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The half-filled Landau level is expected to be approximately particle-hole symmetric, which requires an
extension of the Halperin-Lee-Read (HLR) theory of the compressible state observed at this filling. Recent
work indicates that, when particle-hole symmetry is preserved, the composite fermions experience a
quantized π-Berry phase upon winding around the composite Fermi surface, analogous to Dirac fermions
at the surface of a 3D topological insulator. In contrast, the effective low-energy theory of the composite
fermion liquid originally proposed by HLR lacks particle-hole symmetry and has vanishing Berry phase.
In this paper, we explain how thermoelectric transport measurements can be used to test the Dirac nature of
the composite fermions by quantitatively extracting this Berry phase. First, we point out that longitudinal
thermopower (Seebeck effect) is nonvanishing because of the unusual nature of particle-hole symmetry in
this context and is not sensitive to the Berry phase. In contrast, we find that off-diagonal thermopower
(Nernst effect) is directly related to the topological structure of the composite Fermi surface, vanishing for
zero Berry phase and taking its maximal value for π Berry phase. In contrast, in purely electrical transport
signatures, the Berry phase contributions appear as small corrections to a large background signal, making
the Nernst effect a promising diagnostic of the Dirac nature of composite fermions.
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I. INTRODUCTION

In contrast to the incompressible fractional quantum Hall
states at filling fractions ν ¼ ½p=ð2pþ 1Þ�, the half-filled
Landau level (LL) exhibits a compressible statewith nonzero
longitudinal conductance. The origin of this compressible
state is naturally explained by the (CF) picture fromHalperin,
Lee, and Read (HLR) [1], in which electrons bind two flux
quanta apiece, becoming composite fermions [2] that feel
zero average orbital magnetic field and form a metallic state
with a composite Fermi surface. This composite Fermi-liquid
(CFL) state successfully captures many aspects of the
experimental phenomenology of the ν ¼ 1=2 state in
GaAs. On the other hand (ignoring, for the moment, LL
mixing), the half-filled LL can be equivalently described by
half-filling of an empty LL with electrons, or half-depleting
of a full LL with holes [3,4]. However, the HLR description
begins by formally attaching flux to electrons (rather than
holes) and naturally leads to a low-energy description in
terms of spinless CFs coupled to a Chern-Simons gauge field
that breaks particle-hole symmetry (PHS)—which we will
henceforth refer to as the “HLR state.” While it is, in

principle, possible that the experimental system chooses to
spontaneously break PHS and form the HLR state, this
option does not appear to be energetically favored in
numerical simulations [5].
It was recently realized [6–11] that the HLR picture

could be modified to produce a manifestly particle-hole
symmetric candidate phase for the half-filled Landau level
—the composite Dirac liquid (CDL). Like the HLR state,
the CDL has a Fermi surface of fluxlike composite fermion
excitations. However, unlike the original HLR description
in terms of spinless electrons bound to flux, these
composite fermions are neutral Dirac-like particles that
possess a pseudospin-1=2 degree of freedom, whose
x, y components are physically interpreted as an electrical
dipole moment. This pseudospin is rigidly locked
perpendicular to the CF momentum in close analogy to
the Dirac surface state of a topological insulator (TI) [6–9].
The resulting pseudospin winding implies a Berry phase
θB ¼ π whose value is fixed by PHS. On the face of it, the
appearance of a single-Dirac cone in a purely 2D system
with PHS appears to violate a fundamental fermion dou-
bling theorem (valid also for interacting electron systems
[12,13]) and is ordinarily thought to only be possible at
the surface of a 3D topological insulator. This apparent
paradox can be resolved by noting that the action of
PHS on the half-filled LL is inherently nonlocal, involving
not only exchanging particles and holes, but also filling a
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topological LL band. Since this LL band has nonzero Chern
number, it lacks a local Wannier basis and has at least one
spatially extended orbital that carries the Hall conductance
[14]. The action of filling or emptying this extended orbital
is inherently nonlocal, and this nonlocal action of PHS
provides an interesting, and only recently realized [6–9],
exception to fermion doubling theorems, allowing certain
kinds of topological-insulator surface-state physics to be
effectively realized in a 2D system.
In this paper, we examine thermoelectric transport sig-

natures of the proposed Dirac nature of CFs. While certain
electrical transport signatures have been suggested [6], for
example, examining the deviation of Hall conductance
from e2=ð2hÞ, these proposals typically require accurately
measuring small corrections to a large background signal,
and it is desirable to look for more sensitive tests. To this end,
we investigate the thermoelectric response for composite
Fermi-liquid phases for the half-filled Landau level.
Whereas longitudinal thermopower typically vanishes in a

system with local PHS, we find that, because of the nonlocal
realization of PHS in the half-filled LL, the Seebeck coef-
ficient obtains a similar nonzero value in both particle-hole
symmetric composite Dirac liquid and the particle-hole
asymmetric HLR state, and it does not qualitatively distin-
guish these two states. In contrast, we find that the transverse
Seebeck coefficient (or the closely related Nernst coefficient)
provides amore sensitive probe for the degree of particle-hole
asymmetry. Namely, in clean systems, this quantity is
sensitive to the Berry phase of the Fermi surface, vanishes
in themaximally particle-hole asymmetric CFL statewithout
Berry phase, and achieves a maximum value for the particle-
hole-symmetric composite Dirac liquid. We show that a
nonzeroNernst coefficientdirectly results fromthecomposite
Fermi-surface Berry phase and represents a qualitative signa-
ture of the composite Fermi-surface topology. Moreover, we
show how theNernst effect in combinationwith conductivity
and thermopowermeasurements canbeused toquantitatively
extract the composite Fermi-surface Berry phase.

