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We describe the creation of a long-lived spin-orbit-coupled gas of quantum degenerate atoms using the
most magnetic fermionic element, dysprosium. Spin-orbit coupling arises from a synthetic gauge field
created by the adiabatic following of degenerate dressed states composed of optically coupled components
of an atomic spin. Because of dysprosium’s large electronic orbital angular momentum and large magnetic
moment, the lifetime of the gas is limited not by spontaneous emission from the light-matter coupling, as
for gases of alkali-metal atoms, but by dipolar relaxation of the spin. This relaxation is suppressed at large
magnetic fields due to Fermi statistics. We observe lifetimes up to 400 ms, which exceeds that of spin-orbit-
coupled fermionic alkali atoms by a factor of 10–100 and is close to the value obtained from a theoretical
model. Elastic dipolar interactions are also observed to influence the Rabi evolution of the spin, revealing
an interacting fermionic system. The long lifetime of this weakly interacting spin-orbit-coupled degenerate
Fermi gas will facilitate the study of quantum many-body phenomena manifest at longer time scales, with
exciting implications for the exploration of exotic topological quantum liquids.
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I. INTRODUCTION

New classes of topologically nontrivial materials require
the coupling of charge carriers’ quantum-mechanical spin
to their momentum. This spin-orbit coupling (SOC) arises
from electron movement through the intrinsic electric field
of the crystal and can result in topological insulators and
superconductors as well as exotic quantum Hall states [1].
Ultracold neutral atoms can experience an analogous
coupling in the presence of light fields that couple
Zeeman sublevels via a two-photon Raman transition
[2]. Recoil momentum is transferred as the optically
coupled spin flips [3–5]. The adiabatic evolution of these
dressed states as the atom moves in the Raman field creates
a synthetic gauge field. This field takes the form of spin-
orbit coupling when these states form a degenerate
manifold [6]. Spin-orbit coupling has been created in this
manner in Bose-Einstein condensates [2,7–14] and degen-
erate Fermi gases (DFGs) [15–19] of alkali metals.
These achievements open new avenues to experimentally

study topological matter not realizable in the solid state
[20,21]. Specifically, novel topological superfluids and
other quantum liquids may be observable in long-lived,
interacting spin-orbit-coupled Fermi gases [20,22–24].

Such investigations would benefit from the well-
characterized Hamiltonians, controllable interactions and
disorder, and tunable dimensionality inherent to ultracold
atomic systems. However, a consequence of employing
Raman coupling to generate SOC with alkali atoms is
atomic heating due to spontaneous emission. This heating
leads to loss of quantum degeneracy and trap population
and severely limits the lifetimes of fermionic alkali gases
[15–17], hampering the study of quantum many-body
phenomena manifest at longer time scales.
Synthetic gauge fields have been created in gases of

fermionic alkaline-earth atoms [25,26] using narrow optical
transitions, though under the condition of optical lattice
confinement. By using atoms with ground state orbital
angular momentum L > 0, spontaneous emission can be
eliminated while still producing large Raman coupling even
without lattice confinement. This provides more flexibility
for investigating a wide range of quantum systems.
Specifically, large L’s ensure that the vector and tensor
polarizabilities which give rise to Raman coupling matrix
elements always scale as inverse atomic detuning Δ−1

a [27].
Since spontaneous emission decreases rapidly with detun-
ing as Δ−2

a , one can always choose a detuning that provides
a large Raman coupling ΩR while minimizing heating from
incoherent scattering [27].
The open-shell lanthanide atoms Dy [28,29] and Er

[30,31] are suitable candidates with L ¼ 6 and L ¼ 5,
respectively. Moreover, these atoms’ large total spin, e.g.,
F ¼ 21=2 for 161Dy [32], can enable the study of (possibly
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non-Abelian) spinors coupled to large synthetic gauge
fields [27,33]. Though spontaneous emission can be
eliminated, the strong dipole-dipole interaction (DDI)
between these highly magnetic, large-spin atoms induces
decay from metastable Zeeman levels that leads to heating
and trap loss [34–36]. Metastable states are unavoidable
when using a Raman coupling scheme to produce SOC.
However, by taking advantage of the suppressed relaxation
rates of collisions between identical fermions [36], we are
able to produce SOC gases of 161Dy with lifetimes as long
as 400 ms, surpassing that of 40K and 6Li fermionic SOC
systems by factors of ∼10 and 100, respectively [15–17],
and comparable to the lifetime of bosonic spin-orbit-
coupled alkali gases [2].

