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Natural and man-made transport webs are frequently dominated by dense sets of nested cycles. The
architecture of these networks, as defined by the topology and edge weights, determines how efficiently the
networks perform their function. Yet, the set of tools that can characterize such a weighted cycle-rich
architecture in a physically relevant, mathematically compact way is sparse. In order to fill this void, we
have developed a new algorithm that rests on an abstraction of the physical “tiling” in the case of a two-
dimensional network to an effective tiling of an abstract surface in 3-space that the network may be thought
to sit in. Generically, these abstract surfaces are richer than the flat plane because there are now two families
of fundamental units that may aggregate upon cutting weakest links—the plaquettes of the tiling and the
longer “topological” cycles associated with the abstract surface itself. Upon sequential removal of the
weakest links, as determined by a physically relevant edge weight, such as flow volume or capacity,
neighboring plaquettes merge and a new tree graph characterizing this merging process results. The
properties of this characteristic tree can provide the physical and topological data required to describe the
architecture of the network and to build physical models. The new algorithm can be used for automated
phenotypic characterization of any weighted network whose structure is dominated by cycles, such as
mammalian vasculature in the organs or the force networks in jammed granular matter.
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I. INTRODUCTION

Complex networks are a pervasive presence in both
modern technology and the natural world, with examples as
widely varied as transportation networks, the internet,
mammalian vasculature, the neuronal connections in the
brain, load-bearing architecture, river deltas, venation in
plant leaves, and even slime molds. Driven largely by the
explosion in importance of the world wide web, academic
interest in the associated study of complex networks has
risen in prominence as well in recent years, with the
introduction of important new classifying ideas such as
“small-world” [1] and “rich-get-richer” [2] network topol-
ogies. Inspired by the anything-goes hyperlinked structure
of the internet itself, many of these studies concentrate only
on the topological and graph-theoretic properties of general
classes of complex networks with unrestricted node degree.
On the opposite end of the spectrum from these hyper-

linked networks are those systems which naturally live in
two dimensions, such as river deltas or plant-leaf venation.

By virtue of their embedding in low-dimensional space,
these networks necessarily feature restricted degree distri-
butions where each node connects to a specified number of
neighbors, in contrast to more general, abstract networks.
Much recent work has also served to elucidate matters here
as well, from a comprehensive sedimentary modeling of the
river delta structure and evolution [3,4] to the construction
of a hierarchy-sensitive and geometry-independent topo-
logical characterization of the plant leaves [5–7]. Other
methods that rely on local geometric cues to characterize
leaves, road networks, and crack patterns [8], or topological
characterization of networks of epithelial contacts [9], have
also been explored.
However, there is an important class of complex net-

works that lie somewhere in between these two extremes,
sensitive to geometric embedding in space and equipped
with restricted degree distributions, yet too complex in
structure to live entirely in the plane. This intermediate
class has seen relatively fewer recent advancements, with
most activity centered around mapping and descriptive
efforts of certain functionally relevant network phenotypes
[10,11], though even simple vascular cartography is fraught
with difficulties at the mesoscale. Several members of this
intermediate class are networks where a deeper under-
standing would have far-reaching biomedical implications,
such as vascular or neural nets, so the impact of a proper
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tool to characterize them would be immense, opening the
door to predictive modeling of function and disease-
process-driven malfunction [12]. Furthermore, powerful
and effective quantitative descriptors are a necessary first
step to both disentangling the network architecture’s
role during development—of itself and the surrounding
tissue—and to advanced, three-dimensional artificial organ
synthesis.
The idea behind our cycle-hierarchy sensitive charac-

terization is based on one of the recent methods developed
to describe distribution networks in two dimensions [5,7]—
where adjacent cycles in the network are allowed to
sequentially merge into larger and larger cycles. The order
of merger and relative location of these cycles can be
mapped onto a bifurcating tree graph, and a number of
simple statistical measures of this tree are then easily
accessible and contain information about the original
network. For a distribution network—or, more generally,
any weighted network—that lives in three dimensions,
however, we are presented with an imposing hurdle at the
very beginning of the process: What does it mean for two
cycles to be adjacent? Our method solves this question by
imagining that the network lives on a topologically non-
trivial surface in space and represents an effective tiling
of that surface, from which cycle adjacency and the rest of
the prescription from the two-dimensional case naturally
follows.
We begin in Sec. II with a quick primer and refresher on

some classical results of graph theory necessary to under-
stand the core of our algorithm. We then lay out the
machinery of our characterization and quantification algo-
rithm in Sec. III, and we use it on several examples of
abstractly interesting or physically relevant surrogate net-
works in Sec. IV. We discuss implications and future
directions in the concluding Sec. V.

II. BRIEF GRAPH THEORY REFRESHER

In the interest of providing a quick reference and
explanation of some of the classical graph theoretic con-
cepts integral to this work, this section covers the concepts
of a graph’s cycle space and graph embeddings and genus.
This section is intended as a simple review; a reader
comfortable with these topics should feel free to skip
ahead. Our new cycle-coalescence algorithm is presented in
Sec. III.

A. Cycle space

Since our ultimate target is to construct a characterization
of cyclic paths in distribution networks, it will be helpful to
make contact with the mathematical structures that cycles
in a graph may be endowed with. For the remainder of this
work, we assume that all graphs are simple graphs; i.e., no
pair of vertices may be directly connected by more than one
edge. Given such an arbitrary graph, it turns out that the

superset of all cyclic paths without repeated traversal of the
same edge can be thought of as a vector space, known as the
cycle space [13]. In this formalism, the individual elements
(i.e., the “vectors”) are sets of cyclic paths represented as
the entire graph, with each edge assigned a 0 if it is not
traversed in a cycle and a 1 if it is. The dimensionality of
this vector space is accordingly less than the number of
edges in the graph. The vector addition is defined as a
simple edgewise addition of the graph representatives for
each vector being added. Furthermore, the cycle space in its
simplest form is defined over Z2, so if an edge is used in
each member of the binary summand it is not used in the
sum. Thus, for example, if one were to add two adjacent
cycles in a graph, the result would be the larger, boun-
dary cycle.
Why do elements defined on a graph in this way,

equipped with this addition rule, constitute a vector space?
Much of this is down to the simplicity of working over
Z2—scalar identity, compatibility between the multiplica-
tion and addition in Z2, and distributivity of the scalar
multiplication with respect to both the vector addition and
the field addition all follow trivially from Z2’s simple two-
element structure. Meanwhile, the associativity and com-
mutativity of vector addition are satisfied by construction,
leaving only the specification of an identity element and
inverse elements under the vector addition for any member
of the vector space. Clearly, a graph adorned with zeroes on
every edge, a null cycle, is the appropriate identity vector.
Again appealing to the simplicity of Z2, it is clear that every
vector in the cycle space is its own inverse since each edge
with a zero will remain zero and each edge with a 1 will be
set to zero upon the addition of a vector to itself. Note that,
further owing to that same simplicity of working over Z2,
the cycle space is not equipped with an inner product.
Having established that the cycle space is truly a vector