II. THERMOELECTRIC COEFFICIENTS
AND PARTICLE-HOLE SYMMETRY

We begin by briefly recounting symmetry constraints on
thermoelectric transport coefficients. The thermal drift of
charged particles down a thermal gradient, −∇T, produces
an electric current, such that in the presence of voltage and
thermal gradients the electrical current can be written as
j ¼ σ̂Eþ α̂ð−∇TÞ, where σ̂, α̂ are the electric and thermo-
electric conductivity tensors, respectively. Thermoelectric
responses are typically measured in the absence of con-
ducting leads so that no net electric current flows through
any cross section of the sample. In this geometry, an electric
field E ¼ Ŝ∇T must develop to cancel the thermally
generated current, where Ŝ ¼ σ̂−1α̂ is the Seebeck tensor,
whose diagonal component Sxx is typically referred to

as simply thermopower and whose antisymmetric off-
diagonal component Sxy is often expressed through the
closely related Nernst coefficient: νN ¼ Sxy=B.
The longitudinal electric current, αxxð−∂xTÞ, associated

with charge-carrier flow induced by a thermal gradient has
opposite signs for systems with electron and hole carriers,
as carriers flow from hot towards cold regions independent
of their charge. Hence, local PHS, generated by exchanging
particles and holes, cðrÞ → c†ðrÞ, constrains αxx, σxy ¼ 0,
implying vanishing thermopower, Sxx ¼ 0. In contrast, a
number of thermopower measurements have previously
been performed on the composite Fermi-liquid state of the
half-filled Landau level in GaAs [15,16]. There, a sizable
Seebeck coefficient was observed, whose magnitude agrees
reasonably well with that of an ordinary Fermi liquid
with the same density of particles as the composite Fermi
surface [17]. Given the expectation that particle-hole
symmetry results in vanishing thermopower, such obser-
vations naively seem to rule out a (even approximately)
particle-hole symmetric description of the CFL in GaAs.
Can one reconcile the experimentally observed large

thermopower with the naive expectation of ordinary
particle-hole symmetry? The key to resolving this apparent
contradiction is to note that the PHS present in the
half-filled LL is inherently nonlocal, involving not only
exchange of particles and holes but also filling a LL
j0i → Q

n∈LLc
†
nj0i, where c†n create an electron in the

nth orbital of the LL. For example, this nonlocal PHS
exchanges σxy → −σxy þ 1ðe2=hÞ, requiring nonvanishing
Hall conductance: σxy ¼ 1

2
ðe2=hÞ in a PHS state. Then,

nonvanishing thermopower can arise in a system with
nonlocal PHS due to the nonvanishing combination
Sxx ¼ ρxyαxy, where ρ̂≡ σ̂−1 is the resistivity tensor. We
note that nonlocal PHS still constrains αxx ¼ 0, as a filled
Landau level makes no contribution to α̂. Given these basic
symmetry constraints on transport coefficients, we now
turn to their computation from an effective field theory.

III. THERMOELECTRIC PROPERTIES OF THE
COMPOSITE DIRAC LIQUID

The composite Dirac liquid is described by the effective
field theory [6]:

Leff ¼ ψ†ðDτ − μ − ivD × σ −mσzÞψ

þ iadA
4π

−
iAdA
8π

þ
Z
r0

bðrÞbðr0Þ
4π2ϵrjr − r0j þ � � � ; ð1Þ

where ψ is the Dirac CF field, μ ¼ τ, x, y are (Euclidean)
space-time indices, aμ is an emergent U(1) gauge field
whose magnetic field b ¼ ∇ × a is 2π times the electron
density, Dμ ¼ ∂μ þ iaμ are covariant derivatives, and we
have abbreviated Chern-Simons terms ϵμνλAμ∂νAλ ≡ AdA.
The last term represents Coulomb interactions between
electrons with dielectric constant ϵr, and ð…Þ indicates
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other terms that are less important at low energies. Particle-
hole symmetry requires vanishing Dirac mass, m ¼ 0.
A straightforward derivation of Eq. (1) from a parton

description, as well as a computation of its transport
properties obtained by a self-consistent RPA treatment of
gauge fluctuations [in a similar spirit to the analysis of
conductivity in a U(1) spin liquid by Ioffe and Larkin [18]]
is presented in Appendixes A and B. Here, we instead
obtain the same results using a simple physical picture
by making an analogy to vortex motion in a superfluid.
Specifically, because of the adA=4π term in Eq. (1),
electrons see the Dirac composite fermions as vortices
with flux 4π (in units ℏ; c; e≡ 1). The external magnetic
field B required to produce half-filling for the electrons
induces a finite density (equal to the electron density) of
these vortices (analogous to a superfluid subjected to
B > Hc1). Just as for a superfluid, the fermionic vortices
are nonlocal objects with long-range interactions, which
can be viewed as being mediated by a fluctuating emergent
electromagnetic-like gauge field with vector potential aμ,
whose electric charges are the Dirac composite fermions.
However, unlike familiar bosonic vortices of a super-
conductor, these Dirac vortices have fermionic exchange
statistics and form a metallic state with a Fermi surface.
To examine the thermoelectric properties of this “vortex

metal,” consider a rectangular sample with spatial dimen-
sions Lx × Ly. A temperature gradient along x tends to
produce a Dirac CF current jD, also along x. Each time a
CF passes through, say, x ¼ 0, the electrons at (x ¼ 0,
y ¼ Ly) acquire a relative 4π phase shift to those at (x ¼ 0,
y ¼ 0), resulting in a steady time-dependent winding
of the electron phase difference across the sample in the
y direction: ΔϕyðtÞ ¼ 4πjDLyt [Fig. 1(b)]. Such a time-
dependent phase winding for electrons is gauge equivalent
to a constant voltage difference across the y direction of the
sample: Vy ¼ −ð∂Δϕy=∂tÞ, corresponding to an electric
field Ey ¼ ðVy=LyÞ ¼ −4πjD. In general, a composite
fermion current jD induces an electric field E:

jD ¼ 1

4π
ϵ̂E; ð2Þ

where ϵ̂ is the unit antisymmetric tensor with components
ϵii ¼ 0, ϵxy ¼ −ϵyx ¼ 1. Alternatively, this relation can be
directly obtained by varying Eq. (1) with respect to a and
setting the result to zero as demanded by the equations
of motion. Note that, here and throughout the following
discussion, unless explicitly stated otherwise, we fix the
magnetic field to be in theþz direction. Expressions for the
oppositely directed field can be obtained from our formulas
by changing ϵ → −ϵ.
Just as electrons see Dirac CF’s as 4π flux, Dirac CF’s

see electrons as −4π flux (see Fig. 1 inset), and repeating
the above arguments for a flow of electrons rather than CF’s
shows that an electrical current produces a transverse

emergent electric field e ¼ 4πϵ̂jel. In addition, because
of the half-integer Hall conductance [AdA term in Eq. (1)],
jel also induces a physical electric field E ¼ −4πϵ̂jel.
Together, these imply

jel ¼
1

4π
ϵ̂ðE − eÞ: ð3Þ

Since the electron system has both longitudinal and Hall
conductance, we expect this electric field along y to be
accompanied by one along x, indicating nonvanishing
thermopower coefficients, αxx, αxy.
To see how this works in detail, we must understand how

composite Dirac fermion currents jD are generated. In the
linear-response regime, the Fermi surface of CF’s responds
to a emergent e-fields and temperature gradients as

jD ¼ σ̂De − α̂D∇T: ð4Þ

We note in passing that the long-range current-current
interactions between CF’s produce inelastic scattering at a
rate comparable to the energy of the CF quasiparticles
relative to the Fermi energy. However, for the low-
temperature dc thermopower responses, which are the
focus of this paper, such inelastic scattering processes
are less important than ordinary elastic scattering from
impurities and can be neglected.