II. RAMAN-COUPLING FIELD CONFIGURATION

We measure the effects of both elastic and inelastic
dipolar collisions on gases of fermionic 161Dy under SOC
using the Raman-coupling scheme sketched in Figs. 1(b)
and 1(c). The lowest two Zeeman sublevels of the lowest
ground state hyperfine manifold, j↓i≡ jF ¼ 21=2;
mF ¼ −21=2i and j↑i≡ j21=2;−19=2i, are coupled by
the two Raman lasers with wavelength λ ¼ 741 nm and
coupling strength ΩR. The Raman lasers are derived from a
single Ti:sapphire laser that is detuned by several GHz from
the 1.78(2)-kHz-wide 741-nm transition in 161Dy [37]. The
first Raman beam propagates along ðx̂ − ŷÞ with frequency

ω and is linearly polarized along x̂þ ŷ; i.e., it drives σ�
transitions, though σþ are off resonant and not shown in
Fig. 1. The second Raman beam propagates along−ðx̂þ ŷÞ
with frequency ωþ Δ and is linearly polarized along ẑ; i.e.,
it drives π transitions (the magnetic field is along ẑ). Each
beam is frequency shifted and controlled by an acousto-
optical modulator with two channels of a single-frequency
generator driving the two acousto-optical modulators in
order to maintain phase coherence. The detuning from two-
photon Raman resonance is defined as δ ¼ ωZ − Δ, where
ℏωZ is the Zeeman energy. Each Raman transition transfers
2ℏkR of momentum between an atom and the lasers, where
kR ¼ kr sin ðθ=2Þ, kr ¼ 2π=λ is the single-photon recoil
momentum, and θ ¼ 90° is the angle between beams. The
natural unit of energy is ER ¼ ðℏkRÞ2=2m, where m is the
mass. For our configuration, ER=h ¼ 1.1ð1Þ kHz, with
the uncertainty from beam alignment angle.
To suppress dipolar relaxation, we apply a homogeneous

bias field of B0 ¼ 33.846ð5Þ G along ẑ, producing a
Zeeman splitting ℏωZ ¼ h × 43.986ð6Þ MHz, varying as
1.275 MHz=G at this field value [38]. Moreover, the
quadratic Zeeman shift at this field is sufficient to produce
a two-photon detuning between jmF ¼ −19=2i and
jmF ¼ −17=2i of more than 70ER=ℏ. This allows us to
neglect all Raman coupling to spin states withmF > −19=2
when the Raman fields are on resonance with
jmF ¼ −21=2i and jmF ¼ −19=2i, i.e., when δ ¼ 0.
Indeed, we observe (via Stern-Gerlach measurement)
population in only these two states. Restricting to a
pseudospin-1=2 system facilitates fermionic suppression
of dipolar relaxation [36].

III. DEGENERATE FERMI GAS
PREPARATION

We prepare ultracold gases of fermionic 161Dy via a 421-
nm magneto-optical trap followed by a 741-nm magneto-
optical trap as in Ref. [29]. We transfer ∼3 × 106 atoms to a
1064-nm optical dipole trap and perform rf adiabatic rapid
passage (ARP) to prepare the atoms in the absolute ground
state, jF ¼ 21=2; mF ¼ −21=2i. A DFG is produced via
forced evaporation in a crossed optical dipole trap formed
by two additional 1064-nmbeams at low field 0.48(1)G. The
elastic DDI mediates collisions between identical fermions
even below thep-wave threshold, allowing for single species
thermalization and evaporation down to degeneracy [29,31].
Figures 2(a) and 2(b) show an absorption image of a 161Dy
DFG at 0.48(1) G with N ¼ 4.3ð2Þ × 104 atoms and a ratio
of temperature to Fermi temperature of T=TF ¼ 0.13ð1Þ.
The spin-polarized evaporation trajectory is shown in
Fig. 2(c). The dense Feshbach-resonance spectrum of
161Dy results in atom loss when sweeping to highermagnetic
field [39]. Nevertheless, a relatively high-field (∼34 G)DFG
of 1.7ð3Þ × 104 atoms at T=TF ¼ 0.44ð1Þ is shown in
Figs. 2(c) and 2(d). The increase in T=TF compared to

(a)

(b) (c)

FIG. 1. (a) Raman coupling with π and σ− transitions for a large
F atom with zero or small quadratic Zeeman shift. (b) Schematic
of Raman-beam geometry used to produce SOC with 161Dy.
(c) Coupling scheme for 161Dy at a magnetic field high enough
that with the lowest two Zeeman states are isolated by the
quadratic Zeeman shift. The states that form this pseudospin-1=2
system are labeled j↓i ¼ jmF ¼ −21=2i and j↑i ¼ jmF ¼
−19=2i.
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the low-field DFG is due to both atom loss (TF ∝ N1=3)
and heating from antievaporation [40,41].