space, it is a natural next step to discuss some of its relevant
properties. As all vector spaces must be, the cycle space is
equipped with a basis, and as it happens, there also exists a
convenient way to generate such a basis. By choosing any
spanning tree—a subgraph that contains every vertex but
no cycles [14]—on the graph and adding a single further
edge to the tree, one sees that precisely one cycle is created
by the union of the spanning tree with the chosen extra edge
after pruning all extraneous tips (or “leaves”) left over from
the spanning tree. Furthermore, choosing a different extra
edge produces a different cycle. The set of all cycles created
in this way constitutes a basis for the space [15]. Clearly, if
one had chosen a different spanning tree to begin this
process, then a different basis would result, but despite the
large number of spanning trees available for an arbitrary
graph—typically exponential in the number of vertices and
possibly worse [15]—bases generated in this way are
referred to as fundamental cycle bases [13] and are actually
quite special and in some cases comprise only a small
portion of the total number of possible bases. Note that this
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procedure provides a direct way to compute the dimension
of the cycle space: For a graph with v vertices and e edges,
a spanning tree must use precisely v − 1 edges, leaving
e − vþ 1 edges to create the fundamental cycles. Hence,
the dimension of the cycle space for an arbitrary graph
is e − vþ 1.
Furthermore, among this massive collection of possible

bases for the space, one may look for special bases that
optimize certain simple properties. For example, there
exists a minimum weight basis that contains the collection
of basis vectors whose combined sums over the edge
weights is as small as possible. In the event that every
edge is simply assigned a weight of 1, then the minimum
weight basis corresponds to the basis that collectively uses
as few edges as possible. This particular minimum weight
basis suggests a connection to tilings—if a graph is a
simple tiling of the plane, such as a checkerboard, then it is
likely that not only is the set of individual tiles a basis for
this graph’s cycle space but that the basis is minimum
weight in the way described above. There is one subtlety
here that must be pointed out, however—if the boundary
cycle (i.e., the cycle that remains upon summing all the tile
basis vectors) has fewer edges than one of the actual tiles,
then it is included in the minimum weight basis in the place
of the largest tile. There is a well-defined sense in which it
is actually more appropriate to think of these plane tilings
as tilings of the sphere instead, wherein the boundary cycle
is just another tile. In this setting, the minimum weight
basis is exactly the set of all the tiles but the largest. To push
this analogy further, though, we must first confront the
separate subject of graph embeddings.

B. Graph embeddings

As outlined above, certain special graphs may be thought
of as tilings of the plane. This occurs when a graph may be
represented in the plane without any edges crossing one
another; graphs that have this property are known as planar
graphs. All representations of a planar graph do not
necessarily sit in the plane without edge crossings—just
one such representation will suffice. As an example, the
complete graph on four vertices, K4, is not embedded in
the plane in its most traditional representation, but it is
planar nonetheless [see Fig. 1(a)]. A randomly chosen
graph with many vertices, however, is vanishingly unlikely
to be planar [16]—indeed, one only needs five vertices for
nonplanar graphs to begin to appear as K5 is one such, and
they rapidly dominate as more vertices are added.
On the other hand, all graphs may embed into space with

no edge crossings. The simplest way to see that this is true
is through a process known as the book embedding [17]:
Imagine placing all vertices on a line in space, to be thought
of as the spine of an open book. Then every edge may be
placed by connecting its two end-point vertices without the
possibility of intersecting any other edge if each edge has
an (infinitely thin) page of the book to itself. Since such an

embedding is always possible, it follows that embedding a
graph without edge crossings on a complicated surface is
also always possible—simply construct a surface with
characteristic distances smaller than the vertex separations
and follow the edges of the book embedding. This surface
is, of course, extremely complicated, with genus, g—the
number of “holes” or “handles” in the surface—of order the
number of edges in the graph. However, since a graph may
always sit in a surface in space, it is well defined to ask
what the simplest (i.e., lowest genus) surface is that can
accommodate an embedding of a particular graph. As an
example, consider again the simplest graph that is not
planar, K5—as shown in Fig. 1(b), this graph can be
represented without edge crossings on a torus.
Unfortunately, in general, the problem of determining
the graph genus for an arbitrary graph is NP hard [18].
However, the existence of a simplest topological surface on
which a graph may be thought to tile is all that is needed to
proceed.
Since planar tilings represented a simple example in the

previous discussion of the cycle space, it is worth pointing
out what happens in the more general, nonplanar case. As
just discussed, every graph may be represented as a tiling
on a surface of some genus, and clearly, a minimum weight
basis on the edge count must at least include all the tiles
(except the largest one, for the same reasons as above). But
is there anything new? We know that the number of
elements of the basis must be e − vþ 1, and we also
know that the number of elements that came from tiles is

(a)

(b)

FIG. 1. Some simple examples of graph embeddability, both
planar and otherwise. (a) The complete graph on four vertices,
K4, is not embedded in the plane in its most traditional
representation (left) but is planar nonetheless (right). (b) The
complete graph on five vertices, K5, is not planar (left). However,
this graph can be represented without edge crossings on a
torus (right).
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f − 1 for a tiling with f faces or tiles. Putting these two
facts together with the formula for the Euler character in
terms of the genus, v − eþ f ¼ 2 − 2g, yields a clear
overage due to the topology:

e − vþ 1 ¼ ð2gÞ þ ðf − 1Þ: ð1Þ

Indeed, the promotion of the embedding surface to one with
genus necessitates some new basis elements: the generators
of the fundamental group of the surface [19,20], which
encodes the contractibility of families of paths on the
surface. There are precisely 2g such generators (see Fig. 2).
As can be seen by inspection of Fig. 1(b) or 2, no sum of the
simple tiles can give a (single) cycle that winds across one
of the two periodic boundaries, and yet these cycles clearly
exist in the graph, so the cycle basis must generate them
somehow. The inclusion of these new elements resolves
this issue.
We therefore expect our cycle basis to consist of f − 1

tiles and 2g topology generators. For graphs that can be
embedded on toroidal surfaces with “fat” handles, the sum
of edges of the 2g topology generators should all be greater
than the sum of edges of the tiles, thus allowing us to easily
identify the tiles from the generators. However, such a clear
size separation of the tiles and generators is not always
guaranteed: Otherwise, direct reconstruction of the graph
embedding would be possible in polynomial time. We
construct our algorithm and discuss some of the expect-
ations and statistics related to this nonguarantee and the
corresponding ability to extract information without explic-
itly constructing the embedding in the next section.

