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There are two general requirements to harness the computational power of quantum mechanics: the
ability to manipulate the evolution of an isolated system and the ability to faithfully extract information
from it. Quantum error correction and simulation often make a more exacting demand: the ability to
perform nondestructive measurements of specific correlations within that system. We realize such
measurements by employing a protocol adapted from Nigg and Girvin [Phys. Rev. Lett. 110, 243604
(2013)], enabling real-time selection of arbitrary register-wide Pauli operators. Our implementation
consists of a simple circuit quantum electrodynamics module of four highly coherent 3D transmon qubits,
collectively coupled to a high-Q superconducting microwave cavity. As a demonstration, we enact all seven
nontrivial subset-parity measurements on our three-qubit register. For each, we fully characterize the
realized measurement by analyzing the detector (observable operators) via quantum detector tomography
and by analyzing the quantum backaction via conditioned process tomography. No single quantity
completely encapsulates the performance of a measurement, and standard figures of merit have not yet
emerged. Accordingly, we consider several new fidelity measures for both the detector and the complete
measurement process. We measure all of these quantities and report high fidelities, indicating that we are
measuring the desired quantities precisely and that the measurements are highly nondemolition. We further
show that both results are improved significantly by an additional error-heralding measurement. The
analyses we present here form a useful basis for the future characterization and validation of quantum
measurements, anticipating the demands of emerging quantum technologies.
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I. INTRODUCTION

Building on impressive progress in control [1,2], meas-
urement [3,4], and coherence [5,6], experimental quantum
information science is addressing increasingly complex
challenges, such as quantum error correction [7–12] and
quantum simulation [13,14]. These applications frequently
call for measurements of multiqubit properties, which can
be qualitatively different from one-qubit measurements.
Crucially, measurements of correlations, rather than com-
plete state information, require a more refined concept of
nondemolition. Strong single-qubit measurements project
the system into a one-dimensional and trivial subspace, and
nondemolition is guaranteed if repeated measurements
agree. This is only a necessary, but not sufficient, condition

for measurements of correlations, which must project the
system into a multidimensional subspace while maintaining
coherence within that subspace—an idea with no one-qubit
analog. These measurements must be accomplished such
that we learn only the desired information and no more.
Great care is required to engineer this intricate interaction
of a complex and delicate quantum system with the noisy
and dissipative outside world.
In principle, these measurements can be constructed from

a set of primitives consisting of one-qubit measurements and
a universal set of one- and two-qubit gates. In practice,
building up these circuits is not as simple as stringing these
primitives together; decoherence and residual interactions
play an increasingly important role. Residual interactions are
of particular concern as they lead to correlated and coherent
errors, can scale badly as additional qubits are added, and
are potentially catastrophic for quantum error correction
[15–17]. These challenges raise two questions: how do we
design hardware and software to directly implement multi-
qubit measurements while addressing these concerns, and
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how do we reasonably characterize these measurements
given different requirements?
Nondemolition multiqubit measurements have been

implemented in a variety of architectures. Impressively,
measurements of three- and four-qubit properties have
been demonstrated in superconducting and ionic systems
[18–21]. Quantification of these measurements has gen-
erally consisted of measurements of simple eigenstates of
the intended measurement operator. Characterization of a
multiqubit measurement process, including the backaction,
has been reported for ZZ measurements in two-qubit
systems, via conditioned process tomography in super-
conducting qubits experiments [22,23]. Generally, the
precise implementation of measurements within larger
quantum systems is an important direction for further
study. Superconducting qubits, our chosen platform, have
strong electromagnetic interactions that lead to fast and
high-fidelity control and single-qubit measurement.
However, without care in engineering their environment,
these same interactions can make these qubits vulnerable to
cross talk and decoherence [11,23–25]. Among other
adverse effects, this cross talk is also likely to pollute
measurements (and through backaction, the system) with
extraneous information.
With these issues in mind, in this work we demonstrate

a novel 3D circuit quantum electrodynamics (cQED)
architecture that exhibits direct qubit-qubit couplings sig-
nificantly smaller than the qubit linewidths. Instead, inter-
actions among our highly coherent and simple qubits are
mediated by a common superconducting cavity. We use
these interactions to engineer measurements of multiqubit
properties via an ancilla qubit, adapting a proposal by Nigg
and Girvin [26]. We demonstrate this protocol with a 3þ 1
qubit system by performing all seven nontrivial three-qubit
subset-parity measurements, Oi ⊗ Oj ⊗ Ok∶Ox ∈ fI; Zg,
excluding III. This set is of particular interest: when
combined with single-qubit rotations, it generates the
measurements of all possible product operators, which
include those needed for stabilizer-based quantum error
correction [8].
No single number fully characterizes a measurement,