IV. ULTRADENSE FESHBACH-RESONANCE
SPECTRA

The dense Feshbach-resonance landscape of lanthanide
atoms [30,39,42–44] requires special consideration when
choosing a magnetic field at which to implement SOC. We
find that this density—already large at low field [39]—
significantly increases at higher fields. Atom spectroscopy
for 161Dy near 34 G over a 250-mG window is shown in
Fig. 3 for spin-polarized gases of j↓i and j↑i. We lower the

density of the gas when sweeping to high field in order to
reduce collisional loss during the sweep itself. To do so, we
reduce the trap frequency from f ¼ 150ð10Þ Hz (geometric
mean) to ∼90 Hz in 100 ms. We then jump the field to the
desired field. For the data in Fig. 3(a), we wait 100 ms
while the eddy currents in the chamber damp. During this
period we recompress the gas and then hold the gas for an
additional 60 ms in the fully compressed trap before
measuring the atom number. We use as similar a procedure
as possible for the data in Fig. 3(b), even though a spin flip
is required. Specifically, we first jump the field to 33.967
(5) G, wait 100 ms for eddy currents to damp, and then
apply an rf ARP pulse to the gas in 15 ms to flip the spin to
j↑i. We measure no loss during the 100 ms before ARP
because 33.967(5) G is a resonance-free field for j↓i and
the gas is at low density. The field is then jumped to its final
value before the trap is recompressed in 100 ms. Finally, the
gas is held for an additional 60 ms, as for the j↓i data.
We find that the density of loss features in the doubly

spin-polarized jF ¼ J þ Ij ¼ jmFj spectrum of the j↓i
state is ∼10 times greater at this higher field than at low
field between 0 and 6 G [39]. This is perhaps due to a larger
Zeeman-induced coupling among the molecular potentials
[43]. Resonance-free regions are sparse and only a few tens
of mG wide. The loss spectrum for the nondoubly spin-
polarized state j↑i has even fewer favorable regions with
each only a few mG wide. Indeed, these ultradense
Feshbach-resonance spectra might not even support com-
pletely resonance-free regions. This greater relative loss
might be due to a higher density of resonances in this
entrance channel [45]. We note that overlapping resonances
are known from nuclear physics to lead to Ericson
fluctuations in resonance spectra similar to that observed
here [46]. Future work will consider the possible role of
Ericson fluctuations in 161Dy loss spectra.
The magnetic field B0 is chosen to both minimize three-

body loss for spin-polarized gases in j↓i and j↑i states

(a) (b)

(d) (e)

(c)

FIG. 2. (a) DFG of 161Dy at 0.48(1) G with N ¼ 4.3ð2Þ × 104

atoms and T=TF ¼ 0.13ð1Þ. (b) 1D integrated momentum dis-
tribution of DFG in (a) with Thomas-Fermi fit (solid line) and
thermal fit to the wings (dashed line). (c) Single-species evapo-
ration trajectory of 161Dy. The red diamond corresponds to the
DFG shown in (a). The green triangle corresponds to the DFG
shown in (d). (d) DFG of 161Dy at B0 ¼ 33.846ð5Þ with N ¼
1.7ð3Þ × 104 and T=TF ¼ 0.44ð1Þ. (e) Same as in (b) but for
DFG in (d).

(a)

(b)

FIG. 3. Atom loss spectroscopy of Feshbach resonances for 161Dy in (a) j↓i≡ jmF ¼ −21=2i and (b) j↑i≡ jmF ¼ −19=2i. Both
spectra are taken with the same initial atom number; note the different y-axis scales. The vertical dashed line indicates the field used to
produce SOC fields, B0 ¼ 33.846ð5Þ G, and the solid lines are guides to the eye. The black error bars represent statistical errors on the
subset of points indicated.
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separately and minimize loss in superpositions of these
states: We verify through a measurement of the atom loss
spectrum of mixed j↓i and j↑i states that this field sits in a
region of near-minimal loss. We also observe that the
features in Fig. 3(a) exhibit no dependence on coupling
strength, unlike that found for alkali-atom gases under
Raman coupling [7,18,19]. In those experiments, low-order
single partial-wave Feshbach resonances were modified by
SOC to induce higher-order effective partial-wave contri-
butions. In Dy, however, many partial waves already
contribute to Feshbach resonances [47], possibly rendering
the SOC modification negligible.

V. SPIN-ORBIT-COUPLING MEASUREMENT

The Raman coupling is described by the effective single-
particle Hamiltonian

ĤR ¼ ½p̂x − 2ℏkRðF̂z þ FÞ�2
2m

− ℏδF̂z −
ℏΩR

2
ðΛ̂þ Λ̂†Þ;

Λ̂ ¼ F̂þ

�
Î −

2F̂z þ Î
2F þ 3

��
2F þ 3ffiffiffiffiffiffi

2F
p ð4F þ 2Þ

�
; ð1Þ

for the bare atomic states j↓; pxi and j↑; px þ 2ℏkRi, where
F̂z is the spin-projection operator, F̂þ is the raising
operator, Î is the identity, and p̂x is the quasimomentum.
This Hamiltonian contains equal strengths of Rashba
and Dresselhaus SOC [27,48].