III. CYCLE-COALESCENCE ALGORITHM

We now describe how the vectors of the minimal basis
are hierarchically added by the cycle coalescence

algorithm. The algorithm consists of three separate parts
and eventually generates a characteristic, linkage tree. We
assume that the networks that are being analyzed have no
loops (edges that terminate at the same node), double edges
or bridges, i.e., that they constitute simple graphs that are at
least 2-connected.
First, we describe how to obtain the minimum weight

basis over the edge count of the unweighted graph, here-
after termed “minimal basis” to avoid confusion. Second,
we show how to sequentially merge the identified tiles and
construct the characteristic tree. Last, we discuss various
metrics one can use to describe the structure of the
characteristic tree, and what these metrics mean for the
architecture of the original graph.

A. Finding the minimum weight cycle basis

There are a number of polynomial time algorithms that
can be used to construct the minimum weight basis [21].
Starting from an arbitrarily chosen node in the unweighted
network, we find the minimal spanning tree—equivalent to
executing a breadth-first search over the graph—and
determine the fundamental cycle basis associated with that
node. We repeat for every node of the network, in this way
generating a set S containing all the unique vectors of the
fundamental cycle bases associated with each node. We sort
the set S based on vector size in an ascending order and start
building a minimal basis B bottom up, by sequentially
adding vectors from smallest to larger. When two vectors in
S are degenerate, their respective order in the sorted set is
determined at random. Before any vector bi is added to B,
we check if that vector is linearly independent from the
vectors already added to the set. If the vector depends
linearly on the vectors already added to the set, that vector
is discarded and the next vector biþ1 is checked for linear
independence. The set B closes and becomes a real basis
when no new vector can be added. However, we do not
need to check every vector in S—we know that the number
of elements in the basis is e − vþ 1, so the search is
terminated when the cardinality of B becomes e − vþ 1.
Examples of fundamental basis vectors in S and minimal
basis vectors in B can be seen in Figs. 3 and 4(a). In the case
of degeneracies, i.e., the existence of more than one
minimum basis, the output minimum basis might be
dependent on the chosen algorithm. However, the statistical
properties of the final characteristic tree are generally
robust and, with the exception of some singular cases,
do not depend sensitively on the exact basis. Furthermore,
we expect that most of the degeneracy will be confined to
cycles representing topology generators not tiles, further
minimizing their impact on the final output.

B. Constructing the characteristic tree

The minimum weight basis B contains only topological
information of the original graph, as in constructing B we
ignored the weights of the individual edges. The cycle

FIG. 2. Tiles and topological cycles of a square lattice on a
toroidal topology (g ¼ 1). Opposite sides of the lattice are
identified as shown.

MODES, MAGNASCO, and KATIFORI PHYS. REV. X 6, 031009 (2016)

031009-4



coalescence algorithm integrates the structural information
carried by the edge weights in the construction of the
characteristic tree. The algorithm begins with a set of vectors
Biter identical to the basis B. The set Biter will be updated
(vectors added and removed) throughout the algorithm.
To begin, we identify the edge ei of the graph with the

smallest weight. We then locate the basis vectors fbkg in
Biter that contain that edge. An example is shown in
Fig. 5(a), where basis vectors BEFC, BEHA, and BEHG
all pass through edge BE. The two shortest vectors that
contain that edge are added as described in Sec. II, creating
a new cycle. As described below, this choice will sta-
tistically preferentially merge tile cycles over generator
cycles, creating a steadily ever-more coarse-grained tiling
of the abstract surface. This new cycle is added to Biter, and
the two original vectors are removed. In our implementa-
tion, degeneracies are again resolved here by random
choice within the degenerate vectors. In Fig. 5(a), the
addition of BEFC and BEHA results in the cycle
FCBAHEF, color-coded in green. The algorithm proceeds
by identifying the next smallest edge that is utilized by at
least two vectors in Biter and iteratively repeating the
process until there is only one cycle left, as in the bottom
of Fig. 5(a).

This cycle-coalescence algorithm can be represented
with an unweighted, bifurcating tree whose nodes represent
cycles of the original graph and the links connect cycles
that are connected via cycle addition operations. In par-
ticular, the basis vectors in the initial set B are the leaf
(terminal) nodes of the tree, represented by the six nodes on
the top-right panel of Fig. 5(a). When two cycles are added,
they result in a new cycle, represented by their parent node
in the bifurcating tree. Hierarchically joining the cycles
based on the sort order of the edges thus results in a tree
whose bifurcation statistics capture the structure of the
nested cycles of the network. An architecture dominated by
highly nested cycles will produce a close-to-perfect binary
tree, whereas a more disordered architecture will produce
an asymmetrical tree [22].
The information encoded in this characteristic tree does

not depend on the geometric location of the nodes nor the
exact value of the edge weights; it only depends on the
network connectivity and sort order of the edge weights. In
fact, as shown in the example of Fig. 5(b), the characteristic
tree is invariant under any node movement or edge-weight
change (provided that the sort order is maintained). The
characteristic tree is thus an ideal tool to describe structural
information about the network not captured by widely used
metrics such as edge-weight distributions or weighted or
unweighted degree distributions [23,24].
The computational complexity of the algorithm is

dominated by finding the minimum weight basis. An
optimized implementation is capable of running in poly-
nomial time Oðe2v= log vÞ.

FIG. 3. A graph embedded on a toroidal surface. Highlighted
are example basis vectors from (a) a fundamental cycle basis and
(b) a minimum weight basis. Red: Some representative tiling
basis vectors. Blue and green: Basis vectors that correspond to the
2g ¼ 2 generators of the fundamental group of the torus.

