABLE I. Braiding time using the hybrid protocol for the
system discussed in Sec. VI with Δ ¼ 10 GHz and temperature
T ¼ 0.001Δ. The column labels are as follows: the smoothness of
the time evolution of the system Hamiltonian (k ¼ 0, 1), the
system-bath coupling λ ¼ 0 (no dissipation) or λ ¼ 0.01Δ (dis-
sipation), the average braiding time htopi, the corresponding
unitary time tu, and the average number of recovery steps needed
to complete the braid, hnðtuÞi. The above values assume no
measurement error and no error from transitioning to excited
states with energy OðEMÞ above the ground state. We use the
estimates tflip ¼ 0.2 ns and tmeas ¼ 100 ns, and then choose tu to
minimize Eq. (72), subject to the constraint that tu > tth.

k λ (diss.) htopi tu hnðtuÞi
0 0 308 ns 1.7 ns 0.008
1 0 305 ns 1.5 ns 0.004
0 0.1 GHz 308 ns 2.4 ns 0.001
1 0.1 GHz 306 ns 1.5 ns 0.004

TABLE II. Braiding time using nearly adiabatic unitary evo-
lution for the system discussed in Sec. VI with Δ ¼ 10 GHz and
temperature T ¼ 0.001Δ. The first two columns label the
smoothness of the time evolution of the system Hamiltonian
(k ¼ 0, 1) and whether the system-bath coupling is λ ¼ 0 (no
dissipation) or λ ¼ 0.01Δ (dissipation). The third, fourth, and
fifth columns list the braiding time to reach a target error
probability of ε0 ¼ 10−4, 10−6, and 10−8, respectively, between
two turning points. A smaller target error probability increases the
corresponding braiding time.

k λ (diss.) top, ε0 ¼ 10−4 top, ε0 ¼ 10−6 top, ε0 ¼ 10−8

0 0 45 ns 450 ns 4.5 μs
1 0 11 ns 34 ns 110 ns
0 0.1 GHz 23 ns 240 ns 2.5 μs
1 0.1 GHz 11 ns 77 ns 820 ns
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k ¼ 1 compared to k ¼ 0. As discussed in Sec. II B, for
small error probabilities, dissipation reduces the braiding
time for unitary evolution if k ¼ 0 but not if k ¼ 1. Our
analysis suggests that, for a target error probability of
ε0 ¼ 10−6, the braiding time for the hybrid protocol is
comparable to the braiding time for unitary evolution when
k ¼ 0, and it is faster when the system is not coupled to a
dissipative bath. When k ¼ 1, unitary evolution is signifi-
cantly faster than correcting error through measurement,
both with and without a bath. For a target error probability
of ε0 ¼ 10−8, the hybrid protocol is faster than unitary
evolution unless k ¼ 1 and there is no system-bath cou-
pling. These comparisons neglect measurement error and
diabatic transitions to the second and third MZM excited
states. Taking into account these errors could shift the
crossover point at which the hybrid protocol becomes better
than unitary evolution.
The above analysis applies when we restrict our attention

to the low-energy subspace. Let εM½tu� be the error
probability associated with transitions out of this subspace
to excited states of energy OðEMÞ, associated with the
states supported by the triples of MZMs at T-junction
intersections, whose degeneracies are lifted by Majorana-
Josephson coupling. As EM ≫ Δ, εM½tu� is expected to be
much smaller than ε½tu�. While including εM½tu� could
increase the braiding time for unitary evolution, it will not
greatly affect the average braiding time with error correc-
tion (even if εM½tu� ≈ ε½tu�, hn½tu�i would remain close to
zero and the dominant contribution to the braiding time
would still be tmeas). For our choice of tmeas ¼ 100 ns,
measurement does not distinguish the ground and third
excited states; thus, such a transition results in an error.
Increasing the measurement time would allow us to detect,
and correct, such a transition.
The values in Tables I and II are subject to change given

the experimental implementation. In particular, Δ, EM,
tmeas, λ, and c½k� will depend significantly upon system
details. (EM is exponentially sensitive to the separation of
MZMs at the center of the T junction.) We chose tflip ¼
10=EM to justify ignoring errors associated with flipping
the sign of the couplings. [Recall that when we exchange
the ground state and first excited states, the only transitions
that conserve total parity are between states whose energies
are separated by a gap OðEMÞ.] With more information
about the physical system, tflip could be optimized to be as
short as possible without inducing diabatic transitions.
Measurement error is another potential issue. Generally,

there will be some probability of the measurement projec-
ting the ancillary pair onto an excited state (odd parity),
while providing an erroneous read-out indicating that the
outcome is a ground state (even parity), or vice versa. Such
errors can typically be reduced by repeating the measure-
ment to increase the level of confidence of the measure-
ment, as we discuss in Appendix G. Nonetheless, it is
useful to know how small measurement errors must be in

order to safely ignore them in the preceding analysis. In
Appendix H, we show that we can ignore a measurement
error probability of εmeas at the nth recovery step, provided
that

εmeas ≪ minn∈Nðε½tu�; ð2ε½tu�ð1 − ε½tu�ÞÞn½tu�Þ: ð75Þ

It is important to remember that while braidingMZMs can
realize single-qubit Clifford gates, universal quantum com-
putation requires additional gates, such as the two-qubit
entangling gate CNOT and the single-qubit π=8 phase gate.
There are a number of proposals for how one might
implement such additional gates for MZM systems that
may be incorporated in the Majorana nanowire (and other)
systems considered in this paper [43,59–66]. Since these
implementations of the additional gates will likely possess
undesirable error rates and utilize significantly different
methods from those of braiding, they will require the use
of different error correction protocols, such as magic-state
distillation [67]. We do not focus on this matter here, and the
errors introduced by these additional (nonbraiding) gates are
not taken into account in our analysis or Tables I and II.
Reference [68] discusses milestone experiments leading to
MZM-based quantum computing, including fusion rule
detection, which is simpler to execute than braiding.
These experiments are susceptible to the same diabatic
errors discussed in the present paper. An interesting future
direction is to extend our analysis to the systems discussed in
these papers, thereby better understanding the role diabatic
errors play in topological quantum computation.
Our measurement-based correction protocol focuses on

diabatic transitions from the ground state to the first excited
state of the MZM system. For longer measurement times, it
is also possible to detect transitions to the second and third
MZM excited states, and one could generalize the hybrid
protocol to correct these errors as well. We do not take
into account transitions above the superconducting gap.
Such excitations are especially dangerous as quasiparticles
could braid with the MZMs in an uncontrolled manner.
Quasiparticle traps could potentially help with these errors,
although perhaps the best strategy is to optimize parameters
such that these excitations are extremely rare. As our
interest in this paper has been on diabatic effects, we do
not address errors arising from thermally excited quasi-
particles. Such errors (analyzed, for instance, in Ref. [69])
can be reduced by maximizing βΔ and, possibly, by
variations on the ideas discussed in the present paper.
The hybrid error-correction protocol, introduced in

Sec. IV for MZMs and in Sec. V for general non-Abelian
anyons, interpolates between braiding via adiabatic tuning of
the couplings [40,42,43] and measurement-only topological
quantum computation (MOTQC) [49,50]. It uses nearly
adiabatic tuning of the couplings to generate a very high
probability of the state being the desired (ground) state at
each topological charge or fermion parity measurement step,
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subject to the constraint that this does not take too long. If
measurement returns the excited state, the hybrid scheme is
used to converge exponentially to the desired result, albeit
with the cost of slowing braiding down to the speed of a
measurement, in addition to introducing energy dissipation
and heating associated with measurement.
If the braiding operation time top becomes too long when

using nearly adiabatic evolution or our hybrid protocol, one
might consider simply using the MOTQC scheme. For the
Majorana network discussed in this paper, we must tune the
couplings between subsequent measurements in order to
isolate different pairs of MZMs for measurement. This
tuning should be done as fast as possible without inducing
transitions to higher excited states of energy OðEMÞ. Let
ttun ¼ 10=EM be the required time to tune couplings
between subsequent measurements (note that while ttun
applies to a different process than tflip, both times are
subject to the same constraints). Then, the average braiding
operation time would be htopiMOTQC ¼ 9tmeas þ 6ttun ¼
901 ns for our energy estimates. This is slower than the
hybrid protocol for the systems considered in detail in this
paper and hence not the preferred protocol. However, one
might envision other system designs for which the MOTQC
scheme yields the faster protocol.
In analyzing the diabatic errors in anyon braiding, we

have mainly focused on satisfying the lower bound on the
operational time. However, as mentioned in the Introduction,
it is of crucial importance that the braiding time is suffi-
ciently fast that the system does not resolve the ground-state
degeneracy splitting, which is inevitably present because of
the nonzero correlation length. The resulting upper bound on
braiding time depends on the details of the system. For the
system discussed in Sec. VI, the wires hosting MZMs must
be sufficiently long compared to the correlation length
(coherence length), and we must be able to tune the magnetic
fluxes sufficiently close to Φ0=2. It is worth noting that, to
the best of our knowledge, the degeneracy splitting of MZM
wires in current experiments is too large for the time
estimates given in Tables I and II. However, the exponential
suppression of the degeneracy splitting as a function of L=ξ
indicates that only modest increases in the length of thewires
and/or the energy gap (which decreases the correlation
length) are necessary to obtain an upper time limit much
larger than the braiding times estimated in this paper. For the
system of Ref. [70], tripling the length of the longest wire to
4.5 μm is sufficient.
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APPENDIX A: REVIEW OF THE
LANDAU-ZENER EFFECT