The gas is loaded into the lowest SOC-dressed band by
adiabatically turning on the Raman coupling over a time
period of 35 ms. We hold the gas in this configuration for a
time τSOC. By then diabatically turning off the coupling
lasers, the quasimomentum of the dressed band is converted
into mechanical momentum, which can be measured via
time-of-flight imaging [49,50]. A gas with ΩR ¼ 5.9ð2ÞER
is shown in Fig. 4(a) with the spin states separated by a
magnetic field gradient. The corresponding quasimomen-
tum dispersion is shown in Fig. 4(b). The SOC manifests
itself as a momentum asymmetry in the bare spin states, i.e.,
nσðpxÞ ≠ nσð−pxÞ for σ ¼ f↓;↑g [16]. This momentum
asymmetry is highlighted in Fig. 4(c) by plotting the
reflected momentum difference of the two spin states,
nσðpxÞ − nσð−pxÞ.
We are currently unable to perform spin-injection or

momentum-resolved radio-frequency spectroscopy, as has
been done in the fermionic SOC 6Li and 40K systems
[15,16]. The relatively large mass of 161Dy means that to
achieve a similar band structure resolution, field stability
would have to be less than a few hundreds of μG, a factor of
10 lower than our current capability.

VI. ELASTIC DIPOLAR COLLISIONS IN RABI
OSCILLATIONS

In order to calibrate the strength of the Raman coupling,
we drive Rabi oscillations by diabatically turning on the
coupling lasers in < 5 μs. For a noninteracting system, the
probability of observing an atom in state j↑i after being
initialized in state j↓i is [16]

P↑ðkx; tÞ ¼
sin2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℏkxkRm þ δ

2
Þ2 þ ðΩR

2
Þ2

q
t
�

1þ ð2ℏkxkRΩRm
þ δ

ΩR
Þ2 ; ð2Þ

where ℏkx ¼ px and t is the duration of the Raman pulse.
The spread of kx in the DFG causes damping of the total
spin dynamics due to Doppler shifts. By integrating Eq. (2)
over the measured momentum distribution of the DFG, the
Rabi spin dynamics of a noninteracting DFG are obtained
as plotted in Fig. 5(a).
However, elastic collisions can change an atom’s

momentum along the SOC dimension x̂, which modifies
the spin dynamics and results in additional Rabi-oscillation
dephasing. We now describe this process by referring to the
illustration in Fig. 5(b). The atoms begin on the j↓i
dispersion but project onto a superposition of the two
dressed dispersions when the Raman coupling diabatically
turns on. We take as examples the two atoms shown as
green shaded ovals at the center of the figure. Each oval
covers green circles that depict the j↓i components of the
dressed state belonging to a single atom. The size of each
circle is proportional to the t ¼ 0 projection of the dressed
state onto the bare j↓i state at the given quasimomentum.
The atoms then begin to Rabi oscillate between j↓i and j↑i,

(b)

(c)

(a)

FIG. 4. (a) Momentum distribution of a SOC gas of 161Dy with
ΩR ¼ 5.9ð2ÞER, δ ¼ 0.1ð2ÞER, and T=TF ¼ 0.4þ0.2

−0.1 after dia-
batically removing the coupling and separating the spin states
with a magnetic field gradient. Time-of-flight duration is 10 ms.
(b) SOC dispersion curve for the gas in (a). The solid horizontal
line indicates the Fermi energy for a gas of N ¼ 1.2 × 104 atoms
in a trap with f̄ ¼ 150 Hz. (c) Integrated momentum asymmetry
along x for σ ¼ ↓ (blue diamonds) and σ ¼ ↑ (red circles).
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which in the figure would appear as exchanges in the sizes
of the circles in each shaded oval over time. Only at the
degeneracy point px ¼ 0ℏkR is the Raman coupling res-
onant, yielding Rabi oscillations that exhibit full contrast.
Atoms at all other quasimomenta have an effective detun-
ing (i.e., a Doppler shift) that reduces the Rabi oscillation
contrast, as is the case for the data in Fig. 5(a).
Elastic collisions between two atoms can change both

atoms’ momenta along the SOC axis, which changes the
effective Rabi detunings of each atom. For example, atoms
represented by hollow green circles could elastically scatter
to states represented by solid green circles while conserving
total momentum and energy (possibly by exchanging
momentum along other dimensions). The subsequent spin
dynamics depart from the precollision Rabi nutation,
resulting in dephasing and a higher steady-state occupation
of j↑i not accounted for in Eq. (2) describing noninteract-
ing Fermi gases.
Collisional effects were negligible in previous SOC

fermionic alkali gases, even in the presence of a sizable
s-wave scattering length of 169a0 between the spin states
of 40K [15,16]. However, elastic dipolar collisions due to

161Dy’s large dipole moment (10 Bohr magnetons) are not
negligible on the time scale of Ω−1

R in our system. In order
to account for momentum changing collisions, we use a
Monte Carlo simulation that includes elastic collisions
between pairs of atoms and is described in the
Appendix. When fitting the data, the rate of collisions
and Raman coupling strength are treated as free parameters.
Though the simple Monte Carlo model does not take into
account correlations involving the atoms’ positions or other
details of the collisions, the model does capture the
increased damping of the oscillations and higher steady
state of fraction of j↑i atoms.
Curves from both the Monte Carlo simulation and the

noninteracting case of Eq. (2) are shown with data in
Fig. 5(a). The fitted elastic collision rate of 9.9ð2Þ μs−1 is
larger than the expected rate from dipolar collisions,
3ð1Þ μs−1 [51]. However, a more complete simulation,
perhaps using the direct simulation Monte Carlo (DSMC)
technique of Ref. [52], may yield a more accurate collision
rate by taking into account all correlations between position,
spin, andmomentum. Additional consideration will be given
to any contribution from the as-yet unmeasured s-wave
scattering length between the mF ¼ −21=2 and mF ¼
−19=2 states; this is beyond the scope of this present work.
These measurements indicate the achievement of a weakly
interacting Fermi gas under the influence of the Raman
coupling necessary to generate synthetic gauge fields, and
complements lattice-bound fermionic polar molecule sys-
tems in which dipolar interactions can also influence spin
dynamics [53].