FIG. 4. (a) Graph embedded on a two-holed torus, schematic.
Periodic boundary conditions connect opposite sides of the
octagon. Highlighted are some example tiling basis vectors from
a fundamental cycle basis (magenta) and from the minimum
weight basis (red). The blue curve highlights one of the 2g ¼ 4
vectors in the minimal basis corresponding to the generators of
the fundamental group of the two-holed torus. (b) A 3D graph
with an unknown embedding. Identification of tiling versus
generator basis vectors is not straightforward anymore. High-
lighted with red and orange are two vectors in the minimum
weight basis that share an edge.
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C. Statistical arguments for the cycle-merger choice

In the above-described cycle-coalescence algorithm, we
have assumed that the appropriate choice of cycle space
vectors to merge upon the cutting of an edge in the graph is
simply the two shortest cycles by number of edges
traversed. The rationale for making this choice is that in
the abstract representation of the graph as a tiling of a
potentially complex surface living in three dimensions, we
desire to merge adjacent tiles rather than cycles that have
arisen because of the nontrivial topology of the surface. The
intuition is that, generically speaking, “real” tiles should be
shorter than cycles that traverse entire “handles” of the
surface, especially as the number of vertices in the graph
tends to infinity for controlled degree distributions. This
intuition can be made concrete in a statistical sense, but to
do so, we must consider how a basis vector of the cycle
space that arises from topology and not from tiling might be

shorter than one that represents a tile and how likely it is
that this occurs. In order to ensure that the graphs we
consider comply with the need for a controlled degree
distribution, we restrict ourselves in what follows to the
simplest such family: 3-regular graphs, where each vertex
joins three edges. Despite this choice, we do not lose much
for relevance, as nearly all biological and most physical
distribution networks are of this type or close to it with
scarce trifurcations or higher-order branchings, having
developed primarily through multiple stages of binary
branching and/or tip-to-channel reconnections [25].
Additionally, the form if not the specific detail of the
following arguments will apply to other families of graphs
with different, controlled degree distributions.
Before proceeding, it is useful to establish a “basal”

3-regular tiling from which we can explore more compli-
cated variants. We leave the genus of the surface, g, as a free
parameter. A tiling of such a surface satisfies the familiar
formula for the Euler character in terms of the genus
invoked earlier: 2 − 2g ¼ v − eþ f. Furthermore, for a
3-regular graph, v and e are related by e ¼ 3v=2. How
does the genus affect the average number of edges per tile,
jpj? Since every face shares each of its edges with another
face, we must have jpjf ¼ 2e, and hence,

jpj ¼ 6v
4þ v − 4g

: ð2Þ

It is therefore clear that so long as the number of vertices
in the graph is much larger than the genus of the tiled
surface, we may imagine our basal tiling as a simple
hexagonal net with a handful of isolated heptagonal
[necessary by Eq. (2) when g > 1] or pentagonal tiles
(when g ¼ 0) due to the topology of the surface. As an
aside, in the case of a spherical topology, this is the source
of the icosahedrally symmetric pentagonal defects one
encounters in, for example, viral capsids, fullerene, geo-
desic domes, and soccer balls [26]. Note that for a simple
toroidal topology with g ¼ 1, the basal tiling is a perfect
hexagonal crystal [Fig. 6(a)].
Having established our set of basal tilings, we must

consider the fundamental unit of perturbation away from
these tilings that still respects the topological relationship
discussed above. In particular, we may not freely insert tiles
with more or fewer sides than the average given the genus
and number of vertices—we must at least replace a pair of
hexagons from the basal tiling with a pair of polygons
whose total number of sides sums to 12 to ensure that we
satisfy the necessary jpj. A positive departure from
6-sidedness in this context is known as a negative discli-
nation defect and a negative departure as a positive
disclination defect. In this language, the necessary con-
dition of a perturbation is that it has no net disclination
charge. This condition is not, however, sufficient: A
disclination dipole produces a dislocation defect on this

FIG. 5. (a) Schematic of the cycle-coalescence algorithm
applied to a simple 3D graph. The cycle coalescence proceeds
from top to bottom. At each step, the next weakest link is cut, and
the two cycles that bordered that link coalesce into one. On the
right, we show the characteristic tree being progressively built,
with each node representing a cycle in the network. To aid the
eye, some cycles that participate at that stage of the algorithm
are highlighted in color, and the corresponding nodes of the
characteristic tree are correspondingly color-coded. (b) Schematic
of degenerate graphs that produce the same characteristic tree.
The cycle coalescence is blind to geometry and exact weights
of links.
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crystalline background, and since our tiling exists on a
compact, closed surface without boundary, it cannot escape
to infinity nor can it simply end on a boundary—it must be
terminated by a second disclination dipole. These con-
ditions together, that there is neither disclination nor
dislocation charge, are necessary and sufficient for the
production of a self-consistent perturbation. These pertur-
bations take the form of a disclination quadrupole, also
known as a T1 topological rearrangement [27] [Fig. 6(b)].
With our basal tilings and working perturbative units in

hand, we may now tackle the question before us: How can
the assumption that tiles are “shorter” than topological
cycles fail? One possibility is that one of the directions
around a handle is very short [Fig. 6(c)]. For fixed v, a
surface may be represented as a 4g-gon with appropriate
sides identified [28]. In the case in which all handles are of
the same thickness and length, this 4g-gon becomes
regular, with side lengths that scale as v1=2=g. Unless g
is very large relative to and scales linearly with v, the
number of cases where a shrinking handle is still “thicker”
than the circumference of a tile is of order v1=2, and hence a
problem of this type is encountered with likelihood that
scales as 1=v1=2. Note that an extrinsically growing genus
does represent a real issue here, and we conclude that our
algorithm is less likely to provide meaningful insight for

ordered structures with small, simple unit cells since the
genus in these cases is large relative to v and grows linearly
with the addition of further unit cells to the crystal.
Turning to our quadrupolar perturbations, we see that

another potential problem arises not when a handle
traversal becomes short but when a tile becomes large:
Condensation of one of the disclination charges upon
repeated perturbations can lead to a tile with a large number
of sides [Fig. 6(d)]. With f ¼ 2e=jpj faces in a 3-regular
graph, let us further assume that the genus is low enough
relative to v that jpj is near 6, in other words, that the basal
tiling is still a hexagonal net with sporadic heptagons. Since
we have already discounted very high genus scenarios
because of the above reasoning for handle thinness cases,
little more is lost here. With jpj ≈ 6, we have f ≈ v=2 and
e ¼ 3v=2. There are precisely as many T1 topological
rearrangements available as there are edges in the graph,
and those that increase the number of sides of a given tile
occur by selecting an edge that shares a vertex with the tile
but is not an edge for it. Since the graph is 3-regular, there is
only one such edge per vertex. Therefore, the number of
perturbations that increase the number of sides for a given
tile with p sides is simply p. Note that the same number of
perturbations exist that decrease the number of sides for
that tile. The likelihood of significant condensation is
clearly very low, occurring at a rate