and the need for more sophisticated assessment is amplified
for larger systems as they admit richer phenomena.
Accordingly, we characterize each demonstrated measure-
ment with three experiments and discuss several figures of
merit. First, we perform an analysis similar to the meas-
urement of computational states and report the assignment
fidelity. Second, we introduce and employ a novel form of
quantum detector tomography [27] to fully extract the
positive operator valued measure (POVM) [28] that
describes the realized detector. We do several analyses
based on these results, introducing two fidelity measures
and a complementary measure we call the specificity.
Third, we consider the backaction induced by the meas-
urement and reconstruct the measurement process maps

using conditioned process tomography. We further intro-
duce two analogous fidelity measures for the measurement
process. Additionally, many error mechanisms, such as
relaxation, leave a distinctive signature, and we also report
results heralded by an additional measurement confirming
success. This may prove to be a useful feature, as heralded-
success gates can be efficiently used for universal quantum
computation [29–31].

II. IMPLEMENTING THE MEASUREMENT
APPARATUS

Our system is centered around a high-Q superconducting
cavity (hereafter, the “cavity” and with resonance fre-
quency fc), which is used mechanically as the isolating
package for our module and quantum mechanically as an
ancillary pointer state. Four 3D transmons (with jgh↔ jei
transition frequencies ffig) couple to this cavity, with
qubit-cavity dispersive interaction rates fχig and qubit-
qubit longitudinal interaction rates fχijg. The simplified
undriven Hamiltonian is given by

(a)

(b)

(c)

FIG. 1. The experimental sample consists of a central λ=4 stub
resonator [33], machined out of 6061 aluminum, with a lifetime
of 72 μs, consistent with our expectation of the limitation due to
surface losses. Four sapphire chips enter the cavity radially, each
of which supports a 3D transmon and a quasiplanar coaxial λ=2
resonator [34], patterned in the same lithographic step. All four
λ=2 resonators have undercoupled input ports for fast individual
qubit control. One resonator has a low-Q (1=κ ¼ 60 ns) output
port that leads to a Josephson parametric converter (JPC) [3]. This
enables high-fidelity (98%) readout of the directly coupled qubit,
which we designate as the ancilla. The other three qubits are
designated as the register, and their associated three resonators
are unused. All qubits share essentially identical capacitive
geometry, but differing Josephson energies space the qubits by
roughly 400 MHz. This results in dispersive shifts fχig ¼
f1.651; 1.194; 0.811; 0.613g MHz and fχijg generally on the
order of 1 kHz. Further Hamiltonian and coherence details are in
the Supplemental Material [32]. The cavity has an undercoupled
input port, used for conditional and unconditional displacements,
and a diagnostic output (which is also undercoupled and is not
depicted). Panels (a) and (b) depict top view and side view
schematics, respectively. Not to scale. (c) False-color top view of
the physical device with outlines for clarity.
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H=h ¼
X

i

fijeiheji þ fca†a −
X

i

χijeihejia†a

−
X

i;j≠i
χijjeeiheejij; ð1Þ

where we truncate the bosonic modes of the transmons to
the two lowest energy levels. A more comprehensive
Hamiltonian is given in the Supplemental Material [32].
Our device, depicted and described in Fig. 1, provides
simultaneously strong qubit-cavity interactions and weak
qubit-qubit interactions with χi=χij ≈ 103. This architecture
also admits independent drive and readout channels, lead-
ing to minimal classical cross talk in both control and
measurement. In this work, we utilize the readout channel
(hereafter, the “readout resonator”) of only one qubit,
which serves as the ancilla. The other three qubits we
collectively refer to as the register. Our protocol uses the
qubit-cavity interactions to map a property of the register
state (e.g., ZZZ or ZZI) onto the ancilla via manipulation
of the cavity state.
In the following, we provide a general overview of our

three-step protocol. For more details, see Fig. 2. First, the
cavity mode is displaced from the vacuum. It then acquires
phase conditionally on the qubit states due to the dispersive
interaction. This evolution is qualitatively akin to a con-
tinuous and parallel CPHASE interaction. As the cavity
accumulates phase, we build the measurement operator