VII. INELASTIC DIPOLAR DECAY OF
THE SOC-DRESSED STATE

In addition to elastic collisions, the DDI also induces
two-body inelastic collisions (dipolar relaxation), which
can cause heating or atom loss. When the atoms are
adiabatically loaded into the SOC-dressed states of
Eq. (1), the spinor is a superposition of the bare spin
states. The j↑i portion of an atom’s spin state can undergo
dipolar relaxation even when in the lowest dressed band,
shown in blue in Fig. 4(b). This is especially significant if
the Zeeman energy is larger than twice the trap depth
because a single spin flip releases sufficient energy to eject
both atoms from the trap, as is the case for fields above
∼50 mG in our optical dipole trap.
We measure the dipolar relaxation out of the SOC-

dressed states by varying the hold time τSOC in the
adiabatically loaded dressed states. After turning off the
coupling and releasing the atoms from the trap, we measure
the atom number via absorption imaging and fit the atom
loss curve to a numerically integrated rate equation. The
equation has terms for both one-body loss β1 (fixed
parameter) and two-body loss β2 (free parameter):

dN
dt

¼ −β1N − β2V−1N2; ð3Þ

(b)

(a)

FIG. 5. (a) Rabi oscillation data with ΩR ¼ 6.8ð2ÞER and
δ ¼ −3.8ð2ÞER. Predicted spin dynamics for a noninteracting
Fermi gas (dashed line) according to Eq. (2) and an interacting
Fermi gas (solid line) according to a Monte Carlo simulation.
(b) Cartoon illustrating elastic collisions during Rabi oscillations.
The dashed (dot-dashed) line is the uncoupled j↓i (j↑i) quasi-
momentum dispersion at B0. The solid colored quasimomentum
dispersions are for the dressed states with ΩR ¼ 6ER and
δ ¼ −4ER. The Fermi energy is marked by the solid horizontal
line, and an uncoupled j↓i-polarized Fermi gas at T ¼ 0 occupies
the quasimomenta between �kF (unshaded region). See text for
explanation.
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where V ¼ ffiffiffi
8

p ð2πÞ3=2σxσyσz is the mean collisional vol-
ume for a harmonically trapped thermal gas of Gaussian
width σi. We fix β1 to the background scattering rate
ð20 sÞ−1. No heating due to the Raman lasers is measured,
confirming our expectation that this L ¼ 6 atom would be
immune to spontaneous emission under SOC [27]. The
fitted values of β2 for different coupling strengths and
δ ¼ 0.0ð3ÞER are shown in Fig. 6(a). These may be
compared with the dipolar relaxation rates found in
Ref. [36] for non-SOC Dy gases at 1 G: ½0.3; 10; 30� ×
10−12 cm3 s−1 for identical fermions, distinguishable par-
ticles, and identical bosons, respectively.
Because two-body loss is density dependent, a character-

istic time scale τ2 can be found only by multiplying the loss
parameter by a density τ2 ¼ ½nð0Þβ2�−1, where nð0Þ ¼
N=V is a typical initial density for our system.
Alternatively, since one may care most about preserving
interactions in the system, one can define the relevant
experimental time scale as the time required for the ratio
of the dipolar energy to Fermi energy ϵðtÞ ¼ EddðtÞ=EFðtÞ
to decrease to ϵðτexpÞ ¼ ϵðt ¼ 0Þ=e, where Edd ¼
Nμ0μ

2ð48π3=2σxσyσzÞ−1 [52] and EF ¼ hfð6NÞ1=3. The
values of τexp and τ2 shown in Fig. 6(b) are for a gas of
N ¼ 1 × 104 atoms at T=TF ¼ 0.4 and f ¼ 150 Hz. For
such a gas, ϵð0Þ ¼ 0.56% and nð0Þ ¼ 1.2 × 1013 cm−3.
The dipolar relaxation cross sections in free space (no

SOC) have been calculated under the first-order Born

approximation [34,35] and have been verified for Bose,
Fermi, and distinguishable statistics [36] in free space (i.e.,
in the absence of SOC) for fields below 1.3 G. Notably, the
rate of inelastic collisions depends on both the relevant
quantum statistics as well as the amount of energy released.
Of particular interest, dipolar relaxation is suppressed for
identical fermions as the magnetic field is increased: β2 ∝
1=

ffiffiffiffi
B

p
[35,36].