(d)

(a)

(b)

(c)

FIG. 1. Schematic of charge vortex duality for transport. (a) An
electron (blue dot) is a source of electric field E (blue line) and
−4π flux of the emergent gauge field b (circulating dashed red
line indicates winding of phase for Dirac composite fermion).
The Dirac composite fermion object (red dot) is a dual object that
is a source of emergent electric field lines e (dashed red lines)
and 4π flux of the electron phase (circulating blue line). Panel
(b) shows the electron phase ϕe, winding by 4π across the y
direction for each composite fermion propagating along x. Panels
(c,d) schematically depict the composite fermion dispersion and
Fermi-surface pseudospin texture for the Dirac (π Berry phase)
and HLR (0 Berry phase), respectively.
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Let us define

σ0 ¼
kFl
4π

; α0 ¼
ŁT
vF

∂σ0
∂kF ; ð5Þ

where Ł ¼ ðπ2k2B=3e2Þ is the Lorenz number, and vF, kF
are the composite Fermi velocity and wave vector, respec-
tively, in units where e;ℏ ¼ 1. In this regime, σ̂D ≈ σ01̂ is
the dc conductivity of the composite Fermi surface with
Fermi wave vector kF and transport mean-free path l, and
similarly α̂D ≈ α01̂ is the composite Fermi-surface thermo-
electric conductivity. The transverse (Hall) components
σxyD , αxyD vanish by PHS (which acts as an effective time-
reversal symmetry on the CFs [6–8]). While impurities
locally break PHS, and only preserve PHS on average, for
the long-wavelength impurity potentials relevant to GaAs,
we can show that such extrinsic sources of σxyD are
negligibly small (see Appendix D). Lastly, we note that
the response coefficients σD, αD should be interpreted as
transport coefficients (i.e., obtained from Kubo formulas
by appropriately subtracting bound magnetization current
contributions; see Appendix B).
Eliminating the emergent electric field, e and jcf ,

from Eq. (3) using Eqs. (2) and (4), we find jel ¼
½ð1=4πÞϵ̂þ ðρ0=ð4πÞ2Þ�E − ½ð1=4πÞρ0α0ϵ̂∇T�, from which
we can identify the electronic conductivity and thermo-
electric susceptibility for the composite Dirac liquid:

σ̂ ¼ ρ0
ð4πÞ2 1̂þ

1

4π
ϵ̂; α̂ ¼ ρ0α0

4π
ϵ̂; ð6Þ

where ρ0 ¼ σ−10 is the resistivity of the composite Fermi
surface, i; j ∈ fx; yg.
Rather than observing α̂ directly, one typically measures

the electric field, E ¼ Ŝ∇T, induced by a thermal gradient
in a geometry where no electric current is permitted to flow:
jel ¼ σ̂E − α̂∇T ¼ 0, which defines the Seebeck tensor

Ŝ ¼ σ̂−1α̂ ¼ ρ0α0
1þ ðρ0=4πÞ2

�
1̂þ ρ0

4π
ϵ̂

�
: ð7Þ

For a clean system (kFl ≫ 1), ρ0=ð4πÞ ≪ 1, and the
diagonal Seebeck coefficient Sxx ≈ ρ0α0 is essentially equal
to the effective Seebeck coefficient that would be obtained
by viewing the composite fermions as electrons, in

reasonable quantitative agreement with previous analysis
of thermopower measurements in GaAs [15–17]. Note that
this large Seebeck coefficient arises despite the particle-
hole symmetry of the composite Dirac liquid.
Moreover, we see that the off-diagonal component

Sxy ≈ Sxx=ðkFlÞ and closely related Nernst coefficient
νN ¼ Sxy=B are nonzero. We will shortly see that the
nonvanishing Sxy marks a sharp departure from the max-
imally particle-hole asymmetric HLR state with zero Berry
phase, for which SxyHLR ¼ 0. More generally, we will show
that the nonvanishing Nernst effect is directly tied to the
Berry phase of the composite Fermi surface.

IV. THERMOPOWER WITH ZERO
BERRY PHASE

Composite fermions in the PHS-breaking state originally
described by HLR [1] are spinless electrons bound to −4π
flux and hence carry electrical charge (equivalently, flux
of a) as well as vorticity. Then, in contrast to the Dirac
liquid, the CF current in the HLR state is equal to the
electron current, jcf ¼ jel ¼ ð1=4πÞϵ̂ðE − eÞ. In a thermo-
power measurement (i.e., in an open circuit configuration),
zero electrical current flows, jel ¼ 0, implying E ¼ e,
and jcf ¼ 0 ¼ σ̂cfe − α̂cf∇T, which together give E ¼
ρ̂cf α̂cf∇T; i.e., the electron and CF thermopower tensors
coincide: ŜHLR ¼ ρ̂cf α̂cf . Since the CFs in the HLR state
experience no residual orbital magnetic field, and if the
composite Fermi surface has zero Berry curvature, then the
low-energy composite Fermi-surface dynamics are effec-
tively time-reversal symmetric such that ρ̂cf , α̂cf and hence
also Ŝ to be purely diagonal (see Table I for a detailed
comparison between HLR and Dirac).
We note that inelastic scattering from gauge fluctuations,

whose propagator contains a Chern-Simons term and hence
does not respect this fine-tuned spinless time reversal, can
produce an off-diagonal component to σcf and correspond-
ing nonzero Nernst signal. However, neglecting extrinsic
impurity effects, the transport scattering rate due to the
inelastic gauge scattering rate, Γg;tr, is expected to be
suppressed at low temperatures by powers of T (e.g.,
previous estimates [1,19] give Γg;tr ∼ T2 for unscreened
Coloumb interactions and Γg;tr ∼ T4=3 with interactions
screened by a nearby gate). Then, the resulting gauge-
fluctuation-induced thermopower Sxyg ∼ TΓg;tr can be

TABLE I. Summary of thermoelectric coefficients for the HLR and Dirac states. We have used units where e ¼ 1 and ℏ ¼ 1, so the
quantum of resistance h=e2 ¼ 2π. See Eq. (5) for the definition of σ0, α0.

