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Realizing systems that support robust, controlled interactions between individual photons is an exciting
frontier of nonlinear optics. To this end, one approach that has emerged recently is to leverage atomic
interactions to create strong and spatially nonlocal interactions between photons. In particular, effective
photonic interactions have been successfully created via interactions between atoms excited to Rydberg
levels. Here, we investigate an alternative approach, in which atomic interactions arise via their common
coupling to photonic crystal waveguides. This technique takes advantage of the ability to separately tailor
the strength and range of interactions via the dispersion engineering of the structure itself, which can lead to
qualitatively new types of phenomena. For example, much of the work on photon-photon interactions relies
on the linear optical effect of electromagnetically induced transparency, in combination with the use of
interactions to shift optical pulses into or out of the associated transparency window. Here, we identify a
large new class of “correlated transparency windows,” in which photonic states of a certain number and
shape selectively propagate through the system. Through this technique, we show that molecular bound
states of photon pairs can be created.

DOI: 10.1103/PhysRevX.6.031017 Subject Areas: Photonics, Quantum Physics

I. INTRODUCTION

In recent years, there has been tremendous progress to
realize systems that are capable of achieving strong
interactions between individual photons [1]. One common
approach has been to couple single atoms (or other
quantum emitters) to high-finesse optical cavities, to take
advantage of the intrinsic nonlinear nature of these two-
level systems [2–8]. More recently, gases of cold Rydberg
atoms have been investigated [9–15]. In this case, the
optical nonlinearities are effectively generated via strong
atom-atom interactions, with a novel consequence being
that the nonlinearity becomes spatially nonlocal in char-
acter [16]. It has been experimentally shown that this type
of nonlinearity can give rise to exotic states such as a two-
photon bound state [17], and a number of other few- and
many-body states of light have been theoretically predicted
[18–20].
Key to this approach is that atoms excited to a Rydberg

state, in particular, through the absorption of a photon, exert
a strong dispersive effect on the level structure of proximal
atoms, shifting their transition frequencies to Rydberg
states by an amount proportional to ∼1=r6, with r being
the interatomic separation [see Fig. 1(a)] [21]. This process,

in turn, alters the optical susceptibility of the atoms,
which can be interpreted as a change of refractive
index that depends on the number and position of photons
in the system. In practice, the r dependence of the Rydberg
interaction presents somewhat of a constraint. Specifically,
one must reach extremely high Rydberg states in order to
induce a significant nonlocal effect (n ∼ 100 in Ref. [17] to
achieve a blockade radius of 18 μm). The resulting shift of
the Rydberg level is large (about 50 GHz for atoms
separated by 4 μm in Ref. [17]); however, all of the
interesting variation in the atomic refractive index occurs
over much smaller bandwidths of a fewMHz (characteristic
of the atomic linewidth). In this article, we demonstrate
the new opportunities arising for nonlinear optics if the
strength and range of the interaction can be independently
adjusted. In particular, we show that the highly tunable
nature of systems coupling atoms with nanophotonic
devices can greatly extend the gamut of photon-photon
interactions.
Our work is inspired by recent developments to interface

cold atoms with photonic crystals [22–27]. It has been
proposed that one can control the type and range of atomic
interactions [28–32], and hence the interactions between
photons [33], by engineering the underlying optical
dispersion of these structures. We specifically study the
dynamics of photons propagating through an atomic
ensemble coupled to the waveguide under conditions of
electromagnetically induced transparency (EIT), which
occurs for atoms with three or more internal levels, such
as shown in Figs. 1(a) and 1(b) [34]. Without long-range
interactions, EIT is an interference effect that allows an

*Corresponding author.
james.douglas@icfo.eu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW X 6, 031017 (2016)

2160-3308=16=6(3)=031017(14) 031017-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevX.6.031017
http://dx.doi.org/10.1103/PhysRevX.6.031017
http://dx.doi.org/10.1103/PhysRevX.6.031017
http://dx.doi.org/10.1103/PhysRevX.6.031017
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


optical probe field to propagate without absorption due to
the interference created by a second pump field when a
“two-photon resonance” condition is satisfied, δ ¼ 0 in
Fig. 1(b). As a linear optical effect, a probe pulse of any
photon number and shape within a certain bandwidth
propagates in this transparent manner.
Atomic interactions, for example, that shift level jsi in

Fig. 1(b), shift the two-photon resonance, altering the
propagation of photons in the system, and effective
photon-photon interactions result. In all previous work,
phenomena based upon on the incorporation of inter-
actions into EIT only account for the possibilities of large

interactions shifting a pulse out of the linear transparency
window (e.g., photon blockade), or the interactions being
small enough that the linear window still supports the
multiphoton pulse. Here, we identify a remarkable new
class of correlated transparency windows, which can arise
when the interactions are sufficiently smooth and long
range, in which only pulses of a desired photon number and
shape will propagate through. As an example, we provide
an explicit construction to generate a two-photon molecule
consisting of two photons bound at a fixed separation by an
effective spring, where phonon oscillations constitute the
state’s fundamental excitations.
The article is structured as follows. In Sec. II, we briefly

review the physics governing atoms coupled to photonic
crystal waveguides. In particular, we show how tunable
long-range interactions between atoms emerge when the
atomic transition frequency is situated within an optical
band gap of the structure. In Sec. III, we show how EIT can
be used to convert these atom-atom interactions into
effective interactions between photons. In this regime,
we find an effective equation for photons propagating in
the system that supports the presence of correlated trans-
parent states. In Sec. IV, we show how the photon
interactions can be tuned to create molecularlike states
of photons and, in Sec. V, we derive the conditions to
observe such a state, demonstrating that the required
parameters are within reach of state-of-the-art nanopho-
tonic systems, before concluding in Sec. VI.

II. INTERACTIONS MEDIATED
BY PHOTONIC CRYSTALS

Photonic crystals are dielectric structures in which the
refractive index is modulated periodically [35]. At some
frequencies, light input into the dielectric reflects construc-
tively from these modulations, and the system acts like a
mirror, preventing propagation. This leads to the presence of
bandgaps in the dispersion relation for thephotonicmodes, as
shown in Fig. 1(c). When an atom trapped nearby the
photonic crystal is excited at a frequency in the band gap,
it is forbidden from emitting a propagating photon into the
dielectric.However, it cangenerate an exponentially decaying
evanescent field that forms a localized photonic cloud around
the atom [36]. It has been formally shown that this photonic
cloud has the same functionality as a real cavity of the same
size [31], with an effective vacuum Rabi splitting gc dictated
by the mode volume and an atom-cavity detuningΔc ¼ 2Δb
set by the separation Δb between the atomic frequency
and band edge. Thus, exactly as in a real cavity in the
far-detuned regime (jΔcj > jgcj) [37], atoms can exchange
excitations via virtual “cavity” photons at a rate scaling
with g2c=Δc. In this case, the exchange is characterized
by the dipole-dipole interaction Hamiltonian Hdd ¼
½ℏg2c=Δc�

P
j;lσ

j
dsσ

l
sdfðzj; zlÞ, where jsi and jdi are the

ground and excited states coupled by the cavity mode; see

(a)

(c)

(b)