To test the importance of fermionic suppression in
achieving long lifetimes, we also measure the 161Dy life-
time at low field 0.48(1) G with ΩR ¼ 5.9ð3ÞER and
δ ¼ −0.1ð2Þ. At this low magnetic field, the quadratic
Zeeman shift is insufficient to limit Raman coupling to only
the jmF ¼ −21=2i and jmF ¼ −19=2i states, so most
collisions involve many mF states and are distinguishable.
Furthermore, any indistinguishable collisions have less
suppression due to the lower Zeeman energy released.
Indeed, the measured low-field two-body loss parameter at
this field is β2 ¼ 2.1ð4Þ × 10−11 cm3=s. This is ∼16 times
larger than the high-field two-body loss parameter β2 ¼
1.28ð2Þ × 10−12 cm3=s for the same ΩR at B0. The corre-
sponding low-field characteristic time scale at density n ¼
1.2 × 1013 cm−3 is only τ2 ¼ 4.0ð8Þ ms. We also measure
similarly short, < 10-ms, lifetimes for Raman-dressed
bosonic Dy, even at low field, where β2 should be
minimized for distinguisable particles and bosons. These
results imply that proposals for observing exotic non-
Abelian spinors and many-body physics using SOC
dipolar Bose-Einstein condensates will be quite difficult
to realize [27,54].

VIII. COMPARISON OF LOSS RATE
TO THEORY

Before we describe a theory developed to predict the loss
rates of SOC degenerate dipolar Fermi gases, we present a
comparison between our data and the results of this theory.
Figure 7 plots three theory curves along with the data of
Fig. 6(a). The loss rates for distinguishable Dy-like atoms
and indistinguishable Dy fermions with spin mixtures in
the absence of SOC are shown along with the result from
our SOC theory for fermions. Distinguishable (indistin-
guishable) non-SOC theory overestimates (underestimates)
the collision rate by a factor of ∼40. The scaling of β2 with
ΩR is captured by the SOC theory, but the theory predicts a
collision rate ∼6 times larger than the measured rate.
Because our calculation, based on Eq. (4), involves only
a simple average over the ensemble of atoms, it discards all
correlations between position and momentum. A simula-
tion of the dynamics with the SOC gas using the DSMC
technique, or a similar technique, may yield a more
accurate collision rate. We note that this theory does not
incorporate loss from Feshbach resonances, yet still pre-
dicts a loss rate greater than our data, implying that such

(a)

(b)

ex
p

FIG. 6. (a) Two-body loss parameters for δ ¼ 0.0ð3ÞER. (b) Ex-
perimental lifetimes for a gas of 1 × 104 161Dy atoms with
T=TF ¼ 0.4 and f̄ ¼ 150 Hz, where the ratio of the dipolar and
Fermi energies falls by e in time τexp. Inset: Characteristic
lifetimes τ2 ¼ ½n̄ð0Þβ2�−1 with n̄ð0Þ ¼ 1.2 × 1013 cm−3.
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loss may not play a prominent role in determining the
stability of these SOC gases at high field.

IX. DESCRIPTION OF SOC DIPOLAR LOSS
CALCULATION

We now describe our approximate calculation of dipolar
relaxation rates in the SOC dipolar Fermi gas. We do so in
the SOC rotating frame, using an approach that is similar to
that found in Ref. [55] for calculating loss from metastable
dressed bands in a nondipolar gas. We consider scattering
from the two-atom state jγi ¼ jp1ijα1ðp1Þijp2ijα2ðp2Þi,
where jαiðpiÞi is the spinor in the dressed band αi and pi is
the quasimomentum of atom i, to the final state jγ0i, which
exists in a lower dressed-state manifold M [56] labeled by
the imbalance M between the number of photons in one
Raman beam versus the other. We aim to calculate the two-
body parameter,

β2 ¼
8

m2

X
α0
1
;α0

2

Z
dp1dp2dp0

1dp
0
2δEδp0

× Πðp1ÞΠðp2Þjfðγ0; γÞj2; ð4Þ

where fðγ0; γÞ is the scattering amplitude between γ and γ0,
ΠðpiÞ is the initial quasimomentum distribution of particle
i, and δE and δp0 ensure conservation of energy and
momentum, respectively. The summation over αi includes
all dressed bands, and we assume the atoms are initially in
the lowest band.
Because the gas is adiabatically loaded into the

SOC-dressed band, the quasimomentum distribution is
simply the Fermi-Dirac momentum distribution of the
initial gas,

ΠðpiÞ ¼
Li3=2½−ζe−p2

i =ð2mkBTÞ�
ð2πmkBTÞ3=2Li3½−ζ�

; ð5Þ

where Lis½x� is the polylogarithm series and ζ is the
fugacity of the DFG.
All that remains is to determine the dipolar relaxation

scattering amplitude in the SOC frame, fðγ0; γÞ. We first
recall the transformations necessary to produce the
Hamiltonian in Eq. (1). In the lab frame, the single-particle
SOC Hamiltonian for particle i is