Pðp ¼ N > 7Þ ∼ 2ðN − 1Þ!
6!ð3v

2
ÞN−7 ð3Þ

for magnitude N − 6 perturbations, and it may be safely
ignored.
Finally, there is the possibility that a handle experiences

varicosity. Unlike in the first case considered where the
handle thickness is simply too small across the entire
handle, when a handle experiences varicosity, the handle
thickness varies as a result of a condensation of like-
charged dislocation defects and becomes locally too thin as
a result [Fig. 6(e)]. L consecutive T1 events must occur in
exactly the right position—overlap of neighboring 5–7
pairs—simply to open up a single dislocation “scar” of
length L, with likelihood scaling as 1=vL. This must occur
several more times, and the opened scars must align, and
their projection onto the direction normal to the handle
traversal must result in concurrent overlap for there to be
any chance of generating a cycle shorter than the hexagonal
and heptagonal tiles that are the primary constituents of the
graph. This eventuality may be safely ignored, too.
Since, as we discuss in the following subsection, the

characteristic tree will ultimately be subject to its own
round of statistical analysis, there is even more built-in
statistical robustness than even the above arguments indi-
cate. Even if the characteristic tree fails to accurately
recapitulate the “true” tile coalescence pattern, this failure

(a)

(c)

(b)

(d) (e)

FIG. 6. (a) Honeycomb lattice on a toroidal topology. Opposite
sides are identified as shown. (b) T1 topological rearrangement
on a honeycomb lattice. (c) One-holed torus with a thin handle.
(d) A tile with a large number of sides as a result of condensation
of disclination charges. (e) Varicosity as a result of a condensation
of like-charged dislocation defects. Opposite sides are identified
as shown, resulting in the topology of a one-handle torus.
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will be isolated to a handful of specific nodes and will have
a minimal effect on statistical measures of the tree.

D. Quantifying the characteristic tree

The characteristic tree provides a convenient way to
analyze the architecture of a complex weighted network
that is composed of cycles. The topology of the character-
istic tree reflects the hierarchy of cycle nesting in the
original weighted graph. A detailed discussion on how
different tree bifurcation statistics map to various graph
architectures and how one can use the characteristic tree to
quantify the degree of nestedness of planar graphs and to
analyze their weighted topology can be found in Ref. [5]. In
summary, the more balanced (low height) the tree is, the
more highly nested the original graph. High weight cycles
are subdivided iteratively by smaller weight edge, creating
a cascade of hierarchically nested cycles. On the other
hand, high-height, unbalanced trees typically represent
graphs where smaller weight cycles are added sequentially
on the backbone of bigger cycles, creating an architecture
that is less hierarchically organized. Examples of graphs
with high hierarchical organization are shown on the left
columns of Fig. 7(a) (in 2D) and Fig. 7(a) (in 3D). For
comparison, on the right columns, we show graphs whose
cycles are not hierarchically nested.
To analyze the characteristic tree, we need to assign a

number to each tree architecture. There are several schemes
that have proven quite useful in quantifying several aspects
of the tree: Horton and Strahler numbers, the tree height,
etc. [29–31]. Each scheme has its advantages and disad-
vantages, and discriminatory power that focuses on differ-
ent aspects of the architecture. In this paper, we use an
adapted version of the partition asymmetry, as introduced
in Ref. [31]. The partition asymmetry is a metric that
characterizes the overall topological structure of a binary
tree and quantifies the difference in size (number of leaf
nodes) between the two subtrees that stem from a tree
vertex. We define the partition asymmetry aðjÞ of a
bifurcation vertex j as

aðjÞ ¼ sj − rj
sj þ rj − 1

; ð4Þ

with sj > rj and sj þ rj ≥ 2. The parameters rj and sj are
the degrees of the two subtrees at partition j. The degree of
a (sub)tree is defined here as the total number of the leaf
nodes (terminal segments) of that (sub)tree.
The partition asymmetry aðjÞ provides a number for

each vertex of the characteristic tree that quantifies the
degree of hierarchical organization in the loop nestedness
of the original graph. A tree that is balanced and corre-
sponds to a hierarchically nested graph will have many
low-asymmetry vertices. Conversely, a graph that is not
hierarchically nested will produce a characteristic tree with
many vertices that have high asymmetry. Thus, comparing

the distribution of partition asymmetries of two graphs can
be a metric on how statistically similar the architecture of
those two graphs is.
In order to characterize the architecture of the graph,

instead of pairwise comparison of asymmetry distributions,
we define the topological asymmetry A of a graph, by
measuring the percentage of vertices in the tree that have
asymmetry higher than 0.95,

A ¼ p½jjaðjÞ > 0.95�: ð5Þ

The higher the topological asymmetry of the graph, the less
hierarchically nested the graph is.
Each node in the characteristic tree represents a cycle in

the original graph, and the subtree that is rooted at that node
encompasses information about the architecture of part of
the graph “contained” in the cycle. The higher the degree of
the node in the characteristic tree, the bigger the part of the
graph represented in the subtree. Thus, as the tree contains
many more nodes far away from the root than close to it, the

(a)

(b)

FIG. 7. Average vein length versus topological asymmetry for
toy graphs in (a) 2D and (b) 3D.
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distribution of the partition asymmetry is dominated by the
architecture at the small length scales. There are many more
nodes close to the leaves of the characteristic tree, meaning
that any partition asymmetry average, unless weighted in
favor of high-degree nodes, will be dominated by the
architecture at the short length scale. If the architecture of
two graphs is statistically similar at small length scales, the
topological asymmetry A will not have enough discrimi-
natory power to distinguish them. We need a second
quantity that characterizes some of this missing
information.
The average vein length L is a topological length that

quantifies the average length of the “veins” in the weighted
graph (not the characteristic tree itself). It is calculated by
constructing trails where the edge weight declines mono-
tonically. Starting from an initial link e1 ≡ hi1j1i between
nodes i1 and j1 [first link of the trail t ¼ ðe1Þ], we identify
all the links feg that are adjacent to it (share the node i1 or
j1) and have weight smaller than or equal to the weight
wðe1Þ of edge e1. We choose the link with the maximum
weight from the set feg, which we will call e2, and add it to
the trail, which now becomes t ¼ ðe1; e2Þ. We now repeat
the process for e2 [identify all links that are adjacent to e2
with weight smaller than wðe2Þ and choose the maximum]
and iterate. The algorithm is stopped when the set of links
that have weight smaller than the weight wðekÞ of the last
link ek in the trail is empty. The length of the trail
t ¼ ðe1; e2;…; ekÞ associated with edge e1 is lðe1Þ ¼ k.
We repeat the process starting from every link of the graph,
in this way associating a trail length lðeÞ with every link e.
The average vein length is defined as

L ¼ 1

jej
X
e

lðeÞ: ð6Þ

Note that it is generally not the case that L and A may be
varied independently by picking edge weights “by hand,”
especially if the embedding structure is unknown.
To visualize the interpretation of the average vein length