We now derive Eq. (10) in the main text. The
Hamiltonian of Eq. (8) between −τ < t < τ is

H ¼ ctσz − λσx: ðA1Þ

We assume c > 0. If we write the wave function as
ψ ¼ ðaðtÞ; bðtÞÞT , the Schrödinger equation reads

i _a ¼ cta − λb;

i _b ¼ −λa − ctb: ðA2Þ

We can eliminate a to obtain the differential equation for
the evolution of b:

b̈ ¼ icb − ðλ2 þ c2t2Þb: ðA3Þ

Define

z ¼
ffiffiffiffiffi
2c

p
e−iðπ=4Þt; n ¼ iλ2

2c
; Λ ¼ λ2

c
: ðA4Þ

Equation (A3) becomes the Weber equation

d2b
dz2

þ
�
nþ 1

2
−
z2

4

�
b ¼ 0; ðA5Þ

with linearly independent solutionsDnð−zÞ andD−n−1ð−izÞ,
where D is the parabolic cylinder function. Therefore, for
t > −τ, the solution can be written as

bðtÞ ¼ αDnð−zÞ þ βD−n−1ð−izÞ: ðA6Þ

We consider τ large, which means
ffiffiffi
c

p
τ ≫ 1. Here,

DμðzÞ has the following asymptotics for jzj ≫ 1 [71]:

DμðzÞ ∼ e−ðz2=4Þzμ½1þOðz−2Þ�; j arg zj < 3π
4
;

DμðzÞ ∼ e−ðz2=4Þzμ½1þOðz−2Þ�

þ
ffiffiffiffiffiffi
2π

p

Γð−μÞ e
iμπeðz2=4Þz−μ−1½1þOðz−2Þ�;

π

4
< arg z <

5π

4
;

DμðzÞ ∼ e−ðz2=4Þzμ½1þOðz−2Þ�

−
ffiffiffiffiffiffi
2π

p

Γð−μÞ e
−iμπeðz2=4Þz−μ−1½1þOðz−2Þ�;

−
π

4
> arg z > −

5π

4
: ðA7Þ
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Define ΦðtÞ ¼ ½ðcjtj2Þ=2� þ ðΛ=2Þ ln j ffiffiffiffiffi
2c

p
tj. Note that

arg (−zðt < 0Þ) ¼ −
π

4
;

arg (−izðt < 0Þ) ¼ π

4
;

arg (−zðt > 0Þ) ¼ 3π

4
;

arg (−izðt > 0Þ) ¼ −
3π

4
: ðA8Þ

Therefore, using the appropriate expression in Eq. (A7), we
find for t < 0,

Dnð−zÞ ∼ e½ðπΛÞ=8�þiΦ;

D−n−1ð−izÞ ∼
e½ðπΛ=8Þ−iðπ=4Þ−iΦffiffiffiffiffi

2c
p jtj ;

_Dnð−zÞ ∼ ice½ðπΛÞ=8�þiΦt;

_D−n−1ð−izÞ ∼
ffiffiffi
c
2

r
e½ðπΛÞ=8�þiðπ=4Þ�−iΦ; ðA9Þ

and for t > 0,

Dnð−zÞ∼e−½ð3πΛÞ=8�þiΦ−
ffiffiffi
π

c

r
1

Γð−nÞte
−½ðπΛÞ=8�−iΦþiðπ=4Þ;

D−n−1ð−izÞ∼
e−½ð3πΛÞ=8�þ½ð3πiÞ=4�−iΦffiffiffiffiffi

2c
p

t
þ

ffiffiffiffiffiffi
2π

p

Γðnþ1Þe
−½ðπΛÞ=8�eiΦ:

ðA10Þ

By matching initial conditions at t ¼ −τ, we find that

α ¼ e−iΦ−½ðπΛÞ=8�
�
b0 −

λ

2cτ
a0

�
;

β ¼ λa0ffiffiffiffiffi
2c

p e−½ðπΛÞ=8�þiðπ=4ÞþiΦ: ðA11Þ

Therefore, at a much later time t ¼ top > 0, we have

bðTÞ∼
�
b0−

λ

2cτ
a0

��
e−½ðπΛÞ=2�−

ffiffiffi
π

c

r
e−½ðπΛÞ=4�−2iΦþiðπ=4Þ

Γð−nÞT
�

þλa0

� ffiffiffi
π

c

r
e−½ðπΛÞ=4�þiðπ=4Þþ2iΦ

Γðnþ1Þ −
e−½ðπΛÞ=2�

2cT

�
:

ðA12Þ

Similarly, the differential equation for a can be written as
a Weber differential equation

d2a
dw2

þ
�
mþ 1

2
−
w2

4

�
a ¼ 0; ðA13Þ

for w ¼ ffiffiffiffiffi
2c

p
eiðπ=4Þt, m ¼ −ðiΛ=2Þ. We can write aðtÞ ¼

α0Dmð−wÞ þ β0D−m−1ðiwÞ [note that Dmð�wÞ satisfy
the same Weber’s equation and are linearly independent
from D−m−1ð�iwÞ, which also satisfy the same Weber’s
equation]. We see arg−w ¼ −π=4 and arg iw ¼ π=4; there-
fore, for t < 0,

Dmð−wÞ ∼ e½ðπΛÞ=8�−iΦ;

D−m−1ðiwÞ ∼
e½ðπΛÞ=8�þiðπ=4ÞþiΦffiffiffiffiffi

2c
p jtj ;

_Dmð−wÞ ∼ −icte½ðπΛÞ=8�−iΦ;

_D−m−1ðiwÞ ∼
ffiffiffi
c
2

r
e½ðπΛÞ=8�−iðπ=4ÞþiΦ: ðA14Þ

As arg ( − wðt > 0Þ) ¼ ½ð−3πÞ=4� and arg (iwðt > 0Þ) ¼
½ð3πÞ=4�, we have for t > 0,

Dmð−wÞ ∼ e−iΦe−3πΛ=8 −
ffiffiffi
π

c

r
e−πΛ=8þi3π=4eiΦ

Γð−mÞt ;

D−m−1ðiwÞ ∼
e−½ð3πΛÞ=8�−½ð3πiÞ=4�þiΦffiffiffiffiffi

2c
p

t

−
ffiffiffiffiffiffi
2π

p

Γðmþ 1Þ e
−½ðπΛÞ=8�e−iΦ: ðA15Þ

By matching boundary conditions at t ¼ −τ, we find

eπΛ=8
�
e−iΦα0 þ eiπ=4þiΦffiffiffiffiffi

2c
p

τ
β0
�

¼ a0;

eπΛ=8
�
e−iΦα0 −

eiπ=4þiΦffiffiffiffiffi
2c

p
τ

β0
�

¼ a0 þ
λ

cτ
b0; ðA16Þ

thus, we find

α0 ¼ e−πΛ=8þiΦ

�
a0 þ

λ

2cτ
b0

�
;

β0 ¼ −e−πΛ=8−iπ=4−iΦ
λffiffiffiffiffi
2c

p b0: ðA17Þ

Therefore, we have

aðtopÞ¼α0Dmð−wÞþβ0D−m−1ðiwÞ
¼a0e−πΛ=8þiΦDmð−wÞ

þb0
e−πΛ=8λffiffiffiffiffi

2c
p

�
e−iπ=4−iΦD−m−1ðiwÞ−

eiΦffiffiffiffiffi
2c

p
τ
Dmð−wÞ

�
;

bðtopÞ¼αDnð−zÞþβD−n−1ð−izÞ

¼a0
e−πΛ=8λffiffiffiffiffi

2c
p

�
e−iΦffiffiffiffiffi
2c

p
τ
Dnð−zÞþe−iπ=4þiΦD−n−1ð−izÞ

�
þb0e−πΛ=8−iΦDnð−zÞ; ðA18Þ
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where, in the above, every w, z, and Φ are evaluated at
t ¼ top > 0. It follows that at time top,

S1 ¼ e−πΛ=8þiΦDmð−wÞ

¼ e−πΛ=2 −
ffiffiffi
π

c

r
e−πΛ=4þ3πi=4þ2iΦ

Γð−mÞtop
;

