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Randomly coupled Ising spins constitute the classical model of collective phenomena in disordered
systems, with applications covering glassy magnetism and frustration, combinatorial optimization, protein
folding, stock market dynamics, and social dynamics. The phase diagram of these systems is obtained in
the thermodynamic limit by averaging over the quenched randomness of the couplings. However, many
applications require the statistics of activity for a single realization of the possibly asymmetric couplings in
finite-sized networks. Examples include reconstruction of couplings from the observed dynamics,
representation of probability distributions for sampling-based inference, and learning in the central
nervous system based on the dynamic and correlation-dependent modification of synaptic connections. The
systematic cumulant expansion for kinetic binary (Ising) threshold units with strong, random, and
asymmetric couplings presented here goes beyond mean-field theory and is applicable outside thermo-
dynamic equilibrium; a system of approximate nonlinear equations predicts average activities and pairwise
covariances in quantitative agreement with full simulations down to hundreds of units. The linearized
theory yields an expansion of the correlation and response functions in collective eigenmodes, leads to an
efficient algorithm solving the inverse problem, and shows that correlations are invariant under scaling of
the interaction strengths.
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I. INTRODUCTION

Understanding collective phenomena arising from the
interactions in a many-body system is the challenging
subject of many-particle physics. The characterization of
the emerging states typically rests on the quantification of
correlations [1]. Among the simplest classical models is the
Ising (binary)model [2], orGlauber dynamics [3] in its kinetic
formulation.While for symmetric randomcouplings [4] these
systems are within the realm of equilibrium statistical
mechanics [5], the asymmetric kinetic Ising model [6–8],
even in the stationary state, does not reach thermodynamic
equilibrium. In their Markovian formulation [9], these proc-
esses are studied in the field of nonequilibrium stochastic
thermodynamics (for review, see Chap. 6 of Ref. [10]). The
methods derived in these fields have proven useful in a variety
of disciplines, including computer science, biology, artificial
intelligence, social sciences, and economics (see, e.g.,
Refs. [11–16] and references therein).
Neuronal networks of the central nervous system are

prominent examples of nonequilibrium systems due to
Dale’s principle [17,18], which states that a neuron either

excites or inhibits all its targets. The correlations between
the activities of nerve cells are functionally important [19]:
They influence the representation of information in pop-
ulation signals depending on the readout in either a
detrimental [20] or beneficial [21] manner, their time-
dependent modulations are linked to behavior [22], and
they determine the influence of neuronal activity on
synaptic plasticity [23–25], the biophysical mechanism
underlying learning. In the case of binary units (Ising
spins), knowledge of pairwise covariances, moreover,
proves useful for sampling-based inference (reviewed in
Ref. [26]) as they constitute the next order in the systematic
expansion of the joint probability distribution beyond
independence [cf. Eq. (22) in Ref. [3]).
Dynamic mean-field theory [27–32] in the N → ∞

limit effectively reduces the many-body problem of a
network comprised of a large number of units to a single
particle interacting with a self-consistently determined
field, but it neglects the cross-covariances of activities
between units. Ginzburg and Sompolinsky [33] intro-
duced pairwise correlations to the description of weakly
coupled systems, and Renart et al. [34] extended the
analysis to strongly coupled units in the large-N limit.
Both approaches are, however, limited to averaged pair-
wise correlations. Similarly, approximate master equa-
tions for binary-state dynamics on complex networks, as
recently discussed in context of the pair approximation
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by Gleeson [35,36], are restricted to global dynamics in
infinite networks. For self-averaging observables, Coolen
et al. [37] presented a systematic approach to derive
closed equations of motion, which, however, are only
valid in the limit N → ∞.
In the current work, we derive a systematic cumulant

expansion yielding an analytical description of correla-
tions between the activities of individual pairs of units,
which goes beyond averaged pairwise correlations
[33,34,38] and is applicable to a single realization of
an asymmetric (directed) network. The framework links
the coupling structure to the emerging correlated activity
and describes the first- and second-order statistics for
single units and pairs of units in a large, but finite,
network of possibly strongly interacting elements. The
analytical expressions predict a distribution of pairwise
correlations with a small mean but large standard
deviation, as observed experimentally [39] in neural tissue
and yet not explained theoretically. Moreover, the frame-
work can be employed to infer the couplings between the
units from the observed correlated activity, also termed the
inverse problem [40–43].
In particular, we show that a Gaussian truncation of the

presented cumulant hierarchy already yields good predic-
tions for individual mean activities and pairwise correla-
tions. Taking into account the subset of third-order
cumulants that for binary variables can be expressed by
lower-order ones improves the prediction significantly.
This finding demonstrates that the second-order statistics
suffices to capture the major features of the collective
dynamics arising in random binary networks, even when
the coupling is strong. Our approach consistently takes into
account the network-generated fluctuations in the marginal
statistics of the input to each unit in a similar spirit as the
seminal work by van Vreeswijk and Sompolinsky [44].
This approach exposes peculiar features of networks of
binary threshold units. For a fixed number of incoming
connections to each unit, mean-field theory predicts their
averaged activities to be identical. Here, we show how
distributed mean activities arise solely from the correlations
emerging in the network. Units with a hard activation
threshold render covariances independent of synaptic
amplitudes J: If all incoming connections as well as the
threshold of a unit are changed proportionally, the mean
activity and correlations are maintained. Hence, scaling the
threshold appropriately, it is impossible to increase the
influence of one unit on another by larger coupling
amplitudes. This finding questions the customary division
into strong (J ∝ N−ð1=2Þ) and weak coupling (J ∝ N−1) in
such systems. Here, we show, in addition, that a network
with hard threshold units implements the strongest possible
coupling between stochastic binary units.
The independence of covariances with respect to

coupling strengths implies that the latter cannot be
reconstructed from the knowledge of the activity alone.

However, together the amplitude and slope of covariance
functions at zero time lag uniquely determine a linearized
effective coupling strength between units. A linear
approximation of the dynamics of fluctuations around
the stationary state leads to a modified Lyapunov
equation. Decomposing the fluctuations into characteristic
eigenmodes of the network shows that, to linear order,
the kinetic binary network is equivalent to a system of
coupled Ornstein-Uhlenbeck processes [45,46]. The lin-
ear description further allows for the decomposition of
the response to external stimulations into eigenmodes of
the system.

II. FIRST AND SECOND MOMENTS OF THE
JOINT PROBABILITY DISTRIBUTION

Here, we consider the classical network model of sto-
chastic binary units and denote the activity of unit k as nkðtÞ
being either 0 or 1, where 1 indicates the active and 0 the
inactive state (see, e.g., Refs. [33–36,38,44,47–49]). Since
wemay interpret a unit as representing an individual neuron,
we use the terms “unit” and “neuron” interchangeably. The
model neurons show transitions at random points in time
between the two states 0 and 1 controlled by transition
probabilities. The state of the network of N such units is
described by a binary vector n ¼ ðn1;…; nNÞ ∈ f0; 1gN
that at each time point assumes one of the 2N possible states.
Using an asynchronous update [50], in each infinitesimal
interval ½t; tþ δtÞ, each unit in the network has the prob-
ability ð1=τÞδt to be chosen for an update [51], where τ is the
time constant of the dynamics. An equivalent implementa-
tion draws the time points of an update independently for all
units. For a particular unit, the sequence of update points has
exponentially distributed intervalswithmeanduration τ, i.e.,
the update times form a Poisson process with rate τ−1. We
employ the latter implementation in the globally time-driven
[52] spiking simulator NEST [53] as described in Grytskyy
et al. (see Appendix of Ref. [54]) and use a discrete time
resolution δt ¼ 0.1 ms for the intervals. The stochastic
update constitutes a source of noise in the system. Given
that the kth neuron is selected for update, the probability to
end in the active state (nk ¼ 1) is determined by the
activation function FkðnÞ, which depends on the activity
n of all units i that are connected to neuron k via couplings
Jki. The probability to end in the inactive state (nk ¼ 0) is
given by 1 − FkðnÞ.
The stochastic system at time t is completely determined

by its probability distribution pðn; tÞ. The time evolution of
the two-point distribution pðn; t;q; sÞ (describing the
probability that the system was in state q at time s and
is in state n at time t) obeys—because of the Markov
property—the same master equation [see Eq. (A1) in
Appendix A] as pðn; tÞ. Using the definitions of the first
moment and the equal time, as well as the two time point
second moments,
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hnkðtÞi ≔
X
n

pðn; tÞnk;

hnkðtÞnlðtÞi ≔
X
n

pðn; tÞnknl;

hnkðtÞnlðsÞi ≔
X
n;q

pðn; t;q; sÞnkql; ð1Þ

one obtains a set of differential equations for the first and
second moments [33,34,38,55], which read [for complete-
ness, in the Appendix, we included their derivation in
Eq. (A4)]

τ
∂
∂t hnkðtÞi ¼ −hnkðtÞi þ hFkðnðtÞÞi;

k ≠ l τ
∂
∂t hnkðtÞnlðtÞi ¼ −2hnkðtÞnlðtÞi

þ hFkðnðtÞÞnlðtÞi
þ hFlðnðtÞÞnkðtÞi;

t > s τ
∂
∂t hnkðtÞnlðsÞi ¼ −hnkðtÞnlðsÞi

þ hFkðnðtÞÞnlðsÞi; ð2Þ
where the expectation value hi defined in Eq. (1) can be
interpreted as an average over realizations of the random
dynamics. Note that the second line does not hold for k ¼ l
but becomes the first line because of hn2ki ¼ hnki ≕ mk. The
third line becomes the second line for t → s. These equations
are identical to Eqs. (3.4)–(3.7) in Ref. [33], to Eqs. (3.12)
and (3.13) in Ref. [38], and to Eqs. (18)–(22) in the
Supplementary Material of Ref. [34]. The works by
Ginzburg and Sompolinsky [33] and Renart et al. [34]
considered the second-order statistics averaged over many
pairs of neurons, i.e., hnαnβi ¼ 1=ðNαNβÞ

P
i∈αj∈βhninji.

These averages are closely related to the population-
averaged activities nαðtÞ ¼ ð1=NαÞ

P
i∈αniðtÞ and can there-

fore be treated by population-averaging mean-field methods.
While the methodology in Buice et al. [38] is general, the
authors consider interacting populations of neurons. Here, we
go beyond the population-level description and consider
second-order statistics of individual pairs for a particular
coupling matrix J, a setting which is beyond the disorder-
averaged description of self-averaging observables [37]. In
particular, we are interested in the stationary statistics of the
mean activities of individual units and their zero time lag
pairwise covariances ckl ¼ hnkðtÞnlðtÞi − hnkðtÞihnlðtÞi,
which can be deduced from Eq. (2),

mk ¼ hFkðnÞi;

ckl ¼
� 1

2
hFkðnÞnli þ 1

2
hFlðnÞnki −mkml k ≠ l

mkð1 −mkÞ k ¼ l:
ð3Þ

We now assume a standard form for the activation function
between neurons given by

FkðnÞ ¼ fðhkðnÞÞ;

hk ¼
XN
i¼1

Jkini; ð4Þ

where the gain function FkðnÞ ¼ fðhkðnÞÞ depends on the
state of the network only via the summed andweighted scalar
activity hk. In systems with symmetric couplings Jki ¼ Jik
and activation function f ¼ tanh, this choice describes a
system with a Hamiltonian, which is quadratic in the state
variables and whose stationary distribution is of Boltzmann
form. Instead, here we study general (nonsymmetric) cou-
plings and arbitrary gain functions f. However, for concrete-
ness, when comparing the analytical predictions to numerical
results, we choose fðhkÞ ¼ Hðhk − θÞ, whereHðxÞ ¼ 1 for
x ≥ 0 and 0 else is the Heaviside function. Intermediate
results also hold for arbitrary gain functions f. If the
distribution of hk was known, the expectation value hFki
could be directly calculated.