L and topological asymmetry A, in Fig. 7 we present a
series of toy graphs occupying the corners of an L versus A
plot. Figure 7(a) presents the easier-to-visualize 2D planar
graphs, whereas Fig. 7(b) showcases some equivalent
examples of 3D graphs. Moving from left to right on the
x (asymmetry) axis, the nestedness of the cycles becomes
less pronounced. Moving from bottom to top on the y (vein
length) axis, long “highways” become more pronounced.
The top left graph is a highly nested and high-vein-length
graph, whereas the bottom right is a graph where the
weights have been distributed at random. We provide the
algorithm to extract the topological asymmetry and average
vein lengths for planar graphs in Ref. [32].
Here, we need to stress that the topological length L and

the topological asymmetry A are just two of the many ways
one can measure the architecture using purely topological

information. Equivalent choices could be weighted asym-
metries with weights that favor nodes close to the root of
the characteristic tree, for example—as pointed out above,
the statistical tools available for analysis of a tree graph are
manifold. The best choice can and should depend on the
nature of the data being analyzed.

IV. EXAMPLES AND SURROGATE DATA

To test our new characterization tool, we computer
generated a series of weighted networks produced by a
number of distinct generation protocols. We chose these
generation protocols so that the produced networks would
be statistically indistinguishable under many widely
used network metrics, to demonstrate the power of the
cycle-coalescence algorithm. We also chose generating
functions with some biological relevance to vascular net-
works. The degree of all the networks was strictly equal to
3, as would typically be the case in a natural transport
network—as pointed out above—such as plant or animal
vasculature [25].

A. Example networks

For our example networks, we considered two types of
underlying topologies. In the first, the graph, by construc-
tion, could naturally be embedded on a two-holed torus.
The original graph was produced by generating a regular
hexagonal grid on a plane, applying the appropriate
periodic boundary conditions to create a two-holed torus
and finally applying a random series of T1 transformations
to introduce lattice defects and randomize the graph. An
example is shown in Fig. 4(a).
In the second type, the graph was generated by pro-

gressively joining nearby nodes randomly scattered inside a
3D sphere so that each node has a maximum of three links.
To begin, we randomly distributed N nodes inside a 3D
sphere. We identify the node closest to the center of the
sphere, and we link it to the three closest nodes. We then
identify the nodes with number of neighbors between 1 and
2, identify the nodes with less than three neighbors that are
the closest to them, and join them. We iterate and terminate
the algorithm when no more links were possible (at most,
one node has degree 2). Links longer than 70% of the
network geometrical diameter were removed, and the
network was given a “haircut,” removing all bridges and
possible isolated components. Finally, any nodes k con-
nected only to two other nodes i and j were removed, and
the links hiki and hjki were replaced by a link hiji. Except
for the network haircut, the last few steps were meant to
simplify the graph without loss of generality. This algo-
rithm is meant to emulate the topology of the network that
grows and bifurcates from a central point, much like a
growing vascular network. An example of a network
produced with this algorithm is shown in Fig. 4(b). The
weight of the links in Fig. 4(b) has been assigned randomly.
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The genus 2 torus was intended as a test case of our
algorithm in graphs that are easily embeddable and where
the generator basis vectors are already known, whereas the
random 3D topology was intended as a test case for
naturally occurring graphs where typically the embedding
is not known. The size of the graphs generated by these
procedures fell into two classes: the 500 class (size ranging
fromN ¼ 478 to 538 nodes) and the 800 class (size ranging
from N ¼ 800 to 960 nodes).
We used three main generating functions to assign the

weights (in particular, the weight order) to the underlying
graph topologies. In the first function, termed “random” in
the following text, the weights are assigned at random [see,
e.g., Fig. 8(a)]. This random, high-disorder assignment was
intended as the baseline control case to compare against our
more ordered graphs.
For the second function, termed “lines” [Fig. 8(b)], we

aimed to emulate a weight distribution with some long-
range order, a distribution that would generate linear
segments randomly placed on the graph. The initial link
e0 is chosen at random and assigned the highest weight.
Starting from that link, we iteratively transverse a randomly
chosen trail on the graph, assigning weights in descending
order. When the trail reaches a node with outgoing links
that have all been visited and have assigned weights, the
trail terminates and a new trail is generated at another
randomly selected edge with unassigned weight. At the
initial stages of the weight assignment, trails terminate
mostly through self-intersections.
The third generating function was similar to the lines

model, with the addition of self-avoidance [Fig. 8(c)].
Namely, the tip of the growing trail cannot intersect the last
40 nodes added to the trail. In addition, in this model,
termed “self-avoiding (SA) lines,” we implemented a
length cutoff, and a trail can be at most 12 links long.

Last, we explored weight assignments produced by a
positive feedback adaptation algorithm described in
Ref. [33] as a more biologically relevant test case. For
more details about the adaptation algorithm, the interested
reader can consult Ref. [34]. For completeness, we briefly
describe the algorithm here and provide some further detail
in the Appendix.
In our adaptive model, each pair of vertices of the

network can act as a net current source and sink. The
network carries the load from the source to the sink, and
the conductivity of the links grows or shrinks according to
the average flow through them (the average is being
performed over all pairs of vertices that act as sources
and sinks). Starting from a random assignment of edge
conductivities, the networks evolve and finally converge to
a hierarchically organized architecture. This architecture
has been shown to be functionally advantageous as it
minimizes the weighted path length for all point-to-point
transit [33].
By appropriate nondimensionalization, we may reduce

the control parameters for our dynamical, adaptive system
to the load on the system, ϑ, and γ, the sigmoidal exponent
that controls the strength and sharpness of the feedback. In
the simulations shown in this work, the transportation load
is ϑ ¼ 10, and γ ¼ 0.3 (model termed “adapted 0.3”) and
γ ¼ 0.8 (model termed “adapted 0.8”). The underlying
topology was random, and the simulation was initialized
with various random conductivity value sets Cijð0Þ.