FIG. 1. (a) Rydberg interactions between atoms mediate
photon-photon interactions. Two-photon excitation of atom 1
to Rydberg level R shifts the R level in other surrounding atoms
by an amount much larger than the two-photon transition width,
making the transition effectively two level for a second photon
entering the system. (b) Four-level atom for EITwith interactions.
The input quantum probe field E couples to the transition
jgi − jei, while transition jsi − jei couples to a classical drive
field. Adding level jdi that couples to the band edge modes of a
photonic crystal (red curves with blue region indicating the band
gap) and driving the transition jsi − jdi off-resonantly creates an
effective interaction between atoms in state jsi. For simplicity, we
assume states jei and jdi both have a free-space spontaneous
decay rate Γ0. (c) The periodic dielectric structure of a photonic
crystal (right) leads to band structure (left) in the dispersion
relation for photons propagating in the dielectric, where inter-
ference leads to band gaps over which propagation is forbidden.
For photonic crystals that support multiple modes, e.g., TE and
TM (represented here by the solid and dotted lines), the band
gaps of different modes may occur at different frequencies. The
jsi − jdi transition of the atoms (green spheres) trapped near the
photonic crystal couples to the photonic crystal bands. When
the transition frequency ωsd is in the band gap (with detuning Δb
from the band edge) atoms can couple with one another via
evanescent fields in the photonic crystal (illustrated in red),
yielding a dipole-dipole interaction between the atoms.
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Fig. 1(c) [28–31,36,38–40]. Signatures of this interaction
have recently been observed experimentally [27].
In the case where the atom is coupled predominantly to

only a single band of a one-dimensional photonic crystal
waveguide (achieved by tuning the atomic resonance close
to the band edge), the interaction has spatial form
fðzj; zlÞ ¼ expð−jzj − zlj=LÞE�

kb
ðzjÞEkbðzlÞ for atoms at

positions zj and zl, where EkbðzÞ is the Bloch function of
the photonic crystal at the band edge (wave vector kb,
frequency ωb). Below, we perform numerical simulations
with the atoms trapped on a lattice with spacing za ¼ 2a,
for photonic crystal unit cell length a, in which case
EkbðzjÞ ¼ 1 at the trapping sites and the interaction is
purely in the relative coordinate jzj − zlj. The interaction

has length scale L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αωb=ðk2bΔbÞ

q
corresponding to the

length of the effective cavity mode, which depends on the
detuning Δb as well as the curvature of the band edge α.
The resulting atom-atom interaction can be tuned in
strength and length by adjusting these parameters, where
a smaller detuning gives a longer-range interaction and
flatter bands lead to a shorter-range interaction.
We wish to convert this dipole exchange interaction into

a dispersive interaction between atoms in level jsi, as
required to shift the EIT two-photon resonance. To
achieve this, we off-resonantly drive the jsi − jdi tran-
sition of all atoms with Rabi frequency Ωs and detuning
Δs (jΔsj ≫ jΩsj; g2c=jΔcj), as shown in Fig. 1(b). In this
case, virtual excitations of state jdi result in a Stark shift
of level jsi for the jth atom, which depends on the
number of proximal atoms in state jsi. After
adiabatically eliminating the excited state jdi, the inter-
action takes the general form given by the Hamiltonian
Hss ¼ −ℏ

P
j;lσ

j
ssσlssVðzj − zlÞ, where Vðzj − zlÞ ¼

−½jΩsj2g2c=ðΔ2
sΔcÞ�fðzj; zlÞ for the single-band-edge cou-

pling described above. For realistic experimental param-
eters, the coupling gc can be as large as 2π × 10 GHz for a
cavity that is just one wavelength long, L ∼ λ [31].
Importantly, the strength of the interaction can be tuned
to any smaller value by altering the ratio jΩs=Δsj for the
driving laser, such that level shifts seen by the atoms can
be on the order of the free-space linewidth γ, representing
a significant distinction from the Rydberg case. The
spatial dependence of the interaction can also be tuned;
for example, exotic polynomial interactions such as z−1=4

can be generated [31], or as we will show below, a
molecular binding potential can be created.
The photonic-crystal-mediated interactions are not with-

out losses. In a realistic system, imperfections in the
dielectric medium cause loss of photons at rate κ. At the
same time, the photonic crystals used in current experi-
ments are not three dimensional, and the excited state jdi
can spontaneously emit into free space at a rate Γ0
comparable to γ. To understand the effect of these loss
channels, we take advantage of the mapping of the photonic

cloud surrounding the atom to an effective cavity mode. For
an optimal choice of the detuning Δb from the band edge
and the curvature α of the band, the two-atom dispersive
interaction strength can be made larger than the residual
dissipation by a factor

ffiffiffiffi
C

p
=2, where C ¼ g2c=ðκΓ0Þ is the

cooperativity of the cavity [31]. In state-of-the-art systems,
the cooperativity can be as large as Cλ ∼ 104 for a photonic
cloud with an attenuation length L equal to the wavelength
λ. For longer range couplings with decay length L, the
cooperativity scales as Cλλ=L.

III. EIT WITH INTERACTIONS

The basis of EIT in an atomic medium is atoms with
three internal levels jgi, jei, and jsi, as shown in Fig. 1(b).
We consider a system where the atoms are coupled by the
jgi − jei transition to a quantum probe beam E propagating
in a one-dimensional waveguide, while the jei − jsi tran-
sition is coupled to an external control laser field (Rabi
frequency Ω), and the photonic-crystal-mediated interac-
tion acts on level jsi as described above. An experimental
system that allows for this configuration has been demon-
strated in Refs. [23,24,26], where atoms are trapped near a
photonic crystal waveguide. In this system, the band gaps
for the transverse electric (TE) and transverse magnetic
(TM) modes of the waveguide occur over different fre-
quency ranges; see Fig. 1(c). This enables the probe field E
to be guided in the TM mode and couple resonantly to the
jgi − jei transition, while the long-range atom-atom inter-
actions are mediated on the jsi − jdi transition by the TE
mode that has a band gap at the same frequency. At the
same time, the control beam Ω may illuminate the atoms
from free space.
With the control laser switched off (Ω ¼ 0), and atoms

initialized in state jgi, probe photons entering the atomic
ensemble encounter a two-level medium. When the probe
beam frequency ωp is on resonance with the atomic
transition (Δ ¼ ωp − ωge ¼ 0), the probe beam transmis-
sion is attenuated by a factor of expð−DÞ after propagating
through Na atoms, where D ¼ 2NaΓ1D=Γ0 is the optical
depth (see Appendix A). Here, Γ1D denotes the emission
rate of state jei into the guided mode of the photonic
crystal, while Γ0 is the emission into all other modes (which
in current experiments is comparable to the free-space
emission rate γ), and Γ ¼ Γ1D þ Γ0 is the total single-atom
linewidth [41].
Instead, when the control is switched on, the two-photon

process of absorbing a probe photon and stimulated
emission into the control field at frequency ωL transfers
atomic population to the internal jsi state from state jgi.
When this two-photon process is resonant, δ ¼ ωp − ωL −
ωgs ¼ 0 (in the absence of atom-atom interactions), inter-
ference between excitation from jgi to jei and jsi to jei
leads to zero population in the excited state, and the
medium becomes transparent as loss due to spontaneous
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emission is no longer possible [34]. In this case, the input
probe photons are mapped to dark state polaritons—
superpositions of electromagnetic fields and spin coherence
between the jgi and jsi states [42]. The presence of the
atomic spin component allows the speed of propagation
to be controlled by the external laser field Ω, where the
group velocity becomes vg ¼ 2jΩj2=ðΓ1DnÞ for an atomic
medium with linear density n in the direction of propaga-
tion [43]. For realistic parameters, in the slow-light regime
when vg ≪ c, the polariton excitations are almost com-
pletely spin wave in character; i.e., each polariton excita-
tion effectively results in one atom being flipped to state
jsi. When atom-atom interactions are not present in the
system, this transparency is a linear optical effect and
applies for probe pulses of any photon number.
The situation changes dramatically when the photonic