qubit by qubit by using pairs of X gates, analogous to a
Hahn echo. If we want an I in the measurement operator for
a given qubit, i.e., not measuring it, we can perform a “full
echo” decoupling sequence and completely average out the
phase contribution of a particular qubit unconditionally
(qubit 2 in Fig. 2). On the other hand, if we want a Z in the
measurement operator for a given qubit, then we want it to
contribute a specific conditional phase angle to the cavity
state. We may either allow the natural dispersive evolution
to achieve this target conditional phase (qubit 1 in Fig. 2) or
precisely tune this contribution by applying a “partial echo”
sequence (qubit 3 in Fig. 2).
In that manner, measuring a qubit, or not, can be chosen

by the timing of echoing gates. When all of the register
qubits being measured give equal phase contributions, the
phase of the cavity is a natural meter for the number of
excitations in the measured subspace. This equalization can
be considered as a stroboscopic erasure of which-path
information, resulting in entanglement between a selected
multiqubit property of the register and the phase of the
cavity. The meter can go beyond excitation counting to map
other operators; for example, if the accumulated phase per
qubit is π, the cavity state measures register parity regard-
less of the size of the register. As this phase angle is set by
the smallest dispersive shift of the measured qubits, we note
that the total time of this protocol does not change as more
qubits are added.

(a) (b) (c) (d)

FIG. 2. Circuit diagram for ZIZ measurement. Steps Xπ refer to one-qubit rotations around the X axis by π radians. Steps X0
π indicate

that the pulses are spectrally narrow and are roughly selective on having zero photons in the cavity. Steps Di represent unconditional
displacements of the cavity. The meters are measurements of the ancilla via the readout resonator, which is not itself depicted. The
ancilla has the largest dispersive shift and the register qubits are then numerically ordered (from top to bottom) such that χ1 < χ2 < χ3.
Prior to this procedure a series of measurements is applied to postselectively prepare the ground state; see the Supplemental Material for
details [32]. (a) The algorithm begins with a displacementD1 to create a coherent state of n̄ ¼ 5 photons into the cavity, which acquires a
phase shift θ in a time T ¼ T5 − T0 ≈ θ=ð2πχ1Þ conditionally on the state of qubit 1 (blue line). For measurements of one- and two-qubit
properties, θ ¼ 2π=5. In this example, we perform a full echo on the second qubit (yellow line) by performing two unconditional X gates
separated in time by T4 − T1 ≈ T=2. The third qubit (red line) would contribute a conditional phase shift of 2πχ3T > θ. We reduce this
to θ by performing two Xπ gates separated by T3 − T2 ≈ θðχ−11 − χ−13 Þ=2. At T5, we performD2 to shift the odd two-parity coherent-state
pointer to the zero-photon state. Note that the overlaps between the even two-parity pointer states and the zero-photon state are
exponentially suppressed. (b) We map this photon number information onto the ancilla qubit with a X0

π gate, taking advantage of the
well-known number-splitting phenomenon [35]. As the cavity states are separated by ≈6.5 photons, we employ a faster, approximately
selective gate, 300 ns in duration. Xπ gates on the register are centered on this pulse in time to echo away the cavity evolution during this
step. (c) To disentangle the cavity pointer states, we essentially invert the pulse sequence of (a), returning the cavity to the vacuum state.
We must also echo the ancilla, as it may now be excited. This results in a total gate length of 970 ns. Subsequently, we measure the
ancilla qubit. (d) This optional step determines if there are residual photons in the cavity. Since many types of errors result in residual
photons, a subsequent photon-number-selective rotation and measurement of the ancilla heralds these errors. When measuring three
qubits (e.g., ZZZ), we choose θ ¼ π, so that the cavity states entangled with the one- and three-excitation manifolds recohere.
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In the second step [Fig. 2(b)], the ancilla qubit samples
whether or not the cavity has acquired some chosen phase.
An unselective displacement shifts one of the cavity states
to the vacuum, converting phase information into photon
number-state information. A spectrally narrow pulse then
excites the ancilla if and only if there are zero photons in the
cavity. These first two steps are a natural multiqubit
extension of the ideas used in the qcMAP gate [36], which
maps the state of the transmon qubit onto the phase of a
coherent state in a harmonic oscillator. With the chosen
property of the register now imprinted onto the ancilla
state, we could measure the ancilla directly, but if
we hope for the measurement to be nondestructive, we
must first disentangle the cavity. In the last step [Fig. 2(c)],
we remove this residual entanglement, unconditionally
resetting the cavity to the vacuum, by essentially inverting
(or “echoing”) the unitary dynamics of the first step.
Finally, we use this composite gate to enact a multiqubit
measurement by interrogating the readout cavity, which is
sensitive only to the ancilla state.
We optionally append an additional manipulation and

measurement to verify that the cavity has been reset to the
vacuum [Fig. 2(d)]. This condition is not achieved when we
have experienced errors due to qubit or cavity relaxation, as
well as certain effects from higher-order terms in the
Hamiltonian. While our implementation utilizes a 3D
circuit QED system, the protocol is more general, relying
only on common dispersive shifts to a harmonic oscillator.
Like any precise operation in a large Hilbert space, it also
benefits significantly from high coherence and low residual
couplings, as achieved in our device. Any implementation
that can realize a similar Hamiltonian is also suitable for
this measurement protocol.