B. Tiles and generators

With this set of example networks in hand, we can
examine the correspondence between the generators of the
minimal weight basis and the “true” tiles of some simple
spatially embedded networks. In the case of networks with
a known topology, this correspondence is clear and exact,
with Figs. 9ða1Þ and 9ða2Þ showing, for a toroidal network,
the raw initial counts of the basis vector length and the
counts once the basis set has been rotated onto the minimal
weight representation, respectively. As expected, the topo-
logical basis elements are much longer than the tiles, and a
clear separation develops. A similar effect is observed for a
network embedded in a 2-torus [Figs. 9ðb1Þ and 9ðb2Þ].
In a complex embedded network with an a priori unknown
topology, however, the situation is not so clear cut. As
Figs. 9ðc1Þ and 9ðc2Þ demonstrate, a randomly embedded
3D network will have many generators that are clearly tiles,
but it may have no strong dividing line between the tiles
and topological basis elements. We will show in the next
section that even in this worst-case scenario, a great deal of
new information can be extracted from these networks with
our approach. Finally, in Figs. 9ðd1Þ and 9ðd2Þ, we show an
example of real data, drawn from a scale-free transport
network that we will discuss in Sec. IV D.
In order to better quantify the degree to which these

distributions can be used to unambiguously identify the

(a) (b) (c)

FIG. 8. Examples of different edge-weight assignment func-
tions on a two-holed torus. (a) Random. (b) Lines, no self-
avoidance. (c) Lines with SA. Note the high similarity between
(b) and (c).
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topological cycles versus the tiles, we combine Eq. (1) with
the relation jpjf ¼ 2e and arrive at an expression for jpj as
a function of v, e, and g:

jpj ¼ 2e
e − v − 2gþ 2

: ð7Þ

Since e and v for a given network are known (and
constant), we can sequentially remove more and more of
the longest cycles and compare pm, the average number of
cycles per basis element of the remaining set of vectors, to
the theoretical value given in Eq. (7), with g set equal to half
the number of cycles removed. As shown in Fig. 10, when
jðpm − pthÞ=pthj is equal to zero, then we have correctly
identified the tiles. In the cases where zero is never quite
achieved, such as the random 3D embedding, it is likely
that the minimum of jðpm − pthÞ=pthj is still picking most
of the correct topological cycles, but a small number of tiles
are larger than the smallest topological cycles and are
picked up by the simple procedure of removing longest
cycles first. Additionally, it can be the case that jpmj and

jpthj do not exactly match even when all cycles are
identified correctly. This possibility arises from the dis-
crepancy between the total set of faces, which enters jpthj
as f in the relation jpjf ¼ 2e, and the total set of (trial) tile
basis vectors used to calculate jpmj, which excludes the
single largest face but otherwise matches f. Again, we
stress that a fully reliable, exact procedure for separating
the tiles from the generators of the fundamental group is not
feasible; our method is capable of producing exact results
some of the time, and in the cases where it does not, it still
identifies many of the topological cycles correctly.

C. Quantifying the results

We applied the cycle-coalescence algorithm to the
example networks and calculated the topological asymme-
try A and the average vein length L, as described above. In
this section, we describe the results of the analysis and
demonstrate the power of the algorithm.
In Fig. 11, for random 3D spatial network topologies, we

plot the topological asymmetry A versus the average vein
length L for five different weight assignment models
(random, SA lines, lines, adapted γ ¼ 0.5, and adapted
γ ¼ 0.8). Each dot in Fig. 11 is a different realization of the
weight distribution and underlying topology generation
models. In all cases, the underlying graph topology was

FIG. 10. A comparison of pm, the observed average number of
links per cycle upon removing the Nt largest cycles from the set,
and pth, the theoretically predicted value for the given network
with genus g ¼ Nt=2. When jpm − pthj is identically zero, there
is an exact match between the removed cycles and the “true”
topological cycles. In cases where zero is not achieved, there is
some mixing of tiles and topological cycles somewhere in the
Nt-removed cycles. This mixing occurs statistically among the
smallest of the removed cycles. Even so, the minimum of this
value indicates that many of the cycles are identified correctly.
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FIG. 9. Raw, untransformed basis vector length counts (left
column, green histograms) and the result of rotating these vectors
onto the minimal weight basis (right column, orange histograms).
Histograms are shown for a network on a torus ðaiÞ, a network on
a 2-torus ðbiÞ, a network randomly embedded into space ðciÞ, and
a real transport network ðdiÞ.
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random, and the network sizes were from the 500 class. We
see that the topological asymmetry and underlying graph
topology can distinguish all the models except the adapted
0.8 and adapted 0.3. Surprisingly, the algorithm can even
distinguish the lines from the SA lines, two models that are
only subtly different [see Figs. 8(a) and 8(b). Note that A
alone would not be able to distinguish the lines model from
the random model. The frequent self-intersection of the
“veins” in the lines model create a nested cycle architecture
that is very similar to the random model at a local level.
However, examining L, a quantity that captures more long-
range information about the graph, we see that the two
models are clearly distinguishable. Note also that L alone
would not be able to distinguish the lines from the SA lines
model. In this case, the two models generate “veins” that
have approximately the same average length. However,
locally, the SA lines model is more highly nested as it lacks
the small cycles that are the results of self-intersections, and
the models generate different values for A. The random
model, having the edge weights assigned at random, lacks
any hierarchical organization and nested loops, and has
very short vein lengths, placing it at the bottom right of the
vein length–asymmetry plot.
Although the topological asymmetry and the average

vein length are generically size-dependent quantities, their
size dependence is not strong, at least for the models we
examined. In Fig. 12, we plot L and A for lines, SA lines,
and random models for the two size classes, 500 and 800.
The different size networks generated by the same weight
assignment function are indistinguishable, despite the
relatively large difference in graph size.
In all the above cases, the underlying network topology

was random. We repeat the same procedure for a two-holed
torus and see again that the results are qualitatively the
same (Fig. 13). Lines and SA lines are cleanly distinguish-
able but still obviously related, whereas random is

completely separate. Again, the 500 and 800 class networks
remain identical.
Table I presents the mean and variance of the point

clouds in Figs. 12 and 13. The point clouds are distinguish-
able, as the variances in L and A are smaller than the
separations of the means. However, if a random basis
instead of the minimal basis is used, although the L
measurements are not affected, the variance in A increases
considerably. The point clouds of SA lines and lines start
overlapping, and the method stops being able to distinguish
the architectures (see Table II).
The cycle-coalescence algorithm can also be used to