S2 ¼ −
e−πΛ=8λffiffiffiffiffi

2c
p

�
e−iπ=4−iΦD−m−1ðiwÞ −

eiΦffiffiffiffiffi
2c

p
τ
Dmð−wÞ

�

¼ e−πΛ=2λ
c

�
1

top
þ 1

τ

�

þ
ffiffiffi
π

c

r
e−πΛ=4−iπ=4λ

�
ei2Φ

2cτtopΓð−mÞ þ
e−2iΦ

Γðmþ 1Þ
�

≈
ffiffiffi
π

c

r
e−iπ=4−πΛ=4−2iΦλ

Γðmþ 1Þ : ðA19Þ

In the last line, we keep only the leading-order term, noting
that τ ≫ 1 and discarding the term Oðe−πΛ=2Þ.
The transition amplitude is given by jS1j2:

jS1j2 ¼
π

c
e−πΛ=2

jΓð−mÞtopj2
: ðA20Þ

Note that

jΓðmÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

jmj sinhðπjmjÞ
r

; ðA21Þ

therefore,

jS1j2 ¼
Λ

4ct2op
þO

�
e−πΛ;

e−πΛ=2ffiffiffiffiffiffiffiffi
ctop

p
�
: ðA22Þ

APPENDIX B: MAPPING OF THE BRAIDING
OF MZMS TO THE LANDAU-ZENER PROBLEM

In Sec. IVA, we showed how the first step in the
braiding protocol at a T junction could be mapped onto
the Landau-Zener problem with sudden turn-on and
turn-off. Here, we perform this mapping for the other
two steps.
Consider the time period t1 < t ≤ t2. We find that

M2HM†
2 ¼

Δffiffiffi
2

p (h2ðtÞσz − σx); ðB1Þ

where h2ðtÞ ¼ ð6t=topÞ − 3 and M2 is the unitary matrix,

M2 ¼
1

2
½−ð2þ

ffiffiffi
2

p
Þ1=2σz þ ð2 −

ffiffiffi
2

p
Þ1=2σx�: ðB2Þ

Meanwhile, for t2 < t ≤ t3,

M3HM†
3 ¼

Δffiffiffi
2

p (h3ðtÞσz − σx); ðB3Þ

where h3ðtÞ ¼ ð6t=topÞ − 5 and M3 is the unitary matrix,

M3 ¼
1

25=4
ðσx þ σyÞ½ð

ffiffiffi
2

p
− 1Þ1=2σy − ð

ffiffiffi
2

p
þ 1Þ1=2σz�:

ðB4Þ

Equations (B1) and (B3) are both of the form of the
Landau-Zener Hamiltonian; therefore, we see that each step
of the MZM braiding process with linear couplings can be
mapped to the Landau-Zener Hamiltonian with sudden
turn-on and turn-off of off-diagonal couplings.

APPENDIX C: MASTER EQUATION
FORMALISM FOR TIME-DEPENDENT

HAMILTONIANS COUPLED TO A BATH

In this appendix, we give a derivation of the master
equation for a time-dependent Hamiltonian coupled to a
bath. We begin with a general system-bath Hamiltonian

HðtÞ ¼ HSðtÞ þHB þHIðtÞ; ðC1Þ

whereHSðtÞ is the time-dependent system Hamiltonian and
HB is the bath Hamiltonian (e.g., a set of harmonic
oscillators). The interaction between the system and the
bath can be written in the general form

HIðtÞ ¼
X
α

gαðtÞAα ⊗ Bα; ðC2Þ

where the operator Aα is a Hermitian operator acting only
on the degrees of freedom of the system and Bα is a
Hermitian operator acting only on the degrees of freedom
of the bath. For a time-independent system-bath coupling,
gðtÞ ¼ g, a derivation of the master equation is given in
Ref. [72]. Here, we generalize the formalism to a time-
dependent system-bath coupling in order to derive the
results in Sec. II B.
Consider the reduced density matrix ~ρSðtÞ ¼ TrB ~ρðtÞ in

the interaction picture:

~ρðtÞ ¼ U†
0ðt; 0ÞρðtÞU0ðt; 0Þ; ðC3Þ

with U0ðt; t0Þ ¼ USðt; t0Þ ⊗ UBðt; t0Þ and

USðt; t0Þ ¼ T exp½−i
Z

t

t0
dτHSðτÞ�;

UBðt; t0Þ ¼ exp½−iðt − t0ÞHB�: ðC4Þ
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The system-bath Hamiltonian can be written in the inter-
action picture as

~HIðtÞ ¼U†
0ðt;0ÞHIU0ðt;0Þ

¼
X
α

gαðtÞU†
Sðt;0ÞAαUSðt;0Þ⊗U†

Bðt;0ÞBαUBðt;0Þ

¼
X
α

gαðtÞAαðtÞ⊗BαðtÞ: ðC5Þ

Applying the standard Born approximation,

ρðtÞ ≈ ρSðtÞ ⊗ ρB; ðC6Þ

which assumes that the system-bath coupling is small
and the influence of the system on the bath is weak, we
obtain

d~ρSðtÞ
dt

¼ −
Z

t

0

dτTrB½ ~HIðtÞ; ½ ~HIðt − τÞ; ~ρSðt − τÞ ⊗ ρB��:

ðC7Þ

We next use the Markov approximation; that is, we replace
~ρSðt − τÞ by ~ρSðtÞ and let the upper limit of the integral go
to infinity. This is valid for gα ≪ 1=τB. Here, τB is the
correlation time of the bath:

BαβðtÞ ¼ Tr½BαðtÞBβð0ÞρB� ∼ expð−t=τBÞ: ðC8Þ

The master equation becomes

d~ρSðtÞ
dt

¼
X
αβ

Z
∞

0

dτgαðtÞgβðt − τÞ½(Aβðt − τÞ~ρSðtÞAαðtÞ

− AαðtÞAβðt − τÞ~ρSðtÞ)BαβðτÞ þ H:c:�: ðC9Þ

In this expression, AβðtÞ is given by

AαðtÞ ¼ USðt; 0Þ†AβUSðt; 0Þ: ðC10Þ

In general, the right-hand side of the master equation
includes (1) the unitary evolution superoperator (which, in
the Schrödinger picture, takes the form−i½HSðtÞ þHLS; ��,
where HLS is the Lamb shift and � refers to any operator),
(2) a dissipative superoperator due to purely adiabatic
processes, and (3) a dissipative superoperator due to
diabatic corrections.
Equation (C9) requires us to perform an integral over

τ for the time-evolution operator USðt − τ; 0Þ, which is
very difficult. In order to avoid this, we make a further
simplifying approximation [72],

USðt − τ; 0Þ ¼ U†
Sðt; t − τÞUSðt; 0Þ ≈ eiτHSðtÞUSðt; 0Þ:

ðC11Þ

Equation (C11) is justified by the smallness of the bath
correlation time τ: HSðtÞ is almost a constant over a time τ
because of the rapid decay of BαβðτÞ as a function of τ.
Using this approximation, we findZ

∞

0

dτgαðtÞgβðt − τÞAβðt − τÞ~ρSðtÞAαðtÞBαβðτÞ

¼
Z

∞

0

dτgαðtÞgβðt − τÞUSðt; 0Þ†e−iτHSðtÞAβeiτHSðtÞUSðt; 0Þ

× ~ρSðtÞUSðt; 0Þ†AβUSðt; 0ÞBαβðτÞ: ðC12Þ

Returning to the Schrödinger picture density matrix, ρðtÞ,
via ~ρSðtÞ ¼ USðt; 0Þ†ρðtÞUSðt; 0Þ, all the USðt; 0Þ terms
will cancel. We insert a resolution of the identity 1 ¼P

αjϵαðtÞihϵαðtÞj in the instantaneous eigenbasis jϵaðtÞi of
HSðtÞ, which has instantaneous eigenvalues ϵaðtÞ accord-
ing to HSðtÞjϵαðtÞi ¼ ϵαðtÞjϵαðtÞi. We obtain

dρSðtÞ
dt

¼ −i½HSðtÞ þHLSðtÞ; ρSðtÞ�

þ
X
αβ

X
ω

γαβðt;ωÞ
�
Aβ;ωðtÞρSðtÞAα;ωðtÞ†

−
1

2
fAα;ωðtÞ†Aβ;ωðtÞ; ρSðtÞgþ

�
: ðC13Þ

The Lamb shift is

HLSðtÞ ¼
X
αβ

X
ω

Aα;ωðtÞ†Aβ;ωðtÞSαβðt;ωÞ: ðC14Þ

It is conventional to combine γαβðt;ωÞ and Sαβðt;ωÞ into
the noise function Γαβðt;ωÞ ¼ 1

2
γαβðt;ωÞ þ iSαβðt;ωÞ. In

the present calculation,

Γαβðt;ωÞ ¼
Z

∞

0

dτgαðtÞgβðt − τÞeiτωBαβðτÞ: ðC15Þ

Aβ;ωðtÞ is

Aβ;ωðtÞ ¼
X

ωbaðtÞ¼ω

hϵaðtÞjAβjϵbðtÞijϵaðtÞihϵbðtÞj; ðC16Þ

where ωbaðtÞ ¼ ϵbðtÞ − ϵaðtÞ.