σxx σxy αxx αxy Sxx Sxy

HLR ½σ0=ð1þ ð4πσ0Þ2Þ� ð1=4πÞ½ð4πσ0Þ2=
ð1þ ð4πσ0Þ2Þ�

½α0=ð1þ ð4πσ0Þ2Þ� ½4πσ0α0=
ð1þ ð4πσ0Þ2Þ�

σ−10 α0 0

Dirac ð1=ð4πÞ2σ0Þ 1=4π 0 α0=4πσ0 ½ð4πÞ2σ0α0=ð1þ ð4πσ0Þ2Þ� ½4πα0=
ð1þ ð4πσ0Þ2Þ�
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distinguished by its temperature dependence from that
arising from the Berry phase in the composite Dirac liquid,
which depends linearly on T. Thus, the absence of Berry
curvature in the HLR state directly leads to a vanishing
(T-linear component of) the Nernst signal.

V. EFFECT OF PHS BREAKING

In experimental systems, inter-LL mixing is always
present to some degree because of Coulomb interactions.
However, at large fields for which the inter-LL spacing
ωc ≈ ðeB=m�cÞ is much larger than the interaction energy
EC ≈ ðe2kF=ϵrÞ, one expects only weak inter-LL mixing
and hence an approximate PHS. In this case, the composite
Fermi-surface Berry phase is not quantized precisely to π
but should still deviate from π only by a small amount
≈ðEC=ωcÞ ≪ 1. Given this approximate PHS, it is natural
to expect that the composite Fermi surface in half-filled
GaAs is approximately described by the composite Dirac
theory and may have an appreciable Berry phase near π.
To compare the thermoelectric responses of the particle-

hole symmetric composite Dirac liquid, obtained above, to
those of a particle-hole asymmetric state, we can include a
particle-hole symmetry-breaking Dirac mass (m ≠ 0) in
Eq. (1), which produces a half-integer Hall conductance for
the gauge field a. Physically, this PH-breaking mass arises
from inter-LL mixing, and we expect m ≈ ðEC=ωcÞ.
For nonzero PHS-breaking mass, m ≠ 0, the completely

filled valence band of the composite Dirac cone contributes
half-integerquantizedHall conductanceσxyD;v¼ðsgnðmÞ=4πÞ,
and the nontrivial Berry curvature enclosed by the conduction
Fermi surface (FS) gives anomalous CF Hall conductance,
σxyD;FS ¼ R

k<kF
ðd2k=ð2πÞ2ÞΩk ¼ −ðsgnðmÞ=4πÞγ, where

Ωk ¼ ½m=ð2½ðvkÞ2 þm2�3=2Þ� is the conduction band
Berry curvature, and γ ≡ θB=π ¼ 1 − ðm=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvkFÞ2 þm2

p
Þ

is a convenient measure of the composite FS Berry phase,
θB, which interpolates between 0 (HLR) and 1 (Dirac).
The nonzero Berry curvature also induces anomalous CF
thermoelectric Hall conductivity [20], generically related
to the CF number conductivity by the Mott formula:
αijD ≈ ðŁT=vFÞð∂σij=∂kFÞ [21–23].
Hence, for nonzero PHS-breaking mass m, σD in Eq. (4)

becomes

σ̂Dðm ≠ 0Þ ¼ σ01̂þ sgnðmÞ ð1 − γÞ
4π

ϵ̂: ð8Þ

Then, proceeding as before by eliminating the internal
electric field e using Eqs. (2) and (4), we find the electron
conductivity and thermopower tensors for m ≠ 0:

σ ¼
��

σ̂D −
ϵ̂

4π

�
−1

− 4πϵ̂

�
−1
;

S ¼
�
σ̂D −

ϵ̂

4π

�
−1
α̂D: ð9Þ

The original HLR theory is recovered in the limit of
zero Berry phase (m → ∞). As previously remarked,
in this limit, the CF sector has a fine-tuned “spinless”
time-reversal symmetry, such that σxycf ¼ 0 and αxycf≈
ðŁT=vFÞð∂σxycf =∂kFÞ ¼ 0, resulting in a vanishing Nernst
coefficient.
For clean systems, kFl ≫ 1, σ0 ≫ ð1=4πÞ, the Hall

conductivity and Nernst coefficient for a generic composite
Fermi-surface Berry phase at half-filling are

σxy ≈
1

4π

�
1 − sgnðmÞ 1 − γ

ð4πσ0Þ2
�

Sxy ≈ ŁT
kF

4πσ0vF

�∂ ln σ0
∂ ln kF þ sgnðmÞ ∂ ln γ

∂ ln kF
�
× γ; ð10Þ

where, for the massive Dirac model of Eq. (1),
ð∂ ln γÞ=ð∂ ln kFÞ ¼ ð1 − γÞð2 − γÞ. Therefore, we see that
the Nernst signal is directly sensitive to the Berry phase
θB ¼ πγ. Note that the Hall conductance is precisely
e2=ð2hÞ in the PHS theory with γ ¼ 1 (θB ¼ π), and
otherwise it deviates from this quantized value. In principle,
this deviation can be used to distinguish the Dirac and PH-
breaking CFL states [6]; however, in practice this deviation
is a very small correction, of order OðkFlÞ−2, to the total
Hall conductance and will be challenging to measure. In
contrast, we see that the Nernst signal is directly propor-
tional to the composite Fermi-surface Berry phase and is
thus a direct measurement (rather than small correction) of
the topological properties of the composite Fermi surface.
To extract θB from a Nernst effect measurement, it is

desirable to independently determine the relevant param-
eters in Eq. (10) through other transport measurements,
rather than relying on theoretical calculation in some
particular model. To this end, σ0 can be obtained by the
longitudinal electrical conductivity σxx ≈ 1=ðð4πÞ2σ0Þ, and
the logarithmic derivative of σ0 can be obtained from the
longitudinal thermopower measurement Sxx ≈ ðŁTkF=vFÞ
ð∂ ln σ0=∂ ln kFÞ. Together, these measurements allow for
an experimental determination of the composite Fermi-
surface Berry phase via the expression (valid when θB is
close to π)

θB ≈
Sxy

4σxxSxx
ð11Þ

in a manner that is largely insensitive to the details of
nonuniversal features such as composite Fermi velocity and
impurity scattering rates. Here, we note that all conductiv-
ities are written in units e2=ℏ.