crystal mediated interactions Hss ¼ −ℏ
P

j≠lσ
j
ssσlssVðzj −

zlÞ are added (note that we have excluded the diagonal level
shift, j ¼ l, from this Hamiltonian, which is assumed to be
absorbed into the definition of our control laser frequency
ωL). In particular, one polariton excitation results in a
spatially dependent shift of level jsi for all surrounding
atoms, as shown in Fig. 2(a). This implies that a second
proximal polariton would generally not match the two-
photon resonance condition, and its propagation is sup-
pressed. Such an effect has already been exploited using
Rydberg interactions to produce strong single-photon-level
nonlinearities [9–15], where for Rydberg atoms the level
shift is so large that the two-photon transition is no longer
possible and the atom response is reduced to that of the
two-level transition jgi − jei. Using the photonic crystal
interactions instead, where the strength and range of
interaction associated with Hss can be tuned appropriately,
novel phenomenon inaccessible with Rydberg atoms
appear that have not been previously demonstrated. In
particular, it is possible for a second polariton to propagate
through, provided that its frequency and shape are specially
matched to an altered two-photon resonance condition.
Here, we identify and characterize the nature of this
multitude of correlated transparency windows that depend
both on the photon number and wave-packet shape,
providing a powerful resource for the quantum manipula-
tion of photonic states. A similar scheme for achieving
photon-photon interactions is also described in Ref. [33],
which however considers nonlinear phenomena that are
distinct from the correlated transparent states considered
here.
We first provide some intuitive examples of such

behavior, before considering the physics in greater detail.
We begin with the limit where the interaction is uniform
over the atomic sample, which could be achieved by tuning
the interaction length L to be much larger than the size of
the atomic ensemble, so that Vðzj − zlÞ ∼ −U. In this case,
the interactions lead to energy shifts that are independent of
where the polaritons are [43]. A single photon propagating

(a)

(b) (c)

(d) (e)

(f) (g)

FIG. 2. (a) The excitation of the central atom to jsi by a probe
pulse (red line) traveling along the waveguide (grey), shifts the
level jsi of the surrounding atoms and a new pulse (dashed red line)
encounters a shifted EIT transparency window. (b–e) EIT with
uniform interactions Hss ¼ ℏU

P
j≠lσ

j
ssσlss leads to number-

correlated transparency windows. (b) For a single photon, EIT
occurs at the normal two-photon resonance δ ¼ 0, independently
of U, as shown in (c) by the simulated output intensity
I1 ¼ hE†

oEoi=hE†
i Eii, which for weak input intensity corresponds

to the transmittance of single photons. (d) For two photons, EIT
occurs for δ ¼ U, in which case transfer to the jssi two-excitation
state is resonant, as shown in (e) by the equal-time coincidence rate
at output I2 ¼ hE†

oE
†
oEoEoi=hE†

i Eii2, which has a maximum for
δ ∼ U. In (c) and (e), the system has optical depthD ¼ 400 and is
continuously pumped with jEij2 ¼ 10−4Γ0 and Δ ¼ 0. (Note that
δ ¼ U can be achieved by adjusting the probe or control field
frequencies; here, we adjust the control, which in this case results in
higher two-photon coincidence counts for jUj > 0.5.) (f) Two-
photon transmission is also achieved by inputting two
pulses with different frequencies ω1 and ω2, where the first pulse
is inside the medium when the second arrives [as in (a)]. For
δ1 ∼ 0, a single photon from the first pulse may propagate in the
medium, while, taking δ2 ∼ 2U, a photon from the second pulse
may only enter when a photon from the first is inside the medium.
(g) The presence of the first photon then switches the probability of
transmission T for the second photon from being maximized at
δ2 ¼ 0 (blue curve) to δ2 ¼ 2U (green curve), with U ¼ 2Γ0. All
simulations were done with Ω ¼ 2Γ0, Γ1D ¼ 2Γ0, and Na ¼ 100.
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by itself in such a medium will be maximally transmitted
through the atomic medium when δ ¼ 0 [Fig. 2(b)], while
for two photons to enter the system, their detunings must
compensate for the shift to the doubly excited state jssi.
This could be achieved as shown in Fig. 2(d) with an input
such that δ ¼ U. More generally, we have number-
correlated transparency windows, where Np photons
will be transmitted maximally when δ ¼ ðNp − 1ÞU.
Significantly, these transparency windows exist simulta-
neously in the system, and there is no requirement for the
transparency windows associated with different Np to
overlap with one another.
This type of effect could not be realized with pure

Rydberg interactions, even if the Rydberg blockade were
extended across the entire sample, because of their rapid
1=r6 spatial variation. In general, correlated transparency
windows are difficult to access for such a potential as the
spatial region over which the level shift due to the
interaction fits within the EIT transparency is limited.
For example, for the interatomic potential used in
Ref. [17], the level shift changes from 2γ to 3γ over a
distance of 0.9 μm. Such small spatial regions in turn lack
sufficient optical depth in which to compress a pulse, at
least for atomic densities used in current experiments, and
resulting pulse propagation would be highly lossy.
In Figs. 2(c) and 2(e), we plot measures of single- and

two-photon output from an EIT medium given an input of
continuous coherent light over a range of two-photon
detunings δ and uniform interaction strengths U. The
output probe field Eo is produced numerically for a
particular input Ei by simulating the full EIT system
using the spin model from Ref. [43], which we further
describe below. We plot the normalized output intensity
I1 ¼ hE†

oEoi=hE†
i Eii, which for weak input probe intensity

corresponds to the transmission of single photons through
the system. I1 peaks at the normal EIT resonance δ ¼ 0 and
is independent of the interaction strength. To visualize the
two-photon behavior, we plot the normalized two-photon
coincidence I2 ¼ hE†

oE
†
oEoEoi=hE†

i Eii2, which is propor-
tional to the rate at which two photons are detected leaving
the system at the same time. I2 peaks when the two-photon
transmission is resonant, which occurs when δ ∼ U and
confirms the intuition presented earlier. The deviation from
unit two-photon transmission for larger values of U
(jUj≳ Γ0) is due to the fact that for a continuous wave
input, the two photons are entering and leaving at random
times. Thus, each photon partially experiences the loss
associated with the single-photon dispersion relation at a
frequency displaced from the transparency condition [43].
In the previous example, we probed the two-photon

transparency using a constant, coherent input with one
frequency as shown in Fig. 2(d). An alternative way to
drive the two-photon transparency is with two individual
coherent pulses of different frequencies ω1 and ω2 as
shown in Fig. 2(f). The frequency of the first pulse is

arranged to satisfy the single-photon transparency so that
δ1 ¼ ω1 − ωL − ωgs ∼ 0, in which case single photons
from this pulse propagate transparently through the
medium, while higher-number components are dissipated
because of the uniform interactions. The second pulse is
arranged to enter the medium when the first is already
completely inside as shown schematically in Fig. 2(a), with
a shifted frequency to achieve two-photon resonance so that
δ2 ∼ δ1 þ δ2 ∼ 2U. In this case, propagation of the photons
from the second pulse is conditional on a photon from the
first pulse already being inside the medium. Given the
presence of a single photon from the first pulse, one and
only one photon from the second pulse may propagate
through the medium; otherwise, the second pulse is
dissipated completely. In other words, the first pulse acts
like a switch for the second pulse. We show this behavior in
Fig. 2(g), where we have plotted the simulated transmission
probability of a single photon from the second pulse with
and without the presence of a photon from the first as we
vary δ2. Here, we see that the presence of the first photon
shifts the transparency window for the second pulse from
δ2 ∼ 0 to δ2 ∼ 2U and that these windows do not overlap,
allowing the first pulse to switch the transmission of a
photon in the second pulse on or off as predicted.
An extension of the example of uniform interactions is to

consider a step potential, where the interaction is a constant
U up to a certain atom separation rs and then zero at larger
distances, as shown in Fig. 3(a). This situation leads to the
presence of spatial- and number-correlated transparent
states of photons, where two photons may propagate
together with separation r < rs for an input such that
δ ∼U, or separated with r > rs when δ ∼ 0. Since the dark-
state polariton excitations essentially consist of atoms
excited to state jsi, we can visualize this behavior by
plotting the probability jψ j;l