III. GAUSSIAN APPROXIMATION

We aim at a self-consistent equation for the N values of
the first moments and the NðN − 1Þ values of the second
moments of the activity variables (3). We note that van
Vreeswijk et al. [44] and Renart et al. [34] invoke the
central-limit theorem to justify the assumption that the local
field hk typically follows a Gaussian distributionN ðμk; σ2kÞ
with cumulants μk and σ2k. These cumulants are related to
cumulants of the activity variables n via

μk ¼ hhki ¼
X
i

Jkihnii ¼ ðJmÞk;

σ2k ¼ hh2ki − μ2k ¼
X
i;j

JkiJkjðhninji − hniihnjiÞ

¼ ðJCJTÞkk; ð5Þ

with the vector of mean activities mi ¼ hnii and the
covariance matrix cij ¼ hninji − hniihnji, which contains
cii ¼ hniið1 − hniiÞ on the diagonal. In the seminal work
by van Vreeswijk and Sompolinsky [56], the influence of
the cross-covariances on the variance in the input to a
neuron was neglected. Instead, only the dominant contri-
bution, given by the variances cii of the single neurons on
the diagonal, was taken into account, leading to the
expression σ2k ¼

P
iJ

2
kimið1 −miÞ. The additional depend-

ence of σ2k on the off-diagonal elements (5) is important for
the distribution of mean activities, as we show in the
following. We note that because of the marginal binary
statistics of ni, it follows that hn2i i ¼ hnii, showing that the
second moment is uniquely determined by the first
moment. We exploit this property in the subsequent
sections by expressing a subset of higher-order cumulants
in terms of lower-order ones. Using the central-limit
theorem, as outlined above, leads to
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mk ¼ hFkðnÞi≃
Z

∞

−∞
Hðx − θÞN ðμk; σ2k; xÞdx

¼ 1

2
erfc

�
−
μk − θffiffiffi
2

p
σk

�
: ð6Þ

To enable the extension to further corrections, we now aim
at a more systematic calculation of expectation values
containing the gain function. Using the Fourier represen-
tation fðxÞ ¼ ð1=2πÞ R∞

−∞ dωf̂ðωÞ exp ðiωxÞ of the gain
function f, we obtain

hFkðnÞin ¼ 1

2π

Z
∞

−∞
dωf̂ðωÞ

�
exp

�
ðiωÞ

XN
j¼1

Jkjnj

��
n

¼ 1

2π

Z
∞

−∞
dωf̂ðωÞhexp ððiωÞhkðnÞÞin; ð7Þ

where we inserted the definition of hk [Eq. (4)] in the
second line. Defining the vector twith elements tj ¼ iωJkj,
the expectation value in the first line of the previous
expression has the form hexpðt · nÞin, which is the defi-
nition of the characteristic function or moment generating
function

φnðtÞ≡ het·nin
¼

X
n∈f0;1gN

pðnÞet·n

¼ exp ðΦnðtÞÞ ð8Þ
of the joint distribution of the binary variables pðnÞ (see
page 32 of Ref. [57]), which can also be expressed by the
cumulant generating function ΦnðtÞ. Note that for com-
pactness of notation, we omitted the index k for t. The
Taylor expansion of ΦnðtÞ explicitly introduces a cumulant
hierarchy, showing that cumulants of activity variables nj at
all orders contribute to hFkðnÞi. If we neglect cumulants
higher than order two, thus effectively approximating the
binary states as correlated Gaussian variables, we use the
corresponding quadratic cumulant generating function

ΦnðtÞ ¼
X
i

miti þ
1

2

X
i;j

cijtitj ð9Þ

and obtain

hFkðnÞin ≃ 1

2π

Z
∞

−∞
dωf̂ðωÞ exp

�X
i

miti þ
1

2

X
i;j

cijtitj

�

¼ 1

2π

Z
∞

−∞
dωf̂ðωÞ exp

�
μkiωþ 1

2
σ2kðiωÞ2

�
:

ð10Þ
Here, we identified the sums in the penultimate line as the
mean and variance of the input field (5). On the other
hand, in the second line of Eq. (7), we identify the moment

generating function φhkðiωÞ≡ hexp ððiωÞhkðnÞÞin of the
input field hk. From Eq. (10), we obtain its corresponding
cumulant generating function as ΦhkðiωÞ ¼ μkiωþ
1
2
σ2kðiωÞ2. We therefore conclude that hk ∼N ðμk; σ2kÞ

follows a Gaussian distribution. The mean activity is then
given by

mk ¼ hFkðnÞin ¼ hfðhkÞihk∼N ðμk;σ2kÞ; ð11Þ

which for fðxÞ ¼ Hðx − θÞ is identical to Eq. (6). The
procedure hence reproduces the known result for the
Heaviside gain function (see Supplementary Material,
Secs. 2.2 and 2.3 of Ref. [34,58]) but additionally yields
a generalization for smooth gain functions f that takes into
account the fluctuations of the synaptic input, which is in
line with the treatment in Eq. (27) of Ref. [59].
More importantly, this systematic calculation reveals the

assumption that is underlying the Gaussian approximation
for the input field, namely, that cumulants higher than order
two are ignored on the level of individual neuronal activities.
To obtain an expression for the zero time lag covariance,

we start from Eq. (3). We hence need to evaluate expres-
sions of the form hFkðnÞnli which do not factorize trivially
since the value of nl may have an influence on neuron k
through the gain function FkðnÞ. However, along the same
lines as above, we can derive hFkðnÞnli using the identical
approximation of hexp ðn · tÞi by first noting

hFkðnÞnli ¼
1

2π

Z
∞

−∞
dωf̂ðωÞ

�
exp

�
iω

XN
j¼1

Jkjnj

�
nl

�

¼ 1

2π

Z
∞

−∞
dωf̂ðωÞ ∂

∂tl hexp ðn · tÞi:

Again expressing the characteristic function by the cumu-
lant generating function (9) yields

∂
∂tl expðΦnðtÞÞ ¼

∂ΦnðtÞ
∂tl|fflfflffl{zfflfflffl}

¼mlþ
P
j

JkjcjlðiωÞ by ð9Þ

expðΦnðtÞÞ

¼
�
ml þ

X
j

Jkjcjl
∂
∂μk

�
expðΦhkðiωÞÞ;

ð12Þ

where we generated the factor iω by a derivative ∂μk in the
last line. With Eq. (11), this yields

hFkðnÞnli ¼ mlhfðhkÞihk∼N ðμk;σ2kÞ þ SkðJCÞkl;

Sk ¼
∂
∂μk hfðhkÞihk∼N ðμk;σ2kÞ

¼i:b:p:hf0ðhkÞihk∼N ðμk;σ2kÞ; ð13Þ
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where we defined the local susceptibility Sk that determines
the influence of an input to neuron k onto its output at the
time point of its update. For a differentiable gain function f,
the susceptibility is equal to the slope f0 averaged over the
fluctuations of hk [compare also Eq. (27) of Ref. [59]],
which follows from integrating the second line (13) by
parts (i.b.p.). Note that the second line in Eq. (13) also holds
for nondifferentiable f, such as our particular choice
fðxÞ ¼ Hðx − θÞ, for which the susceptibility has the form

Sk ≔
1ffiffiffiffiffiffi
2π

p
σk

e−ðμk−θÞ2=ð2σ2Þ; ð14Þ

and which, by Eq. (13), is the strongest possible coupling
for a given input statistics. The self-consistent set of
equations for the first and second cumulants thus reads

mk ¼
1

2
erfc

�
−
μk − θffiffiffi
2

p
σk

�
;

ckl ¼
� 1

2
SkðJCÞkl þ 1

2
SlðJCÞlk k ≠ l

mkð1 −mkÞ k ¼ l:
ð15Þ

To obtain the joint solution of Eqs. (15), we use a damped
fixed-point iteration with the nth iteration value denoted as

(mðnÞ
k , cðnÞkl ), which has the form

mðnþ1Þ
k ¼ ρ

1

2
erfc

�
−
μðnÞk − θffiffiffi
2

p
σðnÞk

�
þ ð1 − ρÞmðnÞ

k ;

cðnþ1Þ
kl ¼

k≠l
ρ
1

2
ðSðnÞk ðJCðnÞÞkl þ SðnÞl ðJCðnÞÞlkÞ þ ð1 − ρÞcðnÞkl ;

cðnþ1Þ
kk ¼

k¼l
mðnþ1Þ

k ð1 −mðnþ1Þ
k Þ; ð16Þ

where we used the damping factor ρ ¼ 0.7, which, for the
current application, yields good convergence. Here, μk and
σk are determined by Eq. (5) in each step. The iteration
continues until the summed absolute change of mk and ckl
is smaller than the chosen tolerance of 10−14, allowing a
sufficient safety margin towards truncation errors induced
by the employed double precision numerics. Figure 1
shows that the theoretical prediction yields mean activities
and covariances in line with simulations of a random fixed–
in-degree network of excitatory and inhibitory neurons.
While cross-covariances are explained with good accuracy,
mean activities slightly, but systematically, deviate from
simulated results: The scatter plot, showing the mean
activities of individual neurons, has a slope below unity,
indicating that the width of the distribution is underesti-
mated by the theory. Moreover, we observe that the
population-averaged covariances are slightly underesti-
mated by the theory. However, in summary, the theory
in the Gaussian approximation captures not only the mean

and width of the covariance distribution to a large extent but
also its general shape as shown in Fig. 2.
The systematic calculation presented here shows that the

Gaussian assumption on the level of the individual statistics
directly yields the linearized result of Secs. 2.3 of the
Supplementary Material of Ref. [34]. Originally, the terms
of the form hFkðnÞnli in Eq. (3) were obtained by using

(a)

(b)

FIG. 1. Consistent Gaussian approximation for the mean
activity and covariance matrix in a random network of binary
neurons. (a) Theoretical prediction of mean activities (15) versus
simulation results (black is for excitatory; gray is inhibitory). The
diagonal is indicated by the dashed line. Lower inset: Mean
activity averaged over excitatory and inhibitory neurons (light
gray is for simulation; darker gray is for theory). Black error bars
show standard error of the mean obtained from 20 simulations
(not visible, below line width). Upper inset: Width of distribu-
tion of mean activities. (b) Theoretical prediction (15) versus
simulated covariance. Only cross-covariances are shown, as
autocovariances follow trivially by Eq. (3) from the mean
activities. Lower inset: Mean covariances averaged over
excitatory-excitatory, excitatory-inhibitory, and over inhibitory-
inhibitory neuron pairs (light gray is for simulation; darker gray is
for theory). Error bars show the standard error of the mean
obtained from 20 simulations. Upper inset: Width of the
distributions of covariances. Network parameters: Number of
excitatory (NE ¼ 500) and inhibitory neurons (NI ¼ 125),
threshold θ ¼ −5.5, excitatory coupling strength Jij ¼ J ¼ 1,
∀ j ∈ E, inhibitory coupling strength Jij ¼ −6J, ∀ j ∈ I, and
fixed in-degree homogeneous random network with connection
probability p ¼ 0.2. Results are averaged over 20 simulations
with T ¼ 2; 000; 000 ms each. Simulations were performed
using the NEST simulator [53]. Theoretical predictions are
obtained by damped fixed-point iteration (16).
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relations between conditioned and unconditioned proba-
bility distributions of binary variables. After the Gaussian
approximation, the resulting nonlinear equation was lin-
earized and second-order terms were discussed to be small
in the large-N limit. In contrast, the derivation here shows
that the linearization is not an additional assumption but
appears naturally once the Gaussian approximation has
been performed on the level of individual variables. Note
also that no additional assumption regarding the strength of
the coupling is necessary.