VI. FIELD DETUNING

We have shown that the Nernst coefficient at half-filling
provides a sensitive probe for the composite Fermi-surface
Berry phase. In addition, the Dirac and HLR states also
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show distinct Nernst signals upon tuning the field away
from half-filling, B ≠ B1=2 ≡ 4πnel, where nel is the elec-
tron density. For B ≠ B1=2, an effective gauge-magnetic
field b ¼ B − B1=2 arises, which induces a change in the
CF Hall conductance. For nonzero composite FS Berry
phase θB ¼ πγ, the field detuning alters the CF density by
ncf ¼ ðB − ð1 − γÞbÞ=4π, and the composite Fermi wave
vector is kF ¼ ffiffiffiffiffiffiffiffiffiffiffi

4πncf
p

. Let us work in the limit of small
detuning, b ≪ B1=2, where many Landau levels of the
composite Fermi sea are occupied, and the system is still
compressible because of disorder broadening of the CF
LLs. In this regime, the CF conductivity becomes

σ̂D ¼ σ0
ð1̂þ ωcτϵ̂Þ
1þ ðωcτÞ2

þ 1 − γ

4π
ϵ̂; ð12Þ

where ωc ¼ ðvFb=kFÞ=ð1þ bΩFÞ is the CF cyclotron
frequency and ΩF is the Berry curvature at the composite
Fermi surface. Since the transport distinctions between
Dirac and PH-breaking states arise from the difference
between γ ¼ 0, 1, from Eq. (12), we see that this distinction
is lost unless ðjB − B1=2j=B1=2Þ < ðkFlÞ−2. Thus, accu-
rately determining B1=2 is an important component of any
transport measurement designed to observe signatures of
the CF Berry phase. In the impurity scattering dominated
(nonhydrodnamic) regime, αcf ≈ ŁTð∂σcf=∂εFÞ. To esti-
mate this quantity, we need to assume a particular energy
dependence for the scattering rate τ ∼ εpF, e.g., for free
electrons with short-range impurities p ¼ 1; however, the
precise value of p does not qualitatively affect the results.
Then, we may compute the field dependence of the Nernst
coefficient using Eqs. (9) and (12). The results are shown in
Fig. 2 with kFl ¼ 50 for zero and π Berry phase (HLR and

Dirac, respectively). Both curves increase in magnitude
towards a maximum at ωcτ ∼ 1, beyond which the Nernst
coefficient decays as ∼ð1=ωcτÞ. In addition to the nonzero
value of Sxy at B ¼ B1=2, the Dirac CFL shows a distinct
asymmetry between B > B1=2 and B < B1=2 due to the
intrinsic anomalous (b ¼ 0) Hall contributions from γ ≠ 0.

VII. EXPERIMENTAL CONSIDERATIONS

Based on data from Ref. [15], we estimate that the size of
the nonzero Sxy signal at half-filling in the composite Dirac
liquid will be of order 0.3 μV=K at T ¼ 100 mK. This
magnitude, while somewhat small, should be measurable in
existing thermopower setups. An additional experimental
challenge is that the longitudinal and transverse thermo-
power signals may be mixed to a small degree because of
nonidealities in the measurement geometry and need to be
disentangled. The two components can be separated by
noting that the transverse response Sxy will be odd under
B → −B, whereas the longitudinal component will be even.
Hence, antisymmetrizing (or symmetrizing) the thermo-
power signal under B → −B can help isolate Sxy (or Sxx).
While the smallness of the Nernst signal may make the

proposed thermopower signature more challenging to
measure compared to previously proposed [6] deviation
of electrical Hall conductance from 1=2, the thermopower
setup has a distinct advantage. Namely, whereas σxy ¼ 1=2
would follow directly from the constraint of particle-hole
symmetry and does not distinguish the Dirac composite
Fermi-liquid theory from other putative particle-hole sym-
metric states, the nonzero linear-T component of the Nernst
signal is not a direct consequence of symmetry but rather a
specific prediction for the composite Dirac liquid state.
Hence, its observation is more directly tied to the existence
of a composite Fermi surface with nonzero Berry phase.
In practice, the strongest experimental evidence for Berry
phase structure of the composite Fermi surface would come
from looking for consistency with a number of different
electrical and thermoelectric transport predictions.

VIII. DISCUSSION

To summarize, we have analyzed the thermopower of
CFL states with and without particle-hole symmetry and
demonstrated that the Nernst effect is directly sensitive to
the Berry curvature of the composite Fermi surface and can
be used to distinguish between previously HLR and Dirac
theories of the CFL. The computations of this paper amount
to a self-consistent RPA treatment of gauge fluctuations,
in the spirit of Ioffe and Larkin’s method for computing
the transport response of fractionalized phases [18]. This
approach is formally justified in the limit of a large number
of fermion flavors; however, since the effects we predict
are largely a consequence of symmetry considerations, we
expect our results to be more generally valid. Additionally,
we have evaluated the response functions in the limit where

FIG. 2. Field dependence of Sxy. In addition to having a zero
or nonzero value at half-filling (B ¼ B1=2), the asymmetric field
dependence of the transverse thermopower (Nernst) signal dis-
tinguishes between the HLR state with zero Berry phase (γ ¼ 0)
and the particle-hole symmetric Dirac state with π Berry phase
(γ ¼ 1).
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elastic impurity scattering dominates over inelastic gauge-
field-mediated interactions. Potentially interesting hydro-
dynamic effects in the inelastic-dominated regime require
more sophisticated treatments and are left to future work.
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APPENDIX A: PARTON DESCRIPTION OF
COMPOSITE FERMI LIQUID(S)

It is convenient to access the low-energy field theory of
the composite Fermi liquid via a parton (“slave-particle”)
construction that is capable of describing both the PHS
composite Dirac and PH-breaking HLR state on similar
footing. Namely, consider decomposing the electron into a
charge-1 boson b and a neutral fermion f, c ¼ bf, and
constraining b and f to appear together in physical
correlation functions by introducing a Uð1Þ gauge field
aμ under which b and f have charge �1, respectively.
This corresponds to an effective field theory with imaginary
time Lagrangian density: L ¼ Lb þ Lf − ðAþ aÞμjμb −
ð−aμÞjμf, where Lb;f are the Lagrangian densities and
jb;f are the number currents of b and f, respectively.
Composite Fermi-liquid states of the half-filled Landau

level can be obtained by having the bosonic partons, which
are at half-filling with respect to the external magnetic flux,
form an incompressible Abelian (Laughlin-like) fractional
quantum Hall state, Lb ¼ −ð2i=4πÞabdab, where ab is a
vector field whose flux is the boson current: jb ¼
ðdab=2πÞ. This mean-field ansatz is equivalent to the
“flux-attachment” picture typically utilized in composite
fermion descriptions of quantum Hall states, as each boson
in the ν ¼ 1=2 FQH state is accompanied by 4π flux of a
due to their quantum Hall response, which the composite
fermions f ¼ b†c see as −4π flux. The fermionic partons f
then see zero average magnetic flux and may form a
simple Fermi surface (this is the usual HLR theory,
which is maximally particle-hole symmetry violating).
Alternatively, we may access the PHS composite Dirac
state by putting f into a band structure consisting of two
Dirac cones, with flavor index i ¼ 1, 2:

Lf ¼
X
i¼1;2

ψ†
a;iði∂τ − μþ vp × σab −miσ

z
abÞψb;i; ðA1Þ

a PHS low-energy theory is obtained by keeping one flavor
of massless Dirac fermions m1 ¼ 0 and giving the other a
large, negative mass ðm2 < −μ < 0Þ. More generally, we
may interpolate between the two theories by continually

varying m1 ¼ m between 0 (Dirac) and ∞ (HLR), subject
to 0 < m < μ < jm2j.
We caution that Eq. (A1) can only hope to capture the

structure of low-energy excitations close to the composite
Fermi surface of ψa;1 since excitations at this energy will
involve nonuniversal short-distance physics outside the
purview of the effective field theory of the composite
(marginal) Fermi-liquid state. Hence, one should not
consider the detailed high-energy structure, such as linear-
ity or curvature of the CF dispersion far from μ, to be
physically meaningful.

