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We introduce a scheme for preparation, manipulation, and read out of Majorana zero modes in
semiconducting wires with mesoscopic superconducting islands. Our approach synthesizes recent
advances in materials growth with tools commonly used in quantum-dot experiments, including gate
control of tunnel barriers and Coulomb effects, charge sensing, and charge pumping. We outline a sequence
of milestones interpolating between zero-mode detection and quantum computing that includes
(1) detection of fusion rules for non-Abelian anyons using either proximal charge sensors or pumped
current, (2) validation of a prototype topological qubit, and (3) demonstration of non-Abelian statistics by
braiding in a branched geometry. The first two milestones require only a single wire with two islands,
and additionally enable sensitive measurements of the system’s excitation gap, quasiparticle poisoning
rates, residual Majorana zero-mode splittings, and topological-qubit coherence times. These pre-braiding
experiments can be adapted to other manipulation and read out schemes as well.
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I. INTRODUCTION

Over the span of a few years, Majorana zero modes in
topological superconductors (SCs) evolved from a largely
theoretical topic into an active experimental field at the
forefront of condensed matter physics [1–6]. This trans-
formation was driven in part by the translation of abstract
models [7,8] into realistic blueprints realizable with estab-
lished laboratory capabilities (see, e.g., Refs. [9–16]).
Proposals based on semiconductor nanowires [13,14]
provide a good illustration of this evolution. Within
this approach, stabilizing Majorana zero modes requires
spin-orbit coupling, moderate magnetic fields, and
proximity-induced superconductivity.
Following the initial experiments of Mourik et al. [17] in

2012, several groups reported transport features consistent

with Majorana modes in a variety of related superconduc-
tor-semiconductor systems [18–22] (see also Ref. [23]). In
parallel, fabrication advances [24,25] have improved device
quality, leading to cleaner transport characteristics [26]
as well as surprisingly long quasiparticle poisoning times
in proximitized nanowires [27] and related setups [28].
Branched wires, another key ingredient toward Majorana
networks [29–35], have also been realized and investigated
recently [36].
With this rapid progress, we anticipate that nanowire-

based experiments will soon move beyond the problem
of Majorana detection to demonstrations of non-Abelian
statistics and ultimately to implementations of topological
quantum information processing [6,37,38]. Our objective in
this paper is to facilitate this progression in two ways. First,
we propose a new method for manipulation and read out of
Majorana modes in semiconducting wires that borrows from
the quantum-dot toolbox. Second, within this scheme we
outline a series of milestones that identify the key challenges
and signature results that connect the current status of
experiments to these longer-term challenges.
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The rudiments of our manipulation scheme can be under-
stood from the schematic setup shown in Fig. 1. Here, a
semiconducting wire is partially coated with a mesoscopic
superconducting island on the right side and a bulk grounded
superconductor on the left. The superconductors are separated
by a gate-tunable “valve” that controls the ratio of the
Josephson energy EJ to the island’s charging energy EC.
Additionally, the wire is subjected to a magnetic field needed
to formMajorana zeromodes. References [39,40] introduced
a very similar device to construct a gate-controlled transmon
qubit, though herewe are interested in a different regime [41].
When the valve is “open”—i.e., one or more modes in the
barrier provide sufficient coupling that the junction’s
Josephson energy dominates over charging energy—the
island hosts a pair of Majorana zero modes γ1;2 that encode
a topological degeneracybetweengroundstateswith evenand
odd fermion parity; see Fig. 1(a). Closing the valve by
depleting the barrier renders charging energy dominant over
the Josephson energy, lifting the degeneracy of parity eigen-
states by converting them into charge states of the island, as
sketched in Fig. 1(b). We note that this scheme closely
resembles the “Coulomb-assisted” Majorana manipulation
approaches described in Refs. [33,34,43] (see also Ref. [44]),
butusesdepletiongates rather than fluxes tocontrol the ratioof
Josephson coupling to charging energy.

Gate tuning of Josephson and Coulomb energies is
particularly useful when integrated into devices with
multiple islands. For instance, this capability allows
Majorana zero modes to be initialized by evolving known
charge states into degenerate parity eigenstates [e.g.,
smoothly passing from Fig. 1(b) to 1(a)], alter the length
of a topological superconductor by selectively opening and
closing valves connecting adjacent islands [45], introduce
rotations within the ground-state subspace, and braid
Majorana modes in network geometries. Converting parity
eigenstates back into charge states—an adaptation of “spin-
to-charge conversion” used in spin qubits—further enables
read out of the state formed by Majorana modes.
We discuss three specific experiments that use these

capabilities.

A. Fusion-rule detection (Sec. III)

A fundamental property of non-Abelian anyons is their
behavior under fusion, which describes how these emergent
particles coalesce. In our setups, the topological super-
conductors’ end points, where Majorana zero modes
localize, essentially realize “Ising” non-Abelian anyons.
Ising anyons obey a particularly simple fusion rule: pairs
can either annihilate or combine into a fermion ψ . These
two “fusion channels” correspond to the ordinary fermionic
state arising from a pair of hybridized Majorana modes
being empty or filled. The presence of multiple fusion
channels intimately relates to non-Abelian statistics, and,
in fact, is commonly used to define non-Abelian anyons in
the first place. Detecting this foundational property has,
nevertheless, received very little attention.
We introduce two experimental methods for probing

Ising-anyon fusion rules, both invoking a relatively simple
single-wire geometry with two superconducting islands
and three gate-tunable valves. The first method operates the
valves to nucleate a set of anyons and then restore charging
energy to fuse them in a manner that accesses the fusion
channels with known probabilities; charge sensors detect
the fusion outcomes. The second method converts the
microscopic difference between the two fusion channels
into a macroscopic current, simplifying the setup by
eliminating charge sensing. This approach uses a
Majorana-mediated charge pump to cyclically create and
fuse anyons, shuttling a Cooper pair across the system
whenever the ψ channel appears. As a bonus, the protocols
permit direct measurement of additional topological data
for the underlying anyon theory (see Appendix A) [46], as
well as time-domain measurements of device parameters
such as quasiparticle poisoning times, excitation gaps, and
residual Majorana-zero-mode splittings.

B. Topological qubit validation (Sec. IV)

A single-wire, two-island geometry supporting four
Majorana modes realizes a prototype topological qubit.

FIG. 1. Semiconducting wire coated with a superconducting
island and bulk SC that are bridged by a gate-tunable “valve.”
The valve controls the carrier density in the barrier region and
thereby modulates the ratio of Josephson energy EJ to the island
charging energy EC. In addition, a back gate at voltage Vg tunes
the charge on the island. (a) When the valve is open (EJ ≫ EC)
an applied magnetic field B drives the wire into a topological
superconducting state hosting Majorana zero modes γ1;2. The
system thus supports degenerate ground states with even and odd
fermion parity. (b) Closing the valve (EJ ≪ EC) restores charging
energy and converts these parity eigenstates into nondegenerate
states with island charges Qo and Qe, as shown on the right.
The gate-controlled “parity-to-charge conversion” illustrated here
is central to the manipulation and read out schemes developed
in this paper.
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The two fixed-parity degenerate ground states available in
such a setup form the logical j0i and j1i states. How can
one validate the topological nature of this qubit (assuming
the usual conditions required for topological protection
are maintained)? For instance, what set of measurements
will distinguish a Majorana qubit from a similar setup in
which degenerate ground states instead arise from acci-
dental zero-energy Andreev bound states? We show that
the difference can be found in the coherence times and
oscillation frequency ω0 of the qubit. In particular, relax-
ation and dephasing times, T1 and T2, as well as ω0, exhibit
exponential dependence on the (experimentally tunable)
splitting of ground states encoded by Majorana modes,
leading to scaling relations among these quantities that can
be used to identify topological protection. Topological
qubit validation along these lines uses the same setup as
fusion-rule detection, together with the ability to implement
qubit rotations via pulsing of gate-tunable valves.

C. Non-Abelian statistics (Sec. V)

Moving to branched geometries, we present a new
approach to demonstrating non-Abelian statistics and the
associated fault-tolerant qubit rotations in wire networks.
The hallmark of non-Abelian statistics is that such
exchanges rotate the system’s quantum state within the
degenerate ground-state manifold generated by the zero
modes; this outcome can be detected using either charge
sensors or the Majorana-mediated pump introduced earlier.
Conveniently, aside from the need for trijunctions, braiding
in the setups that we study involves the same capabilities
required for fusion-rule detection.
This list of goals aims to demonstrate consequences of

Majorana zero modes that are directly relevant for long-
term quantum computing applications. Fusion-rule detec-
tion and topological qubit validation stand out as attractive
near-term milestones that reveal important aspects of non-
Abelian anyons along with useful device characteristics.
Both classes of experiments should be adaptable to other
Majorana platforms and manipulation schemes as natural
precursors to braiding in comparatively simple geometries.
Section VI summarizes near-term prospects and elaborates
on several longer-term questions raised by our work.

II. BUILDING BLOCKS

In this section, we describe in greater depth the building
blocks underlying the manipulation and read out schemes
used throughout this paper. The backbone of all devices
is a clean [47] spin-orbit-coupled semiconducting nanowire
subjected to both an applied magnetic field and proximity-
induced superconductivity—which together allow the
formation of a topological phase supporting Majorana
zero modes [13,14]. More precisely, we use mesoscopic
superconductors to proximitize selected regions (islands).
The islands contain a macroscopic number of electrons but

are sufficiently small that charging energies exceed temper-
ature in the Coulomb-dominated regime. At the valve
positions, the proximitizing metal is interrupted, allowing
depletion via nearby electrostatic gates.

A. Single-island geometry and
parity-to-charge conversion

Let us revisit the setup in Fig. 1. The mesoscopic island
on the right forms a Josephson junction, bridged by the
intervening nanowire segment, with the grounded bulk
superconductor on the left. We assume that beneath the
island the nanowire chemical potential is adjusted via
gates to a value required for topological superconductivity,
while elsewhere a trivial gapped phase always forms.
Under this assumption, we model the low-energy properties
of the junction using a phenomenological Hamiltonian
H ¼ HC þHJ. The first term,

HC ¼ ECðn̂ − n0Þ2; ð1Þ

describes Coulomb effects for the island, with EC the
characteristic charging energy, n̂ an integer-valued operator
giving the electron occupancy of the island, and n0 a
continuous offset charge, tunable via a nearby electrostatic
gate at voltage Vg ∝ n0 (see Fig. 1).
The second term encodes Josephson coupling. Assuming

that the barrier hosts N channels with transmission prob-
abilities Ti¼1;…;N and that the junction is short on the scale
of the superconducting coherence length, we model the
Josephson energy with a Hamiltonian

HJ ¼ −Δ
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Tisin2ðφ̂=2Þ

q
: ð2Þ

Here, Δ denotes the pairing gap (assumed equal on both
sides of the valve) that sets a characteristic Josephson
energy EJ ≡ ðΔ=4ÞPN

i¼1 Ti, while the operator eiφ̂ tunnels
a Cooper pair across the junction, incrementing n̂ by two.
Equation (2) recovers the well-known form of the
Josephson energy that one can derive in the absence of
charging energy [49]; see also Ref. [50] for a recent
discussion in a similar context. But is HJ valid also with
nonzero EC? In the limit EJ ≫ EC one can safely include
the charging energy in Eq. (1) as a perturbation to Eq. (2).
When all Ti ≪ 1—corresponding to the opposite limit
EC ≫ EJ when N is not too large (see below)—the
Josephson Hamiltonian reduces to

HJ ≈ −EJ cos φ̂; ð3Þ

which is the familiar weak-tunneling formula expected at
“large” charging energy. (See Ref. [51] for a derivation
in a junction with many weakly coupled channels.) It is
therefore reasonable to take H ¼ HC þHJ with Eqs. (1)
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and (2) for both the Josephson- and charging-energy-
dominated regimes of interest here.
Importantly, the Hilbert space factorizes into even and

odd fermion-parity sectors that do not mix under the
dynamics of H. The space within each sector can be
spanned with either number n̂ eigenstates, which we denote
by jn ∈ eveni and jn ∈ oddi, or phase φ̂ eigenstates with
even and odd parity, denoted jφ; ei and jφ; oi. These bases
are related by [44]

jφ;ei∝
X
neven

e−iφn=2jni; jφ;oi∝
X
nodd

e−iφn=2jni: ð4Þ

We thus see that in the phase basis, fermion parity is reflected
in how the wave functions behave under winding the eigen-
value φ by 2π; even states are invariant while odd states
acquire a minus sign [44]. Note also that the Hamiltonian
distinguishes opposite-parity states only through charging
energy—this is crucial for capturing topological supercon-
ductivity within our phenomenological model.
In practice, the junction is expected to support a few

channels, each with Ti’s that can be tuned by voltage on a
local gate (valve) acting in the nonproximitized nanowire
segment in Fig. 1 [39,40].We refer to the valve as “closed” if
the gate is adjusted so that the barrier is depleted of carriers,
creating a superconductor-insulator-superconductor (SIS)
junction with all Ti ≈ 0. Charging energy EC for the
essentially isolated mesoscopic island then dominates over
the Josephson energy EJ. Conversely, an “open” valve
restores carriers to the barrier and hence boosts the Ti’s,
ideally with at least one of the channels approaching unity
transmission. We assume that the maximal Josephson
energy in this regime greatly exceeds the charging energy;
i.e., EJ ≫ EC.