IV. THIRD-ORDER CUMULANTS

The derivation in the previous section is systematic in
the sense that all cumulants of order three and higher of the
stochastic variables n are consistently neglected. The
original idea of a mean-field description, however, seeks
an approximation of the local field hk sensed by an
individual unit k rather than a truncation of the cumulants
of the individual variables n themselves. Since the local
field is, by Eq. (4), a superposition of a large number of
weakly correlated contributions, the distribution of hk will
be close to Gaussian by the central limit theorem. In the

path-integral formulation, commonly employed to study
disordered systems, the Gaussian approximation of hk is
equivalent to a saddle-point approximation to lowest order
in the auxiliary field [see, e.g., Eq. (3.5) of Ref. [28] or
Eq. (3) of Ref. [29]]. Even though one may expect the
central-limit theorem to be applicable to the summed input
hk, it is easy to see that for networks of several hundreds of
units, higher order cumulants still have an effect. This is
illustrated in Fig. 3, showing the distribution of the input to
a neuron receiving a sum of binary, uncorrelated signals.
The Gaussian approximation, with the same mean and
variance as the exact distribution, has a peak that is slightly
shifted to the left. Taking into account the third-order
cumulant cures the displacement of the peak. The expan-
sion in cumulants in Sec. III shows how the higher-order
cumulants can be taken into account in the calculation of
the expectation values of the gain function.
In the following, we expand the distribution of hk up to

third-order cumulants. To this end, we use the relationship
that the nth cumulant of a summed variable is the sum of
nth cumulants of its constituents [Eq. (B4)]. We then use
the property of binary variables that nKk ¼ nk for K ≥ 1,
which relates cumulants of order K þ L to cumulants of
order Lþ 1 in cases where neuron k appears K times in the
cumulant (see Appendix D for the detailed calculation).
Note that similar relations also hold for classical spins
ni ¼ �1, or generally for dichotomous units with arbitrary
states ni ∈ fα; βg, as all these representations are related by
an bijective affine-linear mapping. The first two cumulants
of the summed input hk ¼

P
lJklnl to a neuron are there-

fore given as before by κ1;k ¼ μk and κ2;k ¼ σ2k [Eq. (5)].

(a)

(b)

FIG. 2. Distribution of covariances in the Gaussian approxi-
mation for a random network of binary neurons. (a) Distribution
of cross-covariance between excitatory neurons (black) and
inhibitory neurons (gray), and between one inhibitory and one
excitatory neuron (light gray) from simulation. (b) Same as (a),
but showing the theoretical result for the Gaussian approximation
(15). Parameters are the same as in Fig. 1.

FIG. 3. Distribution of the summed input. Circles show the
distribution assuming uncorrelated activity of the input neurons
with constant rate m ¼ 0.2, i.e., pðhÞ ¼ P

k;lBðpNE;m; kÞB×
ðpNI; m; lÞδh;JEkþJI l, with binomial probabilities BðN;p; kÞ. We
show the Gaussian approximation N ðμ; σ2; hÞ (black) with the
same moments as the summed binomial distribution μ¼
pðNEJEþNIJIÞm, σ2¼pðNEJ2EþNIJ2I Þmð1−mÞ. The close-
to-Gaussian approximation pðhÞ≃ ð1þ ðκ3=6Þ∂3

μÞN ðμ; σ2; hÞ
(gray) is shown, taking into account the third cumulant κ3 ¼
pðNEJ3E þ NIJ3I Þð2m3 − 3m2 þmÞ of h. Other parameters are
the same as in Fig. 1.
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The third cumulant κ3;k [by defining xl ¼ Jklnl and y ¼ hk
and using Eq. (B4)] reads

κ3;k ¼
X
i;j;r

JkiJkjJkr⟪ninjnr⟫; ð17Þ

where we use the notation ⟪∘⟫ to denote cumulants. For the
mean activity (3), we need to evaluate the expectationvalue of
a nonlinear function applied to hk. We follow an analogous
approach as in the previous section (see Appendix C for
details) and apply Eq. (C2) to FkðnÞ ¼ HðPjJkjnj − θÞ,
yielding a perturbative treatment for the effect of the third-
order cumulant

hFkðnÞi ¼ eð1=6Þκ3;kð∂=∂μkÞ3hHðhk − θÞihk∼N ðμk;σ2kÞ: ð18Þ

To obtain a correction of the covariances, we determine the
contribution of the third cumulant to the term of the form
hFkðnÞnli ¼ hHðhkðnÞ − θÞnli. We apply the general result
(C3) with xl ¼ Jklnl, where we need to cancel a factor Jkl in
the final result because of nl ¼ xl=Jkl to get

hFkðnÞnli ¼
X3
q¼0

Δκq;kl
1

q!

� ∂
∂μk

�
q
hFkðnÞi with

Δκq;kl ¼
X
i1���iq

Jki1 � � � Jkiq⟪ni1 � � � niqnl⟫; ð19Þ

where hFkðnÞi is given by Eq. (18). The form of the terms
Δκq;klð1=q!Þð∂=∂μkÞq ¼ Δκq;klð∂=∂κq;kÞ shows that, for
q ≥ 1, they correspond to an infinitesimal displacement of
theqth cumulant κq;k byΔκq;kl. These corrections come about
by the presence of the variable nl in the expectation value,
which can alternatively be understood as a conditioned
expectation value hFkðnÞnli ¼ mlhFkðnÞjnl ¼ 1i, where
the condition nl ¼ 1 changes the cumulants of hk. The first
two terms in the sum (19) are identical to the Gaussian
approximation in Eq. (12). The difference in the approxima-
tion schemes on the level ofn andhk, respectively, is apparent
in the term for q ¼ 2, which contains a correction to the
second-order cumulant due to the presence of nl. This term is
neglected in the Gaussian truncation of cumulants of n in
Sec. III. The consistent approximation of hk up to third-order
cumulants analogously requires the term for q ¼ 3. This
correction in turn depends on the fourth-order cumulant
⟪ni1 � � � niqnl⟫.
We now use the properties of binary variables that allow

us to express a subset of higher cumulants by lower-order
ones because of the property hnKi i ¼ hnii (for all integers
K ≥ 1). The kth raw moment is given by the product of all
combinations of lower-order cumulants [60]. For the third
moment, this yields

hnlninji ¼ ⟪nlninj⟫þ climj þ cijml þ cjlmi

þmlmimj: ð20Þ

If there are at least two identical indices, we can express the
corresponding third-order cumulant by the two lower
orders. Both cases l ¼ i ≠ j and l ¼ i ¼ j lead to the
same expression (D1),

⟪nlnlnj⟫ ¼ cljð1 − 2mlÞ: ð21Þ

In the latter case, we get the third cumulant of a binary
variable ⟪nlnlnl⟫ ¼ ml − 3m2

l þ 2m3
l , which is uniquely

determined by its mean. We can therefore take into account
the contribution of all third-order cumulantswith at least two
identical indices to the statistics of hk. Stated differently, we
calculate the third-order cumulant of hk using Eq. (17) and
neglecting all cumulants of the binary variables where all
indices are different (⟪ninjnl⟫≃ 0 for i ≠ j ≠ l). A
straightforward calculation (see Appendix D Eq. (D2), for
details) yields

κ3;k ≃ ½3ðJ ⊛ JÞdiagðf1 − 2migÞCJT �kk
− ½2ðJ ⊛ J ⊛ JÞdiagðfmi − 3m2

i þ 2m3
i gÞ�k; ð22Þ

where we use the symbol ⊛ for the element-wise
(Hadamard) product of two matrices [61]. For the third
cumulant appearing explicitly in Eq. (19), we perform a
similar reduction that yields the matrix (D3),

Δκ2 ≃ J ⊛ Jdiagðf1 − 2migÞC
þ 2Jdiagðf1 − 2migÞ ⊛ ðJCÞ
− 2ðJ ⊛ JÞdiagðfmi − 3m2

i þ 2m3
i gÞ: ð23Þ

The matrix Δκ3 takes the form (see Appendix D for details)

Δκ3 ≃ 3J ⊛ ððJ ⊛ JÞf⟪nininjnj⟫ijgÞ
þ 3ðJ ⊛ JÞ ⊛ ðJf⟪ninjnjnj⟫ijgÞ
þ ðJ ⊛ J ⊛ JÞðf⟪ninininj⟫ijg
þ diagðf⟪nininini⟫igÞÞ; ð24Þ

where the fourth-order cumulants are given by
Eqs. (D4)–(D6).
To evaluate the expression (18) for the mean activity and

Eq. (19) for the covariance, we need the nth derivative of
the complementary error function. We use that
ðd=dxÞ 1

2
erfcð−xÞ ¼ ð1= ffiffiffi

π
p Þe−x2 is a Gaussian and further

that the nth derivative of a Gaussian ðd=dxÞne−x2 ¼
ð−1ÞnHnðxÞe−x2 can be expressed in terms of the nth
Hermite polynomial Hn (see Ref. [62]). Each differentia-
tion with respect to μk yields an additional factor ð

ffiffiffi
2

p
σkÞ−1.