ss j2 of having two atoms (j, l)
both excited to jsi. In Fig. 3(b), we plot this quantity for
δ ¼ 0 in a steady state when the system is driven by a weak
continuous probe input. In this case, the step potential leads
to minimal population of polaritons separated by less than
rs. On the other hand, when δ ∼ U, we expect the polaritons
to propagate together within the step separation rs. In fact,
one expects that if the wave function of the relative
coordinate of a two-photon state is prepared as a harmonic
eigenmode of the square-well potential [Fig. 3(a)], it can
propagate, maintaining its pulse shape in that direction. This
is illustrated in Fig. 3(c) for the case where the relative wave
function is initially prepared in the third harmonic. The
relative coordinate maintains its shape well, while the wave
function in the center-of-mass coordinate diffuses out.
Motivated by these basic intuitive and numerical obser-

vations, we seek to better understand the dynamics of
photons within spatial- and frequency-correlated transpar-
ency windows. To this end, a more rigorous description of
the EIT system can be developed by finding the effective
Hamiltonian for the polariton dynamics in the presence of
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the atom-atom interactions. By perturbatively solving the
Heisenberg equations of motion around points where
such correlated windows are created (as described in
Appendix B), we find

Heff ¼ ℏ
Z

dzΨ†ðzÞ
�
−ivg

∂
∂z −

ℏ
2m

∂2

∂z2

− δ −
Z

dz0Ψ†ðz0ÞVðz − z0ÞΨðz0Þ
�
ΨðzÞ; ð1Þ

for the dark-state polariton field operator ΨðzÞ.
This effective Hamiltonian highlights a number of

features of polariton evolution, the first being the well-
known reduced group velocity, vg ≪ c, of the polaritons in
the medium, seen here as the first term in the brackets.
Meanwhile, the interaction between the polaritons that
results from the atom-atom interactions is described by
the final term in the brackets. Here, the interaction itself
Vðz − z0Þ does not need to be small or correspond to a level

shift within the normal EIT transparency bandwidth (e.g.,
as assumed in Ref. [18]). Instead, we require that the
change in the interaction over the region where there is
significant polariton density lies within the transparency
bandwidth, and that for an Np photon transparency, the
detuning of the input photons compensates for the inter-
action energy when Np polaritons are in the medium, i.e.,
Npδþ

R
dzdz0Ψ†ðzÞΨ†ðz0ÞVðz−z0ÞΨðz0ÞΨðzÞ∼0. In par-

ticular, Eq. (1) can describe different self-consistent trans-
parency windows, for different photon number and spatial
configurations, and these need not overlap.
The second term in brackets describes the dispersion

of the group velocity, which is equivalent to the polariton
having an effective mass in the EIT medium
m ¼ −ℏjΩj2=½ð2ΔM þ iΓ0Þv2g�. The effective mass is a
complex parameter with a real part depending on a
renormalized probe detuning ΔM and the imaginary part
on the spontaneous decay rate into other modes Γ0. The
renormalization of the detuning, ΔM ¼ Δþ δ, results from
the different bare two-photon detuning δ required to
achieve EIT transparency in the interacting system. In
general, the mass depends on the number of polaritons in
the system [33], for example, in the case of uniform
interactions where δ depends on Np (see Appendix B
for further details).
For two photons, Eq. (1) separates into center-of-mass

and relative coordinates, where each coordinate has a mass
or diffusion term exactly like in noninteracting EIT. In
particular, a well-localized wave function experiences a
similar loss as in normal EIT. However, the relative
coordinate also sees the effective potential, which could,
for example, support bound states as we describe in the next
section. In general, we can map a multipolariton system to a
collection of massive particles in a potential moving in a
reference frame traveling at vg.
The effective Hamiltonian of Eq. (1) is valid around the

two-photon resonance, where we expect it to provide an
approximate description of the full system dynamics. To
confirm these dynamics, we numerically simulate the full
system using the spin model introduced in Ref. [43]. The
spin model describes the behavior of many atoms coupled
to the photonic modes of a one-dimensional waveguide,
generalizing the powerful input-output formalism of cavity
QED. The key insight of the model is that the exchange of
photons (with wave vector kp) between atoms via the
waveguide reduces to an effective interaction between the
atoms, given by

Hwg ¼ −
iℏΓ1D

2

X
j;l

σjegσlgeeikpjzj−zlj: ð2Þ

The dynamics of the electromagnetic field as it propagates
through the system are now completely captured in the
dynamics of the interacting spin chain with Hamiltonian

(a)

(b) (c)

FIG. 3. EIT in atomic medium with Na ¼ 200 atoms on a
lattice with lattice constant za and interaction Hss ¼
−ℏ

P
j≠lσ

j
ssσlssVðzj − zlÞ. (a) The potential is chosen to be a

square well, with an interaction strength of Vðzj − zlÞ ¼ −0.5Γ0

for atoms with separation jzj − zlj < 50za and zero otherwise.
The colored curves show the three lowest energy states of the step
potential. (b) When the system is driven continuously so that
δ ¼ 0 (jEij2 ¼ 10−4Γ0), the majority of the steady-state spin
population jψ j;l

ss j2 (arbitrary units) is in pairs of excitations with
jzj − zlj > 50za. (c) Propagation of a two-photon wave function
(arbitrary units) in which the relative coordinate is initially
prepared as the third harmonic eigenstate [red curve in (a)] of
the square-well potential. Here, the final spin population is
multiplied by a factor of 100, so both initial jψ ij2 and final
jψfj2 are visible on the same scale. Other simulation parameters
used are Ω ¼ 2Γ0, Γ1D ¼ Γ0 (optical depth D ¼ 400), and Δ ¼ 0.
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Hspin ¼ Hwg þHatom þHpump þHss, where Hatom

describes the atomic Hamiltonian in the absence of the
waveguide-mediated interactions and Hpump describes the
coupling of the atoms to input light. Below, we consider
the case where the input probe light is coherent, in
which case the coupling to the atoms can be accounted
for by using the Mollow transformation [44], and we
have Hpump¼−ℏEiðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΓ1D=2Þ
p P

jðσjegeikpzjþσjgee−ikpzjÞ.
Here, EiðtÞ is a classical field that may either be constant,
corresponding to continuous driving of the system, pulsed,
or zero when we initialize the system with a spin wave.
The output field operator Eoðz; tÞ ¼ Eiðt − z=cÞ þ

εiðt − z=cÞ þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΓ1D=2Þ

p P
N
j¼1 σ

j
geðtÞeikpðz−zjÞ is deter-

mined from the coherent input, with classical part Ei and
vacuum fluctuations εi, and the atomic coherence σjge found
by solving the spin evolution. The numerical description of
the system is then reduced to following the dynamics of the
discrete atomic Hilbert space under Hspin instead of the in-
principle continuous electromagnetic field. This description
allows us to fully model our EIT system, including arbitrary
interactions between the atoms, in a way that is independent
of the assumptions made in deriving the effective polariton
dynamics in Eq. (1), providing numerical verification of
the intuitive picture of polaritons as massive interacting
particles.