It is instructive to first examine the physics of an open
valve in the limit EJ=EC → ∞. In this case, the phase
difference φ̂ between the island and bulk superconductor
becomes a classical variable locked at zero. The island
then forms a topological superconductor with Majorana
zero modes γ1;2—which satisfy γi ¼ γ†i and fγi; γjg ¼
2δij—localized to its ends, as Fig. 1(a) sketches. (We
neglect the exponentially small overlap among these modes
for now, though such corrections will become important
in later sections.) Accordingly, our phenomenological
Hamiltonian supports degenerate, opposite-parity ground
states jφ ¼ 0; ei and jφ ¼ 0; oi characteristic of this phase.
The Majorana-zero-mode operators toggle the system
between these ground states: γijφ¼0;e=oi∝ jφ¼0;o=ei.
At large but finite EJ=EC, residual charging energy

weakly splits this degeneracy (see Appendix B). Adopting
the form of HJ in Eq. (3) yields a splitting [52]

ΔE ≈
32

ð2π2Þ1=4 EC

�
EJ

EC

�
3=4

e−
ffiffiffiffiffiffiffiffiffiffiffiffi
8EJ=EC

p
cosðπn0Þ: ð5Þ

Notice that ΔE vanishes exponentially as EJ=EC increases,
so that the topological degeneracy remains robust provided
EJ=EC ≫ 1 [33,34,43,53]. Figure 2(a) sketches the low-
lying energy levels at EJ=EC ≫ 1 versus the back gate
voltage Vg that tunes n0. Red and blue curves respectively
correspond to even- and odd-parity states. It is worth
emphasizing that Eq. (5) likely overestimates the topologi-
cal degeneracy splitting in these setups. A more efficient
suppression ofΔE appears if one employs the more general
form of the Josephson Hamiltonian in Eq. (2) with all
Ti → 1, though the results are otherwise qualitatively
similar; see Appendix B. Our phenomenological model
also assumes that the two ends of the junction couple

(a) (b) (c)

FIG. 2. Energy levels versus back gate voltage Vg for the single-island setup in Fig. 1 with the gate-tunable valve (a) fully open,
(b) partially transmitting, and (c) fully closed. Red and blue curves correspond to states with even and odd electron number. For the open
configuration in (a), Josephson energy EJ dominates charging energy EC. The island thus hosts a pair of Majorana zero modes that
encode an approximate twofold topological ground-state degeneracy. Residual charging energy splits the degeneracy, but only by an
amount ΔE exponentially small in EJ=EC. Closing the valve effectively ramps up Coulomb effects, which dominate in the fully closed
configuration of (c). There, the eigenstates are generally nondegenerate (except with fine-tuning) and carry well-defined island charges
…Q − 1; Q;Qþ 1…, as labeled on the right. Crucially, the topologically degenerate ground states smoothly evolve into nondegenerate
charge eigenstates as the valve closes—signifying parity-to-charge conversion. The red and blue dots illustrate this phenomenon at one
particular gate voltage indicated by the vertical dashed line.
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weakly on the scale of the pairing gap since only Cooper-
pair tunneling is included. The validity of this assumption is
not obvious in the maximally open valve configuration. The
opposite strong hybridization limit requires a more micro-
scopic treatment of the junction that will not be pursued
here but may suppress the degeneracy splitting further still.
Finally, we note that the parameter EC may renormalize
downward as the Ti’s increase from zero [54], thus also
reducing the splittings compared to estimates based on EC
extracted for an isolated island (see also Sec. II D).
As the valve is closed more and more, the ratio EJ=EC

decreases to values of order 1, leading to the situation in
Fig. 2(b). Going further, the fully closed valve gives
EJ=EC → 0. Energy eigenstates in this limit are charac-
terized by well-defined island charges, as illustrated in
Fig. 2(c). We do not refer to the island as topological in
this charging-energy-dominated regime. Except with fine-
tuning, the system admits a unique ground state, and hence
Majorana zero modes are absent [56]. The lack of an offset
for even- versus odd-charge parabolas in Fig. 2(c) does,
however, reflect a remnant of the zero modes that exist
when charging energy is quenched; indeed, the island can
still accommodate an odd number of electrons without
paying the pairing energy Δ [44,57]. This property alters
the even-odd pattern for Coulomb blockade relative to a
more conventional superconducting dot. Small residual
Josephson coupling EJ=EC ≠ 0 merely produces avoided
crossings between levels with common charge parity.
Figures 2(a)–2(c) illustrate an essential feature in our

proposal: The topologically degenerate parity eigenstates
smoothly and uniquely evolve into nondegenerate charge
states upon closing an initially open valve, and vice versa.
This is the phenomenon of parity-to-charge conversion
introduced briefly in Sec. I. As a trial application, suppose
that one begins in a closed-valve configuration with the
isolated island relaxed into its unique charge ground state.
Slowly opening the valve nucleates Majorana zero modes
and deterministically (and reproducibly) initializes the

system into one of the two degenerate parity ground states.
Passing instead from degenerate parity states to charge
states in a useful way requires an important implicit
assumption invoked throughout this paper: When a valve
closes, the energy difference between the lowest two charge
states must not exceed the quasiparticle gap Δbulk for the
adjacent bulk superconductor, which prevents charge from
escaping from the islands. Such a condition is always
satisfied if Δbulk > EC. Figure 2(c) illustrates this criterion
graphically.

B. Two-island geometry

We now extend the preceding discussion to the two-
island geometry shown in Figs. 3(a)–3(d). The device
contains three valves to control the Josephson coupling
to the leads and between the two islands.
We model the two-island setup with a Hamiltonian

H0 ¼ H0
C þH0

J analogous to that used earlier. Let n̂LðRÞ
denote the electron number operator for the left (right)
island, and eiφ̂LðRÞ move a Cooper pair from the left (right)
island into the adjacent outer bulk superconductor.
Coulomb interactions are described by

H0
C ¼

X
a¼L;R

ECðn̂a − n0;aÞ2; ð6Þ

where n0;L=R are tunable offset charges for the islands. We
neglect cross capacitance, which is small in this geometry.
In practice, we find experimentally that cross capacitances
in a double-dot nanowire geometry are typically less than
0.1 of the total capacitance for each dot.
For the Josephson coupling we write

H0
J ¼ HJ;L þHJ;R þHJ;inter: ð7Þ

The first two terms represent straightforward generaliza-
tions of Eq. (2) for the left and right junctions while HJ;inter
hybridizes the two islands. This last term requires some

FIG. 3. Geometries utilized for the proposed milestone experiments. (a)–(d) Two-island setup with gate-tunable valves that electrically
tune the Josephson-to-charging-energy ratios for each pair of adjacent superconducting regions. Various interesting regimes are possible
depending on the valve configurations: When cut off from the outer bulk superconductors, the islands can (a) form independent double
quantum dots or (b) effectively combine into a single dot. Restoring the connection to the outer superconductors quenches charging
energy and generates topological superconductivity on the islands. Either two or four Majorana zero modes (denoted by ×’s) appear
depending on the middle-valve configuration as shown in (c) and (d). (e) Trijunction geometry that enables braiding through similar
valve manipulations.
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additional care. In the Josephson-dominated regime the
islands form topological superconductors that couple not
only through Cooper-pair tunneling but also through the
Majorana-mediated fractional Josephson effect that coher-
ently transfers unpaired electrons yielding an anomalous
4π-periodic current-phase relation [8]. We therefore model
inter-island Josephson coupling via

HJ;inter ¼ −Δ
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− Ti;Msin2½ðφ̂R − φ̂LÞ=2�

q
þHFJE:

ð8Þ
In the first term, Ti;M denotes the transmission probabilities
for the barrier separating the islands; the second term
denotes the fractional Josephson coupling. If all trans-
mission probabilities are small, the latter reduces to the
familiar expression [8]

HFJE ¼ −Γσx cos ½ðφ̂R − φ̂LÞ=2�; ð9Þ
where Γ > 0 and the operator σx flips the island parities
when acting on phase eigenstates. (Away from the weak-
transmission limit higher harmonics can arise, similar
to the usual Josephson coupling.) The central valve in
Figs. 3(a)–3(d) turns both Ti;M and Γ “on” and “off” in
tandem.
Adjusting the three valves allows access to several

useful configurations. With all three valves closed
[Fig. 3(a)], the islands form independent quantum dots
(except for cross capacitance) with energy eigenstates
characterized by well-defined charges on each island.
Opening the central valve [Fig. 3(b)] strongly Josephson
couples the islands, which then behave as a single
isolated dot with energy eigenstates carrying fixed total
charge. Opening the outer valves [Fig. 3(c)] converts the
isolated dot into a topological superconductor hosting a
pair of Majorana zero modes that encode degeneracy
between even- and odd-parity ground states. And finally,
reclosing the middle valve [Fig. 3(d)] cuts the topological
superconductor in half, nucleating a second pair of
Majorana zero modes that yield a twofold degeneracy
within each total parity sector. The flexibility afforded by
this two-island geometry enables both fusion-rule detec-
tion and topological qubit validation. Moreover, the
manipulations possible in this setting generalize naturally
to more elaborate geometries including the trijunction in
Fig. 3(e) employed for braiding.

C. Read out methods

Detecting the state formed by a topological supercon-
ductor after some prescribed sequence of manipulations
can be achieved by closing the appropriate valves to
convert degenerate parity ground states into charge states
(Figs. 1 and 2), which can then be readily measured via
charge detection [58,59].

The most direct read out method uses charge sensing of
an isolated island, accomplished with capacitive coupling
to a proximal sensor such as a quantum point contact or a
quantum dot. This technique is routinely used for read out
in spin qubits [60–62]. Quantum-dot charge sensors have
also been implemented in nanowires, obtaining couplings
similar to the GaAs case [63,64]. Based on these experi-
ments, high-quality charge read out (signal-to-noise ratio
∼5, corresponding to 99% fidelity) should be achievable
with τM ¼ 1 μs integration time. Single-shot read out is
possible when the charge state’s lifetime—which is set by
poisoning events and relaxation processes—exceeds τM
at the measurement point. Even if this criterion is not
satisfied, read out may be performed over several identical
cycles to obtain the expectation value for the island charge.
Alternatively, one can employ dispersive read out, which

measures changes in the average charge hQi of a device by
probing its quantum capacitance ∂hQi=∂Vg. This tech-
nique is experimentally well established for both semi-
conductor quantum dots [65,66], including InAs nanowires
[67], as well as conventional Cooper-pair boxes [68]. To
adapt dispersive read out for parity measurements, one
could operate the superconducting island in the intermedi-
ate regime EJ=EC ∼ 1 and tune close to an avoided crossing
for one of the parity states [see Fig. 2(b)]. At such a point,
the quantum capacitance is maximal for the parity asso-
ciated with the avoided crossing, while the lower-energy,
opposite-parity state exhibits a stable charge configuration
and thus admits a rather small quantum capacitance. Read
out can therefore proceed by detecting the capacitance
difference between these states [69]. Based on experiments
in InAs nanowires, dispersive parity read out should be
possible with less than a millisecond of integration time
using standard amplifiers [67], or much faster with nearly
quantum-limited amplifiers [71].
Finally, we consider an approach based on continuous

cyclic gate operation, which requires fast gate operation but
allows slow, time-averaged read out. For now, we simply
provide a glimpse of the recipe; a detailed discussion
appears in Sec. III C. Consider again the double-dot
configuration in Fig. 3(a), and suppose that we wish to
distinguish two different charge states C1 and C2 that
evolve from topologically degenerate states under parity-
to-charge conversion. Under an appropriate gate-voltage
cycle, one can arrange to have charge q shuttled across the
system if C1 appears, but not if C2 appears. Repeating the
entire process with a frequency f then produces a pumping
current I ¼ Pqf, where P denotes the probability for
obtaining state C1. Majorana modes enter the story in that
they fix very precise values for the probability P dependent
on how the user manipulates the topological superconduc-
tors prior to read out. One can thereby detect the ensemble-
averaged outcome of fusion-rule experiments, topological
qubit manipulations, and even braiding through dc current
measurements.
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D. Operating requirements and
optimization strategies

Varying Josephson-to-charging energy ratios via gate-
tunable valves provides an all-electrical alternative to the
related proposals in Refs. [33,34,43]. The latter studies
operate solely in the EJ ≫ EC regime, control EJ=EC using
local magnetic-flux tuning in split junctions, and perform
read out by measuring the frequency of a transmission line
resonator. Our approach, by contrast, utilizes charge-based
read out methods outlined in Sec. II C and requires tuning
between the Josephson- and charging-energy-dominated
limits. More precisely, we demand

�
EJ

EC

�
max

≫ 1;