Hence, we get, for n ≥ 1,
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Lnðμk; σkÞ ≔
�

d
dμk

�
n 1

2
erfc

�
θ − μkffiffiffi
2

p
σk

�

¼ 1ffiffiffi
π

p ð
ffiffiffi
2

p
σkÞ−nHn−1ðxÞe−x2 jx¼ðθ−μkÞ=ð

ffiffi
2

p
σkÞ:

Using this definition and the expansion eð1=6Þκ3;kð∂=∂μkÞ3≃
1þ 1

6
κ3;kð∂=∂μkÞ3, valid for small κ3;k compared to σ3k, we

get the mean activity

mk ¼ hFkðnÞi≃
�
1þ 1

6
κ3;k

� ∂
∂μk

�
3
�
1

2
erfc

�
θ − μkffiffiffi
2

p
σk

�

¼ L0ðμk; σkÞ þ
1

6
κ3;kL3ðμk; σkÞ: ð25Þ

For the term appearing in the covariance, we get

hFkðnÞnli

≃mlmk þ
XN
j¼1

�
L1ðμk; σkÞ þ

1

6
κ3;kL4ðμk; σkÞ

�
Jkjcjl

þ 1

2

�
L2ðμk; σkÞ þ

1

6
κ3;kL5ðμk; σkÞ

�
Δκ2;kl

þ 1

6

�
L3ðμk; σkÞ þ

1

6
κ3;kL6ðμk; σkÞ

�
Δκ3;kl þ oðκ23;kÞ:

ð26Þ

The latter expression shows, in particular, that the correc-
tion to the mean activity reappears (as the factor mk) in the
first line, indicating that the contribution of the third
cumulant to lowest order [q ¼ 0 in Eq. (19)] drops out
of the covariance, as the term mlmk is subtracted in Eq. (3).
In a weakly correlated state of the network, the remaining
terms are smaller thanmlmk as they give rise to the pairwise
covariance (3). This explains why the Gaussian approxi-
mation is already fairly accurate.
Simultaneously solving Eqs. (25) and (26) by a damped

fixed-point iteration, analogous to Eq. (16), yields an
approximation of the mean activities and covariances
shown in Fig. 4. The deviation of the mean activities from
simulation results [Fig. 4(a)] is reduced compared to the
Gaussian approximation below the significance level. The
width of the distributions is only slightly underestimated
compared to simulations, as exhibited by the scatter plot
aligned with the diagonal and the bar graph. The pairwise
averaged cross-covariances [Fig. 4(b)] are within the error
of the simulated results, in contrast to the Gaussian
approximation [cf. Fig. 1(b)]. A small contribution to the
remaining difference in variance stems from the finite
simulation time, naturally leading to a wider distribution
in Fig. 4(b) compared to the theoretical prediction. The

bigger contribution presumably comes from the nontrivial
third-order cumulants ⟪ninjnk⟫, where all indices are
unequal. Neglecting the nontrivial covariances shows that
the variability of σk from neuron to neuron is reduced,
which in turn reduces the width of the distribution of the
mean activities. For networks with fixed in-degree, this
even leads to a uniform mean activity across neurons,
which, however, still matches the averaged mean activities
from simulations indicating that averaged quantities are
insensitive to variability in nontrivial higher-order cumu-
lants (see Fig. 5 in Sec. VI). Analogously, we expect that
the neglect of nontrivial third-order cumulants underlies the
reduced width of the covariances.

(a)

(b)

FIG. 4. Approximation for covariance matrix in a random
network of binary neurons including third-order cumulants.
(a) Theoretical prediction of mean activities (25) versus simu-
lation results (black is for excitatory; gray is for inhibitory).
Lower inset: Mean activity averaged over excitatory and inhibi-
tory neurons (light gray is for simulation; darker gray is for
theory). Black error bars (not visible, below line width) show the
standard error of the mean obtained from 20 simulations. Upper
inset: Standard deviation of distribution of mean activities of
excitatory (σe) and inhibitory (σi) neurons. (b) Theoretical
prediction (26) versus simulated covariance (black is for ex-
citation-excitation; gray is for inhibition-inhibition; light gray is
for excitation-inhibition). Lower inset: Mean covariances aver-
aged over excitatory-excitatory, excitatory-inhibitory, and over
inhibitory-inhibitory neuron pairs (light gray is for simulation;
darker gray is for theory). Error bars show the standard error of
the mean obtained from 20 simulations. Upper inset: Standard
deviations of the distributions of covariances. Network param-
eters and the display are the same as in Fig. 1. Theoretical
predictions are obtained by damped fixed-point iteration.
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V. SCALE INVARIANCE OF COVARIANCES

The equation for cross-covariances in Eq. (15) yields
an additional insight: Assuming that mean activities
and correlations were unchanged, a scaling of all incoming
synapses to a neuron k by some factor α > 0 amounts
to a scaling of the strength of synaptic fluctuations in the
same manner (σk ∝ α). The fixation of mean activities
can be achieved for different choices of incoming
synaptic amplitudes by adapting the threshold such that
ðμkðfJklgÞ − θkÞ=σk remains invariant [cf. Eq. (15)]. A
uniform rescaling of all synapses by a factor α > 0 there-
fore requires a change of the threshold by the same factor.
The susceptibility [Eq. (14)] Sk then scales as σ−1k ∝ α−1.
Hence, the term SkJkl appearing in the equation for

covariances in Eq. (15) is invariant under this scaling.
This result implies that covariances are invariant with
respect to the absolute value of synaptic amplitudes: The
self-generated network noise causes a divisive normaliza-
tion on the level of the synaptic input to each neuron. This
also implies that scaling the synapses with J ∝ N−1,
J ∝ N−ð1=2Þ, or J ∝ 1 as the network size tends to infinity
yields the same covariances, given the thresholds are
adapted so that the mean activity is preserved. On the
level of population-averaged covariances, this idea has
been noted earlier [59]. The independence of the network
dynamics on the absolute value of the synaptic weights
even holds exactly, as noted earlier [63]. The reason for this
is the absence of a length scale of a hard threshold; the only
relevant length scale is the amplitude σk of the synaptic
noise itself. Considering a single neuron k, the condition for
the neuron to be activated is hk ¼

P
lJklnl > θk. Rescaling

all incoming synapses as well as the threshold by the same
factor α > 0 multiplies both sides of this inequality; the
neuron switches at the very same configuration n of
incoming spins as in the original case.
The previous consideration is completely in line with the

work of Ref. [56]. The latter work found that, when
increasing the number of neurons N, a scaling of 1=

ffiffiffiffi
N

p
is required to obtain a robust asynchronous state, if the
system possesses variability of the thresholds with a
standard deviation defined as unity: The width of the
distribution of the thresholds induces a second length scale
into the system. Invariant behavior can therefore only arise
if the synaptic noise σk and the standard deviation of the
thresholds have a constant ratio. Scaling synapses as
J ∝ 1=N in this setting leads to vanishing temporal
fluctuations of hk and hence spin-glass freezing, whereas
for J ∝ 1 the asynchronous state persists. Fixing J, while
increasing the number of neurons N, results in more inputs
per neuron and thus increased temporal fluctuations, which
wash out the effect of distributed thresholds.

VI. MAPPING OF FLUCTUATIONS TO
ORNSTEIN-UHLENBECK PROCESSES

Here, we show an alternative interpretation of the
Gaussian approximation in Sec. III. Despite the fact that
the covariances obey different equations on the diagonal
k ¼ l and the off-diagonal k ≠ l [Eq. (15)], we can rewrite
the equations as a single matrix equation

2C −D ¼ WCþ ðWCÞT
0 ¼ ðW − 1ÞCþ ððW − 1ÞCÞT þ D; ð27Þ

where D is a diagonal matrix with elements constrained by
the condition that the diagonal entries of the covariance
matrix fulfill [Eq. (3)]

ckk ¼ mkð1 −mkÞ; ð28Þ

(a)

(b)

FIG. 5. Modified Lyapunov method. Solution of the individual
pairwise covariances by the projection method applied to the
continuous Lyapunovequation in comparison to simulation results.
(a) Mean activities predicted by the approximation that neglects
cross-correlations (black is for excitatory; gray is for inhibitory).
Lower inset: Mean activity averaged over excitatory and inhibitory
neurons (light gray is for simulation; darker gray is for theory).
Black error bars show the standard error of the mean obtained from
20 simulations (barely visible, approximately at linewidth). Upper
inset: Width of distribution of mean activities. (b) Theoretical
distribution of covariances (29) with D chosen according to
Eq. (30) [same approximation as in (a) form and S, i.e., neglecting
cross-correlations in the input to each neuron). Lower inset:
Mean covariances averaged over excitatory-excitatory, excitatory-
inhibitory, and over inhibitory-inhibitory neuron pairs (light gray is
for simulation; darker gray is for theory). Error bars show the
standard error of the mean obtained from 20 simulations. Upper
inset: Width of the distributions of covariances. Other parameters
and the display are the same as in Fig. 1.
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and W ¼ SJ is the matrix of effective couplings, which
incorporates the susceptibility S ¼ diagðS1;…; SNÞ of the
individual units. We ensure this latter condition in the
following way. We first solve Eq. (27) by multiplication
with the left eigenvectors vα of the effective couplings, i.e.,
vTαðW − 1Þ ¼ λαvTα (see Chap. 6.5 of Ref. [46]). The
corresponding right eigenvectors are uα, which fulfill the
bi-orthogonality vTαuβ¼δαβ and completeness

P
αuαvTα¼1

relation. With the notation Cαβ ≔ vTαCvβ (analogously
for D), we have

Cαβ ¼ −
Dαβ

λα þ λβ
;

C ¼
X
α;β

uαuT
βC

αβ; ð29Þ

where the latter expression follows from the completeness
relation.
The expression reveals the connection between the

eigenvalues λα of the linearized coupling matrix and
the fluctuations in the system. In the case of a single
eigenvalue close to instability, i.e., ReðλαÞ≃ 0, the fluctu-
ations in the corresponding eigendirection constitute the
dominant contribution to the covariance matrix C≃
−uαuT

αðvTαDvαÞ=ð2λαÞ. This scenario could be detected
in a principle-component analysis of experimental data,
with the dominant principle component pointing in the
direction of uα.
Evaluating expression (29) on the diagonal and using

Dαβ ¼ vTαDvβ ¼
P

jvα;jvβ;jDj, we get

mkð1 −mkÞ ¼! ckk ¼
X
j

−
�X

α;β

uα;kvα;j · uβ;kvβ;j
λα þ λβ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡Bkj

Dj;

B ¼ −
X
α;β

ðuαvTαÞ ⊛ ðuβvTβ Þ
λα þ λβ

; ð30Þ

where the symbol ⊛ is to be understood as the element-
wise multiplication (Hadamard product) of the two matri-
ces in the numerator. The penultimate line is an ordinary
matrix equation relating the (N-dimensional vector) Dk to
the (N-dimensional vector) ckk. To determine D as
D ¼ B−1diagðfckkgÞ, we hence need to invert the matrix
B. The covariance matrix is then obtained by Eq. (29).
The result (27) can be further interpreted as a mapping of

the fluctuations from the binary dynamics to an effective
system of Ornstein-Uhlenbeck processes. Given the set of
coupled Ornstein-Uhlenbeck processes

τ
∂xkðtÞ
∂t ¼ −xkðtÞ þ

X
j

wkjxjðtÞ þ ξkðtÞ; ð31Þ

with the Gaussian white noise hξðtÞξTðsÞi ¼ τDδðt − sÞ,
the stationary equal-time covariance matrix fulfills the

same continuous Lyapunov equation (see Chap. 6.5 of
Ref. [46]) as the binary network (27). Using the analogy of
the continuous Lyapunov equations, we see that the
elements of the diagonal matrix D can be interpreted as
the noise intensity injected into each neuron. The modified
Lyapunov method (30) determines this intensity such that
the variance of each continuous variable xk agrees with the
variance of the corresponding binary variable nk given by
Eq. (28), which, in turn, is fixed by the mean activity (15).
It is important to note thatW andD in Eqs. (27) and (31)

themselves depend on the covariances C via the suscep-
tibility S. This leads to Eq. (29) remaining an implicit
equation for C that needs to be solved iteratively. However,
by neglecting the contribution of cross-covariances in
Eq. (5), W and D become independent of C, rendering
Eq. (27) a linear equation for the covariances and the above
projection method an efficient algorithm to compute C.
This linear approximation consequently fails to predict the
distribution of mean activities for networks with fixed in-
degree, as shown in Fig. 5(a). Nevertheless, the width of the
distribution of the covariances shown in Fig. 5(b) is only
slightly underestimated, showing that the distribution of
mean activities contributes only marginally to the distri-
bution of covariances.
The viability of the linear approximation for the cova-

riances shows that fluctuations in the binary model are
practically equivalent to those in linear Ornstein-Uhlenbeck
processes. This equivalence has been reported earlier for
effective equations of the population-averaged pairwise
correlations [54]. The latter work used the approximate
result ckk ≃ ðDk=2Þ, which ignores the effect of the
covariances onto the autocovariances in Eq. (27), i.e.,
assuming that ðWCÞkk is smaller than ckk itself and hence
neglecting the right-hand side of Eq. (27) when determin-
ing the diagonal elements ckk. In the absence of self-
connections, this amounts to neglecting the off-diagonal
cross-covariances in C. For weakly correlated network
states, this is a good approximation. However, in the
present network setting, it slightly overestimates the pop-
ulation averages of the covariances as well as the width of
their distribution (data not shown).