IV. PHOTONIC MOLECULES

We now use our effective propagation equation along
with the spin model to describe a regime where photons
can bind to one another in the EIT medium. Here, we rely
on the tunability of the interactions in the photonic
crystal setting to achieve a molecularlike interaction
potential between polaritons. In particular, we consider
the case where the jsi − jdi transition couples in the
band gap to both band edges, as shown in Fig. 1(b).
In this case, the resulting effective interaction
Vðzj − zlÞ ¼ −½jΩsj2=Δ2

s �½ðg2u=ΔuÞ expð−jzj − zlj=LuÞ þ
ðg2l=ΔlÞ expð−jzj − zlj=LlÞ� will be the sum of the
interaction due to the upper (u) and lower (l) band edges
(see Appendix C). Crucially, the sign of each contribution
depends on the detuning from the band edge in question,
and the contributions hence have opposite signs.
Furthermore, by engineering the detunings and band
curvatures correctly, the contributions will also have
different interaction length scales, leading the total
interaction to have a minimum (or maximum) at some
atomic separation r0, as plotted in Fig. 4(a) for the case
where the interaction strengths have equal magnitude
G≡ jΩsj2g2u=ðΔ2

sΔuÞ ¼ jΩsj2g2l=ðΔ2
sΔlÞ. We note that

while the detunings Δu and Δl should be of the order
of 100 GHz to create the interaction, the gap between
the band edges can be arbitrary if instead of a single
excited level jdi we use one for each band edge. This

configuration would coincide with current experiments
where the D1 and D2 lines of cesium are aligned with the
lower and upper band edges, respectively [23].
For the case of two polaritons, with coordinates z1 and

z2, Eq. (1) separates into a Hamiltonian Hcm ¼
−½ℏ2=ð4mÞ�ð∂2=∂R2Þ − iℏvgð∂=∂RÞ for the center-of-
mass coordinate R ¼ ðz1 þ z2Þ=2, whose dispersion cor-
responds to that of a free massive particle, and a
Hamiltonian Hrel ¼ −ðℏ2=mÞð∂2=∂r2Þ − 2ℏVðrÞ for the

(c)

(a) (b)

FIG. 4. (a) The photonic-crystal-mediated atomic interac-
tions result in an interaction potential Vjl¼Vðzj−zlÞ¼
G½expð−jzj−zlj=LuÞ−expð−jzj−zlj=LlÞ� (black solid line) for
polaritons separated by distance jzj − zlj. The interaction poten-
tial is the sum of the contribution from the lower and upper
photonic crystal band edges (dashed blue lines) that have length
scales Lu ¼ 15za and Ll ¼ 30za and strengthG ¼ 1.28Γ0, which
in this case leads to a minimum at a finite atomic separation
r0 ∼ 21za. Loss resulting from the photonic-crystal-mediated
interactions is calculated assuming a cooperativity of
Cλ ¼ 24000. The amplitudes jψðrÞj2 (arbitrary units) of the
two lowest bound-state wave functions are shown for
ΔM ¼ 2.5Γ0, Ω ¼ Γ0, and Γ1D ¼ 2Γ0. (b) For two polaritons
propagating with this interaction, a state initiated with a wave
function matching that of the ground state, but offset from the
ground-state separation at time t ¼ 0, oscillates in time in the
relative coordinate. The oscillation of the expectation value of
polariton separation about the ground-state separation (about
24za, indicated by the dotted line) found by simulation the full
EIT system (solid line) is closely matched to the oscillation
produced by the evolution of the effective Hamiltonian Hrel ¼
−ðℏ2=mÞð∂2=∂r2Þ − 2ℏVðrÞ (dashed line). In this case, a full
oscillation occurs after the polaritons travel an optical depth of
D ¼ 250 using the parameters in (a). (c) Spin population jψss

j;lj2
(arbitrary units) as the initially offset pair of polaritons propagate
through the atomic ensemble, with the dotted line indicating
the ground-state separation of the two polaritons. The frames I, II,
and III correspond to the turning points of the oscillation
marked in (b).
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relative coordinate r ¼ z1 − z2. From Hrel, we can find the
bound states of pairs of polaritons in the system, as shown
in Fig. 4(a). An interesting bound state with finite sepa-
ration is also predicted in Rydberg systems [20]. However,
as Rydberg systems are not compatible with correlated
transparency windows, such a bound state involves an
admixture of dark and bright polaritons and thus suffers
from increased dissipation. More generally in Rydberg
systems, bound states arise because of the presence of sharp
changes in the refractive index of the medium [17]. Instead,
our system allows for a harmoniclike interaction, allowing
fundamental phononic oscillations of the polaritons to be
observed. In this way, our systemmimics molecules formed
by atoms.
In particular, initializing the two-polariton wave function

in the motional ground state of the potential shown in
Fig. 4(a) leads to the two polaritons propagating through
the system with fixed relative position, while perturbing the
state by offsetting the initial relative position results in
molecular vibrations about this ground-state separation
(slightly offset from r0 because of the asymmetry of the
potential). In Fig. 4(b), we plot the decaying oscillation of
the relative position about the ground-state separation for a
full spin-model simulation of a two-polariton wave func-
tion that has an initial offset, and we see good agreement
with the oscillation predicted by the simple model. In
Fig. 4(c), the polariton wave packet in the two excitation
manifold is plotted at the extrema of the oscillations, where
we see that the relative coordinate remains tightly bound,
while the wave function in the center-of-mass coordinate
disperses as a free massive particle.
In an experiment, the photon molecules could be

observed using spin-dependent imaging of the cold atoms;
however, the most straightforward measurements are of
photons output from the system into the waveguide. Using
the spin model, we can simulate an experiment where a
weak coherent pulse is input into the system at a frequency
resonant with the two-photon molecule [δ ∼ −Vðr0Þ] and
the output fields are recorded after the photons are allowed
to propagate through the system. In Fig. 5(a) and 5(b), we
plot the single- and two-photon parts of the input and
output fields for a weak pulse with a Gaussian spatial
envelope. Here, we see that the correlated transparency
window damps most of the two-photon component of the
initial Gaussian input, and what remains at the output
largely coincides with the well-separated two-photon mol-
ecule. This result leads to a peak in the second-order cor-
relation function gð2ÞðτÞ ¼ hE†

oðtÞE†
oðtþ τÞEoðtþ τÞEoðtÞi=

(hE†
oðtÞEoðtÞihE†

oðtþ τÞEoðtþ τÞi) for the photons,
Fig. 5(c), which shows large bunching due to the presence
of the bound photon pair.
We can also observe the phononic oscillations of the pair

of photons in the photon output. Inputting photons into the
system in a Gaussian pulse as above, the photons are
initially separated, on average, by less than the ground-state

separation, which initializes an oscillation in the two-
photon wave function. The relative position of the two
photons at the output depends on the ratio of the length over
which the pulse travels in one oscillation period, Lo, to the
length of the atomic medium, Ls. An oscillation can then be
observed at output by either adjusting the effective length
of the system, for example, by reducing the number of
atoms by waiting for the atomic trap to decay, or by
adjusting the strength G of the interaction potential, for
example, by adjusting the drive Rabi frequency Ωs. In the
latter case, the oscillation length is proportional to
1=

ffiffiffiffiffiffiffiffiffiffiffi
ΔMG

p
. However, adjusting the strength G alone also

changes the shape of the molecule, as the spatial extent of
the ground state is approximately proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔM=G

p
.

Reducing both ΔM and G by the same factor ξ then results
in the molecule keeping its shape while increasing Lo by a
factor of 1=ξ. In Fig. 5(d), we show a simulation of this
situation, where we adjust G and ΔM from the values used
in Figs. 5(a)–5(c) that initially lead to approximately one-
and-a-half oscillations over the length of the system. By
reducing the values by a factor of 3, the exact simulation

(a) (b)

(c) (d)

FIG. 5. Input and output of an EIT system with molecularlike
interactions resulting from the potential shown in Fig. 4(a).
(a) Single-photon component of input (blue line) and delayed
output (green line) pulses, normalized by the peak intensity of the
input pulse, where the output has been multiplied by a factor of
10 for visibility. (b) Two-photon input and output components,
where the output has been scaled by a factor of 102. (c) Second-
order correlation function gð2ÞðτÞ for output two-photon separa-
tion time τ ¼ jt1 − t2j taken along the white line shown in (b).
(d) Oscillation in average two-photon separation time hτi at
output as the interaction strength and renormalized detuning are
scaled to become G0 ¼ ξG and Δ0

M ¼ ξΔM. The optical depth is
400 for plots (a)–(c) and 800 for plot (d), with G ¼ 1.28Γ0,
ΔM ¼ 1.5Γ0, Ω ¼ 1.5Γ0, jEij2 ¼ 10−4Γ0, and Γ1D ¼ 2Γ0.