�
EJ

EC

�
min

≲ 1; EC ≳ kBT; ð10Þ

where EJ refers to the Josephson coupling between an
island and a trivial bulk superconductor [72]. The first
criterion in Eq. (10) minimizes unwanted topological
degeneracy splitting due to residual Coulomb effects in
open-valve configurations (see Sec. II A) and is essential
for providing a reasonable window between the upper and
lower speed limits at which our proposed protocols should
proceed; see Sec. III B 2 and Ref. [73] for in-depth
discussions. The second and third criteria facilitate read
out of isolated islands bordered by closed valves. Note that
for these latter criteria EC refers to closed-valve, unrenor-
malized charging energies (see below) [74]. The extent to
which one can satisfy these inequalities constitutes an
important figure of merit for our scheme.
In practice, we expect the second and third inequalities to

be readily satisfied: One can efficiently reduce EJ near zero
by fully depleting a given barrier, while charging energies
for isolated islands can easily exceed temperature (typical
bare EC values correspond to a few tenths of a kelvin).
The first inequality, on the other hand, requires more
care in our setups, though we anticipate that values of
ðEJ=ECÞmax ∼ 10–100 can be realized with fully open
barriers and optimized capacitance.
First, as alluded to in Sec. II A, EC is expected to

renormalize downwards as a valve is opened. To contextu-
alize this point, for a superconducting island coupled to a
normal lead via a single fully transmitting channel, the
charging energy is known to renormalize all the way to zero
[75]. For the present superconductor-normal-superconductor
(SNS) junctions of interest, the extent of this renormalization
is still unknown, but it is not unreasonable to expect
substantial boosts in the achievable EJ=EC ratios from this
effect alone.
Feasible options are available, however, even in the

worst-case scenario of negligible renormalization. Most
simply, one can increase the length of the islands and/or
thickness of the superconducting shells to increase their
capacitance and decrease EC [76]. One can also connect
the shells to larger superconducting islands to efficiently

reduce EC; Refs. [39,40] employed this strategy in closely
related nontopological transmonlike qubits with reported
charging energies of a few mK. [Contrary to those works,
however, we require the third inequality in Eq. (10), so EC
should not be decreased too substantially.] Yet another
option is to connect the islands to trivial superconducting
wires that form gate-tunable Josephson junctions with
conventional grounded bulk superconductors, as illustrated
in Fig. 4 for a two-island setup. Because these “shunt
junctions” are trivial on both ends, the wire mediating the
Josephson coupling may host many channels and yield
correspondingly large EJ values without spoiling the
Majorana physics of interest. By contrast, the upper wire
in Fig. 4 that harbors the Majorana modes should support
only a few channels and thus carry a relatively large
normal-state resistance.
While we hereafter concentrate on minimalist setups

based on Figs. 1 and 3, the above variations offer practical
alternatives that facilitate satisfying the operating require-
ments of Eq. (10) and may be straightforwardly substituted
into all of our proposed experiments.

III. FUSION-RULE DETECTION

A. Motivation

One of the signature properties of non-Abelian anyons
is their exotic exchange statistics: Braiding these particles
rotates the host system’s quantum state within a degen-
erate ground-state manifold. An intimately related and
equally fundamental property is that non-Abelian anyons
exhibit nontrivial “fusion rules.” That is, they can coalesce
to yield multiple quasiparticle types. One can understand
the connection between non-Abelian statistics and non-
trivial fusion rules by examining the evolution of ground
states. Non-Abelian braiding properties require that the
anyons possess zero-energy degrees of freedom that
nonlocally encode ground-state degeneracy. Bringing
two non-Abelian anyons together hybridizes these degrees
of freedom and thus generically splits the initial ground-
state manifold into a (smaller) ground-state set and excited

FIG. 4. Alternative two-island setup involving trivial super-
conducting wires forming gate-tunable Josephson junctions with
conventional bulk superconductors. This shunt-junction configu-
ration is expected to more efficiently quench the island charging
energy in the open-valve configuration shown here. Indeed, the
vertical wires can support N ≫ 1 channels (unlike the horizontal
wire hosting Majorana modes), thus enhancing the maximum
Josephson energy EJ.
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states. Each distinct energy then corresponds to a different
possible fusion product for the anyons.
In the present context the ends of 1D topological

superconductors behave as Ising non-Abelian anyons,
denoted σ, and the Majorana zero modes that they bind
constitute the degrees of freedom guaranteeing degeneracy.
These anyons obey the fusion rule

σ × σ ¼ I þ ψ ; ð11Þ

which indicates that two σ’s can fuse into the trivial particle
I (i.e., they can annihilate) or a fermion ψ [77]. The fusion
outcomes on the right side simply reflect the fact that two
Majorana modes brought together form an ordinary, finite-
energy fermionic level that can be either vacant (I) or filled
(ψ ). Figure 5 summarizes the relation between statistics and
fusion rules for this case.
A comparison may help contextualize the connection

between non-Abelian statistics and fusion. Consider a
pair of isolated spin s ¼ 1=2 moments each with degen-
erate “up” and “down” levels. When brought together,
the spins experience exchange coupling that splits the

degeneracy into (say) a lower singlet with total
spin stot ¼ 0 and an upper triplet with stot ¼ 1. These
quantum numbers follow from the familiar angular-
momentum addition rule 1=2 × 1=2 ¼ 0þ 1, which
appears reminiscent of Eq. (11). A crucial distinction
exists, however. In the spin example, a perturbation such
as a local Zeeman field splits the degeneracy even when
the spins are well separated. By contrast, no local
perturbation can split the degeneracy encoded by distant
non-Abelian anyons since the corresponding ground
states are locally indistinguishable. Fusion of non-
Abelian excitations thus involves degeneracy lifting of
a very special nature.
Fusion rules like Eq. (11) can even serve to define the

non-Abelian character of anyons. Specifically, non-Abelian
statistics implies multiple fusion outcomes, and vice
versa [78,79]. References [29,80] proposed schemes for
detecting fusion rules in nanowires and cold atoms setups.
Related ideas in a quantum-Hall context appear even earlier
[81]. Below, we develop two new approaches for demon-
strating this milestone based on the two-island setup from
Figs. 3(a)–3(d).

B. Fusion rules via charge sensing

1. Idealized limit

We first outline the charge-sensing fusion-rule experi-
ment in the ideal case, i.e., with exactly zero overlap
between Majorana zero modes (when present), infinite
tunability of Josephson-to-charging energy ratios, no
quasiparticle poisoning, and limitless patience of exper-
imentalists conducting the measurements. Under these
assumptions all manipulations we describe below proceed
purely adiabatically. Section III B 2 discusses corrections
resulting from inevitable nonidealities.
The protocol begins from the topmost configuration

of Fig. 6, wherein the central valve remains open but
the outer valves are closed. In this configuration, the
two islands—which strongly Josephson couple to one
another—effectively form a single Coulomb-blockaded
quantum dot with a unique ground state jQtoti characterized
by a fixed total charge Qtot. (Here and below, we assume
that potentials on the islands are not fine-tuned to give
accidentally degenerate charge states.) Suppose that we
initialize the system into this ground state and, as a warm-
up control experiment, carry out the following steps
depicted in the right path of the figure:

(b1) Close the central valve. The system then evolves
into a double dot with unique ground state jQL;QRi,
where QL=R denote the charges on the left or right islands
(which of course sum to Qtot).

(b2) Open the outer valves. Quenching the charging
energy in this manner drives the islands into topological
superconductors with Majorana zero modes γ1;…;4 enumer-
ated from left to right as in the figure. Let

FIG. 5. Correspondence between non-Abelian statistics and
nontrivial fusion rules for Ising anyons σ that obey
σ × σ ¼ I þ ψ . Top: Each of the four Ising anyons shown binds
a Majorana zero mode. With fixed total parity the system then
admits two degenerate ground states ψ i¼1;2. Adiabatically braid-
ing a pair of anyons sends ψ i → Uijψ j, where Uij denotes the
braid matrix. Bottom: Alternatively fusing the pair of anyons
hybridizes the associated Majorana modes and splits the twofold
ground-state degeneracy. The lower and upper states correspond
to the Ising anyons coalescing into the identity ðIÞ and fermion
ðψÞ fusion channels. While fusion and braiding are intimately
linked, establishing the former experimentally is expected to be
much simpler; see Figs. 6 and 7.
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f12 ¼ ðγ1 þ iγ2Þ=2; f34 ¼ ðγ3 þ iγ4Þ=2 ð12Þ

denote complex fermion operators built from these
Majorana modes, and label the corresponding occupation
numbers by n12, n34. Since the topological superconductors
emerged from decoupled islands, it is conceptually useful
to envision this step as pulling Ising anyons binding γ1 and
γ2 out of the vacuum, and similarly for γ3 and γ4. (Figure 6
links such Majorana pairs with dashed lines.) The system
therefore evolves into a state with well-defined values of
n12 and n34. Without loss of generality, we assume that
these occupation numbers both vanish, yielding a wave
function j012; 034i [82]. We have now prepared a system
with four non-Abelian anyons and initialized into one of
the two degenerate ground states available when total
fermion parity is fixed.

(b3) Close the outer valves. This final step removes
the ground-state degeneracy by resurrecting charging
energy—thus fusing the very same pairs of non-Abelian
anyons nucleated from the vacuum above. The system then
simply retraces its footsteps back to the double-dot state
jQL;QRi initialized at the end of step (b1). A charge-
sensing measurement of either island here clearly yields a
unique outcome. In terms of the fusion rule in Eq. (11), the
sequence concluded here deterministically reveals only
fusion channel I. Of course the same deterministic charge
measurement would also occur for nontopological super-
conducting islands.
This so-far unremarkable conclusion establishes a very

useful baseline. A much more interesting scenario appears
if we merely swap the order in which we apply steps (b1)
and (b2) from the preceding control protocol, thereby
following the left path in Fig. 6. Let us begin anew from
the state jQtoti in the topmost configuration of the figure
and explore this alternative sequence in some detail:

(a1) Open the outer valves. Because the islands are now
well Josephson coupled, this process generates a single
topological superconductor and pulls Ising anyons binding
Majorana zero modes γ1 and γ4 out of the vacuum. One can
assemble these modes into a complex fermion operator,

f14 ¼ ðγ1 þ iγ4Þ=2; ð13Þ

whose occupation number n14 takes on a unique value due
to global fermion parity conservation. The system therefore
evolves into the quantum state j014i.
(a2) Close the central valve. Quenching the Josephson

coupling between the islands effectively slices the topo-
logical superconductor in half. Consequently, a second pair
of Ising anyons with Majorana zero modes γ2 and γ3
appears opposite the middle valve. Similarly defining a
fermion

f23 ¼ ðγ2 þ iγ3Þ=2 ð14Þ

with occupation number n23, we then arrive at the state
j014; 023i. In the basis introduced in Eq. (12), this state
equivalently reads [83]

j014; 023i ¼
1ffiffiffi
2

p ðj012; 034i þ j112; 134iÞ: ð15Þ

The superposition on the right side merely reflects a basis
change related to so-called F symbols for Ising anyons;
see Appendix A. In the ideal case, where the topological
ground-state degeneracy is exact and immune to noise,
this state does not dephase. This sequence prepares four
non-Abelian anyons as before—in fact, in an ostensibly
identical setup—but, interestingly, initializes the system
into a different degenerate ground state that maximally
entangles the two decoupled islands.