APPENDIX D: NUMERICAL SOLUTION OF THE
MASTER EQUATION FOR A T JUNCTION

COUPLED TO A DISSIPATIVE BATH

Let us first consider diabatic corrections without dis-
sipation, which in the language of Appendix C means we
set gα¼0. After solving the Heisenberg equation of motion,
we obtain the reduced density matrix for the system at the
end of the braiding process, ρSðtopÞ. We focus on two
quantities. The first is the transition probability from the
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ground state (computational basis) to the excited state
(noncomputational subspace) for the even-parity sector,
PG→E ¼ 2ρ22S ðtopÞ. The second quantity, ∥ρGðtopÞ − ρA∥,
quantifies the deviation of the relative phase from its
adiabatic value of π=2 if the system has remained in the
computational subspace. In other words, we project the
system into the computational subspace and find the trace
norm, denoted ∥…∥, of the difference between the pro-
jected density matrix ρGðtopÞ and the adiabatic density
matrix ρA. As the two τz ¼ �1 sectors are decoupled
(fermion parity is conserved), measuring the system at the
end of the braiding process to be in the computational
subspace is equivalent to applying a phase gate to this
subspace.
We consider time-dependent Hamiltonians with k ¼ 0, 1

derivatives vanishing at t ¼ 0, t1, t2, t3. Diabatic correc-
tions should vanish as Oðtop−2k−2Þ, given the results of
Refs. [9–11].
We choose the following braiding protocol (see Fig. 4):

Δ1ðk; tÞ ¼

8>>><
>>>:

Δθ


k; t

t1

�
0 ≤ t < t1

Δ


1 − θ



k; ðt−t1Þt1

��
t1 ≤ t < t2

0 t2 ≤ t ≤ t3

; ðD1Þ

Δ2ðk; tÞ ¼

8>>><
>>>:

Δ


1 − θ



k; t

t1

��
0 ≤ t < t1

0 t1 ≤ t < t2

Δθ


k; t−t2

t3−t2

�
t2 ≤ t ≤ t3

; ðD2Þ

Δ3ðk; tÞ ¼

8>>><
>>>:

0 0 ≤ t < t1

Δθ


k; t−t1t1

�
t1 ≤ t < t2

Δ


1 − θ



k; t−t2

t3−t2

��
t2 ≤ t ≤ t3

; ðD3Þ

where θðk; τÞ is the regularized incomplete beta function:

θðk; τÞ ¼ Bðτ; 1þ k; 1þ kÞ
Bð1; 1þ k; 1þ kÞ ;

Bðτ; a; bÞ ¼
Z

τ

0

dyya−1ð1 − yÞb−1; ðD4Þ

and ReðaÞ > 0, ReðbÞ > 0, and jτj ≤ 1. In this protocol,
the first k derivatives vanish at the turning points t ¼ 0, t1,
t2, t3. Figures 14 and 15 plot the transition probability
PG→E and phase error ∥ρGðtopÞ − ρA∥ as a function of
braiding period top. As expected, we see that diabatic-
induced excitations and Berry phase error can be reduced
by making the time dependence smoother.
We now consider the effect of dissipation. To obtain the

master equation, Eq. (C13), we used the standard Born and
Markovian approximations. We also replaced U†

Sðt; t − τÞ

with eiτHSðtÞ, which is justified when the bath has short
correlation time. We now apply a fourth approximation:

Γαβðt;ωÞ ¼
Z

∞

0

dτgαðtÞgβðt − τÞeiτωBαβðτÞ

≈ gαðtÞgβðtÞ
Z

∞

0

dτeiτωBαβðτÞ; ðD5Þ

which significantly simplifies the numerical calculation.
Equation (D5) generally overestimates the effect of dis-
sipation and is justified in the limit of small τB=top (again,
τB is bath correlation time). The comparisons between
the transition probability PG→E and ∥ρGðtopÞ − ρA∥ with
and without dissipation are shown in Figs. 2 and 3. The
choice of parameters for Figs. 2 and 3 are valid for the first-
order weak coupling expansion and the Born-Markov
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FIG. 14. Transition probability PG→E vs braiding period top
without dissipation. Here, k ¼ 0, 1, 2, 3 refers to the number
of vanishing time derivatives of the Hamiltonian at each
turning point.
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FIG. 15. Phase error ∥ρGðtopÞ − ρA∥ against braiding period
top without dissipation. Here, k ¼ 0, 1, 2, 3, 4 refers to the
number of vanishing time derivatives of the Hamiltonian at
each turning point.
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approximation used in the previous appendix to derive the
master equation. In other words, the parameters satisfy the
constraints that the bath correlation time (∼ℏ=T) is much
smaller than the system relaxation time (∼ℏΔ=λ2), i.e.,
λ2=Δ ≪ T, and that the time scale associated with the
system dynamics is much less than the system relaxation
time (in terms of energies, λ ≪ Δ). We see that dissipation
washes out the oscillations in the transition probability.

APPENDIX E: CHERN-SIMONS CALCULATION

We fill in the details of Sec. III. In the following, we
replace k=2π with θ to avoid confusion with the momentum
variable k. Beginning with the action of Eq. (18), integrat-
ing out aμ yields the effective action

Seff ¼
Z

d3xd3yjμðxÞGμνðx; yÞjνðyÞ; ðE1Þ

where the propagator

Gμνðx; yÞ ¼
D
x
���m2

θ

ϵμνλ∂λ

∂2ð∂2 þm2Þ −
m
θ

gμν

∂2 −m2

���yE ðE2Þ

and m ¼ g2θ. We fix the gauge such that ∂μaμ ¼ 0 and
work with the signature g00 ¼ 1, gii ¼ −1.
One approach to finding the topological contribution to

the phase is to find the magnetic field due to the stationary b
particle and calculate the flux enclosed by the trajectory of
the a particle. Note that the vector potential due to the b
particle is

aμ;bðxÞ ¼
Z

d3yGμνðx; yÞjνbðyÞ; ðE3Þ

and to single out the part contributing to the braiding phase,
we can replace G with Gð1Þ. The magnetic field is then

Bb ¼ ϵ0ij∂iaj;b: ðE4Þ

Rotational symmetry implies BbðrÞ≡ BbðrÞ.
Noting that j0bðkÞ ¼ 2πδðωÞ, we find

BbðrÞ ¼
bm2

ð2πÞ2θ
Z

∞

0

djkj
Z

2π

0

dθk
jkjeijkjr cosðθ−θkÞ

jkj2 þm2

¼ bm2

θ

1

2π

Z
∞

0

djkj jkj
jkj2 þm2

J0ðjkjrÞ; ðE5Þ

where the last line follows from the identity

JnðxÞ ¼
1

2π

Z
π

−π
dθeiðnθ−x sin θÞ: ðE6Þ

The integral evaluates to

BbðrÞ ¼
bm2

2πθ
K0ðmrÞ: ðE7Þ

Particle a sweeps out a circular area of radius R,
enclosing flux

Φ ¼ a
Z

2π

0

dθ
Z

R

0

drBbðrÞ

¼ ab
θ
½1 −mRK1ðmRÞ�: ðE8Þ

Working in the limit mR¼g2θR≫1, we are interested in
the asymptotic formofK1ðxÞ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðπ=2xÞp
e−xf1þ½Oð1=zÞ�g;

therefore, the braiding phase is given by

Φ ¼ ab
θ

�
1 −

ffiffiffiffiffiffiffiffiffiffi
πmR
2

r
e−mR þ � � �

�
: ðE9Þ

As we claimed, this has no dependence on the braiding time
top. The exponential suppression in m and R originates
from the Maxwell term: The flux attached to each particle is
no longer an infinitely thin solenoid but rather has finite
width and so has an exponential decay away from the
particle.
The second term in the propagator hxj½m=θðk2−m2Þ�

gμνjyi contributes an overall phase that grows linearly in
time and is thus reminiscent of a dynamical phase. We
are interested in the phase resulting from the braiding
process; thus, we only keep the term involving both
currents. Transforming to momentum space, we find that
this term is

m
θ

1

ð2πÞ3
Z

d2k
Z

dωjμað−kÞ gμν

k2 −m2
jνbðkÞ

¼ bm
θð2πÞ2

Z
djkj jkj

jkj2 þm2

Z
dθkj0að−k;ω ¼ 0Þ:

ðE10Þ

The a particle current is

j0aðkÞ ¼
Z

d2r
Z

top

0

dteikrj0aðrÞ

¼ a
Z

top

0

dte−ijkjR cos½θk−ð2πt=topÞ�þiωt

¼ a
Z

top

0

dt
X
n

ine−inθkJnðjkjRÞei½ω−ð2πn=topÞ�t

¼ a2top
X
n

ine−inθkJnðjkjRÞeiðωtop−2πnmÞ

× sincðωtop − 2πnmÞ; ðE11Þ

and when we plug this into the θk integral, we find
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Z
2π

0

dθkj0að−k;ω ¼ 0Þ ¼ a2topJ0ðjkjRÞ: ðE12Þ

At this point, the dependence on the number of times the
particle circles the origin has vanished; thus, this term does
not contribute to the braiding phase.