DOUGLAS, CANEVA, and CHANG PHYS. REV. X 6, 031017 (2016)

031017-8



shows a full oscillation in the average time separation of the
two photons at output; i.e., Lo changes from 3=2Ls to
1=2Ls, confirming the prediction of our simple model.

V. TECHNICAL REQUIREMENTS

Having described the main features of the two-photon
molecule in the previous section, we now analyze, more
carefully, the technical requirements in order to observe this
physics. There are two main considerations, the first being
the regime of validity of the effective equation (1) that
describes polaritons as massive particles propagating in a
potential, and the second, the extent to which dissipation
affects the molecular state. Describing the polariton dynam-
ics by Eq. (1) is equivalent to keeping only terms of up to
quadratic order in detuning in the expansion of the photon
dispersion relation about the EIT resonance. Neglecting
higher-order terms is a good approximation within the
EIT window, which for jΔj > jΩj;Γ0, requires that the
spread of frequencies of the relevant system dynamics
remains within jΩj2=jΔj of the EIT resonance. For a
pulse with length z0 within the atomic medium [e.g., a
Gaussian intensity distribution IðzÞ ∝ expð−8z2=z20Þ] to be
described by Eq. (1), it must have frequency width
dω ∼ 4vg=z0 < jΩj2=jΔj, which can be recast as a require-
ment Dp > 16jΔj=Γ0 for the optical depth Dp in the pulse
length. This identifies a trade-off, where we would like to
increase the ratio jΔj=Γ0 to reduce the effect of dissipation
in the effective mass term; however, to do so requires an
increase in the optical depth needed in an experiment.
Dissipation in our system comes from two main sources,

one being spontaneous emission from the excited state jei
that gives rise to the imaginary part of the effective mass
term, and the other being the additional loss associated with
introducing the photonic-crystal-mediated interactions. The
former leads to loss as a pulse propagates over length L in
the atomic medium, which in the limit of validity of the
quadratic dispersion is approximately exp½−16L=ðz0DpÞ�.
This is the loss for linear propagation of a pulse, and for two
photons propagating in a molecule, the loss is squared. To
observe an oscillation of a photonic molecule, we would
then like to take a minimal value of the oscillation length Lo
to reduce loss. To see how Lo is constrained, we consider
the case where the interaction potential can be approx-
imately described as a harmonic oscillator, with Gaussian
ground-state wave function exp½−2ðr − r0Þ2=ðz20Þ� in rela-
tive coordinate space, in which case the photon molecule
would oscillate with frequency ωM ≈ 32vgjΔj=ðΓ1Dnz20Þ.
The oscillation length Lo ¼ 2πvg=ωM is reduced by
increasing ωM; however, this frequency is constrained to
remain within the EIT window, which then results in the
restriction Lo > πz0=2. Taking the minimum value for Lo
and equating this with the system length Ls, such that the
photon molecule undergoes one full oscillation, then yields
a propagation loss of exp½−16π=Dp�.

As noted in Sec. II, the loss related with the photonic-
crystal-mediated interactions depends on the cooperativity
of the atom-induced cavities in the photonic crystal. For a
potential like that in Fig. 4(a), the loss rate is approximately
βωM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z0=ðλCλÞ

p
(taking r0 ∼ z0), where the proportionality

constant β depends on the details of how the two potentials
are combined (see Appendix C). Over one oscillation
period of the photonic molecule, we then expect the norm
of the two-photon wave function to be reduced by a factor
of approximately exp½−ð2πβ ffiffiffiffiffi

z0
p Þ= ffiffiffiffiffiffiffiffi

λCλ

p � as a result of this
loss. Compared with the propagation loss, this loss
increases with increasing pulse length z0, as larger con-
stituent pulses require larger effective cavities to create
the potential in the photonic crystal. The total loss
then represents a balance between the two contributions,
and an optimal pulse length can be found, z0 ¼
2½4CλΓ02=ðβΓ1DÞ2�1=3, at which point the total loss
is expf− 6π½2β2Γ0=ðCλΓ1DÞ�1=3g ¼ expð−48π=DpÞ. For
parameters compatible with current experimental setups,
Γ1D ¼ Γ0, β ∼ 10, za ∼ λ, and Cλ ¼ 2 × 104, we have z0 ∼
20za and the expð−48π=DpÞ ∼ 0.02. The total optical
depth to observe a single oscillation with these parameters
is then about 140. In experimental systems to date, only a
few atoms have been trapped near photonic crystals;
however, optical depths per atom of Da ∼ 2 have already
been demonstrated [26,27], indicating that sufficient optical
depth would be available with about 70 atoms.
While we have focused on the loss of the photonic

molecule above, signatures of the molecule and its oscil-
lations can be observed in photon correlation measure-
ments with greatly reduced requirements on the system
parameters. In particular, for a weak coherent state input,
the normalized second-order correlation function gð2ÞðτÞ
will contain the salient features of the molecular dynamics
even with significant two-photon losses, provided that the
single-photon component decays in an even stronger
manner. This strong single-photon loss can occur by
exploiting the design of the correlated transparency win-
dow and, in particular, enforcing that the transparency
frequency for the two-photon molecule coincides with a
region of the single-photon spectrum exhibiting strong
absorption. The resulting large loss of the single-photon
component leads to the large values of gð2ÞðτÞ shown in
Fig. 5(c), where our simulations include all of the loss
mechanisms described above.

VI. SUMMARY AND CONCLUSIONS

In summary, we have demonstrated that the versatile
platform of cold atoms coupled to photonic crystal wave-
guides leads to new possibilities in quantum optics. In
particular, the ability to tune interactions between atoms
over distances much greater than the wavelength of light
allows the propagation of light through the atomic medium
to be highly nonlinear and nonlocal. In contrast with
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current experiments demonstrating nonlinearities due to
Rydberg interactions between atoms [9–15], the inter-
actions discussed here can be arranged to give level shifts
of the order of the atomic linewidth over the entire atomic
ensemble. This allows for correlated transparency of
photons through the medium, where depending on the
number of photons propagating in the system, the system is
only transparent to particular frequencies and spatial
configurations. As a result, we have a useful tool to target
or engineer certain output states, where the desired state is
transparent while others are dissipated out, as we have
shown in detail for the case of creating a two-photon
molecule. While the focus of our numerical studies here has
mainly been in comparing single- and two-photon dynam-
ics in the system, the intuition formed provides important
insight into the solution of the multiphoton problem, which
is expected to display rich many-body behavior [18,33].
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APPENDIX A: OPTICAL DEPTH