FIG. 6. Protocol to detect the Ising-anyon fusion rule σ × σ ¼
I þ ψ via charge sensing. The device contains two superconduct-
ing islands (red) Josephson coupled to outer trivial bulk super-
conductors (blue); intervening gate-tunable valves control the
Josephson-to-charging-energy ratios. The system is initialized
into a unique ground state by opening the middle valve while
closing the outer valves. In the control experiment (right path),
the middle valve closes before opening the outer valves, thus
nucleating out of the vacuum two pairs of Ising anyons binding
Majorana modes γ1;2 and γ3;4, as indicated by dashed lines.
Reclosing the outer valves fuses these same pairs back into the
vacuum, corresponding to the I fusion channel. Charge read out
on the islands is correspondingly deterministic. Instead, closing
the middle valve after opening the outer valves (left path) first
nucleates Ising anyons binding γ1;4 and later γ2;3. Closing the
outer valves now fuses the anyons in a nontrivial way that
accesses both the I and ψ fusion channels. This leads to an equal-
amplitude superposition of states in the measurement basis and
thus probabilistic charge read out.
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(a3) Close the outer valves. Restoring charging energy
once again removes the ground-state degeneracy; this
process fuses the anyons binding γ1 and γ2, and also the
pair binding γ3 and γ4. Notably, these are not the same pairs
nucleated from the vacuum, contrary to the left sequence in
Fig. 6, which allows us to now access both fusion channels
on the right side of Eq. (11). As we restore charging energy,
j012; 034i evolves into the unique ground state jQL;QRi,
precisely as noted earlier. The wave function j112; 134i
instead evolves into an excited state with opposite
charge parities on the islands compared to jQL;QRi. We
assume for concreteness that the gates are adjusted such
that the excited state corresponds to a charge configuration
jQL − 1; QR þ 1i. With this assumption, the state in
Eq. (15) becomes

1ffiffiffi
2

p ðjQL;QRi þ eiαjQL − 1; QR þ 1iÞ; ð16Þ

where the first and second terms respectively reflect
fusion into the I and ψ channels. Contrary to the state
in Eq. (15), the superposition in Eq. (16) would dephase
quickly in practice due to charge noise that produces the
nonuniversal phase α indicated above. This phase is
irrelevant, however, since it is in any case invisible in
our measurement scheme. More importantly, charge
measurement of an island at the end of this sequence
is probabilistic, returning even and odd electron numbers
for a given island with equal probability.
The control experiment laid out earlier distinguishes

this interesting scenario—which is deeply rooted in the
nontrivial anyon fusion rules—from a boring “noisy”
experiment with rapid charge fluctuations. One may
worry that the nontrivial protocol may happen to be
more susceptible to charge fluctuations than the control
protocol, since the intermediate steps are not exactly the
same. Additional control experiments can rule out such a
scenario. For example, one can perform the protocols in
Fig. 6 with magnetic fields and/or back gate voltages
adjusted so that the islands definitely do not support
Majorana modes; the measurement outcomes should then
be identical for both the control and nontrivial sequences.
Observing this expected outcome would provide further
evidence for fusion rules underlying the path dependence
for the topological case.
It is worth remarking that probabilistic read out already

suffices to demonstrate multiple fusion channels. We stress
that the equal probabilities we predict here reflect more
detailed topological information for the anyon theory. In
particular, these probabilities are given by ratios of appro-
priate quantum dimensions of particles in the topological
quantum field theory or, equivalently in this case, by the
absolute value of certain F symbols [38]. We discuss these
points in detail in Appendix A.

Although we are not probing non-Abelian statistics,
there is a distinct “non-Abelianness” to this fusion rule
experiment: The two sequences we outline above apply
precisely the same adiabatic manipulations in a different
order yet deliver dramatically different results. In a refer-
ence nontopological system with no Majorana zero modes,
the ground state would generically be unique throughout,
negating any such nontrivial path dependence under
adiabatic evolution, as nicely emphasized in Ref. [80].

2. Practical considerations

With the ideal schemes fleshed out, we now highlight
several practical issues pertinent for experimental imple-
mentation. First, as with any experiment, it is technically
possible to obtain measurements in a nontopological setup
that emulate our predictions based on nontrivial fusion
rules. We stress, however, that such a scenario is highly
improbable and requires multiple levels of fine-tuning. For
one, accidental degeneracies would be required. Suppose,
for example, that a trivial system harbors a pair of fine-
tuned zero-energy Andreev bound states located opposite
the (closed) middle valve; for an illustration, see Fig. 9(b).
Although the right path of Fig. 6 again trivially decouples
the islands, the left path can entangle the two sides.
(Without degeneracy, adiabatic evolution would preclude
the latter.) Importantly, however, the probabilities for even
and odd charges at the end of the left path in Fig. 6 would
generically differ without additional fine-tuning beyond
that needed for accidental degeneracy. In sharp contrast, the
Ising-anyon fusion rules rigidly lock these probabilities
together in the topological setup.
Next, we quantify the upper speed limit over which the

steps in Fig. 6 can be conducted while effectively remain-
ing adiabatic. Quite generally, this speed limit is set by the
minimal gap for accessible excited states (which should
remain unoccupied) during a given stage of the protocol.
The rate for all steps must certainly fall below the pairing
energy Δ for the islands to avoid generating unwanted
Bogoliubov–de Gennes quasiparticles. When closing
valves in steps (a3), (b1), and (b3) from Fig. 6, we must
also avoid producing spurious excited charge configura-
tions that would corrupt initialization and read out of the
anyons. [For example, rapidly shutting the middle valve in
(b1) would yield an entangled superposition of various
charge states for the islands rather than the unique ground
state jQL;QRi.] Charging energy EC determines the rate
limit required to sidestep this type of corruption. These
considerations indicate that the protocols in Fig. 6 approxi-
mate adiabatic evolution if carried out over a time scale

tprotocol ≫ max

�
ℏ
Δ
;
ℏ
EC

�
ðadiabatic criterionÞ: ð17Þ

This standard criterion can be justified by analyzing
the protocol steps using the phenomenological model
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described in Sec. II; see Ref. [73]. To quantify the times we
assume a pairing gap near 1 K and a charging energy on the
same scale (which is not unreasonable for islands a few
microns in length). With these simple estimates, Eq. (17)
becomes tprotocol ≫ 10 ps.
In practice, the fusion-rule protocols also face a lower

speed limit due to both quasiparticle poisoning and residual
splitting of the ground-state degeneracies encoded by the
Majorana modes. To appreciate constraints from the for-
mer, suppose that one carried out the right control sequence
from Fig. 6 on a time scale much longer than the poisoning
time tpoisoning. While the outer valves remain open, stray
quasiparticles can leak onto the islands, stochastically
flipping the occupation numbers n12 and n34. Distinction
from the nontrivial right sequence from Fig. 6 is then lost.
One must therefore maintain

tprotocol ≪ tpoisoning ðpoisoning limitationÞ ð18Þ

to suppress poisoning events that obscure fusion-rule
detection.
The second issue—unintentional ground-state-

degeneracy lifting—originates from several sources:
(i) wave function overlap of Majorana modes opposite a
given island, (ii) overlap of Majorana modes from neigh-
boring islands, and (iii) residual charging energy present
even when the outer valves are maximally open. Stages of
the protocol where ideally exact degeneracies appear must
transpire at a rate faster than the resulting energy splittings
Esplitting, i.e.,

tprotocol ≪ tsplitting ðdegeneracy limitationÞ; ð19Þ

with tsplitting ≡ ℏ=Esplitting. Satisfying this inequality ensures
that time evolution due to residual splitting is unimportant.
Let us quantify each of the three contributing sources

noted above to get a rough sense for the time scales
required.
(i) Majorana overlap across a single island yields a

splitting that scales, modulo an oscillatory prefactor, like

EðiÞ
splitting ∼ Δe−L=ξ, where L and ξ denote the size of the

island and induced coherence length, respectively (see, e.g.,
Supplemental Material of Ref. [84]). Taking ξ ¼ 500 nm,

L ¼ 3 μm, and a 1 K pairing energy gives EðiÞ
splitting ∼ 3 mK.

This yields a time scale tðiÞsplitting ∼ 3 ns.
(ii) Overlap of the outermost Majorana modes γ1 and γ4

in Fig. 6 generically contributes a tiny splitting compared to
that considered above. Splitting due to hybridization of γ2
and γ3 across the central (closed) valve is more important to
estimate. Suppose that the nanowire hosts carriers with
effective massm, spin-orbit coupling α, and a Zeeman field
VZ that exceeds the proximity-induced pairing energy Δ as
required for topological superconductivity in the islands
[13,14]. We model the barrier between the islands as a

region of length W with a chemical potential shifted below
the band bottom by an amount U that is large compared to
other energy scales for the wire. The overlap of the inner
Majorana modes then scales as e−W=ξU , with ξU ¼
ℏ=

ffiffiffiffiffiffiffiffiffiffi
2mU

p
. Moreover, using the canonical single-band wire

Hamiltonian from Refs. [13,14] in the large-field limit
VZ ≫ mα2, Δ for simplicity, we find a splitting of [85]

EðiiÞ
splitting ≈ Δ

�
mαξU
ℏ

�
e−W=ξU : ð20Þ

Consider reasonable parameters Δ ¼ 1 K, W ¼ 100 nm,
U ¼ 2 meV, α ¼ 2 × 104 m=s, and m ¼ 0.05me (me
denotes the bare electron mass) as appropriate for wurtzite

InAs wires [86]. These values yield EðiiÞ
splitting ≈ 1 mK,

corresponding to a time scale tðiiÞsplitting ≈ 7 ns.
(iii) In the configuration with four Majorana modes—

i.e., after steps (a2) and (b2) from Fig. 6—the two available
ground states split by an amount given roughly by [52]

EðiiiÞ
splitting ≈

32

ð2π2Þ1=4 EC

�
EJ

EC

�
3=4

e−
ffiffiffiffiffiffiffiffiffiffiffiffi
8EJ=EC

p
ð21Þ

per island due to residual charging energy EC that is not
perfectly quenched by the Josephson coupling EJ to the
outer superconductors. The latter may be inferred from
measured critical currents via Ic ¼ 2eEJ=ℏ. To get a feel
for numbers, preliminary measurements suggest critical
currents in the range Ic ∼ 100–200 nA with corresponding
Josephson energies EJ ∼ 2–5 K. Suppose that EC ¼ 0.5 K.

With EJ ¼ 2 K, one gets EðiiiÞ
splitting ≈ 75 mK and tðiiiÞsplitting ≈

0.1 ns, while a larger EJ ¼ 5 K yields EðiiiÞ
splitting ≈ 6 mK and

tðiiiÞsplitting ≈ 1 ns. Still more favorable numbers appear with a
modestly reduced EC ¼ 0.2 K (recall the discussion in

Sec. II D): In this case, EJ ¼ 2 K yields EðiiiÞ
splitting ≈ 2 mK

and tðiiiÞsplitting ≈ 3 ns, while EJ ¼ 5 K gives EðiiiÞ
splitting ≈

0.02 mK and tðiiiÞsplitting ≈ 300 ns.
We have intentionally used conservative numbers in the

estimates above. The Esplitting values that result already
suggest a comfortable window between the upper and
lower speed limits for the fusion-rule protocol. We stress,
however, that the splittings could be reduced by orders of
magnitude—thus widening the window further still—by,
e.g., lengthening the islands and optimizing the efficacy of
gate-tunable valves in the setup. We also reiterate that the
expression used in Eq. (21) likely overestimates the
Coulomb contribution (see Secs. II A and II D).
Satisfying Eqs. (17)–(19) is essential for implementing

the charge-sensing fusion-rule experiment envisioned
above. It is also illuminating, however, to explore the
limits at which the predictions break down. Starting at rates
that violate the adiabatic criterion specified in Eq. (17), the
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predictions we describe in Sec. III B 1 should be recovered
as the rates are reduced, thus giving information about the
system’s minimal (accessible) excitation gap. Assuming the
likely scenario tpoisoning ≫ tsplitting, further reducing the rate
next invalidates the degeneracy criterion in Eq. (19). The
left and right paths in Fig. 6 would then yield identical
results, as in this regime the system simply follows a unique
ground state throughout either protocol. Here, the crossover
scale determines the precision of Majorana-related degen-
eracies. This information is useful in the regime where the
degeneracy is exponentially small [87] and thus difficult to
otherwise resolve [57]. Further reducing the protocol rate
eventually violates Eq. (18), thus revealing the quasiparticle
poisoning time at the rate where the left and right paths
again yield identical results, but with uncorrelated charge
read outs of the two islands.

C. Majorana-mediated charge pump:
Fusion rules via transport

Next, we describe a variation on the fusion-rule-detection
experiment from Sec. III B using current detection rather
than charge sensing. In short, we cyclically fuse Ising-anyon
pairs using the same sequences as before, but now selectively
pump charge across the system in a fusion-channel-
dependent fashion.

Figure 7(a) depicts the nontrivial cycle of interest (see
below for a companion control experiment). The first three
steps of this cycle repeat those in Fig. 6(a): start from a
charge state jQtoti, nucleate Ising anyons binding Majorana
modes γ1;…;4, and restore charging energy to fuse them
nontrivially. Figure 8(a) illustrates the energy levels of the
charge states versus gate voltages Vg;LðRÞ for the left (right)
islands. Suppose that the gate voltages are adjusted to initial
values VL=R such that after the fusion step (a3) the system’s

wave function is ð1= ffiffiffi
2

p ÞðjQL;QRiþeiαjQL−1;QRþ1iÞ,
precisely as in Eq. (16). Again, the first and second terms
in the superposition—indicated by circles in Fig. 8(a)—
correspond to the anyons fusing into the I and ψ channels,
respectively.
At this stage our strategy departs from the protocol

discussed in Sec. III B. Rather than performing a charge
measurement for read out, we continue with the steps
shown on the left half of Fig. 7(a) and open slightly the
outer valves to Josephson couple the islands to the trivial
(grounded) bulk superconductors. The energy levels thus
exhibit avoided crossings between states of equivalent
charge parity as Fig. 8(b) illustrates. Next, we sequentially
sweep the gate voltages to values V 0

L=R, reclose the outer
valves, and return the gate voltages to VL=R [Figs. 8(b)
and 8(c)]. After these steps, the ground state jQL;QRi

FIG. 7. (a) Nontrivial cycle that selectively pumps charge 2ewhenever Ising anyons fuse into the ψ channel, yielding a quantized zero-
bias dc current [Eq. (22)] passing between the outer grounded superconductors. The sequence initially follows the left path from Fig. 6.
Once the anyons nontrivially fuse into a superposition of I and ψ channels (bottom configuration), the cycle probabilistically pumps
charge by pursuing the manipulations sketched in Fig. 8 and described in the text. Opening the middle valve then restores the islands to
their original state, whereupon the process repeats. (b) Control cycle that initially follows the right path from Fig. 6 but is otherwise
identical to (a). This alternate sequence blocks the ψ fusion channel and hence eliminates the current. The two cycles sketched here
reveal the nontrivial Ising-anyon fusion rules via a macroscopic signal.