APPENDIX F: TOP-TRANSMON DETAILS

1. Deriving the effective Hamiltonian

In this section, we use the notation of Ref. [43] to
facilitate comparison with their results. The microscopic
Lagrangian of Fig. 11 is [43]

L ¼ Ω†ðT − VJ − VMÞΩ; ðF1Þ

where T is the charging energy, VJ is the Josephson
potential, VM is the Majorana-Josephson potential, and
Ω is a gauge transformation that enforces a constraint
between the charge in a superconducting island and the
Majorana parity of that island:

Ω ¼ eði=4Þð1−iγbγ
0
bÞϕb

Y3
k¼1

eði=4Þð1−iγkγ
0
kÞϕk ; ðF2Þ

where ϕk is the superconducting phase of island k.

Making the assumption that the cross-capacitance
between Majorana islands i and j, Cij, is negligible in
comparison with the capacitances involving the bus and the
ground, CB;i, CG;i, CB;G, the charging energy is

Ω†TΩ ¼ ℏ2

8e2
Cb

_ϕ2
b þ

ℏ2

8e2
X3
k¼1

½CG;k
_ϕ2
k þ CB;kð _ϕk − _ϕbÞ2�

þ ℏ
2e

�
qb _ϕb þ

X3
k¼1

�
qk þ

e
2
ð1 − iγkγ0kÞ

�
_ϕk

�
:

ðF3Þ

In the above, qk is the induced charge of island k.
The Josephson potential takes the form

Ω†VJΩ ¼ 2EJ;0ðΦbÞð1 − cosϕbÞ

þ
X3
k¼1

2EJ;kðΦkÞð1 − cosϕkÞ; ðF4Þ

for magnetic flux Φk and Josephson energy EJ;kðΦkÞ. The
Majorana-Josephson potential is given by

VM ¼ EM

�
iγ01γ

0
2 cos

�
ϕ1 − ϕ2

2
þ α12

�
þ iγ02γ

0
3 cos

�
ϕ2 − ϕ3

2
þ α23

�
þ iγ03γ

0
1 cos

�
ϕ3 − ϕ1

2
þ α31

��

þ EM

�
iγ0bγ

0
g cos

�
ϕb

2
þ αbg

�
þ iγ0gγ1 cos

�
αg1 −

ϕ1

2

�
þ iγ1γ0b cos

�
ϕ1 − ϕb

2
þ α1b

��
; ðF5Þ

where EM characterizes the strength of the Majorana-
Josephson energy and the αs denote the Aharanov-Bohm
phase shifts between different islands, for instance,

α12 ¼
π

2Φ0

ðΦ1 þ Φ2Þ;

α23 ¼
π

2Φ0

ðΦ2 þ Φ3Þ;

α31 ¼ −
π

2Φ0

ð−Φ1 þ 2Φ2 þ Φ3Þ: ðF6Þ

The essential assumption is

EJðΦÞ ≫ EM; EC; ðF7Þ

where EC is the single-electron charging energy for
each junction and 0 ≤ Φ ≤ Φmax < 1

2
Φ0. The range of

values of Φ is to keep EJ;kðΦkÞ strictly positive [recall
that EJ;kðΦkÞ ¼ EJ;kð0Þ cos½πðΦk=Φ0Þ�]. There is a trade-
off in how closeΦmax is to 1

2
Φ0, which we will address later.

We see that the action is minimized when all super-
conductors are in phase. At the minimum ϕz ¼ 0, both
T and VJ vanish, and as is easily seen from Eq. (F2),
Ω†VMΩjϕz¼0 ¼ VMjϕz¼0. The low-energy Hamiltonian
simply contains VM and terms accounting for phase
fluctuations.
The amplitude of a phase slip from 0 to 2π at a junction k

is

Uk ¼ 16

�
EC;kEJ;kðΦkÞ3

2π2

�
1=4

e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2EJ;kðΦkÞ�=EC;kg

p
cos

�
qkπ
e

�
:

ðF8Þ

The WKB-like form can be understood from an analogy
between a Cooper-pair box Hamiltonian and a quantum
rotor model, discussed in Ref. [53]. We can see from the
exponential dependence on the ratio EJ;kðΦkÞ=EC;k that we
only need to account for phase slips at junctions with the
smallest ratio of Josephson energy to charging energy.
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During braiding, the Josephson energy between the bus
and the ground is maximized; therefore, we can set ϕb ¼ 0
and ignore fluctuations. We do need to account for
fluctuations about junctions i ¼ 1, 2, 3, where the flux
is tuned such that the Josephson energy of a particular
junction is minimized at certain points of the braiding
protocol. The low-energy effective Hamiltonian thus takes
the form

Heff ¼ −
X3
k¼1

iUkγkγ
0
k þΩ†VMΩjϕk¼0: ðF9Þ

Making the assumption that tunnel couplings are much
stronger than Coulomb couplings, EM ≫ Uk, and only
keeping terms to first order in Uk, yields the low-energy
Hamiltonian

H ¼ −iΔ1γBγE − iΔ2γEγF − iΔ3γEγC; ðF10Þ

where γF ¼ γ2, γC ¼ γ3 γB is a linear combination of the
MZMs at the first junction (γ1, γ0b, γ

0
g and γE is a linear

combination of the MZMs at the second junction (γ01, γ
0
2, γ

0
3)

(see Fig. 16). The coupling strengths Δk ¼ UkfðαÞ, where
fðα) is some function of the single-electron Aharanov-
Bohm phase shifts, which is Oð1Þ for the allowed range of
Φ. The specific form of f and of γB, γE is known [43] but is
not important for our discussion. Note that the closer Φmax

is to 1
2
Φ0, the larger the value of Δmax ¼ ΔiðΦmaxÞ and the

smaller the ratio Δmin=Δmax. Reference [42] finds that the
unitary evolution operator is equivalent to the Berry matrix
for braiding MZMs up to corrections of order Δmin=Δmax. It
is therefore important for this ratio to be small to ensure
quantization of the braiding phase.
For read-out, we set Φb ¼ Φmax and Φk ¼ 0, k ¼ 1, 2, 3.

We can ignore phase fluctuations about ϕk ¼ 0, _ϕk ¼ 0,
and therefore, the Lagrangian becomes

L ¼ ℏ2

8e2
C _ϕ2

b þ
ℏ
2e

�
qb þ

e
2
ð1 − iγbγ0bÞ

�
_ϕb

− EJ;bð1 − cosϕbÞ − Ω†VMΩjϕk¼0: ðF11Þ

The Lagrangian is that of a top-transmon [44] with the
extra term VM. A top-transmon is a hybrid topological-
superconducting qubit for which the bus hosts MZMs,
the parity of which splits each transmon energy level. The

transmon is set inside a transmission-line resonator, for
instance, a coplanar waveguide with interrupted feed line.
The authors of Ref. [43] derive the read-out Hamiltonian
under the assumptions that the transmon remains in its
lowest two energy levels, and the resonator coupling can be
described by the Jaynes-Cummings Hamiltonian

H ¼ σz

�
ℏ
2
Ω0 þ iγbγ0bδþ cosðπqb=eÞ

�
þ iγbγ0bδ− cosðπqb=eÞ þ Ω†VMΩjϕz¼0

þ ℏω0a†aþ ℏgðσþaþ σ−a†Þ: ðF12Þ

In the above, σz acts on the qubit degree of freedom of the
transmon and σ� are the raising and lowering operators of
the transmon state. Here, a, a† describe the photons in the
resonator, ω0 is the bare resonator frequency, Ω0 is the
frequency spacing of the two lowest levels of the transmon
(with no MZM), and g is the resonator-transmon coupling

strength. The MZM couplings δþ, δ− ∼ e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJ;bðΦmaxÞ=EC;b

p

are the average dispersion of the lowest two transmon states
and half the difference in dispersion of the lowest two
transmon states, respectively. In other words, if δε0 is the
difference in ground-state energy of the transmon when the
MZMs are in an even-parity state and an odd-parity state,
and δε1 is the analogous quantity for the first excited state,
then

δ� ¼ δε1 � δε0
2

: ðF13Þ

2. Energy subspaces of the effective Hamiltonian

The low-energy subspace of the Hamiltonian in Eq. (F9)
is given by Eq. (F10), neglecting terms O(ðΔ=EMÞ2). At
the first turning point, Φ1 ¼ Φmax, Φ2 ¼ Φ3 ¼ 0, and the
Hamiltonian is