In the main text, we use the form D ¼ 2NaΓ1D=Γ0 to
denote the resonant optical depth for Na two-level atoms.
This expression can be derived using the transfer matrix
formalism, where linear propagation in one dimension is
well described by treating each atom as a refractive element
with transmission and reflection coefficients t ¼ 1þ r and
r ¼ −Γ1D=ðΓ1D þ Γ0Þ on resonance [41,45]. For Γ1D ≪ Γ0,
one expects that reflection is not important, and the
transmitted intensity is given by the product of the
individual atomic transmittance as ∼jtj2Na ∼ expð−DÞ.
However, when Γ1D ∼ Γ0, a single atom can act as a strong
reflector of light, and the spacing of the atoms becomes
crucial in how much light is transmitted through the sample
[41,46]. In our simulations, we choose the spacing between
the atoms za so that kpza ¼ 3π=2, in which case there is
destructive interference between the reflections from each
atom in the ensemble. The transmission is then reproduced
by expð−DÞ provided Γ1D ≲ 0.2Γ0. Under this condition,
the optical properties are the same for two samples with the
same D ¼ 2NaΓ1D=Γ0, and using this property, we can
then reduce the number of atoms required to simulate a
system with a particular optical depth by increasing Γ1D
proportionally.
The linear properties in the EIT system can be even more

robust, remaining the same for constant optical depth even
when Γ1D ∼ Γ0. A single three-level atom has transmission

and reflection coefficients t ¼ 1þ r and r ¼ −Γ1Dδ=
½ðΓ1D þ Γ0 − 2iδÞδþ 2iΩ2� for Δ ¼ 0. We then find that
after propagating through Na atoms with spacing
kpza ¼ 3π=2, the probe field has transmission coefficient
given by expf−NaΓ1Dδ=½ðΓ0 − 2iδÞδþ 2iΩ2�g, provided
the two-photon detuning δ satisfies the condition
jδj ≪ 2jΩj2=Γ1D. As in the two-level case above, this
factor does not depend on Γ1D and Na individually but on
their product. Thus, for probeswith jδj ≪ 2jΩj2=Γ1D,we can
again reduce the number of atoms and increase Γ1D in a
simulation to reduce computational requirements. From a
practical point of view, we can check this equivalence in our
simulations by changing Γ1D and Na appropriately and
observing that the simulated behavior does not change.

APPENDIX B: EFFECTIVE PROPAGATION
OF POLARITONS

When photons enter the EIT medium, they are converted
into polaritons, where the photonic excitation becomes a
mixture of a photonic part and spin-wave part with atomic
population in the level jsi. A single photon entering the
system sees the EIT resonance when δ ¼ 0 [see Fig. 1(b)].
For more than one photon, the presence of the interaction
between the jsi levels shifts the EIT resonance. A shift in
the EIT resonance will lead to changes in velocity and
dispersion of each pulse, and with a spatially dependent
potential as shown in Fig. 4(a), these effects will depend on
the separation of polaritons in the media. However, it is not
immediately clear how and if the atom-atom interaction
potential transforms into an interaction potential for polar-
itons. To understand more about the system, we now derive
an effective propagation equation for polaritons in the
system.
To find the effective equation, we model the effective

three-level medium in the continuum limit, with linear
atomic density n, coupled to the probe with slowly varying
envelope Eðt; zÞ. In the frame rotating with the input
frequency, the system is described by the Hamiltonian [47]

H ¼ −nℏ
Z

dz

��
Δþ i

Γ0

2

�
σeeðzÞ þ δσssðzÞ

þ
�
σesðzÞΩeikcz þ

ffiffiffiffiffiffiffiffiffiffi
cΓ1D

2

r
σegðzÞEðzÞeikpz þ H:c:

��

− n2ℏ
Z

dzdz0σssðzÞVðz; z0Þσssðz0Þ; ðB1Þ

which is identical to the normal Hamiltonian describing
EIT systems except for the final term resulting from the
atom-atom interactions. The dynamics of the atomic
coherences and the probe field are now contained in the
respective Heisenberg equations of motion. For a weak
probe field, these are
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∂ ~σgeðzÞ
∂t ¼ i

�
Δþ i

Γ0

2

�
~σgeðzÞ þ i

ffiffiffiffiffiffiffiffiffiffi
cΓ1D

2

r
EðzÞ þ iΩ ~σgsðzÞ;

∂ ~σgsðzÞ
∂t ¼ iνðzÞ ~σgsðzÞ þ iΩ� ~σgeðzÞ;

∂EðzÞ
∂t þ c

∂EðzÞ
∂z ¼ i

ffiffiffiffiffiffiffiffiffiffi
cΓ1D

2

r
n ~σgeðzÞ; ðB2Þ

where we have kept only the lowest-order terms in the
input field. Here, νðzÞ ¼ δþ 2n

R
dz0σssðz0ÞVðz; z0Þ is the

detuning of the two-photon transition from jgi to jsi,
including the modification of the transition frequency due
to interactions, while ~σgeðzÞ ¼ σgeðzÞe−ikpz and ~σgsðzÞ ¼
σgsðzÞeiðkc−kpÞz are the slowly varying coherences with the
rapid phase variation due to the probe and control field
propagation removed.
We now transform our equations into the basis of the

so-called dark and bright-state polariton operators,
Ψ ¼ cos θE −

ffiffiffi
n

p
sin θ ~σgs and Φ ¼ sin θE þ ffiffiffi

n
p

cos θ ~σgs
[18,48]. These are mixtures of the probe field with the
atomic coherence, where the mixing angle is given by
tan θ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cnΓ1D=ð2jΩj2Þ

p
. The dark-state polariton then

propagates with reduced group velocity vg ¼ c cos2 θ
according to the following equation:

∂Ψ
∂t þ vg

∂Ψ
∂z ¼ isin2θνðzÞΨ − cos θ sin θ

�
c
∂
∂zþ iνðzÞ

�
Φ:

ðB3Þ

Their dynamics are coupled to those of the bright-state
polariton, given by

Φ ¼ vg
cjΩj2

�
i
∂
∂tþ νðzÞ

��
i
∂
∂tþ Δþ i

Γ0

2

�
ðΦ − tan θΨÞ:

ðB4Þ

Equations (B3) and (B4) describe both traditional (linear)
EIT [48], in the limit where νðzÞ ¼ δ, and the physics of EIT
with interactions, where νðzÞ is an operator dependent on the
population of state jsi. In particular, in the noninteracting
casewhen νðzÞ ¼ δ lies within the transparency window, the
dark-state polariton Ψ decouples from the bright one to
lowest order, yielding a propagation without loss forΨ at the
reduced group velocity vg. Intuitively, when νðzÞ is an
operator, one expects that a transparency condition emerges
whenever its expectation value lies within the transparency
window. Significantly, it is not necessary for the individual
components δ; 2n

R
dz0σssðz0ÞVðz; z0Þ to be small, and thus

the possibility emerges for a large number of transparency
windows dependent on the combination of detuning δ and
photon number and shape.
To formalize this intuition, we examine the polariton

dynamics in the slow-light limit, where vg ≪ c and

sin2 θ ∼ 1. In this regime, the dark-state polariton is mostly
comprised of atomic coherence Ψ ∼ −

ffiffiffi
n

p
σgs, while the

bright state is comprised mostly of the probe field, and we
may replace the atomic operators in the nonlinear
detuning by the dark-state polariton operators to get
νðzÞ ≈ δþ 2

R
dz0Ψ†ðz0ÞVðz − z0ÞΨðz0Þ. The bright-state

polariton then has a perturbative effect on the propagation
of the dark-state polariton when the relevant time dynamics
remain within a certain bandwidth (EIT window) around
the EIT resonance. In particular, this requires that the
polariton has sufficient length z0 so that its bandwidth is
narrow, vg=z0 ≪ jΩj2=jΔþ iΓ0=2j. At the same time, we
also require that the operator νðzÞ leads to values within
this window. Specifically, for a particular polariton state
jψi, we estimate the effect of νðzÞ on a polariton at z by
evaluating the expectation value hψ jΨ†ðzÞvðzÞΨðzÞjψi=
hψ jΨ†ðzÞΨðzÞjψi. This, along with the similar expectation
value of the spatial derivative z0∂νðzÞ=∂z, must fit within
the EIT window. In general, νðzÞ must be small and
smoothly varying over the length of the pulse, something
which is not typically the case for Rydberg interactions,
whose spatial variation is large over the length of a
polariton with bandwidth within the EIT window.
When these conditions are satisfied, the Φ terms in