DAVID AASEN et al. PHYS. REV. X 6, 031016 (2016)

031016-12



remains unchanged while the excited charge state jQL−
1;QRþ1i evolves into jQL þ 1; QR − 1i. While the
former outcome is trivial, the latter corresponds to
the left island borrowing a Cooper pair from the left
grounded superconductor and the right island analo-
gously shedding a Cooper pair rightward. In other
words, we pump charge 2e from left to right, but only
if the anyons fuse into the ψ channel. At this point, the
wave function collapses into either jQL;QRi or jQL þ
1; QR − 1i with equal probability. In either case, open-
ing the middle valve evolves the system back into the
state jQtoti. We are now back at the top of our pumping
cycle in Fig. 7(a) and ready to start anew.

Repetition of the cycle with frequency f yields a time-
averaged current of strength

Ipump¼
1

2
ð2eÞf¼ ef ðnontrivial pumping cycleÞ ð22Þ

flowing between the grounded superconductors. The factor
of 1=2 accounts for the fact that the anyons fuse into a
fermion ψ—thus contributing to the current—with only
50% probability. Remarkably, the fusion channel ψ respon-
sible for the presence of the excited state in Eq. (16) has
thus led directly to a measurable and quantized dc current at
zero bias.
Applying the same sequence of operations in a different

order restricts the allowed fusion outcomes and thus yields
qualitatively different predictions. Consider, in particular,
the control cycle sketched in Fig. 7(b), which initially
follows the right path in Fig. 6 but is otherwise identical to
Fig. 7(a). Most importantly, step (b3) uniquely fuses the
anyons back into the vacuum—deterministically yielding
the ground state jQL;QRi. Since the ψ fusion channel is
unavailable, the remainder of the cycle is trivial and the
time-averaged current vanishes:

Icontrol ¼ 0 ðcontrol cycleÞ: ð23Þ
It is worth noting the non-Abelian nature of the experiment
evident in Eqs. (22) and (23). The dependence on the order
of applied external perturbations requires the topological
degeneracy encoded by the Majorana zero modes and
would not arise if the ground state was unique throughout
the cycles (at least in the adiabatic limit).
The practical considerations outlined in Sec. III B 2

apply equally well in the measurement scheme proposed
here. Essentially, the cycles in Fig. 7 should be adiabatic
with respect to the minimal allowed excitation gap but
swift compared to both the quasiparticle poisoning time
and any inadvertent topological degeneracy splitting. Two
additional considerations are also noteworthy. First, the
gate voltage sweep VL=R

0 → VL=R in Fig. 8(c) should occur
faster than residual avoided crossings (not shown) between
the QL=R − 1 and QL=R þ 1 curves; this condition avoids
relaxing into an unwanted charge branch. And second, the
relaxation time for resetting to a single-dot state jQtoti at
the top of the cycle in Fig. 7 should ideally occur on a time
scale comparable to or shorter than the other steps.
A “long” relaxation time would bottleneck the cycle and
limit the realizable pumped current.
Overall, operating as fast as possible within these

constraints maximizes the current predicted by Eq. (22).
According to the time scales estimated in Sec. III B 2, a
cycle frequency of f ∼ 100 MHz easily satisfies the adia-
batic criterion and yields a readily detectable current
Ipump ∼ 10 pA. Higher frequencies—which, depending
on parameters, may help satisfy the lower speed limits
discussed earlier—boost the signal further still.

(a)

(b)

(c)

FIG. 8. Manipulations used to pump charge in the cycle
sketched in Fig. 7(a). Each panel displays the energies versus
gate voltage Vg;L=R on the left or right islands. The sequence
begins from the bottom configuration of Fig. 7(a), wherein the
anyons fuse to yield a superposition of charge states jQL;QRi
(I channel) and jQL − 1; QR þ 1i (ψ channel). Panel (a) denotes
these charge states with circles and also indicates the initial gate
voltages VL=R. Next, one opens the outer valves, leading to the
energies in (b), and then sweeps the gate voltages to V 0

L=R.
Closing the outer valves again and subsequently restoring the
initial gate voltages as shown in (c) completes the desired
pumping: jQL;QRi evolves trivially while the excited state
jQL − 1; QR þ 1i changes to jQL þ 1; QR − 1i. The latter
evolution indicates charge 2e flowing between the outer super-
conductors when the fusion channel ψ appears.
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The cycles we introduce above share some common
operating principles with the pumps studied, for example,
in Refs. [88–95]. Charging effects provide an important
ingredient in all cases. Moreover, the current orientations in
such devices follow not from the sign of a bias voltage
(which is not even necessary) but rather from the applied
perturbations during the cycle. We can indeed reverse
the current flowing between the outer superconductors in
Fig. 7(a) simply by swapping the gate voltages applied to
the left and right islands. The central role played by the
Ising-anyon fusion rules is the main feature present in our
setup. We have seen that one can turn on and off the current
by selectively filtering the allowed fusion channels—a
large-scale manifestation of Eq. (11).

IV. PROTOTYPE TOPOLOGICAL QUBIT
VALIDATION

A. Motivation

The two-island setup that Sec. III exploits for fusion-rule
detection is also interesting because it constitutes a proto-
type topological qubit. Assuming fixed total parity, the
configuration with Majorana zero modes γ1;…;4 shown in
Fig. 9(a) admits two ground states that we may associate
with a logical 0 and 1 [6]. It is most natural to employ the
basis in Eq. (12) and specifically define

j0i≡ j012; 034i; j1i≡ j112; 134i: ð24Þ

These states carry opposite parities within each island and
can thus be read out using techniques outlined in Sec. II C.
It is worth elaborating on this qubit’s special properties

—particularly the conditions necessary for topological
protection against decoherence. Very generally, no local
measurement can read out the state of the qubit when the
Majorana zero modes remain well separated from one
another; the quantum information is encoded nonlocally
through the island parities. Though certainly promising
for the coherence of the qubit, it can still be prone to
decoherence due to deviations from the ideal limit, as
shown explicitly in numerous studies [96–101]. For exam-
ple, a stray quasiparticle entering the islands from one of
the outer superconductors can take the qubit out of the
computational subspace. Protection against such errors
requires qubit manipulations on a time scale shorter than
the typical poisoning time. Moreover, to take full advantage
of the Majorana-based qubit, the system should, with high
probability, be confined to the ground-state subspace
generated by the non-Abelian anyons. This condition is
satisfied if temperature as well as the typical frequencies
for environmental perturbations both fall well below the
excitation gap of the system.
In this section, we assume that the above criteria are

maintained and investigate the following question: How

can one characterize the Majorana-based qubit in a manner
that validates its topological protection?
As part of the validation we aim to qualitatively

distinguish the topological qubit in Fig. 9(a) from the
hypothetical “Andreev qubit” depicted in Fig. 9(b). For the
latter, the islands form trivial superconductors that happen
to host near-zero-energy Andreev bound states (indicated
by ellipses) localized near the central valve. One could
equally well encode a qubit in such a system using the
occupation numbers nLðRÞ of the left (right) Andreev
modes, i.e., j0i≡ j0L; 0Ri and j1i≡ j1L; 1Ri. The two
qubits in Fig. 9 in fact share several common features
despite their different physical origin. In either case, one
can introduce (not topologically protected) qubit rotations
by opening the middle valve for a specified time, read
out may be performed using charge-sensing protocols, and
both qubits appear similarly susceptible to errors from
poisoning events. Exposing the unique characteristics that
stem from the nonlocal nature of the topological qubit
therefore requires some care [102].
The fusion-rule experiments described previously

already shed some light on the issue. Indeed, the different
paths in Fig. 6 rigidly initialize the topological qubit into
either j0i (right path) or ðj0i þ j1iÞ= ffiffiffi

2
p

(left path);
reproducing the same initializations for the Andreev qubit,
by contrast, would require fine-tuning as discussed at
the end of Sec. III B 1. As a much more compelling

FIG. 9. (a) Topological qubit and (b) reference nontopological
“Andreev qubit” that we seek to sharply distinguish. For the
former, the qubit is stored in the topologically degenerate ground
states encoded by Majorana zero modes; in the latter, the
occupation numbers for “accidental” near-zero-energy Andreev
levels specify the qubit states. Because of the very different
sensitivity to local noise sources, we argue that the topological
qubit’s coherence times and oscillation frequency exhibit non-
trivial scaling relations that are generically absent in the Andreev
qubit and can be used to identify topological protection in a
modest pre-braiding experiment.
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demonstration, one could exchange a pair of Majorana zero
modes to implement the fault-tolerant qubit rotations
generated by the non-Abelian braid matrices. Certainly
no analog exists for the trivial Andreev qubit. While we do
explore braiding in Sec. V, such an experiment requires
departing from the single-wire geometry of Fig. 9—which
we wish to presently avoid.
Instead, we argue that one can meaningfully contrast the

qubits in Fig. 9 through the behavior of their coherence
times T1 and T2, which can be extracted via nontopological
manipulations. To obtain precise experimental predictions,
we focus on how these quantities scale with the (exper-
imentally tunable) qubit oscillation frequency ω0 stemming
from residual average splittings of the j0i and j1i energies.
Assuming that decoherence is primarily caused by low-
frequency environmental noise in the low-energy subspace,
we obtain characteristic scaling relations that link 1=T1,
1=T2, and ω0 for the topological setup.
Before turning to details, we sketch an intuitive picture

for the origin of these scaling relations. Suppose for
concreteness that the oscillation frequency ω0 arises pre-
dominantly from overlap of Majorana zero modes across a
given superconducting island, which scales as e−L=ξ (up to
an important oscillatory prefactor discussed below; as
usual, L denotes the island size while ξ is the induced
correlation length). Environmental fluctuations stochasti-
cally modify the Majorana overlap and thus the degeneracy
splitting—thereby dephasing the topological qubit.
Crucially, since all local noise sources affect the instanta-
neous splitting through e−L=ξ (or the oscillatory prefactor),
such noise-induced energy variations are bounded by the
same exponential envelope as the oscillation frequency ω0

itself [106]. Hence, fluctuations and time-averaged quan-
tities are linked for the topological qubit. This property
relates ω0 to the dephasing time T2 and applies quite
generally provided the topological degeneracy holds within
exponential accuracy. The relaxation time T1 of the
topological qubit also varies with the average splitting
ω0, thus linking T1 and T2 as well. We stress that such
relations do not hold for the nontopological Andreev qubit;
there, purely local noise sources induce stochastic energy
variations that need not bear any relation to the time-
averaged bound-state energies.

B. Model for noise in a topologically protected qubit

As discussed above, we assume that the relevant sub-
space consists solely of logical qubit states j0i ¼ j012; 034i
and j1i ¼ j112; 134i. We therefore model noise with the
following time-dependent Hamiltonian:

HðtÞ ¼ hzðtÞσz þ hxðtÞσx: ð25Þ

In the basis specified above, the Pauli matrix σz is diagonal,
whereas σx flips the qubit.

We consider two physical contributions to the qubit
coupling hzðtÞ: (i) Overlap of the Majorana zero modes
across a given island in Fig. 9(a) produces a degeneracy
splitting ∝ cosðκLÞe−L=ξ, where the parameter κ is related
to the wire’s effective Fermi wave vector [84]. Both κ and
the correlation length ξ depend on microscopic param-
eters such as the Zeeman splitting and the nanowire’s
chemical potential. (ii) Residual charging energy of the
islands yields a splitting exponentially small in EJ=EC,
with a prefactor ∝ ðECE3

JÞ1=4 cosðπn0Þ [see Eq. (5)].
These two mechanisms weakly lift the topological
degeneracy and thus energetically split the j0i and j1i
qubit states.
The hxðtÞ coupling arises from hybridization of

Majorana zero modes γ2 and γ3 residing opposite the
central valve and is exponentially small in W=ξU, where
W is the width separating the islands and ξU is the
Majorana decay length into the barrier region; see the
discussion near Eq. (20). Beginning from a σz eigenstate,
this coupling tends to rotate the qubit between the j0i and
j1i states.
Fluctuations in nearby gates, the applied magnetic field,

etc., stochastically impact the parameters κ, ξ, EJ, EC, n0,
and ξU, thus generating time dependence in the qubit
couplings. The specific noise source is not especially
important for our analysis, since for the topological qubit
there exist no local noise sources that lead to an instanta-
neous splitting not involving an exponential. The minimal
model we define here allows us to quantify how the
intimate connection between time averages of these cou-
plings and their typical fluctuations affect the topological
qubit’s properties.