III. MEASUREMENT CHARACTERIZATION

With these measurements manufactured, we turn to the
problem of describing them quantitatively. This endeavor
does not have a one-size-fits-all resolution: different
applications have differing needs, requiring experiments
and analyses of differing experimental complexity in the
system dimension d. Accordingly, we attempt to anticipate
many potential desiderata, and perform several analyses on
the results of three separate experiments. The first two
experiments examine the detector alone, neglecting back-
action on the input state, and the third goes on to examine
the measurement process entirely.
The first and simplest analysis provides a partial char-

acterization of the detector requiring OðdÞ data points. In
Sec. III A, we explore assignment fidelity: How much
desired information are we getting?
We expand on this with a full characterization of the

detector and extract several figures of merit [Oðd2Þ data
points]. Section III B examines quantum detector tomog-
raphy: What is the POVM that describes our detector?
What are we actually learning? In Sec. III C, we present

specificity: What is the maximal measurement contrast
along any axis? And a complementary question: How close
is this maximal axis to the desired axis? In Sec. III D, we at
look at detector fidelity: How close is our POVM to the
desired measurement?
We additionally may care a great deal about the back-

action of the measurement, a consideration crucial for
stabilizer-based quantum error correction. For this, we
perform a third experiment to characterize the measurement
process and extract pertinent figures of merit based on the
quantum instrument formalism [37–39] (Oðd4Þ data points).
In Sec. III E, we present measurement process tomography:
What makes the detector click and what happens to the state
after measurement? And in Sec. III F, we examine quantum
instrument fidelity: How close are the measurement proc-
esses, inclusive of backaction, to the desired measurement?
As the quantum instrument encompasses the detector, a

discrepancy between the quantum instrument and detector
fidelities provides an assessment of the undesired back-
action on the system.
In order to extract the detector and quantum instrument

fidelities, we describe our measurements as channels that
introduce the detector as a classical state in an additional
Hilbert space. We provide more details on this interpreta-
tion as these quantities are introduced. This treatment
allows us to appropriate commonly used figures of merit
for quantum processes and apply them to measurements.
Following the reasoning in Gilchrist et al. [40], for each
analysis we report the two sets of measures: first, the J
fidelity, which is derived directly from the channel
Jamiołkowski matrix, and second, the S fidelity, which
is a conservative measure based on the worst-case input
state. The J fidelities are similar to measures given in
Refs. [41,42]. We provide the ranges for all of these results
in the main text, and provide tables of the full results in the
Supplemental Material [32]. In addition to the fidelities, we
also provide the analogous J and S distances, the latter of
which is commonly called the diamond distance [28,43].

A. Assignment fidelity

A simple way to define the performance of a binary
measurement is to assume the model: i.e., how sensitive is
our measurement to the desired quantity (e.g., ZIZ)? To
answer this, we prepare states of known ideal measurement
outcome, measure, and fit to find the correlation between
the state preparation and experimental outcomes. This
yields a contrast and an offset, which can also be interpreted
to tell how often we get the expected result. As an example,
for a simple Z measurement of a qubit, it is common to
prepare the computational (j0i and j1i) states and to report
how often the measurement outcomes agree with the state
preparation. This is often referred to as assignment fidelity.
The extension to multiqubit subset-parity measurements
typically involves preparations of d computational states;
see, e.g., Ref. [19].
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We show the results for our measurements with a similar
but slightly more illustrative experiment in Fig. 3. We
prepare a larger number of states than required, but the
result is essentially the same as we fit the data to our
expected correlation. We find contrasts well over 90% for
most of our measurements, and in some cases approach the
limit set by our ancilla readout, showing that our detectors
are highly sensitive to the operator we expected.
Assignment fidelity is a useful diagnostic tool as it is
quickly measured and has a simple interpretation; however,
it provides limited information. As an exaggerated exam-
ple, if you expected a Z-sensitive detector, this present
analysis would give identical results if used to examine

either a random number generator or a perfect X-sensitive
detector. Errors like the latter, if undiscovered, would result
in misleading, skewed state estimation, but are correctable
with unitary control. A simple noisy reduction of contrast
has neither of these properties.