APPENDIX B: LINEAR RESPONSE FROM
PARTON THEORY

We now turn to a computation of the (linear) electric
current response to (small) applied voltages and thermal
gradients.

1. Preliminaries

The proper computation of such transport coefficients
faces several subtleties. Chiefly, one must properly dis-
tinguish between “free” or “transport” currents that can
pass freely between conducting leads and the sample, and
circulating (i.e., have zero divergence) magnetization
currents that are bound to the sample. While Kubo formulas
typically yield expressions for the total (transport plus
magnetization) current, in a transport measurement, only
the former are observable and the magnetization contribu-
tion must be properly subtracted in calculations.
Moreover, electric currents can be generated either by

applying electric fields that exert mechanical forces to
accelerate electrons or by setting up density gradients that
exert “statistical” forces on electrons, e.g., leading to
diffusion. In particular, for slowly varying electric poten-
tials and densities that are close to equilibrium values, the
local density matrix near position r (coarse grained over a
distance much larger than Fermi wavelength but much
smaller than the characteristic length scale for potential
gradients) is well described by a local equilibrium form:
ρðrÞ ≈ ð1=ZðrÞÞε−βðrÞðĤþ~μðrÞnðrÞÞ. Here, the local “chemical
potential” ~μðrÞ ¼ μðrÞ − ϕðrÞ ¼ −ð∂Ω=dnðrÞÞ is the dif-
ference between the electrochemical potential μ (which is
uniform in equilibrium) and the electrostatic potential ϕðrÞ
(related to the electric field by E ¼ −∇ϕ); here, Ω ¼
−T logZ is the free energy. Since the partition function in
the presence of ∇ ~μ can be related to that with an electric
field ∇ϕ ¼ ∇ ~μ by a time-dependent gauge transformation
cðr; tÞ → e−i ~μðrÞtcðr; tÞ, the transport current generated by
~μ must be equal to that generated by ∇ϕ. This leads to the
familiar Einstein relation for transport currents, which
requires that ~μ, ϕ enter into the transport current via the
combination ∇μ ¼ ∇ ~μ −∇ϕ. Similarly, one may drive
currents via thermoelectric response either by a temperature
gradient ∇T, the analog of the statistical force ∇ ~μ, or by

THERMOELECTRIC TRANSPORT SIGNATURES OF DIRAC … PHYS. REV. X 6, 031026 (2016)

031026-7



coupling the system to a “gravitational” potential ψðrÞ,
coupled to the local Hamiltonian density [24] whose gradi-
ent mechanically accelerates electrons (analogous to ϕ).
Similar to the Einstein relation for ~μ, ϕ, the transport
current depends only on the combination ∇ψ − ð1=TÞ∇T.
While in a typical experiment, one applies voltage −∇μ

and temperature gradient ∇T, theoretical computations
with these mixed mechanical and statistical forces are
complicated by the presence of ~μ and T gradients that
give rise to magnetization currents JM ¼ ð∂M=∂ ~μÞ ×∇ ~μþ
ð∂M=∂ ~TÞ × ∇ ~T, which must be carefully subtracted to
obtain the transport current. It is instead simpler to follow
the approach of Cooper, Halperin, and Ruzin [17] and
compute the linear response current for mechanical poten-
tials∇ϕ,∇ψ with uniform ~μ, T (e.g., using Kubo formulas)
and then later restore ∇ ~μ, ∇T using Einstein relations. This
approach has the virtue that the change in magnetization
for ∇ ~μ ¼ 0 ¼ ∇T, δmðrÞ¼−ð∂Ω=∂BðrÞÞ¼ψðrÞmðrÞ,
arises only from the reweighting of the local energy
density by ð1þ ψðrÞÞ. The corresponding magnetization
current JM ¼ mðrÞϵð−∇ψÞ can then be readily subtracted
from the total current to yield the transport current
jtrð∇ϕ;∇ψÞ ¼ ½Jtot − JM�ð∇ϕ;∇ψÞ. The transport current
for generic mechanical and statistical potentials can then
be obtained by utilizing Einstein relations to substitute
ϕ→ϕ−μ and ∇ψ →∇ψ − ð1=TÞ∇T. This procedure auto-
matically ensures that the resulting transport current sat-
isfies Einstein relations and Onsager reciprocity conditions
and simplifies the subtraction of magnetization currents.

2. General Ioffe-Larkin composition rules for
thermoelectric transport coefficients

Then, quite generally, the thermoelectric response theory
of the state described by any parton ansatz (i.e., specific
choice of Lb;f) can be obtained by coupling the system to a
gravitational potential ∇ψ and external field with vector
potential Aext ¼ AB þ A (here, ∇ ×AB ¼ B is the vector
potential corresponding to the applied magnetic field to
produce half-filling, and A is a small additional probe
gauge field) and integrating out the matter fields b and f to
obtain the linear response action:

LLR½A; a�

¼ −ðAþ aÞμ
�
1

2
Kμν

b ðAþ aÞν þ ~αμνb ð−T∂νψÞ þ ðJMb Þν
�

− aμ

�
1

2
Kμν

f aν þ ~αμνf ð−T∂νψÞ − ðJMf Þν
�
; ðB1Þ

where Kb;f ( ~αb;f) are the gauge (thermoelectric) response
kernels of conserved b and f number currents, respectively.
For example, the number conductivity of b, f is
σijb;fðω;qÞ ¼ ð1=iωÞKij

b;fðω;qÞ. Here, ðJMb;fÞi ¼ ϵij∂jMb;f

are the b and f number magnetization currents,

respectively, and similarly Mb;f are the b, f number
magnetizations, respectively. These quantities can be com-
puted for any specific parton ansatz, and we will give
explicit expressions for composite Fermi-liquid states
below. However, for the moment, we leave K, α, JM

unspecified to derive general formulas.
Next, we may enforce the gauge constraint by integrating

out the constraint gauge field a at the RPA level. This
produces a linear response action for the physical electro-
magnetic field, A: LLR½A� ¼ − 1