C. Dephasing time T2

We focus first on dephasing of the topological
qubit. For simplicity, we suppose that the σz coupling
dominates, which seems reasonable given the closed
middle valve in Fig. 9(a). We thus set hxðtÞ ¼ 0 unless
stated otherwise and parametrize the remaining
coupling via

hzðtÞ ¼
ℏω0

2
þ δhzðtÞ: ð26Þ

Here, ω0 denotes the qubit oscillation frequency while
δhzðtÞ encodes noise.
One can probe dephasing using the following standard

manipulations sketched in Fig. 10: (1) Initialize the qubit
into the state j0i. (2) Apply a π=2 pulse Uπ=2 ¼ eiðπ=4Þσx

by opening the middle valve to turn on the hx coupling in
Eq. (25) for a prescribed duration, thus orienting the
qubit on the equator of the Bloch sphere. (Note that the
Majorana wave functions do not oscillate in the barrier
between the islands, which facilitates the controlled
rotation of the qubit [107].) (3) Let the system evolve
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for a time t. (4) Apply a second π=2 pulse. After this
sequence the probability of measuring the qubit in
state j1i reads

PðtÞ ¼ 1

2

�
1þ cos

�
ω0tþ

2

ℏ

Z
t

0

dt0δhzðt0Þ
��

: ð27Þ

Following closely Ref. [52], we now investigate how
PðtÞ behaves upon averaging over noise, i.e., when
averaging over many measurements. We take δhz to
obey Gaussian correlations with hδhzðtÞi ¼ 0 and
hδhzðtÞδhzðt0Þi ¼ Szðt − t0Þ, where Szðt − t0Þ determines

the noise power spectrum. We assume low-frequency
1=f noise to be dominant so that

SzðωÞ ∼
ðΔEz

typÞ2
jωj ; ð28Þ

where ΔEz
typ sets the typical fluctuation-induced variation

in the σz coupling. Equation (28) applies for frequencies ω
between an “infrared” cutoff Λmin and an “ultraviolet”
cutoff Λmax given by the bulk gap. Noise averaging the
probability in Eq. (27) then yields [52]

hPðtÞi ≈ 1

2
½1þ cosðω0tÞe−ðΔE

z
typt=ℏÞ2fðtÞ�: ð29Þ

In the limit Λmint ≪ 1 and Λmaxt ≫ 1, the function fðtÞ
above depends on time only logarithmically. Ignoring this
weak dependence, we thus obtain a dephasing time

T2 ∼
ℏ

ΔEz
typ

: ð30Þ

Similar behavior is, of course, valid for any type of qubit.
Again, the special property of the topological qubit is that
ω0 and the typical fluctuations ΔEz

typ are linked through
the exponential suppression of the ground-state splitting,
which leads to our first scaling relation:

ω0 ∼
1

T2

∼
� e−L=ξ Majorana-overlap dominant

e−
ffiffiffiffiffiffiffiffiffiffiffiffi
8EJ=EC

p
; charging-energy dominant:

ð31Þ

Thus, as the topological qubit becomes “perfect,” both ω0

and 1=T2 vanish in a correlated fashion. The right side
indicates more precisely how these quantities scale in the
limits where Majorana overlap and weak residual charging
effects dominate the topological degeneracy splitting; note
that the prefactors suppressed in Eq. (31) exhibit subexpo-
nential dependence on parameters. In practice, one can
explore this relation by varying ξ with, e.g., a back gate, or
by modifying EJ=EC through modulation of the outer
valves in Fig. 9(a).
In the Majorana-overlap-dominated regime, the scaling

relation in Eq. (31) emphasizes the exponential envelope
of the degeneracy splitting that is central to topological
protection. As noted above, however, here the time-
averaged splitting ω0 also includes an oscillatory prefactor
cosðκLÞ with quite interesting physical consequences. For
instance, when ω0 becomes extremal, δhz is much less
sensitive to noise in κ if the typical fluctuations in κL are
small—thus suppressing 1=T2. When ω0 is instead tuned
near zero, δhz is maximally sensitive to noise in κ leading to
enhancement of 1=T2. One thereby obtains out-of-phase
oscillations in ω0 and 1=T2 when changing the system’s

FIG. 10. Protocol for measuring the topological qubit’s dephas-
ing time T2 and oscillation frequency ω0. The left side illustrates
the valve manipulations while the right shows the corresponding
qubit orientation on the Bloch sphere. After initialization and a
π=2 pulse, the qubit unitarily evolves for time t. During this
evolution, the relative phase between j0i and j1i changes by an
amount δϕðtÞ set by ω0 and time-dependent noise in the splitting
of the qubit states. Crucially, the latter two factors are intimately
related for the topological qubit because they are constrained by
the same exponential suppression. After a second π=2 pulse,
the probability of measuring the j1i state is PðtÞ ¼ jβj2 ¼
1
2
½1þ cos δϕðtÞ�. Noise averaging gives Eq. (29), which simulta-

neously probes both T2 and ω0. The nontrivial connection
between uniform quantities and fluctuations for the topological
qubit implies the unusual scaling relation between ω0 and 1=T2 in
Eq. (31) that signifies topological protection. A similar scaling
relation links T1 and T2; see Eq. (33).
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parameters—another key consequence of the unconven-
tional link between time averages and fluctuations for the
qubit. Exploring refinements of the scaling behavior on top
of the dominant exponential e−L=ξ thus reveals additional
fingerprints of Majorana modes that provide further evi-
dence of topological protection. We stress that the oscil-
lations described above may actually be easier to observe
than the exponential itself since they should be visible
even with modest parameter changes that only weakly
impact L=ξ.
A few remarks are in order to put our discussion in

proper perspective:
First, the precise scaling between ω0 and T2 depends on

the noise model used. For example, with short-range-
correlated noise it is straightforward to show, again
following Ref. [52], that ω0 ∼ 1=

ffiffiffiffiffi
T2

p
and hence both

quantities continue to vanish exponentially as the qubit
becomes perfect. The important universal feature is that the
dephasing rate exhibits some characteristic dependence on
the typical fluctuation amplitude for the σz coupling in
Eq. (25); that alone is sufficient to link ω0 and T2 via a
scaling relation akin to Eq. (31).
Second, the entirety of Eq. (31) (or a straightforward

extension if the noise is not 1=f-like) needs to be satisfied
to verify topological protection according to the ideas in
this section. That is, ω0 and 1=T2 must scale with one
another, and they must both scale exponentially with some
parameter. Merely demonstrating ω0 ∝ 1=T2 is not suffi-
cient. This weaker relation in fact arises in the seminal spin
qubit work of Petta et al. [108], where topological physics
is not operative; in that case, exponential scaling is absent.
Finally, for realizing our predicted scaling relations, it is

most certainly not sufficient to simply have a qubit with
an exponentially small time-averaged splitting in some
parameter. To illustrate this important point, consider two
localized spin-1=2 particles whose orbital wave functions
decay exponentially on a length scale ξs [cf. the example
discussed after Eq. (11)]. When these spins are infinitely far
apart and with all time-averaged external fields “turned
off,” the singlet and triplet states for the two-spin system are
exactly degenerate. Moreover, at large but finite spatial
separation Ls, these states split by a time-averaged amount
ω0 ∝ e−Ls=ξs ; i.e., this spin qubit exhibits an exponential ω0

scaling quite similar to our topological qubit. For the spin
qubit, however, local noise sources that time average
to zero produce additional terms in the instantaneous
splitting that are by no means constrained by the above
exponential—the most obvious example being stray
Zeeman fields acting separately on each spin. These addi-
tional local noise sources yield a dephasing rate 1=T2 that
violates the exponential scaling relation in Eq. (31).
Conversely, all local noise sources present for our topo-
logical qubit, including fluctuations in the Zeeman field,
feed into the prefactor and/or exponent of the exponentially
dependent instantaneous splitting, e.g., cosðκLÞe−L=ξ.

Hence, the dephasing rate due to all local noise sources
can be exponentially suppressed by changing a single
dimensionless parameter, and Eq. (31) is fully satisfied.
The part of Eq. (31) involving T2 thus verifies, in a rather
general and universal fashion, the topological qubit’s
inherent nonlocality.

D. Relaxation time T1

We now briefly address the time scale T1 at which the
topological qubit relaxes towards its thermodynamic equi-
librium state; a more in-depth discussion can be found in
Appendix C. Suppose for simplicity that we work in the
temperature regime ℏω0 ≪ kBT ≪ bulk gap (which is not
unreasonable) and that relaxation is induced by classical
noise in weak σx coupling hxðtÞ ≪ ℏω0 in Eq. (25). If one
initializes the system into, say, the j0i logical qubit state
(which is split from the j1i state by a finite energy ℏω0) via
the manipulations in the top two panels of Fig. 10, the hxðtÞ
coupling will subsequently induce “bit flips” and thereby
cause the initial state to decay in the presence of noise.
Given the assumptions specified above, measuring the
qubit at later times t ≫ T1 will yield j0i or j1i with equal
probability.
Assuming low-frequency-dominated noise, the relaxa-

tion time T1 generally decreases upon reducing ω0; i.e.,
the system relaxes more quickly as the topological
degeneracy splitting tends to zero. This trend arises
because smaller ω0 renders random σx bit flip processes
more efficient. One can thus probe ω0 not only from the
oscillations in Eq. (29) but also by probing T1.
Appendix C evaluates T1 in a simplified model (see also
Ref. [109]) with hxðtÞ exhibiting 1=f noise of typical
amplitude ΔEx

typ and specifically finds

T1 ∼
ℏ2ω0

ðΔEx
typÞ2

: ð32Þ

Note that since we assume ω0 ≫ ΔEx
typ, the T1 time is still

exponentially long despite the ω0 dependence in the
numerator. Combining Eqs. (31) and (32) leads to our
second scaling relation,

T1ðω0Þ ∝
1

T2ðω0Þ
; ð33Þ

which relates the dependence of the two coherence times on
the ground-state splitting encoded in ω0 and holds at fixed
ΔEx

typ. In practice, it should be possible to vary ω0 nearly
independently from ΔEx

typ and hence probe this scaling
relation; for instance, modulating the outer valves in Fig. 9(a)
could tune the former while impacting the latter very little.
We stress that Eq. (33) relates information about the uniform
oscillation frequency ω0 encoded in T1 to information about
fluctuations encoded in T2. This behavior together with
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Eq. (31) provides fingerprints of topological protection
observable in a relatively modest single-wire experiment.

V. BRAIDING AND NON-ABELIAN STATISTICS

A. Preliminaries

Demonstration of fusion-rule detection and topological
qubit validation as outlined earlier would provide strong
evidence for the protection of quantum information stored
in Majorana-based qubits. This section introduces an
all-electrical braiding protocol that allows topologically
protected qubit manipulations, thereby stepping further
towards applications. We continue to focus on minimal
geometries sufficient to establish the desired effect in a
controlled experiment difficult to emulate with nontopo-
logical means. Specifically, we seek to demonstrate “rigid”
rotation of a single topological qubit under an exchange,
which lies at the heart of non-Abelian statistics and
topological quantum information processing.
For this purpose, we must abandon the elegant single-

wire geometries and turn to networks [29–35]. Throughout
this section, we consider the T junction sketched in Fig. 11.
Three superconducting islands coat the junction and are
separated from each other and outer bulk superconductors
by gate-tunable valves. One can view the two islands on the

horizontal leg as furnishing the topological qubit, very
similar to Fig. 9(a), that we manipulate by braiding
Majorana zero modes with the aid of the vertical island.
[Note that if the inner valves in the figure sit too close to
one another, operating them independently may prove
technically challenging. The protrusion of the vertical
island onto the horizontal leg alleviates this issue due to
screening from the intervening superconducting segment.
Its width should be smaller than the correlation length to
avoid trivially decoupling the left and right islands (a length
scale of ∼200 nm or so seems reasonable).]
In what follows we first introduce our scheme for

modulating valves to effect an elementary braiding oper-
ation, and then turn to more detailed protocols for initial-
ization, rotation, and read out of the topological qubit. All
manipulations discussed hereafter should be carried out
slowly relative to the minimal excitation gap for the system
but fast compared to residual degeneracy splittings and
quasiparticle poisoning times; for details, see Ref. [73] as
well as the related discussion in Sec. III B 2.