B. Quantum detector tomography

More generally, we may ask of a binary-outcome
detector: for what inputs does it “click”? In quantum
mechanics we describe these detector-outcome probability
distributions with the POVM formalism. The measurement
is represented as a set of operators fEigwith the probability
of measurement outcome i equal to Tr½Eiρ� given an input
state ρ. As POVMs are complete, we may fully describe a
binary POVM with one operator: fE0; E1g≡ fE; I − Eg.
To characterize the detector more rigorously, we prepare

a complete or overcomplete set of known input states and
record the measurement outcome distribution, or click
probability. We reconstruct E from these data with a linear
inversion. This procedure is called quantum detector
tomography [27,44]. It is essentially identical to traditional
state tomography, differing only in the prior assumptions:
rather than assuming we know the measurement operator,
as we do in state tomography, we assume knowledge of the
input state. This knowledge is imperfect, but we note that
our ground state preparation is better than 99%, and our
one-qubit gate errors are less than 0.2%, as determined
from randomized benchmarking [45]. Our implementation
of detector tomography is the first that we know of outside
of photonic experiments for system dimensions greater than
two, and the first we know of at all in superconducting
systems. We also note that a weaker, diagonal form of
detector tomography that assumes sensitivity only to I and
Z correlations, akin to our assignment fidelity analysis, is
often implicitly used to correct for measurement errors in
state tomography [46].
For the seven demonstrated measurements, fZZZ; ZZI;

ZIZ; IZZ; ZII; IZI; IIZg, we reconstruct the relevant
measurement operators, which are ideally projectors onto
a subspace of definite measurement outcome. Several
examples are shown in Fig. 4, and we see that the results
are close to the expected operators. We can also distill this
full measurement operator into more easily interpretable
figures of merit.

C. Specificity

What is the maximum information our measurement gains
about any quantity? Or from another point of view: Is our
detector infidelity due to noise and simple lack of contrast, or
is it because our detector is measuring the wrong quantity?
Furthermore, is our detector biased—given a completely
mixed input state, is one measurement outcome more likely
than another? This analysis is general to all strong binary
measurements, but here we assume for simplicity that the
ideal measurement is of a target Pauli operator σT.

(a)

(b) (c) (d)

(e) (f) (g)

FIG. 3. Demonstration of parity measurement outcomes. For all
seven nontrivial three-qubit subset-parity operators, we show
ancilla excitation probabilities as a function of initial register
state. In each panel, the three axes specify the initial state of each
register qubit, parametrized by rotation angle about the X axis
after initialization in the ground state. We depict three plane cuts
through that parameter space. The color scale indicates the
probability to find the ancilla in the excited state. Panel (a) shows
measurement operator ZZZ. The second row (b)–(d) shows two-
qubit parity measurements. It is easily seen that the outcome is
independent of the preparation of one qubit. The third row (e)–(g)
shows single-qubit measurements, reflecting sensitivity to only
one preparation axis. We extract assignment fidelities from these
data of 89%–95% that improve to 94%–97% with postselection
on a success herald.

IMPLEMENTING AND CHARACTERIZING PRECISE … PHYS. REV. X 6, 031041 (2016)

031041-5



We express E in the Pauli basis (which fully spans the
space of n-qubit observables), as in Fig. 4, leading to a
vector of Pauli coefficients. One dimension corresponds to
the identity axis, one to the desired operator, and the rest to
the various other Pauli operators. We can then find a new
basis that rotates this vector space, leaving the identity and
σT axes invariant, such that only one other nonzero
coefficient in the measurement vector remains. This addi-
tional coefficient cO corresponds to an orthogonal rotated
Pauli σO,

E ¼ cII þ cTσT þ cOσO: ð2Þ

The coefficients of this expansion are easily interpreted:
a deviation of cI from the ideal value of 0.5 describes the
bias of the detector, 2cT represents the maximum possible
gain of information about the quantity we wish to measure,
and 2cO represents the magnitude of the potential unde-
sired information gain. Note that E must be a positive
matrix, which yields constraints on cT and cO relative to the
bias term cI; e.g., a detector that always clicks cannot yield
useful information. The infidelity corresponding to meas-
uring along the wrong axis can be considered as analogous
to coherent errors for standard processes, since a unitary
rotation of the system prior to measurement would remove
it. This analysis prescribes this correcting unitary exactly.
In some cases the correction may be separable into single-
qubit operations, but will not be true in general, particularly
for architectures with high residual couplings.