2
AKA − A ~αðT∇ψÞ, where

we can identify the electronic conductivity and thermo-
electric response tensors

K ¼ ðK−1
b þ K−1

f Þ;
~α ¼ KðK−1

b ~αb þ K−1
f ~αfÞ;

JM ¼ KðK−1
b JMb þ K−1

f JMf Þ: ðB2Þ
The first expression is a straightforward generalization of
the familiar Ioffe-Larkin composition rule for the electronic
electromagnetic response kernel in terms of the parton
response kernels [18]. The latter two generically express
the physical thermoelectric response and magnetization
current in terms of the corresponding parton responses.
Following the procedure outlined in the previous

section, the magnetization induced by a gravitational
potential (with ∇ ~μ;∇T ¼ 0) is JMb;f ¼ Mb;f ϵ̂∇ψ , so the
electronic transport current induced by ∇ψ is jtr ¼
K½K−1

b ð ~αb − ð1=TÞMbϵ̂Þ þ K−1
b ð ~αf − ð1=TÞMf ϵ̂Þ�ðT∇ψÞ,

from which we identify the electronic thermoelectric tensor

α ¼ K

�
K−1

b

�
~αb −

1

T
Mbϵ̂

�
þ K−1

f

�
~αf −

1

T
Mf ϵ̂

��
:

ðB3Þ

We note that the effect of properly subtracting the total
electronic magnetization current is identical to simply
subtracting the parton number magnetization currents from
the respective parton response coefficients: ~αb;f → αb;f ¼
~αb;f − ðMb;f=TÞϵ̂.

3. Transport coefficients for the half-filled
Landau level

For both the Dirac and ordinary composite Fermi-liquid
theories, the bosonic partons can be taken to form an
incompressible FQH state. Since b forms a gapped FQH
state, there is an energy gap Δ for adding an electron
(note that, while the CFL is compressible, this arises from
gapless f excitations that have zero overlap with electrons).
For temperatures well below Δ, we may neglect deviations
from this ideal quantized Hall behavior described by
Kμν

b ¼ ði=4πÞϵμλν∂λ and αb ¼ 0. In particular, the boson
number conductivity is quantized and purely off-diagonal:
σijb ¼ ðKijðω → 0; q ¼ 0Þ=iωÞ ¼ ð1=4πÞϵij.
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For the fermionic sector, we use the Dirac ansatz (A1)
and allow a PH-breaking massm1 ≡m to tune between the
composite Dirac and HLR states. Let us denote the CF
number and thermoelectric conductivity of the compress-
ible CF Fermi surface of fermions ψa;1 by σf;1 and αf;1,
respectively, and similarly define σf;2, αf;2 for the incom-
pressible “regulator” fermions ψa;2. The total CF number
conductivity is given by the sum of the number conduc-
tivities for each CF “flavor”:

σ̂f ¼
X
i¼1;2

σ̂f;i: ðB4Þ

The ψf;2 contribute a CF Hall conductance σf;2¼−ð1=4πÞϵ̂,
which cancels the ada-type Chern-Simons term for the
internal gauge field from the boson sector. However, since
ψf;2 are incompressible, they do not respond to thermal
gradients and have αf;2 ¼ 0; hence,

α̂f ¼ α̂f;1: ðB5Þ

We now turn to the contributions σ̂f;1, α̂f;1 from the
compressible composite Fermi surface of ψa;1 fermions. At
low temperatures and long wavelengths, elastic impurity
scattering dominates over inelastic scattering because of
interactions (e.g., mediated by fluctuations of the internal
gauge field a), and response coefficients for the f sector are
approximately given by those of a Fermi liquid (albeit with
renormalized effective parameters, vF, m, etc.).
The transport coefficients for this state can be computed,

e.g., by using semiclassical equations of motions and
Boltzmann-type kinetic equations [22,23]:

σxxf;1 ¼
kFl
4π

; σxyf;1 ¼
Z

d2k
ð2πÞ2 nFðεkÞΩk; ðB6Þ

where l ¼ vFτ is the mean-free path from scattering
off impurities elastically with rate τ−1. Here, Ωk ¼
ϵij∂kihukji∂kj juki ¼ ðm=2ε3=2k Þ is the Berry curvature
density for the composite Fermi sea with dispersion
εk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvkÞ2 þm2

p
, and nFðεkÞ is the Fermi-occupation

factor. The f-thermoelectric tensor (including magnetiza-
tion subtraction) was shown to satisfy the Mott rule [22,23]:

αijf ¼ αijf;1 ¼ ŁT
∂σijf;1
∂εF ¼ ŁT

vF

∂σijf;1
∂kF : ðB7Þ

APPENDIX C: MASSIVE DIRAC MODEL

In this appendix, we derive some useful relations for the
massive Dirac model in Eq. (1), for the composite Fermi
surface with general particle-hole–breaking mass. We note
that only the low-energy excitations near the composite

Fermi surface have any physical meaning since high-
energy excitations deep below the Fermi surface represent
nonuniversal short-distance physics which are beyond the
applicability of the effective low-energy long-wavelength
theory. For this reason, it is desirable to rewrite the
parameters v, m, μ in Eq. (1) in terms of measurable
low-energy quantities including Fermi velocity vF ¼
ð∂ε=∂kÞjk¼kF

¼ vγ and Fermi-surface Berry phase

θB ¼ πγ ¼ πð1 − ðm=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvkFÞ2 þm2

p
ÞÞ, as well as the

Fermi wave vector kF. The latter is not a low-energy
property, but it is related to the density of electrons at half-
filling, kF ¼ ffiffiffiffiffiffiffiffiffiffiffi

4πnel
p

, and is therefore accurately known.
The unphysical quantities can be replaced by physically
measurable ones, using the relationships

v ¼ vFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γð2 − γÞp ; m ¼ vFkF

ð1 − γÞ
γð2 − γÞ ;