VII. RESPONSE OF THE NETWORK TO
EXTERNAL STIMULI

To study how the recurrent network processes an
externally applied signal, we take into account an addi-
tional external input to each neuron k, denoted as hk;extðtÞ,
such that hkðtÞ ¼

P
jJkjnjðtÞ þ hk;extðtÞ. We start from the

differential equation (2) for the mean activities

τ
∂
∂t hnkðtÞi ¼ −hnkðtÞi þ hFkðnðtÞ; hk;extðtÞÞi;

with
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FkðnðtÞ; hk;extðtÞÞ ¼ H

�X
j

JkjnjðtÞ þ hk;extðtÞ − θ

�
:

As in the case without external input, the expectation value
hFkðnðtÞ; hk;extðtÞÞi can be treated in the Gaussian approxi-
mation. Subtracting the stationary activity state δnkðtÞ ¼
nkðtÞ − hnki, we get, after linearization,

τ
∂
∂thδnkðtÞi¼−hδnkðtÞiþSk

�X
j

JkjhδnjðtÞiþhk;extðtÞ
�

¼
X
j

ðwkj−δkjÞhδnjðtÞiþSkhk;extðtÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
≕ykðtÞ

;

where wkj ¼ SkJkj is the effective coupling as defined in
Sec. VI and Sk is the susceptibility (14). Hence, the
equation of motion for the perturbation in matrix notation
reads

τ
∂
∂t hδnðtÞi ¼ ðW − 1ÞhδnðtÞi þ yðtÞ: ð32Þ

In order to excite the system into the direction of one
eigenmode of the effective couplings W, we choose the
following stimulus vector:

hα
extðtÞ ≔ a ~uαfðtÞ; with ~uα ¼

S−1ReðuαÞ
∥S−1ReðuαÞ∥

; ð33Þ

where S ≔ diagðfSkgÞ is the diagonal matrix containing
the susceptibilities and uα the right-sided eigenvector of
W − 1 as defined in Sec. VI. The strength of the stimulus is
regulated by the parameter a and its temporal profile
determined by fðtÞ. The parameter a allows us to control
the amplitude of the stimulation in comparison to the
strength of the synaptic noise received by each unit. For the
linear approximation to hold, this amplitude must be
chosen such that the input to each unit is in the linear
part of the expectation value of the gain function and can
hence be approximated by the slope (14). Stimulating into
the direction of the real part of the eigenvectors ensures that
a complex mode is excited in combination with its complex
conjugate, which is necessary since the activity in the
network is real-valued. Here, ~uα is constructed such that it
is normalized and compensates for the multiplication of the
external input with the diagonal susceptibility matrix. We
measure the deflection of the activity into the direction of
the eigenmode by defining hδnαðtÞi ≔ ~vTαhδnðtÞi as the
projection of the activity vector onto the αth eigenmode of
the effective coupling matrix W (yα defined analogously),
where we choose ~vTα such that ~vTαS ~uβ ¼ δαβ, i.e.,

~vα ≔ k∥S−1ReðuαÞ∥ReðvαÞ; with

k ¼
�
1 if ImðλαÞ ¼ 0

2 if ImðλαÞ ≠ 0;

with vα being the left eigenvectors of W − 1 as defined
in Sec. VI.
The time evolution of the perturbation hδnαðtÞi is

obtained by solving Eq. (32) projected onto vα and v�α,
and subsequently adding the results. Hence, for any
stimulus fðtÞ [inserted into Eq. (32) as yðtÞ ¼ Shα

extðtÞ],
the perturbation obeys the convolution equation

hδnαiðtÞ ¼ a
1

2τ
½ðeλαð∘=τÞ þ eλ

�
αð∘=τÞÞ � f�ðtÞ: ð34Þ

Here, we consider a piecewise constant input starting at
time t0 ¼ 0 and stopping at t ¼ T; i.e., we choose
fðtÞ ¼ HðtÞ −Hðt − TÞ. The time course of the perturba-
tion is then given by

(a) (b)

(c) (d)

FIG. 6. Linear responses to DC stimuli. Responses (normalized
by the number of units N) to a DC stimulus (duration
T ¼ 100 ms) in the direction of one eigenmode (dark gray),
the background activity (light gray) measured in simulation, and
the analytical prediction of the response curve [Eq. (35), black]
obtained from linear response theory. (a) Eigenvalues λα of the
matrixW − 1. The eigenvalues associated with the modes that are
stimulated are depicted by black dots. (b) Stimulation in the
direction of the fastest decaying eigenmode λ ¼ −2.24, with a
stimulus size a ¼ 50. (c) Stimulation in the direction of the
slowest decaying eigenmode λ ¼ −0.26, with a stimulus size
a ¼ −30. (d) Stimulation in the direction of an eigenmode
decaying slowly and oscillatory λ ¼ −0.52þ 0.43i, with a
stimulus size a ¼ −60. Responses averaged over 500 repetitions.
Other parameters are the same as in Fig. 1.
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hδnαiðtÞ ¼ a

�
Reðλ−1α ð1 − eλαt=τÞÞ if t ≤ T

Reðλ−1α ðeλαðt−TÞ=τ − eλαt=τÞÞ if t > T:

ð35Þ

Figure 6 shows the response of the network activity
projected onto one eigenmode to the stimulus in the
direction of the same eigenmode. Choosing three stimulus
directions associated with three representative eigenvalues
from the full eigenvalue cloud of the network [Fig. 6(a)],
we demonstrate that the time course of fast (large negative
eigenvalue), slowly (eigenvalue close to zero), and oscil-
latory (complex eigenvalue) decaying modes is captured by
the linear approximation. This shows how the response of
the network depends on the spatial structure of the
stimulation. To lowest order, the transformation performed
by the network is hence a spatiotemporal filtering of the
input, where the responses with slowest decay correspond
to the excitation of eigenmodes closest to instability.

VIII. RECONSTRUCTION OF COUPLINGS

In the current section, we investigate the inverse prob-
lem, i.e., the inference of the couplings Jkl of the network
from the observed activity. The time-lagged cross-
covariance function in a network of Ornstein-Uhlenbeck
processes (for t > s) fulfills the differential equation (see
Chap. 6.5 of Ref. [46])

qkl ≔ τ
∂
∂t cklðt; sÞ þ cklðt; sÞ¼t>s

X
j

wkjcjlðt; sÞ: ð36Þ

This means we can uniquely reconstruct the effective
couplings wkl from the knowledge of the two matrices,
the covariance and its slope at time lag zero as

W ¼ QC−1

¼ 1þ τ
∂
∂tCðt; sÞjt¼sC

−1: ð37Þ

For an Ornstein-Uhlenbeck process, obeying Eqs. (27) and
(36), the reconstruction of the couplings wkl is exact, as
shown in Fig. 8(b).
We now demonstrate that a similar relationship

approximately also holds in binary networks. For t > s,
the time-lagged cross-covariance function cklðt; sÞ ¼
hnkðtÞnlðsÞi − hnkðtÞihnlðtÞi for the binary network fulfills
[Eq. (A5)]

qklðt; sÞ ≔ τ
∂
∂t cklðt; sÞ þ cklðt; sÞ

¼t>shFkðnðtÞÞnlðsÞi − hnkðtÞihnlðsÞi: ð38Þ
An example of an autocovariance and a cross-covariance
function together with the slope at zero time lag is shown
in Fig. 7.

In the limit of vanishing time lag, the form of qkl ¼
limt→sqklðt; sÞ ¼ hFkðnðtÞÞnlðtÞi − hnkðtÞihnlðtÞi shows
that qkl measures the direct influence of fluctuations of
neuron l on the gain function of neuron k. In the Gaussian
approximation (see Sec. III), we get for k ≠ l

qkl ¼
X
j

SkJkjcjl: ð39Þ

For k ¼ l, however, we have to evaluate hHðhkðnðtÞ −
θÞnkðtÞi on the right-hand side. Since the term nk appears
in the expectation value, the statistics of hk is effectively
conditioned on the state nk ¼ 1. Since the transitions of
neuron k directly depend on the value of hk, this con-
ditioning violates the close-to Gaussian approximation of
hkjnk ¼ 1. An approximate treatment on the diagonal is
possible under the assumption that the autocovariance
function of hk is dominated by contributions of the
autocovariances of the binary variables n, yielding a
nonlinear differential equation for the temporal shape of
the autocovariance function [see Eq. (5.17) of Ref. [56]].
Approximating the temporal profile of the autocovariance
function aðsÞ≔ hHðhkðtþsÞ−θÞHðhkðtÞ−θÞi≃hmkiþ
hmkið1−hmkiÞe−jsj=τ, which has the right asymptotic

(a)

(b)

FIG. 7. Autocovariance and cross-covariance functions.
Example of an autocovariance function (a) and a cross-covariance
function (b) in the network described in Fig. 1. The respective
slopes of the functions at time lag 0þ are indicated by the black
tangent lines.
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behaviors [að0Þ ¼ mk and aðs → ∞Þ ¼ m2
k] and assumes

fluctuations to be correlated on the time scale τ of
the update, leads to the approximate value hHðhkðtÞ −
θÞnkðtÞi≃ 1

2
mkð1 −mkÞ [by using Eq. (C1) of Ref. [56]).