This formulation leads naturally to a description in terms
of angles between vectors, and we can quantify how well
we are measuring along the correct axis with an angle for
the “specificity” of the measurement, θs ≡ arctan ðcO=cTÞ.
We find our measurements to be within 1°–5° of the target
operator, indicating that our measurements are not yielding
significant information about unwanted quantities. In
addition, we see that our detectors have very little bias.
Returning to the initial question of maximal information

gain, we recast Eq. (2) as E ¼ cII þ cmaxσmax, where the
operator σmax is defined as the axis where the measurement
gains the most information. The coefficient cmax ¼ ðc2T þ
c2OÞ1=2 directly quantifies the total information gain along
this axis. As might be expected from our small θs, we find
cmax ≈ cT for our measurements.

D. Detector fidelity

Generally, how similar are two detectors? We extend this
standard POVM formalism by describing the detector as
a quantum channel [37]. This detector channel takes a
quantum state of the register ρr as input and yields a
diagonal density operator ρd with entries that represent the
detector-outcome probabilities,

Edet∶ ρr↦ρd ¼
X

i

Tr½Eiρr�jiihijd: ð3Þ

The output state of the detector ρd is represented as a
density operator but should be understood as a container for

FIG. 4. Results of quantum detector tomography for three selected operators, using the unheralded data sets. We expand the first
element E of each POVM in three-qubit generalized Pauli operators σi, so that E ¼ P

iciσi, and show the magnitudes of the coefficients
of that expansion. For measurement of a Pauli operator, each should have two nonzero bars (amplitude 0.5) corresponding to the identity
and the operator of the measurement, σm. Deviations of the identity bar from 0.5 indicate that the meter has some bias in the detector-
outcome distribution. When the amplitude of the σm bar is less than 0.5, it indicates the measurement does not have full contrast along
the desired axis. Finite values of the other bars indicate that our measurement has undesired sensitivity to an extraneous property. The
POVM J fidelities for the illustrated operators are 95%, 94%, and 91%, respectively. The other four realized measurement operators, as
well as reconstructed POVMs from the success-heralded data set, are provided in the Supplemental Material [32].
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a purely classical probability distribution. It represents the
recorded measurement outcome, not the state of our
physical ancilla transmon. The detector channel Edet is a
completely positive trace-preserving map that can be
described with nonsquare Kraus operators. The channels
relevant to the present experiment act on an eight-
dimensional (three-qubit) register and yield a two-
dimensional (binary-outcome) classical detector state.
We compare the experimental detector channels to the

ideal processes with two figures of merit. We start with the
J fidelity,

F JðEð1Þ; Eð2ÞÞ≡ FTrðJð1Þ; Jð2ÞÞ; ð4Þ

where JðiÞ is the Jamiołkowski matrix representing the

process EðiÞ and FTrðρ; σÞ≡ ðTr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1=2σρ1=2

p
Þ2. For our

measurements, we calculate detector J fidelities between
91% and 95%, which improve to 95%–98% with post-
selection on the success herald. This error detection is
efficient as the fraction of experiments discarded is similar
to the improvement in fidelity. These measurements
approach the limit set by our ancilla readout, 98%. The
detector J fidelity can be similar to assignment fidelity,
but is more general. It is applicable to measurements with
more than two outcomes and allows for comparison of less
than full-contrast operators. Unlike some comparable
figures of merit, detector J fidelity does not require
renormalization of the POVM operators, which may dis-
card information.
For standard nonmeasurement processes, the worst-case

performance is often more important than the J fidelity, and
accordingly, we also report the S fidelity [40]. This measure
provides a conservative bound on the detector performance,
including any possible degradation when the measurement
is applied to a subspace within a larger, entangled quantum
system. This S fidelity applied to the detector process is
given by

F detðEð1Þ
det ; E

ð2Þ
detÞ≡min

ρra
FTr½Eð1Þ

det ⊗ IðρraÞ; Eð2Þ
det ⊗ IðρraÞ�;

ð5Þ

where ρra represents a joint pure state jψihψ jra of the
register and an ancillary, potentially entangled space, e.g.,
the rest of a quantum computer. We emphasize that the
states resulting from the process and compared on the right-
hand side are states of the detector and ancillary space. In
the special case of two-outcome POVMs, we believe the
state that reveals the worst-case performance will always be
separable, indicating that F det is inherently stable. In the
Supplemental Material [32], we give a proof of this in the
case of the two-outcome detector S distance, and we have
numerical evidence suggesting that the two-outcome detec-
tor S fidelity has the same property. We stress that the
minimization is still useful, as it yields the worst-case

performance. Additionally, it can be easily shown that the
F det reduces to a minimization of the (square of the)
classical fidelity of the probability distribution of the
detector outcomes. The minimization over input states is
performed using a semidefinite programming package in
MATLAB [47,48]. With this measure, the seven detector
fidelities we report are between 88% and 95%, which
improve to 93%–97% with postselection on the success
herald. We see that for our realized detectors the J fidelities
are 1%–3% better than the worst-case performance.