H ≈ iUmaxγ1γ
0
1 þ iEM

�
γ02γ

0
3 þ

1ffiffiffi
2

p ðγ01γ02 þ γ03γ
0
1Þ
�
: ðF14Þ

In the above, we write Umax ¼ UiðΦi ¼ ΦmaxÞ.
A change of basis allows us to diagonalize the

Hamiltonian of Eq. (F14) as

H ¼ iε1 ~γ0 ~γ1 þ iε2γex;1γex;2: ðF15Þ

Here,

ε1 ¼
ffiffiffi
2

p
Umax þO

�
Umax

EM

�
2

;

ε2 ¼
ffiffiffi
2

p
EM þ

ffiffiffi
2

p

8

U2
max

EM
þO

�
Umax

EM

�
2

: ðF16Þ
FIG. 16. Low-energy MZM picture.
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The four (many-body) eigenstates have the following
energies to lowest order in Umax=EM:

λ0 ¼ −ε1 − ε2;

λ1 ¼ ε1 − ε2;

λ2 ¼ ε2 − ε1;

λ3 ¼ ε1 þ ε2; ðF17Þ

where ~γ0, ~γ1, γex;1, and γex;2 are linear combinations of γ1,
γ01, γ

0
2, and γ

0
3, the exact forms of which are unimportant for

this discussion.
Note that γ2 and γ3 do not appear in the Hamiltonian of

Eq. (F14); thus, occupying their associated fermionic mode
has no energy cost. The energy associated with i~γ0 ~γ1 is on
the order of the Coulomb couplings Umax, while the energy
of the excited modes is on the order of the Majorana
couplings, EM ≫ Umax. The gap between the first excited
state and the ground state is much smaller than the gap
between the first and second excited states; thus, the most
common diabatic errors are when i~γ0 ~γ1 is flipped. The
system transitions to a higher excited state when the parity
of iγex;1γex;2 flips.
At any time during the braiding process, one of the

Coulomb couplings Ui is set to its minimum value, and the
Hamiltonian can be approximated by

H ¼ −iU1γ1γ
0
1 − iU2γ2γ

0
2 − iEMðγ01γ02 þ γ02γ

0
3 þ γ03γ

0
1Þ:
ðF18Þ

We have set U3 ¼ 0 [discarding the exponentially small
value of Umin ¼ UiðΦi ¼ 0Þ] and ignored the anisotropy in
the Majorana couplings. A similar change of basis as before
allows us to write the Hamiltonian in terms of effective
MZM operators. Writing the Hamiltonian again in the form
of Eq. (F15), we find

ε1
0 ¼ 1ffiffiffi

3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

1 þU2
2

q
þO

�
U2

EM

�
;

ε2
0 ¼

ffiffiffi
3

p
EM

�
1þ 2

9

U2
1 þ U2

2

E2
M

�
: ðF19Þ

Note that during braiding, the energy gaps are the same
order of magnitude as at the turning points, and as γ3 does
not appear in the Hamiltonian in Eq. (F18), each energy
level is twofold degenerate.
If we consider coupling the MZM system to a dissipative

bath, the bath can relax the system from a highly excited
state into a lower state. Assuming the bath cannot change
the total parity of the MZM system and that it cannot affect
the qubit, which is stored in the decoupled MZM pair, then
we see that the bath can relax the system from the third
excited state to the ground state, j3i → j0i, or from the
second excited state to the first excited state j2i → j1i.

3. Modified architecture

We now show that the effective Hamiltonian of Fig. 12 is
of the form of Eq. (F9), with the essential feature that Uk
can be tuned between exponentially separated minimum
and maximum values.
The microscopic Lagrangian is given by Eq. (F1), with

modified Josephson potential and charging energy:

Ω†VJΩ ¼ EJ;AðΦAÞ(1 − cosðϕb − ϕ1Þ)
þ EJ;BðΦBÞ(1 − cosðϕb − ϕ3Þ)
þ EJ;0ðΦ0Þð1 − cosϕbÞ

þ
X3
k¼1

EJ;kðΦkÞð1 − cosϕkÞ;

Ω†TΩ ¼ ℏ2

2e
ðCb;g

_ϕ2
b þ

X3
k¼1

ðCk;g
_ϕ2
k þ Ck;bð _ϕb − _ϕkÞ2ÞÞ

þ ℏ
2e

�
qb _ϕb þ

X3
k¼1

�
qk þ

e
2
ð1 − iγkγ0kÞ

�
_ϕk

�
:

ðF20Þ

The Majorana-Josephson potential is unchanged up to
appropriate redefinition of the single-electron Aharanov-
Bohm phase shifts.
The system operates in the regime EJðΦÞ ≫ EC, EM;

thus, the action is minimized when all superconducting
islands are in phase (VJ and T vanish). We account for
phase fluctuations about the minima ϕk ¼ 0 by considering
phase slips from 0 to 2π at each junction. The tunneling
amplitude associated with a phase slip from 0 to 2π at
junction Z is given by

UZðΦZÞ ¼ 16

�
EC;ZEJ;ZðΦZÞ3

2π2

�
1=4

× e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f½8EJ;ZðΦZÞ�=EC;Zg

p
cos

�
qZπ
e

�
; ðF21Þ

where qZ is the difference in induced charge and EC;Z is
the difference in charging energies between the two
islands on either side of the junction. As is easily seen
from the above, if certain junctions have a larger ratio of
EJðΦÞ=EC than others, the amplitude of the phase slips at
these junctions is exponentially smaller and can thus
safely be ignored.
During the braiding process, we maximize EJ;0ðΦ0Þ and

ignore phase fluctuations about the minima ϕb ¼ ϕg ¼ 0.
Note that every other junction (for which we do need to
account for phase fluctuations) has a Majorana wire on one
of its neighboring islands and not on the other. The low-
energy Hamiltonian for the modified architecture is
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Heff ¼ Ω†VMΩjϕi¼0 − iðU1 þ UAÞγ1γ10
− iU2γ2γ2

0 − iðU3 þ UBÞγ3γ30

¼ Ω†VMΩjϕz¼0 − i
X3
k¼1

~Ukγkγ
0
k; ðF22Þ

which is of the same form as Eq. (F9). Each ~Uk can be
independently tuned between exponentially separated val-
ues of ~Umin.
To understand the last point more explicitly, note that

threading zero flux through any junction maximizes the
Josephson energy of that junction, while threading flux
Φmax minimizes the Josephson energy. Thus, if we compare
thevalue ~U1ðΦ1¼0;ΦA¼0Þwith ~U1ðΦ1¼Φmax;ΦA¼ΦmaxÞ,
the former is the sum of two numbers, each of which is
exponentially smaller than the corresponding term in the
latter as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EJðΦmaxÞ=EC

p
≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EJð0Þ=EC

p
.

We now show that, for each parity measurement in the
modified system, the Lagrangian takes the same form as
Eq. (F11). First, to measure iγ1γ0, we tune ΦA ¼ Φ2 ¼
Φ3 ¼ 0 to maximize the Josephson energies of the corre-
sponding junctions, which sets ϕb ¼ ϕ1 and ϕ2 ¼ ϕ3 ¼ 0.
We ignore phase fluctuations about these minima. The
Lagrangian becomes

L ¼ ℏ2

8e2
C1

_ϕ2
1 þ

ℏ
2e

�
q01 þ

e
2
ð1 − iγ1γ10Þ

�
_ϕ1

− EJ;1ðΦmaxÞð1 − cosϕ1Þ −Ω†VMΩjϕi¼0; ðF23Þ

where C1 ¼ Cb;g þ C1;g þ C2;b þ C3;b, EJ;1ðΦmaxÞ ¼
EJ;0ðΦmaxÞ þ EJ;1ðΦmaxÞ þ EJ;BðΦmaxÞ, and q01¼q1þ1b.
Equations (F23) and (F11) have the same form, indicating
that the same arguments given in Ref. [43] apply to our
modified architecture. The same analysis applies for
measuring iγ3γ0 by interchanging the roles of junctions
A and B and of junctions 1 and 3.
To measure iγ2γ0, tune ΦA ¼ ΦB ¼ Φ2 ¼ 0 to maximize

the Josephson energies of the corresponding junctions and
tune all remaining fluxes to Φmax. Now, ϕb ¼ ϕ1 ¼ ϕ3

and ϕ2 ¼ 0. Again, ignoring phase fluctuations about these
minima, the Lagrangian becomes

L ¼ ℏ2

8e2
C2

_ϕ2
b − EJ;2ðΦmaxÞð1 − cosϕbÞ −Ω†VMΩjϕi¼0

þ ℏ
2e

�
qb þ q1 þ q3 þ

e
2
ð2 − iγ1γ10 − iγ3γ30Þ

�
_ϕb:

ðF24Þ

In the above, C2 ¼ Cb;g þ C1;g þ C3;g þ C2;b. We assume
that the total parity of the MZM system is known; thus, if

x ¼ 1

2
ð3 − iγ1γ01 − iγ2γ02 − iγ3γ03Þ; ðF25Þ

we know whether x is an even or odd number. This allows
us to rewrite the Lagrangian as

L ¼ ℏ2

8e2
C2

_ϕb þ
ℏ
2e

�
q02 −

e
2
ð1 − iγ2γ20Þ

�
_ϕb

− EJ;2ðΦmaxÞð1 − cosϕbÞ −Ω†VMΩjϕi¼0; ðF26Þ

where q02 ¼ qb þ q1 þ q3 þ ex. Equation (F26) takes the
same form as Eq. (F11) up to an unimportant sign
difference.
The preceding analysis relies on the assumption that the

total parity of the MZM system has not changed during the
braiding and measurement process [if it were to change,
measuring the parity of 1

2
ð2 − iγ1γ01 − iγ3γ03Þ would not tell

us the correct value of the parity of 1
2
ð1 − iγ2γ02Þ]. We can

further modify the architecture to that of Fig. 17 to allow us
to check the total parity at each turning point. The key
features of the more complex architecture are that each
MZM island can be coupled to the bus with the other two
MZM islands coupled to the ground, and each MZM island
can be coupled to the ground with the other two MZM
islands coupled to the bus. For instance, we can measure
1=2ð1 − iγ1γ01Þ and then measure 1

2
ð2 − iγ2γ02 − iγ3γ03Þ. It is

also possible to connect all three MZM islands to the bus as
a further check of the total parity.
The analysis that the geometry of Fig. 17 leads to the

same effective Hamiltonian for the braiding process
and Lagrangian for measurement as Eqs. (F9) and (F11),
respectively, is much the same as the preceding analysis for
Fig. 12; therefore, we just outline the key points rather than

FIG. 17. T-junction architecture with parity-check ability.
Every MZM island can be connected to the bus (ground) with
the other two MZM islands connected to the ground (bus). No
MZM islands share a split Josephson junction; thus, the Coulomb
couplings for different MZM pairs are independent of each other.
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going through the full derivation. There are no Josephson
junctions directly connecting two MZM islands; thus, each
Coulomb coupling Δi can be independently tuned between
exponentially separated minimum and maximum values.
For read-out, each island containing a MZM wire can be
phase locked to the bus (ground) with the other two MZM
islands phase locked to the ground (bus).
Finally, Ref. [42] notes that the order of flux-tuning

matters. Fixing the ground-state degeneracy to two when
switching the Coulomb coupling in island k off and the
coupling in island k0 on requires increasing jΦ0

kj before
decreasing jΦkj.

APPENDIX G: MEASUREMENT

We now give a more detailed explanation of the
measurement described Sec. VI D of the main text. It
might appear rather extraordinary that one can measure the
parity of iγiγ0, even though γ0 is a linear combination of
three MZMs located on different superconductors. The key
insight is that the Majorana-Josephson coupling OðEMÞ
remains the same order of magnitude throughout the
braiding and measurement process and is much stronger
than the Coulomb couplings. Thus, even when the super-
conducting islands are disconnected from each other, the
inner MZMs are still coupled, and they affect the parity of
the superconducting island being measured.
This measurement is employed in superconducting qubit

experiments to read out the qubit state [54]. A qubit is
capacitively coupled to a transmission-line resonator, for
instance, a coplanar waveguide with interrupted feed line.
The setup is schematically shown in Fig. 18. A microwave
traveling down the transmission line experiences an imped-
ance mismatch at the point where the line couples to the
resonator. The microwave is partially reflected and partially
transmitted, with its transmission amplitude S21 dependent
on both the probe wave’s frequency and the resonator’s
frequency. The resonator’s frequency is shifted from its
bare value ω0 by the state of the qubit. Using standard
signal processing techniques, one can extract S21 and, from
this value, infer the state of the qubit. A note on terminol-
ogy: In the superconducting qubit literature, this measure-
ment is known as a “dispersive measurement” because it
infers the state of the qubit from a shift in the resonator’s
frequency. In this paper, we call this measurement projec-
tive because its utility for our system is that it projects the
MZM into a definite energy state.
In preparation of a measurement, our system is tuned

such that one MZM island is connected to the bus, and the
remaining MZM islands are connected to phase ground.
The system will look like a transmon with MZMs, i.e., a
top-transmon [44]. The MZMs split the transmon’s ground
state into four energy levels, each of which is twofold
degenerate (these energies are reported in Appendix F 2).
Measurement of S21 projects the system into one of these
eigenstates. With sufficient resolution, we can read out this

state and thus detect an error from transitions out of the
ground state.
Let ωjji denote the effective frequency of the resonator

when the transmon is in its ground state and the MZM
system is in state jji. Tuning the probe frequency to be
directly between ωj0i and ωj1i, the resonator’s effective
frequencies when the qubit is in its lowest two energy states
allow for the greatest separation between the two most
probable measurement outcomes [73]. In other words,

ωprobe ¼
ωj0i þ ωj1i

2
: ðG1Þ

The measurement result is plotted in the IQ plane
(I ¼ Re½S21�, Q ¼ Im½S21�). In a noiseless system, there
would be exactly one point for each of the system’s energy
states, and the measurement result would be one of these
points. In reality, noise from circuit elements and from
the finite bandwidth of the incoming microwave smears the
possible outcomes into a distribution centered about the
noiseless point. To determine which energy state a given
outcome corresponds to, these distributions are projected
onto the line connecting the noiseless points for the two
lowest-energy states. For long enough measurement times,
the distributions will be normal. The intersection of two
distributions denotes the dividing line between the two
measurement results: A result to the left of the dividing line
means that the system is in the state whose distribution
peaks to the left of the intersection point. As long as the
peaks of the distributions are well separated, only the tails
overlap, and measurement errors are exponentially small.

FIG. 18. Schematic illustration of the transmon qubit [53]. The
qubit (lower-middle) is embedded inside a coplanar waveguide
(two ground planes with a feed line running through the center).
The short section of feed line traps a standing wave (shown in
red) and can thus be thought of as a resonator. The qubit (in
this case, two superconductors connected by a split Josephson
junction) is capacitively coupled to the resonator and slightly
shifts the resonator’s frequency. A wave traveling down the feed
line will experience an impedance mismatch due to the resonator
or qubit. This will result in a transmission amplitude S21 whose
value depends on the state of the qubit.
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As mentioned in Sec. VIII, if a measurement returns a result
near the dividing line, we can always repeat the measure-
ment to find an unambiguous result.
The separation of the noiseless points is directly propor-

tional to

ωprobe − ωjji
ωjji

; ðG2Þ

and the proportionality depends on the quality factors of the
resonator and transmon. The system is in the dispersive
regime; that is, for resonator-qubit coupling strength g and
detuning δω ¼ Ω0 − ω0 (recall that Ω0 is the transmon
frequency, while ω0 is the bare resonator frequency),
δω ≫ g. As will be shown, ωjji ¼ ω0 to lowest order in
g=δω; therefore, the distance between noiseless points in
the IQ plane is approximately proportional to the frequency
difference between the probe microwave and the effective
resonator frequency [the numerator of Eq. (G2)]. We can
therefore use this frequency separation to estimate the
necessary resolution for a measurement to distinguish the
different MZM states. We proceed by finding the effective
frequencies of the resonator.
We begin with the full read-out Hamiltonian given in

Ref. [43],

Hr ¼ ℏω0a†aþ ℏgðσþaþ σ−a†Þ þ σz

�
ℏ
2
Ω0 þ iγ1γ10δþ

�
þ iγ1γ10δ− þ VM; ðG3Þ

where a is the annihilation operator for a photon in the
resonator, σz describes the qubit degree of freedom, and g is
the transmon-resonator coupling strength.
We define

HMZM� ¼ iγ1γ01ðδ− � δþÞ þ VM: ðG4Þ

Note that this Hamiltonian takes the same form as the
Hamiltonian in Eq. (F14), with Umax → δ− � δþ.
Let λj� be the jth eigenvalue of HMZM� corresponding

to eigenstate jj�i. The λj�’s can easily be deduced from
the results of Appendix F 2. We can write our basis as
jn;�; ji≡ jni ⊗ j�i ⊗ jj�i. Then,

Hrjn;þ; ji ¼
�
ℏω0nþ ℏ

2
Ω0 þ λj;þ

�
jn;þ; ji

þ ℏg
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p X
k

hk−jjþijnþ 1;−; ki;

Hrjnþ 1;−; ji ¼
�
ℏω0ðnþ 1Þ − ℏ

2
Ω0 þ λj;−

�
jnþ 1;−; ji

þ ℏg
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p X
k

hkþjj−ijn;þ; ki:

ðG5Þ

The Hamiltonian can be analyzed using nondegenerate
perturbation theory, and we find the associated energies up
to order ðg=δωÞ2 are

ϵn;þ;j¼
�
nþ1

2

�
ω0þ

δω

2
þg2ðnþ1Þ

X
k

jhjþjk−ij2
δωþλj;þ−λk;−

;

ϵnþ1;−;j¼
�
nþ1

2

�
ω0−

δω

2
−g2ðnþ1Þ

X
k

jhj−jkþij2
δωþλk;þ−λj;−

:

ðG6Þ

Because the system has positive detuning, Ω0 > ω0, we
can assume that the transmon remains in its ground state
(only consider ϵn;−;j). The effective resonator frequency is
given by

ωjji ¼ ϵnþ1;−;j − ϵn;−;j

¼ ω0 − g2
X
k

jhj−jkþij2
δωþ λk;þ − λj;−

: ðG7Þ

Notice that, in an eigenstate, jn;−; ji are mixed with
jnþ 1;þ; ki, but the majority of the weight is still in
jn;−; ji in the regime g ≪ δω and δ� ≪ EM [e.g., the
overlap h1þj2−i are of the order ðδ�=EMÞ2]; thus, it still
makes sense to label the eigenstates and the resonator
frequency by jji.
Therefore, the frequency separation for the three lowest

MZM states, keeping only leading-order terms in g=δω and
first-order terms in δ−=EM, is

ωprobe−ωj0i ¼−ðωprobe−ωj1iÞ

∼
2

ffiffiffi
2

p
g2δþ

δω2−8δ2þ
;

ωprobe−ωj2i∼
2

ffiffiffi
2

p
g2δþ

δω2−8δ2þ

�
1þ8δ2þþ2

ffiffiffi
2

p
δþδωþδω2

2ð8δ2þ−δω2Þ
δ−
EM

�
;

ðG8Þ

where we have used the results of Appendix F 2. Except
near the pole δþ ¼ 2

ffiffiffi
2

p
δω, the second term in parentheses

of ωprobe − ωj2i is Oð1Þ; thus, we see that the j0i and j2i
states are separated in the IQ plane by a factor of
δ−=EM ≪ 1 less than the j0i and j1i states. This can, in
part, be understood by considering the Hamiltonian in
Eq. (G3). The resonator couples to the transmon energy
levels, and the transmon couples to the parity of iγ1γ01. Note
that γ02 and γ

0
3 couple to γ

0
1 through VM. The parity of iγ1γ0,

which distinguishes states j0i and j1i but not states j0i and
j2i, is thus coupled more strongly to the resonator (and has
a greater effect on the transmission amplitude) than the
parity of iγex;1γex;2, which is only coupled to the resonator
through higher-order processes. Since j0i and j2i are
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distinguished by this parity, they have a smaller difference
in their effect on the transmission amplitude.

APPENDIX H: ERROR CORRECTION

We now derive Eq. (75) of Sec. VIII. If 0 < εmeas ≪ ε,
then the probability of having an error after n recovery steps
is the probability of the ancillas having odd parity after n
recovery steps, ε½tu�ð2ε½tu�ð1 − ε½tu�ÞÞn to lowest order,
plus the probability that after j < n steps, the ancillas
had odd parity, but we interpreted the measurement result
incorrectly. The probability that after the initial unitary
evolution the ancillas have odd parity but we measure even
parity is ε½tu�εmeas. The probability that after j > 1 steps the
ancillas have odd parity but we measure even parity is
(dropping the explicit dependence on tu for the moment)

(εmeasð1 − εÞ þ εð1 − εmeasÞ)(2εð1 − εÞð1 − εmeasÞ
þ εmeasð1 − εÞ2 þ εmeasε

2)j−12εεmeasð1 − εÞ
≈ εmeasεð2εÞj: ðH1Þ

The first line corresponds to the probability that after the
initial evolution we measure the ancillas to have odd parity,
the second line is the probability that j − 1 recovery steps
return an odd-parity measurement, and the third line is the
probability that in the final recovery step the ancillas have
odd parity but we measure even parity. The approximation
in the last line keeps only the leading-order term.
Therefore, the leading-order correction from measure-

ment is simply εmeasε½tu�, coming from misinterpreting
the result of the first measurement. We can safely ignore
measurement at the nth recovery step provided that

εmeasε½tu� ≪ ε½tu�(2ε½tu�ð1 − ε½tu�Þ)n; ðH2Þ

which, together with our initial assumption, tells us it is safe
to ignore measurement error when

εmeas ≪ minn∈N ðε½tu�; ð2ε½tu�ð1 − ε½tu�ÞÞnÞ: ðH3Þ

For small ε½tu�, hn½tu�i ≪ 1, and εmeas ≪ ε½tu� is sufficient.

APPENDIX I: REALITY CHECK

The following inequalities must be satisfied:

δω ≫ g ðI1Þ

and

ΔSC;Δwire > EJ;ℏΩ0;ℏω0 ≫ EM;Δ ≫ kBT;Δmin; ðI2Þ

where ΔSC is the superconducting gap of the island, Δwire
is the superconducting gap in the nanowire, and Δ (Δmin)
is the maximum (minimum) Coulomb coupling between

MZMs on the same wire. We satisfy these inequalities with
the physically reasonable frequency estimates

Δwire;Ω0;ω0 ∼ 100 GHz;

EM ∼ 50 GHz;

Δ ∼ 10 GHz;

δω

2π
¼ Ω0 − ω0

2π
∼ 200 MHz;

δþ
2π

;
δ−
2π

∼ 150 MHz;

g
2π

∼ 40 MHz: ðI3Þ

The estimates of Δwire, Ω0, ω0, Δ, δ� are taken from
Appendix F of Ref. [43]. We have chosen δω and g to be
comparable to the values listed in Ref. [53]. EM was chosen
to satisfy the inequality; its actual value is exponentially
sensitive to the length scales of the physical system.
It is worth noting that some of the constraints are

threshold inequalities, while others involve orders-of-
magnitude difference. For example, we need Δwire,
ΔSC > ω0 so that performing the measurement does not
induce bulk quasiparticles, but a factor of 2 is probably
sufficient. On the other hand, the relative phase has
corrections OðΔmin=ΔÞ; thus, we need this ratio to be as
small as possible (a reasonable ratio of Josephson energy to
charging energy for a transmon is EJ=EC ∼ 50 [53],
corresponding to Δmin=Δ ∼ e−20, so we expect errors from
a finite value of Δmin to be negligible). The frequency
estimates above do not take into account these subtleties, so
while it appears that both ω0 and Δwire have the same
frequency estimate, in an actual experiment, one would
carefully track Oð1Þ factors and choose experimental
parameters (such as the appropriate superconductor) to
ensure this is not the case. We also note that, throughout
this paper, we assume EM ≫ Δ, but as noted in Ref. [43],
the results must remain valid when EM and Δ are
comparable because of the topological nature of the
braiding.
We use the values listed in Eq. (I3) to estimate the

measurement time needed to resolve the energy levels of
the MZM system. In the previous section, we found the
magnitude of the frequency splitting of the two possible
measurement outcomes as����ωj0i − ωj1i

2

���� ∼ 2
ffiffiffi
2

p
g2δþ

8δ2þ − δω2
≈ 30 MHz: ðI4Þ

(Note that, for these values of g and δω, the dispersive shift
for a transmon is ∼ðg2=δωÞ ≈ 50 MHz).
We assume that noise in the system results in a normal

distribution centered at the noiseless point for each state of
the MZM system. To distinguish the measurement results
of the resonator’s effective frequency, the width of these
peaks, σ, must be smaller than the separation between the
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two peaks. For the ground and first excited states, we have
the condition

ðωj0i − ωj1iÞ2
8σ2

> 1; ðI5Þ

which implies
ffiffiffi
2

p
σ < 30 MHz. Too large a value of σ

could result in measurement error or could require taking
multiple measurements. The uncertainty relation sets a
lower bound on the measurement time necessary to place a
measurement outcome within one of these Gaussian peaks:

σtmeas ¼
1

2
⇒ tmeas > 20 ns: ðI6Þ

In order for the measurement to resolve all four energy
states of the MZM system, σ must decrease by a factor of
δ−=EM. Thus, tmeas must increase by EM=δ− ∼ 50 (for our
frequency estimates), which sets the lower bound on the
measurement time around 1 μs.
The bound on the measurement time does not appear to

be a fundamentally limiting factor; for comparison, experi-
ments have reported quasiparticle poisoning times ranging
from 10 ms to 1 minute [39,74]. Note that the usual
decoherence times (relaxation time T1 and decoherence
time T2) that affect superconducting qubits do not apply
here, as we simply want the transmon to remain in its
ground state. The relevant source of error is instead the
thermal population of the excited state, which for a system
at 20 mK is between 5% and 10% [73].
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