The corresponding approximation of the slope following
from the former approximation with Eq. (38) is shown in
Fig. 8(a). However, the resulting expression for the slope at
zero time lag cannot be written in the form (39). Therefore,
we assume that Eq. (39) also holds on the diagonal,
although the resulting predicted slopes have a slight
negative bias compared to simulation results.
Given the two covariance matrices entering Eq. (38), as

well as the average activities mi for each neuron, we can
derive a procedure for reconstructing the couplings Jkl=σk
relative to the noise. The mean and variance of the input to a
neuron are determined by Eq. (5). Inverting the relation (6)

as yðmkÞ ≔ ðμk − θÞ=ð ffiffiffi
2

p
σkÞ ¼ −erfc−1ð2mkÞ allows us to

determine the susceptibility (14) as Sðmk; σkÞ ¼
1=ð ffiffiffiffiffiffi

2π
p

σkÞe−yðmkÞ2 . Hence, we obtain an expression for
the ratio of the incoming synaptic weight and the total
synaptic noise of neuron k,

Jkl
σk

¼
ffiffiffiffiffiffi
2π

p
wkleyðmkÞ2 : ð40Þ

This result again shows that correlations are only controlled
by the ratio Jkl=σk rather than by Jkl and σk alone, in line
with the invariance found in Sec. V. Figure 8(b) shows the
reconstruction of couplings from the simulated covariance
functions. Because of the previously discussed approxi-
mations, the exact reconstruction of the relative couplings
Jkl=σk is not possible for a binary network. The observed
deviations from the identity line are predominantly caused
by the approximation of the slope of the autocovariance
functions. The reconstructed coupling matrix correctly
infers all excitatory and all inhibitory connections but
additionally yields a considerable number of false-positive
excitatory and inhibitory connections.
The described procedure, moreover, allows us to deter-

mine the remaining parameters of the binary network. With
regard to correlations, we are free to choose an arbitrary σk,
e.g., σk ¼ 1 to determine Jkl by Eq. (40). As the mean
activity and correlations are known, the actual magnitude of
fluctuations σlock caused by the local inputs from the network
follows fromEq. (5). If these fluctuations are smaller than or
equal to our arbitrary choice (σlock ≤ σk ¼ 1), it is possible to
supply each neuron with additional noise of variance
1 − ðσlock Þ2. Only in this case can we construct a binary
network satisfying the given constraints. Having fixed Jkl,
and given the mean activities by Eq. (5), we can determine
the mean input μk to each cell. Finally, the threshold θ must
be chosen such that θk ¼ μk −

ffiffiffi
2

p
yðmkÞ.

Different routes to inverse problems have been proposed
earlier. For equilibrium systems, a statistical-mechanics
formulation allows the use of principal-component analysis
[64] or maximum-entropy approaches [65,66]. For off-
equilibrium systems with a sequential Glauber update in
discrete time steps, methods related to our approach have
previously been proposed by Mézard and Sakellariou [42].
Their results can be related to our continuous-time method
by time discretization of the slope appearing on the left-
hand side of Eq. (38), leading to similar expressions as their
Eqs. (8) and (18). An alternative approach, based on the
Thouless-Anderson-Palmer (TAP) approximation [5], is
described in Ref. [41] [see their Eq. (14)].

IX. DISCUSSION

Here, we present a theoretical description of fluctuations
in strongly coupled networks of large numbers of binary
units that, for the first time, faithfully captures the statistics

(a)

(b)

FIG. 8. Reconstruction of couplings from the matrix of co-
variances and slopes of the covariance functions at zero time lag.
(a) Slope of autocovariance (gray) and cross-covariance functions
(black) at zero time lag from the Gaussian approximation versus
slope taken from simulation results. Dots show the prediction
of the linear theory (36), and crosses the approximation
− 1

2
mkð1 −mkÞ for the slope of autocovariances. (b) Recon-

structed synaptic amplitude wkl in a network of Ornstein-
Uhlenbeck processes (37) (gray) and reconstructed weights
Jkl=σk (40) (black) in a binary network versus original couplings
used in simulation. Covariance and slope averaged over 20
repetitions, each simulated for T ¼ 2; 000; 000 ms. Other net-
work parameters are the same as in Fig. 1.
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of individual units as well as pairs of units. The fluctuations
are characterized by self-consistent equations for the mean
activity and pairwise correlations, including finite-size
effects down to hundreds of units. The method can be
applied to a wide range of networks, in particular, networks
with asymmetric and strong couplings.
Standard approaches describing symmetric systems in

terms of a partition function cannot be extended to non-
symmetric coupling because these systems do not reach
thermodynamic equilibrium. Asymmetries arising from
disordered couplings or deterministic constraints, such as
Dale’s law, are treated by using ensemble averages over the
random couplings [67] or the random dilution of the
network [68], respectively. By construction, these
approaches are, however, constrained to describe self-
averaging properties of systems. Here, we are interested
in the dynamics of individual units, which is not self-
averaging, and we set out to capture the statistics of a
particular realization of the system in terms of the cumulant
hierarchy for the activity variables. Truncating the hier-
archy after second order yields a closed set of equations that
already provides a good approximation for the zero time lag
covariances between individual units. We show the equiv-
alence of this truncation to the Gaussian approximation of
the input field [34,56], which follows from the central-limit
theorem. Non-Gaussian, finite-size effects in networks of
only several hundreds of units are effectively taken into
account by incorporating a subset of third-order cumulants
that can be expressed in terms of lower-order cumulants
due to the binary nature of the activity variables. The
inclusion of third-order cumulants significantly improves
the prediction of mean activities, which are strongly
affected by the nonlinearity of the gain function. The
resulting set of nonlinear coupled equations can efficiently
be solved numerically by damped fixed-point iteration.
We demonstrate that a Heaviside activation function—

independent of the choice of coupling amplitudes—
constitutes the strongest possible interaction for binary
networks. This finding generalizes the invariance of pop-
ulation-averaged pairwise correlations under proportional
scaling of couplings and threshold of all units [59,63] to the
invariance of individual pairwise correlations under the
scaling of the corresponding units’ parameters. Weaker
coupling in binary networks can only be achieved by a
smoother activation function, not by different scalings of
coupling amplitudes, e.g., 1=N versus 1=

ffiffiffiffi
N

p
, contradictory

to frequently employed arguments in the literature (as
discussed in Ref. [63]). In networks with plastic synapses
or networks receiving time-varying input, dynamically
changing thresholds could similarly act as a homeostasis
mechanism on the level of mean activities and correlations
and prevent systems from freezing in a local minimum [69].
While the scaling invariance is generic, the presented
Gaussian and close-to-Gaussian approximations of the
input field hold for the commonly considered narrowly

distributed couplings. For wide distributions, the statistics
of the input field is likely to depart from the close-to
Gaussian assumption.
The contribution of cross-covariances to the marginal

statistics of the input to each neuron causes a distribution of
the mean activities, even in networks composed of
neurons each receiving an identical number of inputs.
The classical treatment of neurons with a Heaviside non-
linearity neglects this effect [56]. Still, distributed numbers
of synaptic input typically dominate the distribution of
mean activities in sparsely [56] and densely connected
random networks [34,55].
The Gaussian closure, i.e., the truncation of the cumulant

hierarchy after second order, yields a set of equations that
accurately predicts the second-order statistics. This result is
in line with experimental evidence, showing that pairwise
correlations sufficiently constrain maximum-entropy mod-
els of collective activity [70]. Analogously, the truncation
after first order, i.e., the Curie-Weiss mean-field theory,
neglects fluctuations of the local order parameter. Formally,
this theory can be obtained as the leading order of a saddle-
point approximation in the auxiliary fields (see, e.g.,
Sec. 4.3 of Ref. [71]). Still, it yields a good estimate of
the first moments. In the context of balanced networks, this
description is sometimes referred to as “balance equations”
[see Eqs. (4.1) and (4.2) of Ref. [56]). Taking into account
fluctuations in the input, due to the variance of individual
units [56], constitutes an intermediate step in the cumulant
hierarchy. While for continuous random variables the
higher-order cumulants are, by definition, independent of
all lower ones, for discrete variables this is not necessarily
the case: All cumulants of a random binary variable are
completely determined by its mean. The constraint on only
two possible values causes this dependence. The variance
can therefore be determined by exploiting the binary
character of the variables. A consequence of the lower-
order moments depending only weakly on the statistics of
higher-order moments is that cross-covariances can be
determined from linear fluctuations around the steady state,
which itself is determined by neglecting correlations
altogether. We may therefore speculate that an approxima-
tion of third- or higher-order correlations can be obtained
from the fluctuations around a state that itself is determined
self-consistently by taking into account only up to second-
order correlations.
The consistent truncation of the cumulant hierarchy

further provides deeper insights: The expression for cova-
riances between individual neuron pairs follows naturally
from a consistent Gaussian closure, without further
approximation. In previous studies, it was obtained as a
linear approximation for weak correlations [see Eqs. (31)–
(33) in Ref. [34]] and population-averaged covariances [see
Eq. (6.8) of Ref. [33]]. Here, we show that solving the
modified Lyapunov equation naturally leads to a decom-
position of fluctuations into eigenmodes of the system. The
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presented method solves the problem that the modified
Lyapunov equation does not hold on the diagonal, in
contrast to the case of population averages [33]. The
approach moreover exposes that fluctuations in the
Gaussian approximation are described by a set of coupled
Ornstein-Uhlenbeck processes. It is well known that the
fluctuations obtained from a systematic system-size expan-
sion (see Chap. X of Ref. [72]), to lowest order, obey a
Langevin equation. This result has been applied to net-
works of homogeneous populations [54,73,74]. The inter-
esting point here is the feasibility of such a reduction
directly on the level of individual binary variables. In
contrast to the population-averaged activity, the jumps of a
binary variable cannot be considered small compared to its
value; hence, the precondition to apply the system-size
expansion is not valid. The approach taken here to expose
the correspondence between binary dynamics and
Ornstein-Uhlenbeck processes is hence complementary.
In particular, the result shows that the effective noises
appearing in the equivalent set of Ornstein-Uhlenbeck
processes are not uniquely determined by the activities
of the neurons alone, in contrast to the population-averaged
case (see Sec. 3.1 of Ref. [54]).
Decomposing externally applied signals to the network

into the same eigenmodes as the intrinsically generated
fluctuations,weobtain an expression for the susceptibility of
the network on the single unit level that explains the
spatiotemporal filtering applied to external signals, com-
plementing the result for interacting populations (see Sec. V
of Ref. [33]). The expression shows how the decay proper-
ties of the induced network response are determined by the
eigenvalue associatedwith the eigendirections stimulated by
the external signal. In particular, stimuli exciting modes
close to an instability yield responses with a long memory
lifetime. In Erdős-Rényi random binary networks with fixed
weights, the spectral radius of the matrix of effective
couplings is bounded by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − pÞ=πp

< 0.8 < 1 [59],
so that all modes of the network are stable. An instability
of the mean activities can only be achieved with coupling
statistics or motifs that differ from an Erdős-Rényi network.
This finding is in qualitative contrast to spiking networks
that indeed show a rate instability at a critical coupling
weight [75,76]. This insight has consequences for the use of
random networks with fixed weights in the framework of
reservoir computing [77,78], where highest computational
performance [79] is achieved at the edge of chaos (for a
review, see Ref. [80]).
We show that the effective interaction strength, i.e., the

product of a unit’s susceptibility and the incoming coupling
amplitude, can uniquely be reconstructed from the covari-
ance matrix and the slope of the covariance functions at
zero time lag. This relation builds on the regression
theorem [46], which states that the fluctuations in the
system, to linear order (31), follow the same differential
equation as the time-delayed covariance functions (2).