E. Measurement process characterization

We have now characterized the behavior of the detector,
but what happens to the input state after a measurement
result is recorded? What is the backaction of registering a
click or no click? Quantum error correction, for example,
demands that the measurements must be highly quantum
nondemolition in the sense of a von Neumann measure-
ment. When an ancilla measurement indicates an outcome,
e.g., that the register has positive ZIZ, the quantum process
performed is ideally a projector onto the specified sub-
space. One method of analysis is to describe this process by
two trace-nonpreserving maps on the register Hilbert space,
fF0; F1g. We quantify these maps by performing outcome-
dependent quantum process tomography, which has been
previously demonstrated for two-qubit measure-
ments [22,23].
This reconstruction begins by preparing a complete set

of initial register states. For each initial state, we perform
our measurement, record the outcomes, and perform state
tomography conditioned on those outcomes. We employ
a maximum likelihood estimation (MLE) for each state
tomogram, then weight the outcome states by the prob-
ability that each measurement outcome is observed. This
subtlety leads to individually trace-nonpreserving maps.
To extract the process, we then perform an additional
MLE relating the input states to both sets of output states,
constraining the full measurement channel to be positive
and trace preserving. It would be preferable to perform a
single MLE, rather than two, but this problem is com-
putationally imposing in the three-qubit case. The
sequential approach has the additional benefit of
allowing us to recalibrate drifts in our tomographic
measurement operator throughout the several hours of
data acquisition.
The reconstructed conditioned maps for the ZZZ

operator are partially shown in Fig. 5. Ideal measurements
of generalized Pauli operators have four real elements in the
χ matrix representation. Each of these has amplitude 1=4,
with positive diagonal elements and off-diagonal elements
that change sign between the two outcomes. We find good
qualitative agreement between this and our experimental
data with a small decrease in contrast, indicating that
the backaction is close to the ideal von Neumann
projections.
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F. Quantum instrument fidelity

How can we quantitatively compare the performance of
our experimentally reconstructed measurement process to
the ideal measurement? We answer this question by
representing the full measurement process as a quantum
instrument [37], an approach that parallels our previous

treatment of POVMs as channels and shares many of its
advantageous properties. A quantum instrument describes a
single channel that takes in a quantum state of the system
and outputs both a quantum state of the system as well as a
detector-outcome state. This detector-outcome state is the
same as in Eq. (3) and signals the conditioned backaction
induced on the system input state. For a two-outcome
measurement, the quantum instrument can be written as

EQI∶ ρr↦F0ðρrÞ ⊗ ρ0d þ F1ðρrÞ ⊗ ρ1d; ð6Þ

↦
ideal

Π0ρrΠ0 ⊗ ρ0d þ Π1ρrΠ1 ⊗ ρ1d; ð7Þ
where ρr refers to the input state in the register space, ρ0ð1Þd
refer to diagonal states in the detector subspace
ðj0ih0jd; j1ih1jdÞ, and Π0ð1Þ are projectors in the register
space onto orthogonal measurement outcomes. Similar to
our previous analysis of the detectors (without backaction),
we derive fidelity measures for these quantum instrument
channels. The J fidelities for quantum instrument channels
follow from Eq. (4) with the appropriate quantum instru-
ment maps and are calculated between 67% and 75%.
These improve to 79%–83% with postselection on the
success herald. We also report the S fidelity for these
channels,

FQIðEð1Þ
QI ; E

ð2Þ
QI Þ≡min

ρra
FTr½Eð1Þ ⊗ IðρraÞ; Eð2Þ ⊗ IðρraÞ�;

ð8Þ
following the same notational caveats as Eq. (5).
For our experimental results, we calculate FQI of

57%–64%, which increase to 69%–76% with postselection
on the success herald. We see that the worst-case perfor-
mance is as much as 10% worse than the J-fidelity
measure. Note that for the success-heralded data, we
include the requisite selective rotation and measurement
in the definition of the process, which exposes the register
to another 1.5 μs of decoherence, though we do employ a
Hahn echo on all qubits in the register. This check could be
made significantly faster with an additional, dedicated
qubit with a large dispersive shift.