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvkFÞ2 þm2

q
¼ vFkF

γð2 − γÞ : ðC1Þ

One can also compute the Berry curvature as a function
of CF momentum k for this model. The single-particle
spinor wave function for a CF with momentum k is

uk ¼ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεk−mÞ2þðvkÞ2

p
Þðe

−iϕkðεk−mÞ
ivk

Þ, where εk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvkÞ2 þm2

p
and ϕk ¼ tan−1ðky=kxÞ. This gives a Berry

connection AðBÞðkÞ ¼ ihukj∂kjuki and Berry curvature

Ωk ¼ ϵij∂kiAjðkÞ ¼
m

2½ðvkÞ2 þm2�3=2 : ðC2Þ

APPENDIX D: IMPURITIES AND EXTRINSIC
ANOMALOUS HALL RESPONSE

So far, we have ignored extrinsic sources of anomalous
Hall conductance for the CF response coefficients due to
disorder scattering. Specifically, while disorder preserves
PHS on average, it can have higher odd cumulants that
statistically bias scattering in a left- or right-handed
fashion, thereby producing Hall conductance [21]. In this
appendix, we examine disorder contributions to σxyf for the
PHS composite Dirac liquid and argue that they are
negligible under realistic conditions for GaAs samples.
The crucial point is that PH breaking effects, such as skew-
scattering, that contribute to σxyf arise only from higher-
order odd cumulants of the impurity distribution. In GaAs,
the main sources of impurities are dopants, which are
separated from the two dimensional electron gas (2DEG)
by a distance d ≫ kF. In this case, the scattering from
higher cumulants of the disorder potential is suppressed by
factors of ð1=kFdÞ ≪ 1 and hence are expected to be small.
For dopant impurities located at positions frig in the

plane and separated a distance d from the 2DEG
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conduction layer in the z direction, the bare impurity
potential is V0ðrÞ ¼

P
iðe=εd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr − rij2 þ d2

p
Þ, where εd

is the dielectric constant of GaAs. This bare potential will
be screened by the 2DEG and induce a screening charge
whose Fourier components are given, in the Thomas-Fermi
approximation, by

δρindðqÞ ≈ e−qdδρimpðqÞ; ðD1Þ

where δρimpðqÞ ¼
P

ie
iq·ri − ρ0δðqÞ and ri is the position

of the ith impurity, and ρ0 ¼ ðk2F=4πÞ is the density of
dopants (also the density of electrons).
The composite Dirac fermions see inhomogeneities in this

induced charge as a random magnetic field of strength
bimpðrÞ ¼ 4πρindðrÞ. This impurity field vanishes on average
but has nontrivial higher moments that scale like bnimp ≈
ðρ0=d2nÞ, which can contribute extrinsic sources of anoma-
lous Hall conductance for the composite fermions. However,
we will subsequently estimate that these extrinsic Hall
contributions are suppressed by a factor of ð1=kFdÞ ≪ 1
and can be neglected.
A subtlety in this analysis is that the effects of random

orbital magnetic fields are inherently nonanalytic in the
field strength and cannot be treated by standard perturbative
Green function expansions [25]. The mean-free path can
be estimated by considering a semiclassical treatment
of the conductivity bubble in real space: σðr;r0Þ ¼
limω→0 ð1=iωÞ

R
dte−iωttr½viGrðr;r0; tÞviGaðr0;r;0Þ�, where

Gr;a are the retarded and advanced composite fermion
Green functions, respectively, and vi is the ith component
of the velocity operator. The conductivity bubble may be
viewed as the propagation of a particle from r → r0 and
then returning from r0 → r. For kFjr − r0j ≫ 1, the propa-
gation is well approximated by a sum over paths weighted
by Gaussian amplitude in the deviation from the classical
path (a straight line from r → r0) and with phase given by
the magnetic flux enclosed in the particle propagating from
r to r0 and back. In this semiclassical approximation,
quantum fluctuations in the path are typically of rms sizeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijr − r0jλF
p

, where λF ¼ ð2π=kFÞ is the wavelength of
the particle, corresponding to a typical area A≈

jr − r0j3=2 ffiffiffiffiffi
λF

p
, i.e., flux Φ ≈ brmsA, where brms ≈

ffiffiffiffiffiffiffiffiffi
b2imp

q
≈

kF=d is the rms size of the dual magnetic field experienced
by the CFs due to impurities. When jr − r0j is sufficiently
large that Φ ≈ 2π, the sum over quantum paths contains a
rapidly fluctuating phase. Beyond this length scale, the
conductivity decays exponentially with separation between
jr − r0j, from which one can identify the mean-free path
l ≈ ðb2rmsλfÞ−1=3 ≈ ðd2=kFÞ1=3 [note that kFl ≈ ðkfdÞ2=3 is
naturally ≫ 1 if the distance to the doping layer is much
larger than the interelectron spacing].
To estimate the skew scattering contributions to anoma-

lous CF Hall conductivity, we can compute the statistical

bias for an electron to deflect to its left rather than its right
within a mean-free path, l. Consider a CF initially traveling
at speed vF along the x direction. Because of the random
local impurity field, bimpðrÞ, the CF experiences a Lorentz
force and accelerates in the y direction. The dual field is
roughly constant over distances of the mean-free path, l.
During the scattering time τ ≈ ðl=vFÞ, the CF experiences
cyclotron motion under the local field b and develops a
perpendicular momentum: δk⊥ðτÞ ≈ kF sinωcτ in the y
direction. Though the impurity-averaged Lorentz force is
zero, the nonlinearity in the sin function in the cyclotron
motion of the electron give a nonzero average to δk⊥:

�
δk⊥ðτÞ
kF

�
≈

1

3!
b3
�
l
kF

�
3

≈
1

ðkFdÞ2
≪ 1: ðD2Þ

However, the amplitude of this skew-scattering bias is
strongly suppressed by the smooth character of the impu-
rity potential and should be negligible in practice.
While the smooth nature of the impurity potential

strongly suppresses skew-scattering events, it may also
lead to departures from ordinary Fermi-liquid-like behavior
for the CFs. Namely, the typical CF cyclotron radius
due to the dual magnetic field induced by impurities,
Rc ¼ ðbrms=kFÞ ≈ d, is comparable to the typical length
scale d of spatial variations in bimpðrÞ. Whereas for
ðRc=dÞ ≫ 1, the CF trajectory is only weakly affected
by the impurity field, in the opposite limit, ðRc=dÞ ≪ 1, the
CFs motion is better described by rapid cyclotron orbits
with a slowly drifting guiding center [26]. In the latter
regime, conduction occurs by percolating “snake” state
channels along contours of bimpðrÞ ¼ 0 and is qualitatively
different than for an ordinary metal with a sharp Fermi
surface. The above-described impurity model suggests
that typical GaAs samples lie in an intermediate regime
between these extreme limits. It is possible to avoid this
potential issue by using compensated dopants consisting of
both donors and acceptors of density nd;a, respectively.
Then, if the conduction electron density nel ¼ nd − na is
much less than the total number of dopants nimp ¼ nd þ na,
Rc=d ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nel=nimp

p
can be made much smaller than 1,

ensuring that long-wavelength impurity b-field fluctuations
do not alter the usual composite Fermi surface picture.
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