Coupling amplitudes, for principle reasons, cannot be
inferred unambiguously: Correlations only depend on
J=σ, where σ measures the strength of the overall incoming
fluctuations to the node. The inference of the effective
interaction strength J=σ still allows the classification of
connections into excitatory and inhibitory ones, but it leads
to a considerable rate of false-positive connections. The
method presented here requires the measurement of cova-
riances between all pairs of units in the network. In the case
of severe subsampling, its application is restricted to small
subnetworks. Thus, in general settings, more sophisticated
approaches that take into account the influence of hidden
units on the observed covariances [43], or on the inference
of the global network state [81], are more promising. The
presented expressions that relate the covariance matrix and
its slope at zero time lag to the coupling matrix may still
prove useful to construct similar inference methods for the
investigated class of networks. Moreover, the algorithm
constructing a network that generates activity with desired
mean activities and covariances is a useful tool to generate
surrogate data.
Previous works have addressed several aspects of pair-

wise correlations. The smallness of the average magnitude
of covariances in strongly coupled balanced networks [44]
has been explained by the influential work of Renart et al.
[34] in the large-N limit. In general, decorrelation follows
from the dominant negative feedback in balanced networks
at any network size [55,82]. These global properties are
determined by collective fluctuations and can hence be
described by population-averaged mean-field theory [33].
While such self-averaging observables in disordered sys-
tems can be obtained in ensembles of system realizations,
here we discuss the statistics of individual units in a
particular realization of the couplings, which goes beyond
the existing approaches.
Our results are complementary to the method presented

by Buice et al. [38], who consider Markov systems of
interacting populations of neurons that consequently have
integer numbers of active states, as opposed to the Glauber
dynamics [3] of individual neurons considered here. In
consequence, the truncation in the former work is per-
formed on the level of normal-ordered cumulants, which
represent an approximation around Poisson statistics, while
here we derive an expansion in terms of ordinary cumulants
[83]. Moreover, Buice et al. [38] and Ginzburg and
Sompolinsky [33] consider all fluctuations beyond the
mean activity perturbatively and therefore rely on a smooth
activation function, while our results are also applicable to
deterministic single units with hard thresholds.
In the path-integral formulation of Markovian neuronal

network dynamics, introduced by Buice and Cowan [84], a
systematic treatment of fluctuations without resorting to
ad hoc approximations can be done by a loop-wise expan-
sion (see Sec. 6.4 of Ref. [85]). The first correction term in
this perturbative expansion corresponds to finite-size
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fluctuations introduced by second-order cumulants, as
discussed by Hildebrand, Buice, and Chow for coupled
Kuramoto oscillators [86,87] and for more realistic spiking
neuronmodels by Ref. [88]. TheGaussian approximation of
hk presented here is equivalent to a saddle-point approxi-
mation, the lowest order of the loop-wise expansion, in the
auxiliary field [see, e.g., Eq. (3.5) of Ref. [28] or Eq. (3) of
Ref. [29]]. The close-to-Gaussian approximation considers a
subset of third-order cumulants of the activity variables as
the first finite-size correction term. It neglects contributions
to the third-order cumulant of the summed input hi ¼P

jJijnj that have three different unit indices. Only these
cannot be expressed in terms of first and second cumulants
of the involved units. This approximation scheme therefore
includes all nontrivial dependencies between pairs of units
(cij) and excludes all nontrivial dependencies between three
or more units consistently.
A different approach treating the statistics of individual

units in a single network realization analytically originates
in the spin-glass literature. Initiated by the symmetrically
coupled Sherrington-Kirkpatrick spin-glass model [4], an
expansion of the free energy in the coupling strength
(Plefka expansion [89]) leads to the Thouless-Anderson-
Palmer mean-field theory [5,12,90,91]. By construction,
this method is restricted to weak coupling and, in its
original form, starting from the partition function, also to
systems in thermodynamic equilibrium. An extension to
asymmetrically coupled nonequilibrium systems has been
derived by invoking information-theoretic arguments [92].
A related approach has been taken by Ref. [41]. Still, the
extended methods rely on the smoothness of the activation
function and the smallness of the coupling constants, two
restrictions that we are able to overcome here. Compared to
previously mentioned works, the presented approach is
more closely related to the mean-field theory by Mézard
and Sakellariou [42]. Although they consider a system with
a sequential Glauber update in discrete time steps, the
method can be extended to the asynchronous update
investigated here. Their analysis does not require weak
coupling, similar to ours, but, in contrast, still relies on a
smooth activation function for individual units. Moreover,
their theory neglects the influence of the cross-covariance
on the marginal statistics [their Eq. (4)], an important finite-
size effect shown here to result in a distribution of mean
activities due to correlations alone.
The mean-field methods employed in computer science,

biology, artificial intelligence, social sciences, economics,
and theoretical neuroscience (see, e.g., Refs. [31,32,93])
may be complemented by our results that go beyond
population-averaged dynamics. The general formalism
presented here, starting from the master equation, can be
widely adapted by defining model-specific transition rates
(see Table I of Ref. [36]) and particular types of couplings.
The methods therefore also apply to equilibrium systems
with Hamiltonian formulation, such as, e.g., associative

networks with parallel processing [94], and may be useful
to selectively probe the energy landscape for ergodicity
breaking, to characterize the statistical features of individ-
ual local energy minima, and to assess how many minima
exist in these systems. In more general terms, the formalism
enables the study of the dynamics of systems with arbitrary
symmetry in the couplings, and it complements their
analysis in terms of other features such as the storage
capacity [95].
In neuroscience, with the advancement of electrophysi-

ology, experimental data with hundreds of simultaneously
recorded neurons have become readily available [96,97].
The availability of parallel data progressively changes the
focus from the study of single cell responses to emergent
phenomena arising through the interaction between neu-
rons in networks [98]. Pairwise correlations are moreover
closely linked to fluctuations of the population activity
[82], which have been shown to shape experimentally
accessible signals, such as the local field potential or the
electroencephalogram (EEG) [99,100]. The effective
description of the statistics of individual neurons, valid
in the entire range of coupling strengths, forms the basis for
studies of dynamics on adaptive networks [101], e.g., the
interaction of neuronal dynamics with correlation-sensitive
learning rules [102]. Explicit expressions, not only for zero
time lag but also for the slope of covariance functions,
allow the definition of plasticity rules resembling spike-
timing dependent plasticity [25]. The finding that the
collective dynamics is captured by the nontrivial second-
order statistics implies that theoretical descriptions of
mechanisms, e.g., biologically realistic synaptic learning,
which usually only rely on first- and second-order statistics,
have now come into reach. Balanced networks show widely
distributed correlations across pairs of neurons with small
mean [39]. This robust feature is captured by the presented
linear equations for the covariance matrix. The shape of the
distribution to date has not been related to the properties of
the underlying network structure. Further work is required
to obtain analytical expressions exposing how the structural
properties give rise to the statistics of the distribution of
covariances. Such results would enable us to deduce
statistics of the connections from the observed activity.
The presented description of the structure of fluctuations in
this archetypical model of collective phenomena by a set of
nonlinear equations provides a starting point in this
endeavor and facilitates further development on disordered,
coupled systems with large numbers of degrees of freedom.
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APPENDIX A: DERIVATION OF MOMENT
EQUATIONS UP TO SECOND ORDER

For completeness and to establish a consistent notation,
here we include the derivation of Eq. (2) for the first and
second moments of the activity in a binary network. We
follow the notation introduced in Buice et al. [38], which
has been adapted to binary networks in Helias et al. [55].
The stochastic system is completely characterized by the

joint probability distribution pðnÞ of all N binary variables
n. Knowing the joint probability distribution, arbitrary
moments can be calculated, among them pairwise
correlations. The occupation probability of each state
follows the master equation (A1). We denote as niþ ¼
ðn1;…; ni−1; 1; niþ1;…; nNÞ the state, where the ith neuron
is active (ni ¼ 1), and ni− where neuron i is inactive
(ni ¼ 0). Since in each infinitesimal time interval at most
one neuron can change state, for each given state n, there
are N possible transitions (each corresponding to one of the
N neurons changing state). The sum of the probability
fluxes into the state and out of the state must equal the
change of probability in the respective state [9], i.e.,

τ
∂pðnÞ
∂t ¼

XN
i¼1

ð2ni − 1Þðpðni−ÞFiðni−Þ

− pðniþÞð1 − FiðniþÞÞ ∀ n ∈ f0; 1gN: ðA1Þ

From this equation, we derive expressions for the first hnki
and second moments hnknli by multiplying with nknl
and summing over all possible states n ∈ f0; 1gN , which
leads to

τ
∂
∂t hnknli ¼

X
n∈f0;1gN

XN
i¼1

nknlð2ni − 1Þ

× ðpðni−ÞFiðni−Þ − pðniþÞð1 − FiðniþÞÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡GiðnnniÞ

;

where we denote as hfðnÞi ¼ P
n∈f0;1gNpðnÞfðnÞ the

average of a function fðnÞ with respect to the distribution
pðnÞ. Note that the term denoted GiðnnniÞ does not
depend on the state of neuron i. We use the notation
nnni for the state of the network excluding neuron i, i.e.,
nnni ¼ ðn1;…; ni−1; niþ1;…; nNÞ. Separating the terms in
the sum over i into those with i ≠ k, l and the two terms
with i ¼ k and i ¼ l, we obtain

τ
∂
∂t hnknli ¼

X
n

XN
i¼1;i≠k;l

nknlð2ni − 1ÞGiðnnniÞ

þ nknlð2nk − 1ÞGkðnnnkÞ
þ nknlð2nl − 1ÞGlðnnnlÞ

¼
XN

i¼1;i≠k;l

X
nnni

nknlðGiðnnniÞ − GiðnnniÞÞ

þ
X
n

nknlGkðnnnkÞ þ
X
n

nknlGlðnnnlÞ;

where we obtained the first term by explicitly sum-
ming over state ni ∈ f0; 1g (i.e., using

P
n∈f0;1gN ¼P

nnni∈f0;1gN−1
P

1
ni¼0 and evaluating the sum

P
1
n1¼0).

This first sum obviously vanishes. The remaining terms
are of identical form, with the roles of k and l interchanged.
We hence only consider the first of them and obtain the
other by symmetry. The first term simplifies to

X
n

nknlGkðnnnkÞ

¼nk¼1X
nnnk

nlGkðnnnkÞ

¼def Gk

8>>>>>>>>><
>>>>>>>>>:

P
nnnk

pðnk−ÞFkðnk−Þ

þpðnkþÞFkðnkþÞ − pðnkþÞ
for k ¼ lP

nnnk
pðnk−ÞnlFkðnk−Þ

þpðnkþÞnlFkðnkþÞ − nlpðnkþÞ for k ≠ l

¼
� hFkðnÞi − hnki for k ¼ l

hFkðnÞnli − hnknli for k ≠ l:
ðA2Þ

Taken together with the mirror term k ↔ l, we arrive at two
conditions, one for the first (k ¼ l, hn2ki ¼ hnki) and one for
the second (k ≠ l) moment,

τ
∂
∂t hnki¼

k¼l − hnki þ hFkðnÞi; ðA3Þ

τ
∂
∂t hnknli¼

k≠l − 2hnknli þ hFkðnÞnli þ hFlðnÞnki: ðA4Þ

The time-lagged correlation function can be derived along
completely analogous lines as Eq. (A4), as the forward time
evolution equation (differential equation with respect to t)
of the two-point probability distribution pðn; t;q; sÞ ful-
fills, because of the Markov property, the same master
equation (A1) as the equal-time probability distribution
pðn; tÞ. The resulting differential equation reads
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τ
∂
∂t hnkðtÞnlðsÞi≡ τ

∂
∂t

X
n;q

pðn; t;q; sÞnkql

¼ −hnkðtÞnlðsÞi þ hFkðnðtÞÞnlðsÞi:
ðA5Þ

APPENDIX B: CUMULANTS OF SUMMED
RANDOM VARIABLES

Let

y ¼
XN
i¼1

xi; ðB1Þ

with xi random variables that follow an arbitrary distribu-
tion pðxÞ. The moment generating functions of y and x are
then related by

φyðtÞ ¼
X
x

pðxÞety ¼ hetyix

¼ het
P

N
i¼1

xiix
¼ ðφx∘ιÞðtÞ; ðB2Þ

where concatenation with the function ι: t ↦ ðt;…; tÞ
replaces every ti by a t. The cumulant generating functions
therefore follow as

ΦyðtÞ ¼ lnφyðtÞ
¼ ln ðφx∘ιÞðtÞ ¼ ðΦx∘ιÞðtÞ; ðB3Þ

with ΦxðtÞ ¼ lnhet·xi the cumulant generating function of
x and t · x the scalar product. From the expansion in
cumulants κxij… for x and κ1;2;… for y, we get the following
relationship:

ΦyðtÞ≡
X∞
l¼1

κl
l!
tl

¼ ðΦx∘ιÞðtÞ

¼
	�XN

i¼1

κxi ti þ
XN
i;j¼1

κxij
2!

titj þ � � �
�
∘ι


ðtÞ

¼
XN
i¼1

κxi|fflffl{zfflffl}
κ1

tþ 1

2!