ĤiðtÞ ¼
p̂2
i

2m
− ℏωZF̂z;i

−
ℏΩR

2
ðeið2kRxi−ΔtÞΛ̂i þ H:c:Þ: ð6Þ

We apply two transformations Ût;i ¼ e−iΔtF̂z;i and Ûk;i ¼
ei2kRxiF̂z;i to recover the form of Eq. (1) with unmodified
parabolic dispersions along y and z. The SOC Hamiltonian
for atom i is then

Ĥi ¼ ĤR;i þ
p̂2
y;i þ p̂2

z;i

2m
: ð7Þ

This is extended to two atoms, as required for dipolar
relaxation:

Ĥ12 ¼ Ĥ1 ⊗ Î2 þ Î1 ⊗ Ĥ2; ð8Þ

where Îi is the identity in the subspace of atom i.
The dipole-dipole interaction has the form

Ĥdd ¼
μ0ðgFμBÞ2

4πr3
½F̂1 · F̂2 − 3ðF̂1 · ~rÞðF2 · ~rÞ�; ð9Þ

where r ¼ r1 − r2 and ~r ¼ r=jrj. Combining Eqs. (8)
and (9) into the full Hamiltonian yields

Ĥ ¼ Ĥ12 þ Ĥ0
dd; ð10Þ

where

Ĥ0
dd ¼ Û†

k;1Û
†
k;2Û

†
t;2Û

†
t;1ĤddÛt;2Ût;1Ûk;1Ûk;2: ð11Þ

Although both single- and double-spin-flip inelastic proc-
esses can occur, we restrict our consideration to single-flip
events. (Double-flip processes for j↑i are slower by
roughly a factor of F ¼ 21=2 [36].) The single-spin-flip
portion is

Ĥð1Þ
dd ∝ ½F̂z;1F̂−;2 þ F̂−;1F̂z;2�; ð12Þ

which in the SOC frame becomes

FIG. 7. Measured and theoretical two-body loss parameters at
B0 with δ ¼ 0.0ð3ÞER. The black dashed (dot-dashed) line is
calculated for a gas of identical dipolar fermions (distinguishable
particles) with spin mixtures under no SOC. The solid red line is
calculated for SOC dipolar fermions under using Eq. (4).
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Ĥ0ð1Þ
dd ∝ eiΔt½e−i2kRx2F̂z;1F̂−;2 þ e−i2kRx1F̂−;1F̂z;2�: ð13Þ

With this Hamiltonian, the single-spin flip scattering
amplitude under the first-order Born approximation in the
SOC frame is

fð−1Þðγ0; γÞ ¼ mμ0ðgFμBÞ2
16πℏ2

ffiffiffiffiffiffi
24

5π

r
eiΔt

	
γ0




Y�

2;−1ðr̂Þ
r3

× ½e−i2ℏkRx2F̂z;1F̂−;2 þ e−i2ℏkRx1F̂−;1F̂z;2�




γ
�
;

ð14Þ
where Ylmðr̂Þ is a spherical harmonic. We limit ourselves to
the first-order Born approximation because our reproduction
of the calculation in Ref. [55] for metastable dressed-band
decay shows that higher-order corrections in the Lippman-
Schwinger equation contributed only at the 10−4 level.
The modification of the inelastic DDI in the SOC rotating
frame is due to the commutation relation of F̂− and F̂z.
The time-dependent exponential does not affect the calcu-
lation of Eq. (4) because Eq. (14) only enters as the modulus
squared. However, the position-dependent exponentials
change the quasimomentum conservation condition:
Whereas conservation ofmomentumwould typically require
p1 þ p2 ¼ p0

1 þ p0
2, the quasimomentum conservation con-

dition is instead p1 þ p2 ¼ p0
1 þ p0

2 þ 2ℏkRx̂. Thus, quasi-
momentum is conserved up to 2ℏkR for single-spin-flip
dipolar relaxation in the SOC frame,which is due to the atom
changing spin without exchanging a photon between the
Raman laser fields and thereby coupling to a dressed-state
manifold of differing Raman-beam photon number
imbalance.
An intuitive picture for the relaxation events may be

formed in which the system decays, upon dipolar relaxa-
tion, from the photon imbalance manifold M to manifold
M − 2, as illustrated in Fig. 8(a). Within each manifold
the system state is labeled by the atom’s spin state and
the Raman lasers’ photon imbalance. For an atom initially
in j↓i with photon imbalance M, the state can be
written as

jΦMi ¼ ϕ↓j↓;Mi þ ϕ↑j↑;M − 2i; ð15Þ
because the atom’s spin state is coherently changed by
exchanging a photon from one laser to the other, changing
the imbalance by 2. By contrast, if the DDI incoherently
changes the j↑i portion of Eq. (15) to j↓i, the atom’s new
dressed state can be written as

jΦ0
M−2i ¼ ϕ0

↓j↓;M − 2i þ ϕ0
↑j↑;M − 4i: ð16Þ

The coefficients ϕσ (ϕ0
σ) depend on the initial (final)

dressed band and momentum. The transition rate between
Eqs. (15) and (16) then depends on their overlap under
dipolar relaxation,