Eq. (B3) can be neglected at lowest order, allowing us to
replace the time derivatives ofΨ in Eq. (B4) by spatial ones
[48]. At this level of approximation, we then find the
bright-state dynamics follow those of the dark state
according to

Φ ≈ i

ffiffiffiffiffiffiffiffi
v3g
cΩ4

s �
Δ − νðzÞ þ i

Γ0

2

� ∂
∂zΨ: ðB5Þ

Substituting Eq. (B5) into Eq. (B3), we find an effective
propagation equation for the dark state

� ∂
∂tþ vg

∂
∂z − i

ℏ
2mðzÞ

∂2

∂z2
�
Ψ ¼ iνðzÞΨ: ðB6Þ

Here, the effective mass mðzÞ ¼ −ℏjΩj2=½ð2ΔMðzÞ þ
iΓ0Þv2g� depends on the renormalized detuning ΔMðzÞ ¼
ΔL − 2

R
dz0Ψ†ðz0ÞVðz − z0ÞΨðz0Þ, which in turn depends

spatially on the position of other polaritons in the system,
where we have identified the control laser detuning
ΔL ¼ ωL þ ωgs − ωge ¼ Δ − δ.
When the z dependence of the mass is small enough to be

neglected, Eq. (B6) is the Heisenberg equation of motion
for the dark-state polariton operator that results from the
Hamiltonian given in Eq. (1), allowing us to identify
this as the effective Hamiltonian for the polaritons. This
is clearly true for uniform interactions Vðz − z0Þ ¼ −U in
theNp-polariton manifold, in which case when the operator
2
R
dz0Ψ†ðz0ÞVðz − z0ÞΨðz0Þ multiplies a function of Ψðz0Þ,
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it can be reduced to the number −2UðNp − 1Þ. The
renormalized detuning becomes ΔM ¼ΔLþ2UðNp−1Þ,
and the effective mass is hence dependent on the number of
polaritons in the system. Identifying δ ¼ UðNp − 1Þ as the
detuning required for Np photon transparency, we can then
rewrite this as ΔM ¼ Δþ δ.
More generally, the z dependence of the mass can be

neglected when the variation of the atomic interaction
potential Vðz − z0Þ is small over the region where there
is significant polariton population, and we can replace
Vðz − z0Þ by a constant. For example, in the photon
molecule case, we consider a potential that is approxi-
mately quadratic around the natural polariton spacing r0,
i.e., Vðz1− z2Þ∼Vðr0ÞþωMðjz1− z2j− r0Þ2=z20, and con-
sider a molecularlike state where one polariton is centered
at z ¼ 0 and the other near z ¼ r0, with Gaussian wave
packets expð−4z2=z20Þ and exp (− 4ðz − r0Þ2=z20). In this
case, the operator ΔMðzÞ acting at the position of the first
polariton (z ∼ 0) can be approximated by a number
ΔMðzÞ ∼ ΔL − 2Vðr0Þ − ωMð1=8þ 2z2=z20Þ obtained by
integrating the interaction over the wave packet of the
second polariton, and similarly at the position of the second
polariton. For ωM ≪ 4(ΔL − 2Vðr0Þ), we may take ΔM ∼
ΔL − 2Vðr0Þ in the effective mass, which again can be
rewritten ΔM ¼ Δþ δ at the molecular transparency
δ ¼ −Vðr0Þ. In the simulations presented in Sec. IV,
this approximation is appropriate, where we have that
ωM ∼ 0.1Γ0.

APPENDIX C: INTERATOMIC POTENTIAL

As described in the main text, the interaction of atoms
via a single band edge leads to the effective interac-
tion Hamiltonian Hss ¼ ½ℏjΩsj2g2c=ðΔ2

sΔcÞ�
P

j;lσ
j
ssσlss×

expð−jzj − zlj=LÞE�
kb
ðzjÞEkbðzlÞ. For structures like the

“alligator” photonic crystal waveguide described in
Ref. [24], the Bloch functions near the band edge are well
approximated by the form EkbðzÞ ∼ cosðkbzÞ, in which
case, if the atoms are trapped at sites commensurate with
the band-edge wavelength, we have EkbðzÞ ∼ 1.
If the atoms now interact via two distinct band edges,

as in Fig. 1(b), the interaction potential Vðzj − zlÞ
becomes the sum of the contributions from the
upper (u) and lower (l) band edges, Vðzj − zlÞ ¼
−½jΩsj2=Δ2

s �½ðg2u=ΔuÞ expð−jzj − zlj=LuÞ þ ðg2l=ΔlÞ×
expð−jzj − zlj=LlÞ�. The two contributions are each
related to effective cavity parameters gu;l, Δu;l, and

Lu;l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αu;lωu;l=ðk2bΔu;lÞ

q
. By adjusting the detunings

Δu;l and band curvatures αu;l, we can tune the potential to
have a minimum at some finite particle separation r0, as in
Fig. 4(a).
We can now consider the loss introduced into our system

for a single atom in the jsi state as a by-product of creating
the interatomic potential above. As discussed in the main

text (and inmore detail inRef. [31]), the loss due to each band
edge is the same as the loss that would result if the interaction
were created by a cavity with the same parameters. In
particular, in the detuned regime jΔu;lj > jgu;lj, the loss
from spontaneous emission Γ0 and cavity decay κ occurs at a
rate of approximately ½jΩsj2=Δ2

s �½Γ0 þ κg2u;l=Δ2
u;l�. This loss

can then beminimizedwith respect to the interaction strength
Gu;l ¼ jΩsj2g2u;l=ðΔ2

sΔu;lÞ by adjusting the detuning, in
which case the loss rate fromeach cavity for an atom in the jsi
state becomes 2Gu;l=

ffiffiffiffiffiffiffiffiffi
Cu;l

p
for cavity cooperativ-

ity Cu;l ¼ g2u;l=ðκΓ0Þ.
We can further compare the rate of loss due to these

effective cavities to the energyof the two-photon bound state,
which gives the rate of oscillation of the photon molecule.
The relation between the strengths of the individual poten-
tials due to each band edge and the molecule energy ωM
depends on how the potentials add together and will depend
on the desired shape and experimental constraints. As an
example, we consider the case where the band edges are
arranged such that Gu ¼ Gl ≡ G, in which case the con-
tribution from the potential to the dressed state energy of the
individual atoms is zero. The potential is now Vðzj − zlÞ ¼
G½expð−jzj − zlj=LuÞ − expð−jzj − zlj=LlÞ�, and choos-
ing, for example, Ll ¼ 8Lu, a potential minimum occurs
at r0 ∼ 0.3Ll with depth ∼2G=3, which provides an upper
limit on the energy of the two-photon molecule energy ωM.
Optimizing the detunings as above, we then find that the loss
is about βωM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0=ðλCλÞ

p
with β ¼ 10.

The potential we show in Fig. 4(a) has Lu ¼ 15za
and Ll ¼ 30za, where using a smaller ratio between
Ll and Lu puts less demands on the engineering of
band curvatures since for Gu ¼ Gl we have that
Ll=Lu ¼ αl=αu. The strength of the potential is
G ¼ jΩsj2g2u;l=ðΔ2

sΔu;lÞ ∼ 1.28Γ0, which could be

achieved for jΩsj2=Δ2
s ∼ 0.1, gu ¼

ffiffiffi
2

p
gl∼2π×3.4GHz,

Δu ¼ 2Δl ∼ 2π × 180 GHz, and Γ0 ∼ 2π × 5 MHz. Fur-
thermore the values of gu;l and Lu;l are then consistent with
a photonic crystal having gλ ∼ 2π × 12 GHz (such as for
the “alligator” structure described in Ref. [31]) and band
curvature α ∼ 1 (similar to that of the structures in
Refs. [49] and [50]) for za ∼ λ.
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