B. Elementary braid

The sequence of operations comprising the single braid
of interest appears in Fig. 11(a). In the leftmost con-
figuration the two decoupled horizontal islands are both

FIG. 11. (a) Elementary braid of Majorana zero modes in a trijunction hosting a single topological qubit. Modulating the three valves
adjacent to the vertical island controls both charging effects and the coupling between neighboring topological superconductors. Steps
(1)–(3) use this flexibility to braid the inner Majorana modes γ2 and γ3, thus nontrivially rotating the topological qubit via the non-
Abelian braid matrix in Eq. (35). (b) Experimental protocols for verifying “rigid” qubit rotation induced by braiding. Beginning from the
ground state of decoupled, charging-energy-dominated islands, the topological qubit is initialized into the j0i state by opening the outer
valves. A single braid (upper path) or double braid (lower path) rotates the topological qubit, and then charging energy is restored for
read out. Under the single braid the qubit rotates into an equal superposition of j0i and j1i leading to maximally uncertain measurement
outcome; the double braid flips the qubit to j1i and returns a unique measurement value.
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topological and together host four Majorana modes,
γ1;…;4. (The essentially isolated vertical island contributes
no zero modes at this stage since charging energy
dominates there.) At fixed parity the system therefore
supports two degenerate ground states that encode one
logical qubit. In terms of occupation numbers for
fermions f12 ¼ ðγ1 þ iγ2Þ=2 and f34 ¼ ðγ3 þ iγ4Þ=2
defined in Eq. (12), we take these states to be

j0i≡ j012; 034i; j1i≡ j112; 134i; ð34Þ

precisely as in Sec. IV. Our goal is to electrically braid
the inner Majorana modes γ2;3 by operating the valves in
Fig. 11(a), and to recall how the qubit transforms as a
result.
One can distill the braid into three steps summarized

below and in Fig. 11(a). For brevity, let L, R, and V
respectively denote the left, right, and vertical islands in the
trijunction.
(1) Open both the left and bottom valves adjacent to

island V. Opening these valves extends the topological
phase for island L down into the vertical leg—whose
charging energy is then quenched by strong Josephson
coupling to the adjacent bulk superconductor as well as
coupling to island L. Majorana mode γ2 thereby shuttles to
the bottom end of island V. (Precisely how one opens the
valves is unimportant. One should, however, avoid com-
pletely opening the bottom valve while the left valve
remains closed since V would then host an additional,
unwanted pair of Majorana zero modes. This spurious
degeneracy would spoil the topological nature of the
manipulation. Similar remarks hold for the subsequent
steps outlined below.)
(2) Close the left valve adjacent to island V while

opening the right one, thus transporting γ3 from island R
to L. The topological superconductors have now been
“resewn” such that V and R form a continuous topologi-
cal phase.
(3) Close all valves adjacent to V to restore dominant

charging energy for that island. This operation transfers γ2
to island R [analogously to step (1)] and completes
the braid.
We note that the bottom bulk superconductor in Fig. 11

is, strictly speaking, unnecessary for this braiding protocol,
though it is practically useful. Without this component the
charging energy for the lower island can still be quenched if
inter-island Josephson coupling overwhelms its charging
energy. Weaker inter-island Josephson couplings can,
however, be tolerated if charging energy is quenched by
strong Josephson coupling to the bottom bulk supercon-
ductor, thus relaxing the operating requirements for some
of the valves.
The above sequence exchanges “half” of the fermion f12

with “half” of f34 and thus quite naturally impacts the qubit
in a dramatic way. More precisely, Refs. [29–32,35] show

from various viewpoints that the qubit undergoes unitary
rotation specified by the braid matrix

Ubraid ¼ e�iðπ=4Þσx : ð35Þ
The operator σx in Eq. (35) flips the qubit state while the
sign in the exponent depends on details of the trijunction
[29–31]. (This sign does not affect the measurement
probabilities in the protocols discussed below, but we
retain it for completeness.) Interestingly, essentially the
same braiding properties arise for quasiparticles in the non-
Abelian Moore-Read quantum Hall state and vortices in 2D
topological superconductors [7,110,111].
One may recall that precisely the same π=2 qubit rotation

encoded in Eq. (35) was invoked in Sec. IV for topological
qubit validation, but via unprotected manipulations that
required fine-tuning. We stress that Eq. (35), on the contrary,
represents the rigid rotation that we are interested in
demonstrating; it requires no fine-tuning and is exact in
the limit where the topological degeneracy is perfect and the
system remains in the ground-state manifold throughout
the braid.

C. Experimental protocols

We now propose a series of experiments designed to
probe the braid matrix in Eq. (35). Consider first the
initialize → single braid → read out protocol sketched in
the upper part of Fig. 11(b). The starting point is a
“triple-dot” configuration where all valves in the trijunction
are closed, leaving three isolated islands dominated by
charging energy. We let the system relax into the ground
state jQL;QRiwith charges QLðRÞ on the left (right) islands
(charge on the vertical island is unimportant and thus
suppressed). Subsequently opening the outermost left and
right valves nucleates our four Majorana modes and
initializes the topological qubit into the logical j0i state.
This stage of the protocol thus sends

jQL;QRi → j0i ðinitializationÞ: ð36Þ
Next, the inner Majorana modes γ2;3 undergo a single braid
as outlined in Sec. V B, transforming the qubit according to

j0i → Ubraidj0i ¼
j0i � ij1iffiffiffi

2
p ðsingle braidÞ: ð37Þ

Finally, for read out purposes we reclose the outer valves to
convert the degenerate qubit states into nondegenerate
charge eigenstates. State j0i evolves back to jQL;QRi
while we assume that qubit state j1i evolves into
jQL − 1; QR þ 1i, i.e.,

j0i � ij1iffiffiffi
2

p →
jQL;QRi � ieiαjQL − 1;QR þ 1iffiffiffi

2
p ðread outÞ

ð38Þ
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for some nonuniversal α. Measurement through either
charge read out or cyclic charge pumping (recall
Secs. II C and III) should then detect j0i or j1i with equal
probability. This probabilistic result indicates that the qubit
transforms nontrivially, despite the fact that the protocol
returns the device to its precise starting configuration.
We must, nevertheless, exercise caution: Exactly the

same outcome would arise if, say, charges hopped ran-
domly between the two horizontal islands during the
protocol, even if one failed to braid. Fortunately, control
experiments can rule out uninteresting noise-related origins
of such behavior. For example, suppose that instead of
braiding we simply transport Majorana modes from the
horizontal islands to the vertical island and then back again
[e.g., complete step (1) from Fig. 11(a) and then immedi-
ately undo it]. Although the Majorana modes shuttle along
the trijunction in a similar fashion, the absence of a braid
should return the topological qubit deterministically to its
original state. A successful warm-up experiment of this
type would demonstrate controllable transfer of Majorana
modes between islands in the trijunction. Moreover,
observing the predicted distinction between the braid
and such control protocols would support the qubit trans-
formation having its roots in non-Abelian statistics.
The initialize → double braid → read out protocol from

the lower end of Fig. 11(b) provides an even more
compelling control. In a straightforward modification of
the single-braid experiment, here we obtain

jQL;QRi → j0i ðinitializationÞ
j0i → ðUbraidÞ2j0i ¼ �ij1i ðdouble braidÞ
j1i → jQL − 1; QR þ 1i ðread outÞ: ð39Þ

Whereas singly braiding yields a maximally uncertain
measurement outcome, a double braid flips the qubit with
100% probability so that measurement becomes determin-
istic. Confirming this remarkable behavior would not only
definitively rule out random charge fluctuations as the
source of qubit rotation under a single braid, but also verify
the “rigidity” of the braid matrix in Eq. (35).
Regarding the latter point, we note that our measurement

scheme is not sensitive to the relative phase of �i between
j0i and j1i in Eq. (38). Equal measurement outcomes
merely imply that a braid rotates the qubit by π=2 about
some axis normal to the poles of the Bloch sphere. In
general, the double-braid control experiment deterministi-
cally flips the qubit only if each individual braid imple-
ments a π=2 rotation about the same axis. Deviations from
perfect rigidity can, however, arise from imperfections such
as dephasing during the protocol and residual splitting of
the ground-state degeneracy. Investigating the precision of
braid transformations experimentally should allow one to
further validate the topological qubit beyond the means
described earlier.

VI. OUTLOOK

Successful completion of each milestone explored in this
paper would arguably comprise a major achievement in the
Majorana problem and topological physics more generally.
Fusion-rule detection promises to reveal the fundamental,
in fact defining, property of non-Abelian anyons that
underlies their exotic exchange statistics. The first vali-
dation of a prototype topological qubit would partially
verify the basic tenets of topological quantum computation
and thus mark a significant step towards quantum infor-
mation applications. An unambiguous demonstration of
non-Abelian braiding would march the field further in this
direction—while also establishing the most exotic form of
exchange statistics permitted by nature. For all of these
milestones we endeavored to devise experimental protocols
whose outcome can be mimicked by nontopological setups
only in quite pathological cases.
We focused on one platform—wires coupled to meso-

scopic superconducting islands with gate-tunable Coulomb
interaction effects—that appears particularly amenable to
experimental advances along these lines. The ability to
electrically tune between Coulomb-dominated and
Josephson-dominated regimes for the islands indeed ena-
bles efficient initialization, manipulation, and read out of
Majorana-based qubits through a variety of techniques.
Preliminary experiments that seek to optimize gate control
over Coulomb effects would be extremely interesting in
their own right. This approach essentially borrows tools
from the well-developed area of spin qubits to accelerate
progress in the burgeoning field of topological super-
conductivity. The philosophy closely resembles the merger
of transmons with Majorana platforms advocated in
Refs. [33,34,43]; see also Refs. [112,113].
Our emphasis notwithstanding, the above milestones

should apply broadly to Majorana-supporting media and
need not rely on the precise platform and manipulation or
read out schemes exploited here. For instance, with only
straightforward modifications, fusion-rule detection and
topological qubit validation experiments should be adapt-
able to transmon-based devices; other setups, such as
ferromagnetic atomic chains on superconductors [16,23],
may require more dramatic modifications and thus pose
interesting challenges for future research. These pre-
braiding Majorana milestones are worth pursuing generally
since they yield nontrivial physics that belies the simplicity
of setups required.
It is, of course, also interesting to ponder longer-term

directions related to our study. A well-known issue in
Majorana systems is that braiding alone does not provide a
universal gate set. One way to achieve computational
universality involves introducing an additional (unpro-
tected) single-qubit phase gate together with read out of
the state encoded by quartets of Majorana modes; for
an excellent recent discussion, see Ref. [6]. One could
calibrate the former using precisely the same methods that
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we outlined for topological qubit validation. Quantifying
the fidelity of such a phase gate would constitute a
worthwhile experiment complementary to that proposed
in Sec. IV. We expect that read out of Majorana quartets can
proceed by performing charge measurements of islands
connected center to center with a tunable Josephson
junction. And finally, exploring fusion-rule detection and
validation of topological qubits remains a fascinating
challenge for more exotic types of non-Abelian anyons
as well.
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APPENDIX A: ANYON PERSPECTIVE OF
FUSION-RULE EXPERIMENT

This Appendix is dedicated to interpreting the fusion-
rule protocols from Sec. III in terms of a general anyon
model. Consider an anyon theory for which particles live at
points in two spatial dimensions. Each particle carries a
label indicating the anyon type; for example, in the Ising
theory, these labels are I, σ, and ψ . Consistency requires
that bringing two point particles together results in another
point particle—a process known as fusion. Possible fusion
outcomes of particles with labels a and b are described by
the fusion rule

a × b ¼
X
c

Nc
abc: ðA1Þ

Here, Nc
ab are integers denoting the number of ways in

which a and b can fuse to c. For simplicity, we assume that

all the Nc
ab are either 0 or 1 (as is the case with the Ising

theory).
All physical processes in the anyon model can be

represented diagrammatically. The diagrams are given by
world lines that track the particles’ positions as a function
of time, with each world line labeled by the corresponding
anyon type. States are represented by terminating the
particle world lines at some constant time slice. A fusion
process corresponds to a trivalent vertex in a diagram, at
which two particles coalesce into a third; the labeled
vertices must be compatible with the fusion rules given
in Eq. (A1). And a closed diagram represents an amplitude
for a given process.
Many processes can generate the same particles at

identical positions—yielding states that live in the same
vector space and are hence related by a unitary trans-
formation. We encountered one example in Fig. 6, where
the right path initializes four Ising anyons into the state
j012; 034iwhile the left path initializes the same anyons into
the state j014; 023i ¼ ðj012; 034i þ j112; 134iÞ=

ffiffiffi
2

p
[recall

Eq. (15)]. The latter expression reflects the nontrivial linear
relations between quantum states in different “fusion
channels.” (For an explicit computation of the linear
relations, see, for example, Sec. III B 2 of Ref. [38]).
Diagrammatically, these unitary transformations are

given by linear relations on the diagrams. The two
fundamental relations are so-called R and F moves. R
moves relate diagrams with braiding to those without, while
F moves linearly relate the state found from a single
particle splitting into three particles in two distinct ways:

ðA2Þ

The diagram on the left shows one d particle splitting into
an x and c particle, followed by x splitting into a and b; the
one on the right shows a d particle splitting into y and a and
then y splitting into b and c. The matrix Fabc

d —known as an
F symbol—is unitary for an anyon model. Self-consistency
of the theory strongly constrains the F and R moves. The
mathematical structure governing this theory is known
to be a unitary braided modular tensor category; see
Refs. [114,115] for excellent expositions of this structure
and how it relates to anyons.
We now discuss the nontrivial fusion-rule protocol (left

path of Fig. 6) in the context of a general anyon model. The
diagram corresponding to the initialization appears on the
left side of Eq. (A3). First, we create two particles a and ā
out of the vacuum and fix their position far from one
another. In Fig. 6, this step nucleates Majorana zero modes
γ1;4 at the outer ends of the nanowire. Next, we create two
more particles b and b̄ out of the vacuum in some other
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region far from the a and ā particles. In Fig. 6, this
corresponds to nucleating the zero modes γ2;3 located near
the nanowire’s center. The nontrivial fusion rules reveal
themselves when we fuse the left and right pair of anyons
and measure the charge. In terms of diagrams, this means
we measure in the basis shown on the right side of