hΦ0
M−2jHddjΦMi ¼ ϕ↑ϕ

0
↓h↓;M − 2jHddj↑;M − 2i; ð17Þ

which results in a coupling energy EDDI. Whereas the
energy required to move a photon from one laser to the
other compensates for the Zeeman energy difference (up to
an amount δ) in a coherent process, the lack of photon
exchange in dipolar relaxation, concomitant with the
flipped spin, causes the full Zeeman energy to be released
into the system as kinetic energy.
The relaxation process may also be viewed as a transition

between two molecular potentials [57]. As illustrated in
Fig. 8(b), identical fermions colliding on the p-wave
(l ¼ 1) potential can exit on an f-wave (l ¼ 3) potential
of different photon imbalance numberM, with a transition
rate set by the DDI coupling. Fermionic suppression of
dipolar relaxation occurs because inelastic dipolar colli-
sions, unlike elastic dipolar collisions, are a short-range
process [35,36]: identical ultracold fermions must sur-
mount the p-wave centrifugal barrier to collide, leading
to a kinematic suppression.

(a)

(b)

DDI

FIG. 8. (a) A system initially in photon number imbalance
manifoldM can decay to manifoldM − 2 via the DDI, releasing
the Zeeman energy ℏωZ as kinetic energy. Each state is labeled by
the atom’s spin state and the Raman lasers’ photon number
imbalance. The DDI can only couple j↑i to j↓i and cannot
change the photon imbalance. (b) Interatomic potentials for
identical fermions entering a collision on the blue p-wave
(l ¼ 1) orbital potential and exiting on the red f-wave (l ¼ 3)
orbital potential. The potentials are shown in the rotating SOC
frame and with ωZ ≫ δ. The DDI couples these two potentials
with energy EDDI. Atoms may exit on the lower dressed potential,
releasing Zeeman energy ℏωZ. The uncoupled potentials are
shown as black dashed lines.
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X. CONCLUSION

While creating spin-orbit-coupled fermionic alkali atoms
using Raman coupling has been very successful, the short
spontaneous-emission-limited lifetime of alkali atoms
severely hampers investigations of interacting topologically
nontrivial systems. We demonstrate that spin-orbit coupling
in lanthanide atomic gases, specifically 161Dy, can have
much longer lifetimes that are instead limited by inelastic
dipolar collisions. Fortunately, the dipolar relaxation is not
rapid, allowing the study of spin-orbit-coupled degenerate
dipolar Fermi gases of Dy for as long as 400 ms, far longer
than in fermionic alkali gases. Looking forward, the
elastic dipolar collisions we observe here may be exploited
to study interacting spin-orbit-coupled Fermi gases.
Moreover, the lifetime of these Raman-coupled dipolar
Fermi gases may now be sufficiently long to create and
study exotic quantum liquids [23] as well as quantum Hall
ribbons in synthetic dimensions [24,26,58], where the large
Dy spin provides a wide bulk with which to isolate edge
states.
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APPENDIX: MONTE CARLO SIMULATION OF
THE COLLISIONAL CONTRIBUTION TO

RABI OSCILLATIONS

To produce the theory curve in Fig. 5(a), each simulated
atom is assigned an initial momentum sampled from the
Fermi-Dirac momentum distribution and has a spinor of
the form

jψðtÞi ¼ c↑ðtÞj↑i þ c↓ðtÞj↓i; ðA1Þ

initialized to c↓ð0Þ ¼ 1 and c↑ð0Þ ¼ 0. The spinor of each
atom then evolves according to

c↓;↑ðtÞ ¼
�
c↓;↑ð0Þ cosðtΘ=2Þ � i

�
δ

Θ
c↓;↑ð0Þ �

ΩR

Θ
c↑;↓ð0Þ þ

2ℏ
mΘ

kRðkR þ kxÞc↓;↑ð0Þ
�
sinðtΘ=2Þ



e−iωt;

ω ¼ ℏð2k2R þ 2kRkx þ k2xÞ
2m

;

and Θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

�
ℏkRðkR þ kxÞ

m

�
2

þ 4δ

�
ℏkRðkR þ kxÞ

m

�
þ δ2 þ Ω2

R

s
: ðA2Þ

Simulated collisions between atoms occur with a rate
that is free to be adjusted to fit the data. The Raman
coupling rate ΩR is also a free parameter. Averages over all
simulated atomic spinors produce the solid-line Rabi-
oscillation curve in Fig. 5(a).
For two atoms colliding at time t ¼ t0, the spinor of each

atom does not change immediately, i.e., c↓ðt0−Þ ¼ c↓ðt0þÞ
and c↑ðt0−Þ ¼ c↑ðt0þÞ for both atoms. However, the colli-
sion does change the momentum of each particle, i.e.,
kxðt0−Þ ≠ kxðt0þÞ, and thus changes the subsequent evolu-
tion of the spinors through Eq. (A2). This results in not only
more dephasing but also an equal steady-state population of
j↑i and j↓i because the collisions effectively erase the
effect of the initial conditions c↓ð0Þ ¼ 1 and c↑ð0Þ ¼ 0.
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