IV. DISCUSSION

We show that the implemented multiqubit measurements
behave as intended: they are highly specific to the
desired operator and have detector fidelities that approach
the bound set by our single-qubit measurements.
Additionally, we see that the backaction of the measure-
ment is indeed close to the ideal, but, unsurprisingly, it is
worse than our measurement contrast.
The performance we demonstrate here is limited by

several effects. The largest source of infidelity for both the
detectors and processes is cavity photon loss, which can be
greatly reduced by moving to high-purity etched

FIG. 5. Three-qubit conditioned quantum process tomography.
Experimental quantum process tomography results for (a) even
and (b) odd outcome process maps for the three-parity measure-
ment, ZZZ. We express our process tomography in the Pauli basis
where the conditioned processes can be described using χ matrix

notation: F0ð1ÞðρrÞ ¼
P

ijχ
0ð1Þ
ij σiρrσj, where fσg are the three-

qubit generalized Pauli operators. Here, we show only the corners
of these process matrices, all other parts are visually indistin-
guishable from noise. Data on the full reconstruction, including
of the other six measurement operators, are given in the
Supplemental Material [32]. The ideal even and odd outcome
processes are projectors Π0ð1Þ ¼ ðIII � ZZZÞ=2, and the corre-
sponding χ matrices have a simple form consisting of only four
real components in the generalized Pauli basis, and this ideal form
is overlaid with wire frame bars. Note that we plot only the real
components as all experimental imaginary components are
visually indistinguishable from noise. We calculate the J fidelity
(as defined in Sec. III F) for this operator to be 80%.
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aluminum. This is known to give a factor of 10–20
improvement in quality factor in similar systems [33],
and in similar samples has also increased qubit relaxation
times [49]. The second-largest imperfection in the process
performance is the dephasing of one of the register qubits,
which displays a significant low-frequency beat in Ramsey
experiments during this experimental run. Both detector
and process suffer from the low T1 of only 20 μs for the
ancilla, which is limited by the Purcell effect and which
may be improved with a Purcell filter [34]. The next-largest
imperfections for the detector performance are the relax-
ation rates of the register qubits. Additional significant
sources of error are the finite cavity anharmonicity and the
difficulty in doing photon-number unconditional X gates
when photons are present. These two effects, as well as
other coherent errors, may be circumvented by engineering
a sequence via optimal control techniques [50], which is
feasible for small modules that have weak interactions with
their environment. The process J fidelities we obtain are
consistent with numerical simulations [51] that include all
known error sources.
We are unable to directly compare our results to

preexisting results in the field, but the most related
experimental work [22,23] and theoretical work [41,42]
cite fidelity measures that are similar to our quantum
instrument J fidelity (or its square root). We reiterate that
our quantum instrument J fidelities are as much as 10%
higher than our quantum instrument S fidelities. In many
cases, the worst-case performance is of greater importance,
as in fault-tolerance considerations. Indeed, we believe that
it may be interesting to incorporate FQI, or the analogous
quantum instrument diamond distance, into threshold
calculations, since it directly provides a conservative
performance estimate of the operation central to stabi-
lizer-based error correction. As a more “compiled” oper-
ation, the full measurement may be more sensitive to
nonidealities than concatenated fidelity estimates of smaller
one- and two-qubit operations.
A more traditional ZZZ measurement would consist of

three CNOT gates and a single-qubit measurement of an
ancilla. Measures derived from the quantum instrument not
only take the performance of those simple operations into
account, but also account for negative effects due to
decoherence and residual interactions among the rest of
the qubits. This includes the duration of the ancilla
measurement, which by itself often has unintended and
detrimental effects on other qubits in some systems. The
work of incorporatingFQI into threshold calculations is not
within the scope of this result; however, we believe that
calculation of thresholds that are more inclusive of exper-
imentally observed nonidealities may become a useful
area of investigation. Though this analysis requires
reconstruction of the process, it may not be overly
burdensome for several-qubit stabilizers if compressed
sensing techniques are employed [52].

V. CONCLUSION

We demonstrate a versatile quantum gate ideally suited
to our highly coherent 3D cQED architecture and use it to
enact high-fidelity and specific multiqubit measurements. It
is possible to realize strong interactions between fixed-
tuned qubits in this system, despite having low direct
couplings, and there are clear pathways to further improved
performance. As quantum systems continue to grow in
complexity, it will be crucial to build systems with low
cross talk and residual interactions like the one we
demonstrate here. We also present several new approaches
to analyze and characterize measurements, including two
new conservative measures to quantify the fidelity of
detectors and measurement processes. Complex measure-
ments within larger systems will become increasingly
important, and the figures of merit we introduce in this
work may prove to be useful tools to benchmark their
performance.
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