XN
i;j¼1

κxij

|fflfflffl{zfflfflffl}
κ2

t2 þ � � � ; ðB4Þ

so the cumulants of the summed variable κ1, κ2, etc. are
given by the sums of the cumulants of the individual
variables of corresponding order.

APPENDIX C: FUNCTIONS OF CLOSE-TO-
GAUSSIAN VARIABLES

To determine the mean activity, we need to apply a
nonlinear function f to a variable hk that has a statistics
close to Gaussian. For brevity, we suppress the index k in

the following. We assume that the Fourier transform f̂ðωÞ
exists. Let y be the random variable (B1), which is the sum
of a large number of individual variables xi and is assumed
to be close to Gaussian. For the expectation value hfðyÞix,
we get

hfðyÞix ¼ 1

2π

Z
dωf̂ðωÞheiωyix

¼ 1

2π

Z
dωf̂ðωÞeΦyðiωÞ

¼ 1

2π

Z
dωf̂ðωÞeκ1ðiωÞþ 1

2!
κ2ðiωÞ2þ 1

3!
κ3ðiωÞ3þ���; ðC1Þ

where Φy is the cumulant generating function of y
[Eq. (B3)] and κi denotes the ith cumulant of y. We are
interested in an approximation that treats the dominant first
and second (Gaussian) cumulants of y explicitly and
separate the effect of all higher cumulants by writing

hfðyÞix ¼ e
1
6
κ3ð∂=∂κ1Þ3þ���

Z
dωf̂ðωÞeκ1ðiωÞþ1

2
κ2ðiωÞ2

¼ e
1
6
κ3ð∂=∂κ1Þ3þ���hfðyÞiy∼N ðκ1;κ2Þ; ðC2Þ

where we identified, in the last line, the Fourier transform
of a Gaussian with moments κ1 and κ2 via Eq. (C1).
For the covariance, we need to evaluate terms of the form

hFknli. These terms can be obtained analogously as

hfðyÞxlix ¼ 1

2π

Z
dωf̂ðωÞhxleiωyix

¼ 1

2π

Z
dωf̂ðωÞðð∂tlφxÞ∘ιÞðiωÞ

¼ 1

2π

Z
dωf̂ðωÞðð½∂tlΦx�eΦxÞ∘ιÞðiωÞ;

where φx is the moment generating function of x
[Eq. (B2)]. The derivative of the cumulant generating
function with Eq. (B4) becomes

∂tlΦxðtÞ ¼ κxl þ
XN
j¼1

κxljtj þ
1

2

XN
i;j¼1

κxlijtitj þ � � � ;

ð∂tlΦx∘ιÞðiωÞ ¼ κxl þ
XN
j¼1

κxlj

|fflfflffl{zfflfflffl}
≕Δκ1;l

ðiωÞ þ 1

2

XN
i;j¼1

κxlij

|fflfflffl{zfflfflffl}
≕Δκ2;l

ðiωÞ2 þ � � �

¼
X∞
q¼0

Δκq;lðiωÞq;

where the product rule produced a factor 2 in the second
term and a factor 3 in the third term, and we used the
symmetry of the cumulants with respect to permutations of
indices. So we get
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hxlfðyÞix ¼
Z

dωf̂ðωÞ
X∞
q¼0

Δκq;lðiωÞqe
P

∞
p¼0

κpðiωÞp

¼
	X∞
q¼0

Δκq;l
∂
∂κq



eð1=3!Þκ3ð∂=∂κ1Þ3þ���hfðyÞiy∼N ðκ1;κ2Þ

¼
	X∞
q¼0

Δκq;l
1

q!

� ∂
∂κ1

�
q


hfðyÞix; ðC3Þ

where we replaced ðiωÞq by derivatives of the exponential with respect to cumulants and identified hfðyÞix in the last step
using Eq. (C2).

APPENDIX D: TRIVIAL THIRD- AND FOURTH-ORDER CUMULANTS OF BINARY VARIABLES
EXPRESSED BY LOWER-ORDER CUMULANTS

Third order.—Let nl, ni, nj, nr ∈ ½0; 1� be binary variables. The raw third moment can be written as a sum of all
combinations of cumulants up to order three [Eq. (20)], hnlninji ¼ ⟪nlninj⟫þ climj þ cijml þ cjlmi þmlmimj. Using
nKi ¼ ni for each integer K ≥ 1, in the case of binary variables ni, we consider the two cases

l ¼ i ≠ j∶ hnlnji ¼ ⟪nlnlnj⟫þ cllmj þ cljml þ cjlml þm2
l mj;

⟪nlnlnj⟫ ¼ hnlnji|fflffl{zfflffl}
cljþhnlihnji

− cllmj − 2cljml −m2
l mj

¼ cljð1 − 2mlÞ þ ð−cll þml −m2
l|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼0

Þmj

¼ cljð1 − 2mlÞ;
l ¼ i ¼ j∶ hnli ¼ ⟪nlnlnl⟫þ 3cllml þm3

l ;

⟪nlnlnl⟫ ¼ ml − 3mlð1 −mlÞml −m3
l

¼ ml − 3m2
l þ 2m3

l

¼ cllð1 − 2mlÞ; ðD1Þ

which together yield the expression (21) in the main text.
The third cumulant [Eq. (17)] of hk follows from the assumption ⟪ninjnr⟫≃ 0 for i ≠ j ≠ r as

κ3;k ¼
X
ijr

JkiJkjJkr⟪ninjnr⟫

¼
X
i≠j≠r|{z}

NðN−1ÞðN−2Þ terms

JkiJkjJkr⟪ninjnr⟫|fflfflfflfflffl{zfflfflfflfflffl}
≃0

þ 3
X
i¼j≠r|ffl{zffl}

NðN−1Þ terms

J2kiJkr⟪nininr⟫þ
X
i¼j¼r|ffl{zffl}
N terms

J3ki⟪ninini⟫

≃ 3
X
i¼j≠r

J2kiJkrcirð1 − 2miÞ þ
X
i¼j¼r

J3kiciið1 − 2miÞ

¼ 3
X
i;r

J2kið1 − 2miÞcirJkr − 2
X
i

J3kiciið1 − 2miÞ; ðD2Þ

where we included the term i ¼ r in the first sum and compensated accordingly in the latter term. With
ciið1 − 2miÞ ¼ mi − 3m2

i þ 2m3
i , we obtain the expression (22) in the main text. Analogously, it follows that
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XN
i;j¼1

JkiJkj⟪nlninj⟫ ¼
X
i≠j≠l

JkiJkj⟪nlninj⟫

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≃0

þ
XN

l≠i¼j¼1

J2ki⟪nlnini⟫þ
XN

i¼l≠j¼1

JklJkj⟪nlnlnj⟫

þ
XN

j¼l≠i¼1

JkiJkl⟪nlninl⟫þ J2kl⟪nlnlnl⟫

¼
XN
l≠i¼1

J2kiclið1 − 2miÞ þ 2Jkl
XN
l≠i¼1

Jkiclið1 − 2mlÞ þ J2klcllð1 − 2mlÞ

¼
XN
i¼1

J2kið1 − 2miÞcli þ 2Jklð1 − 2mlÞ
XN
i¼1

Jkicli − 2J2klcllð1 − 2mlÞ; ðD3Þ

which yields the expression (23) in the main text.
Fourth order.—The cumulant of fourth order is

hninjnrnli ¼ ⟪ninjnrnl⟫þ ⟪ninjnr⟫ml þ ⟪njnrnl⟫mi þ ⟪nrnlni⟫mj þ ⟪nlninj⟫mr þ cijmrml þ cirmjml þ cilmrmj

þ cjrmlmi þ cjlmrmi þ crlmimj þ cijcrl þ circjl þ cilcrj þmimjmrml:

Only those cumulants in which at most two different indices appear are fixed by first- and second-order cumulants. We need
to distinguish three cases. The first case is i ¼ j ≠ r ¼ l and leads, with Eq. (D1), to the matrix

f⟪nininrnr⟫irg ¼ C ⊛ ð1 − 2CÞ − diagðCÞdiagðCÞT − 2diagð1 − 2mÞÞCdiagðmÞ − 2diagðmÞCdiagð1 − 2mÞ
− diagðCÞðm ⊛ mÞT − ðm ⊛ mÞdiagðCÞT − 4diagðmÞCdiagðmÞ þmmT ⊛ ð1 −mmTÞ: ðD4Þ

The second case i ¼ j ¼ l ≠ r yields the matrix

f⟪ninininr⟫irg ¼ diagð1 − 3diagðCÞÞC − diagðCÞmT − 3diagðmÞC − ðm ⊛ diagðCÞÞmT þ 3diagðm ⊛ mÞC
þ diagð1 −m ⊛ mÞÞmmT; ðD5Þ

and the third for i ¼ j ¼ r ¼ l yields a vector

⟪nininini⟫ ¼ m ⊛ ð1 − ðm ⊛Þ3Þ − 4diagðCÞ ⊛ mþ 2diagðCÞ ⊛ ðm ⊛Þ2 − 3ðdiagðCÞ ⊛Þ2; ðD6Þ

where we use the notation ðx ⊛Þn ¼ x ⊛ … ⊛ x for the element-wise nth power of a vector. In Eq. (19), we
need the term

Δκ3;kl ¼
XN
i;j;r¼1

JkiJkjJkr⟪ninjnrnl⟫

≃ 3
X
i

J2kiJkl⟪nininlnl⟫ ði ¼ j; r ¼ lÞ; ði ¼ r; j ¼ lÞ; ði ¼ l; j ¼ rÞ

þ
X
i

J3ki⟪ninininl⟫ ði ¼ j ¼ r ≠ lÞ

þ 3
X
i

JkiJ2kl⟪nlnlnlni⟫ ðj ¼ r ¼ l ≠ iÞ; ðr ¼ l ¼ i ≠ jÞ; ðl ¼ i ¼ j ≠ rÞ

þ J3kl⟪nlnlnlnl⟫ ði ¼ j ¼ r ¼ lÞ;

which in matrix form gives rise to expression (24) of the main text.
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