ðA3Þ

The norm square of the coefficientsCx gives the probability
of a particular fusion process. For our fusion rule protocol
we have a ¼ b ¼ ā ¼ b̄ ¼ σ, and we measure in the basis
x ¼ I, ψ . The coefficients Cx are related to the F symbols
since

ðA4Þ

The diagram on the right further relates to Eq. (A3) by
pulling the b line past the bottom vertex and moving it over
so that it fuses with a. Generically, moving a line in this
fashion results only in an extra phase [116]. We therefore
obtain jCxj2 ¼ jðFbb̄ ā

ā ÞIx̄j2. Setting a ¼ ::: ¼ σ yields
jCxj2 ¼ 1=2 for x ¼ I or ψ. In other words, the equal
measurement probabilities for even- and odd-charge states
in the nontrivial fusion-rule protocol, deduced from a
different viewpoint in Sec. III, can be interpreted as a
direct measurement of the absolute value of certain F
symbols in the Ising theory.
Since the measurement reads off only the absolute value

of these F symbols, we can reinterpret this experiment in a
different, somewhat more fundamental way. The particular
matrix elements it measures can alternatively be inferred
from the relation

ðA5Þ

Here, dx is the so-called quantum dimensions of particle
type x—which can be inferred directly from the fusion
rules of the theory. The quantum dimension dx is the
dominant eigenvalue of the matrix ½MðxÞ�ab ¼ Na

xb, and
physically represents the Hilbert space dimension per
particle. Using Eq. (A5) one can predict the probabilities
associated with charge measurements on each island, which
are given by

jCxj2 ¼ jCx̄j2 ¼
dx

dadb
Nx

ab; ðA6Þ

knowing only the fusion rules and no other information
from the anyon theory. Inserting the known quantum
dimensions for the Ising theory, dI ¼ dψ ¼ 1 and
dσ ¼

ffiffiffi
2

p
, we recover equal measurement probabilities of

1=2 for each fusion channel. In this sense, our proposed
experiment indeed directly probes the Ising-anyon
fusion rules.

APPENDIX B: LEVEL STRUCTURE
AND CHARGE SCREENING BY

SUPERCONDUCTING JUNCTIONS:
ROLE OF BARRIER TRANSMISSION

Within our approach, manipulation of topological super-
conductors and Majorana zero modes relies critically on
efficient gate control over Josephson junctions bridged by
nanowires (see, e.g., Fig. 3). Josephson coupling in these
setups has a slightly different physical origin compared to
conventional SIS junctions typical for superconducting
qubits [52]. Junctions in the latter context host many
channels with low transmission probability, so that
Josephson coupling can be well modeled with a simple

VSISðφ̂Þ ¼ −EJ cos φ̂ ðB1Þ

potential. We expect that gating in our nanowire devices
instead opens a few channels tunable to the regime of large
transmission probability (cf. Refs. [39,40]). Consider the
single junction shown in Fig. 1, which we modeled in
Sec. II with a phenomenological Hamiltonian of the form

H ¼ ECðn̂ − n0Þ2 þ Vðφ̂Þ; ðB2Þ

Vðφ̂Þ ¼ −NΔ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Tsin2ðφ̂=2Þ

q
; ðB3Þ

where in the second line we assume for simplicity that all N
channels have identical transmission probabilities Ti ¼ T.
The goal of this Appendix is to contrast the low-lying level
structure and screening effects obtained with the standard
VSIS potential and that in Eq. (B3). We focus on the
Josephson-dominated regime throughout.
As noted in the main text, Eq. (B3) in fact reduces to VSIS

in the T ≪ 1 limit (up to a constant) with

EJ ¼ NΔT=4: ðB4Þ

For large transmissivity, however, quantitative deviations in
the energy spectrum clearly arise for the two cases. One can
anticipate some nontrivial T dependence from the plots of
VðφÞ (normalized by EJ) shown in Fig. 12, which illustrate
“stiffening” of the potential at larger T. (Equivalently,
larger T potentials are softened, relative to a parabolic

DAVID AASEN et al. PHYS. REV. X 6, 031016 (2016)

031016-22



extrapolation, to a lesser degree than a simple cosine.) We
argue that these differences are, nevertheless, qualitatively
rather minor for our purposes and can be reasonably
neglected given the rough phenomenological modeling
that we employ.
First, we stress that we are interested exclusively in

ground states and low-lying excitations. These low-energy
states can be well captured by taking a harmonic approxi-
mation for Eq. (B3) and expanding about φ̂ ¼ 0:

Vðφ̂Þ ≈ EJ

2
φ̂2: ðB5Þ

This is precisely the same small-φ̂ dependence obtained
by expanding VSIS. Within this rough approximation the
two potentials thus yield identical harmonic-oscillator-like
spectra with energy levels

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJEC

p
ðnþ 1=2Þ; n ¼ 0; 1; 2;…; ðB6Þ

as discussed in Ref. [52] and sketched in Fig. 2(a). The
coupling EJ of course varies with transmission T through
Eq. (B4), but splitting between the ground state and first
excited state is simply given to a good approximation
by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJEC

p
for any T between 0 and 1. We verified this

behavior by simulating the Hamiltonian with the exact
potentials numerically.
In the harmonic treatment above, the ground state

exhibits an exact twofold degeneracy consisting of even-
and odd-parity states; moreover, the energies are indepen-
dent of the gate-tuned offset charge n0 in Eq. (B2). We turn
now to the full anharmonic potentials. Anharmonicity both

lifts the exact degeneracy and causes the energies to
disperse with n0, as depicted in Fig. 2(a). Let us focus
on the even-parity ground-state sector and consider the
energy difference

ΔEmax ≡maxE0ðn0Þ −minE0ðn0Þ ðB7Þ

between the maximal and minimal ground-state energies
E0ðn0Þ obtained upon varying the offset n0. Note that
ΔEmax is equivalent to the maximal degeneracy splitting
between even- and odd-parity states [recall Fig. 2(a)] and is
thus particularly important for this work.
The energy ΔEmax is closely connected with the prob-

ability for phase slips φ → φþ 2π that tunnel through
maxima of the potential barrier in Fig. 12 [49]. Since
increasing T “stiffens” the confining potential (in units of
EJ), we expect the maximal degeneracy splitting to be
parametrically further suppressed as T → 1. For the
Josephson-dominated limit EJ=EC ≫ 1 considered here,
we can compute ΔEmax for general T using the same WKB
approach [117] as for the cosine potential VSIS valid at
T ≪ 1 [52]. The result takes the form

ΔEmax ¼ αðTÞEC

�
EJ

EC

�
3=4

e−βðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
8EJ=EC

p
: ðB8Þ

For T ≪ 1, we have β ¼ 1 [52], whereas in the opposite
limit of T ¼ 1, we find a mild enhancement to β ≈ 1.17; the
prefactor α is also slightly reduced for increased T. Direct
numerical simulations of Eqs. (B2) and (B3) validate this
analysis (for simulation details, see Ref. [73]). Increasing T
at fixed EJ thus reduces the degeneracy splitting, consistent
with the above intuition. This observation justifies our use
of the simpler potential VSIS to conservatively estimate the
degeneracy splittings and related time scales in Sec. III B 2.
Despite the quantitative differences highlighted above,

suppression of charging effects is qualitatively the same for
a junction with either many channels of low transmission or
a few channels with large transmission. Overall, the physics
is that, at least within the model we use here, the super-
conductor cannot screen charge perfectly because of its gap
ðEJ ∼ ΔÞ, in stark contrast to a normal conducting Fermi
sea. It should, however, be noted that this analysis does not
include all renormalization effects close to perfect trans-
mission—see also Ref. [75].
It would be quite interesting in future work to analyze the

degeneracy splittings, and junction properties more gen-
erally, in a microscopic description that more faithfully
captures details of our mesoscopic-island setups. It remains
an open question how to describe the junction in the limit
where the charging energy EC is not small compared to Δ;
the Josephson energy may then cross EC when the trans-
mission probabilities are not small, in which case the
charging energy can no longer be treated as a perturbation.

FIG. 12. Potential VðφÞ from Eq. (B3), normalized by EJ
defined in Eq. (B4), at three different transmissions T. At
T ≪ 1, the potential recovers the usual cosine form familiar
from standard SIS junctions, while larger T stiffens the potential
compared to this case. Such stiffening yields relatively minor
qualitative effects on the low-lying level structure and charge
screening for the junction, even at perfect transmission
where T ¼ 1.
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APPENDIX C: TOPOLOGICAL QUBIT
RELAXATION TIME T1

To estimate the topological qubit’s T1 time, we invoke
several simplifications. First, we continue to use the two-
level qubit Hamiltonian in Eq. (25) to treat fluctuations that
produce relaxation. Thus, we incorporate only classical
noise. This assumption confines our analysis of T1 to the
regime where the qubit frequency ω0 is small compared to
temperature [118], which is actually quite reasonable given
its exponential suppression. (One should at least expect
ℏω0 ≲ kBT experimentally; see Sec. III B 2 and Ref. [26].)
Second, we neglect fluctuations in the σz coupling
and simply set hzðtÞ ¼ ℏω0=2, since fluctuations in hz
are more important for dephasing than relaxation. Third,
we retain only the random part of the σx coupling, taking
hxðtÞ ¼ δhxðtÞ, where δhxðtÞ satisfies Gaussian correlations:

hδhxðtÞi ¼ 0; hδhxðtÞδhxðt0Þi ¼ Sxðt − t0Þ: ðC1Þ

Assuming again 1=f noise, we take

SxðωÞ ∼
ðΔEx

typÞ2
jωj ; ðC2Þ

with ΔEx
typ the typical fluctuation amplitude in the σx

coupling. The uniform part of hxðtÞ is neglected since it
only produces oscillations on top of the decaying signal
obtained in Eq. (C5). And finally, we treat the noise
perturbatively, i.e., ΔEx

typ ≪ ℏω0—a quite reasonable
requirement when the middle valve in Fig. 9(a) is maximally
closed.
With these simplifications, time-dependent perturbation

theory [118] gives the following noise-averaged transition
rates (probability per unit time) between the j0i and j1i
qubit states:

Γ1→0 ¼ Γ0→1 ¼
Sxðω0Þ
ℏ2

: ðC3Þ

Note that equality of the two transition rates follows
because the noise is classical and thus satisfies
SxðωÞ ¼ Sxð−ωÞ [which reality of δhxðtÞ guarantees].
The equilibrium populations w0;1 of j0i and j1i are then
equal. Indeed, invoking detailed balance relates these
populations to the transition rates according to

w0

w1

¼ Γ1→0

Γ0→1

¼ 1: ðC4Þ

This is why our classical-noise assumption effectively
restricts our treatment of relaxation to the limit
ℏω0 ≪ kBT, as remarked earlier.
Suppose now that one prepares the qubit into state j0i at

time t ¼ 0. The probability of measuring the qubit in state
j1i at a later time t is then given by

h ~PðtÞi ¼ 1

2
ð1 − e−t=T1Þ; ðC5Þ

with relaxation time [118]

T1 ¼
1

2

1

Γ0→1

¼ 1

2

ℏ2

Sxðω0Þ
∼

ℏ2ω0

ðΔEx
typÞ2

: ðC6Þ

We thereby obtain the ω0 dependence quoted in the main
text. The connection between fluctuations and time-
averaged quantities for the topological qubit correspond-
ingly establishes the unconventional scaling relation
between T1 and the dephasing time T2 provided in Eq. (33).
Note that, as with T2, the precise form of T1 clearly

depends on details of the noise model. Nevertheless,
some nontrivial dependence on ω0 is all that we require
to nontrivially link the qubit coherence times. The
dependence of T1 on ΔEx

typ, on the other hand, is more
straightforward: 1=T1 ∝ ðΔEx

typÞ2 independent of noise
model, by the very general Eq. (C6). According to
Eq. (20), we expect ΔEx

typ ∝ e−W=ξU , where ξU is the
decay length of the Majorana wave functions into the
region of width W separating the islands. One can tune ξU
by modulating the middle valve in Fig. 9(a) to exper-
imentally probe the dependence of T1 on ΔEx

typ, which
would certainly be worthwhile as a further quantitative
qubit characterization. We caution, however, that such
an experiment does not by itself provide evidence for
topological protection. Indeed, the same exponential
dependence predicted for ΔEx

typ would appear for the
conventional Andreev qubit in Fig. 9(b). Sharp distinc-
tions instead follow through the dependence on ω0 noted
above and in the main text.
Generally speaking, our treatment of qubit decoherence

times T1 and T2 is meant to highlight universal aspects of
the physics, as is the theme for much of the present work.
We leave for future work a more microscopic treatment of
relaxation processes relevant to our putative topological
qubit, including consideration of quantum mechanical
properties of specific noise sources.
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