investigate the evolving architecture of the adaptive model.
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FIG. 11. Average vein length versus topological asymmetry for
various edge-weight assignment models on random 3-regular
graph topologies. The number of nodes on each graph was
approximately N ≃ 500. Blue: SA lines; red: lines; green:
random; orange: adapted 0.8; and purple: adapted 0.5.
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FIG. 12. Average vein length L versus topological asymmetry
A for various edge-weight assignment models on random
3-regular graph topologies. The number of nodes on each graph
was approximately N ≃ 500 or N ≃ 800. Blue: SA lines 500;
light blue: SA lines 800; red: lines 500; pink: lines 800; green:
random 500; and light green: random 800. L and A are not
sensitive to the graph size.
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FIG. 13. Average vein length L versus topological asymmetry
A for various edge-weight assignment models on genus-2 toroidal
topologies. The number of nodes on each graph was approx-
imately N ≃ 500 or N ≃ 800. Blue: SA lines 500; light blue: SA
Lines 800; red: lines 500; pink: lines 800; green: random 500;
light green: and random 800. L and A are not sensitive to the
graph size.
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Unsurprisingly, we discover a clear progression through
our characteristic space from the unadapted, randomly
weighted initial networks to final states with drastically
lower topological asymmetry and slightly higher vein
length [Fig. 14(a)]. Interestingly, however, despite the fact
that varying the exponent in the sigmoidal of the adapta-
tion’s feedback function does not seem to affect where in
our characteristic space the networks end up, by looking at
intermediate stages of the adaptation, one can clearly see
that the higher-exponent sample is much closer to its final-
state architecture; thus, these networks are adapting “faster”
in a real sense. Despite the power evident in the choice of
characterizing statistics that we have chosen for the
characteristic tree, we reiterate that not all information is
being captured by these two probes. For example, the
weight distribution in the final adapted state is very
different for the two different values of γ [Fig. 14(b)].
Our method is only sensitive to the sort order of the weights

and not the full weight distribution. The two fully adapted
graphs γ ¼ 0.3 and γ ¼ 0.8 thus have very different weight
distributions but very similar architecture, which could not
have been guessed from information about the weights
alone. Interestingly, starting from the same underlying
topology and running the adaptation for the two different
gammas, we see that Cγ¼0.8

i;j correlates strongly with Cγ¼0.3
i;j

[Fig. 14(c)], pointing to some kind of universal hierarchical
organization for this system. Interestingly, this hierarchi-
cally nested architecture has been shown to optimize the
transport properties of the system. It remains to be shown
whether all transport networks with low topological asym-
metry share this feature.

D. Real-world networks

Last, we tested how the cycle-coalescence algorithm
performs in real-world weighted network data that do not
have fixed or approximately fixed degree. We used data
from the Multilayer Temporal Network of Public Transport
in Great Britain, produced by Riccardo Gallotti of the
QuantURB group [35]. This data set describes the transport
Network of Great Britain using a multilayer node list and
edge list, where each layer describes a mode of transport.
For our analysis, we used the train and coach layers. The

TABLE I. Mean and variance of A and L of the point clouds in
Figs. 12 and 13.

Lines 500 0.113� 0.021 5.15� 0.34
SA lines 500 0.075� 0.016 5.37� 0.41
Random 500 0.118� 0.018 3.004� 0.058

Lines 800 0.129� 0.018 5.11� 0.18
SA lines 800 0.094� 0.011 5.49� 0.27
Random 800 0.136� 0.017 3.003� 0.061

2-Torus, min basis A� dA L� dL
Lines 500 0.062� 0.014 6.02� 0.48
SA lines 500 0.038� 0.011 5.41� 0.22
Random 500 0.078� 0.011 2.997� 0.090

Lines 800 0.071� 0.010 5.96� 0.42
SA lines 800 0.044� 0.011 5.53� 0.27
Random 800 0.084� 0.009 3.006� 0.058

TABLE II. Mean and variance of A for the same networks as in
Table I, now calculated using a random rather than the minimal
basis. The L values are not affected by a shift in basis, so they are
not included in the table.

Lines 500 0.078� 0.014
SA lines 500 0.066� 0.013
Random 500 0.085� 0.016

Lines 800 0.100� 0.012
SA lines 800 0.090� 0.011
Random 800 0.111� 0.014

2-Torus, random basis A� dA
Lines 500 0.057� 0.010
SA lines 500 0.055� 0.013
Random 500 0.064� 0.011

Lines 800 0.087� 0.014
SA lines 800 0.075� 0.014
Random 800 0.082� 0.011

FIG. 14. (a) Average vein length L versus topological asym-
metry A for initial, intermediate, and final states of an initially
random-weighted network evolving under our adaptive model.
(b) Distribution of the edge weights in the final adapted states for
two different sigmoidal-feedback control exponents, γ. (c) Struc-
tural correlations in the adapted weights from identical starting
configurations for two different sigmoidal-feedback control
exponents, γ.
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nodes of these two layers correspond to train and coach
stations, and the data set provides information about the
distance between each pair of connected nodes and the
travel time between them. We assigned a weight to each
edge that was proportional to the speed with which this
particular link is traversed (distance over time), and
trimmed any tree segments of the networks. To bring the
networks to sizes comparable to the data presented in the
rest of the work (approximately 103 nodes), we thresholded
the edges based on their weight, disregarding approxi-
mately 5% of the edges of the coach network and 30% of
the train network. Finally, without loss of generality, we
“bypassed” any stations that were not hubs, namely, any
stations that were only connected to two other stations. As a
result, the remaining stations in the analyzed graphs still
contained all the information about the nested cycles, but
all the stations had degree of at least 3.
To test the sensitivity of our results to thresholding, we

generated an additional network from the train data set with
a higher threshold. Our coach network contained 299
nodes, the train network 414, and the train high-threshold
network 331. In Fig. 15(a), we plot the average topological
length L versus the topological asymmetry A for the three
networks—the coach network (large green square), and the
low- and high-threshold train networks (large blue diamond
and large red circle, respectively). Our results are robust to
thresholding, as the low- and high-threshold train networks
are very close compared to the coach network. The train
and coach networks appear in very different areas of the
vein length vs asymmetry plot. However, the underlying,
unweighted topology of the coach and train networks is
different, and to understand the information in Fig. 15(a),
we need to decouple the effect of the edge weights on L and
A from the topology itself. To do this, we generated 50
additional data sets for each of the three underlying
topologies (coach, train, and train high threshold) by
randomizing the edge weights. We plot these data on
Fig. 15(a) (small green, blue, and red symbols, respec-
tively). We see that the United Kingdom coach system has
topologically longer routes than a network with random
assignment of the weights, but lower nestedness [see also
Fig. 7(a), top right]. On the contrary, the train network has
relatively short routes but is more nested than what a
random model would predict [see also Fig. 7(a), bottom
left]. We believe that these data reflect the fact that coach
routes are not constrained by preexisting railway tracks
and, for this reason, favor a less gridlike topology, but more
work is needed to substantiate this interpretation.
Our methodology provides insights for a system far from

the constrained degree networks where we have validated
our metrics. As can be seen in Fig. 15(b), the degree
distribution for the coach and train networks resembles a
power law, unlike the fixed degree networks we examined
in the previous sections. It is possible that for certain
topologies that do not have a fixed degree, the minimum

weight cycle basis is still a good starting point for the
cycle-coalescence algorithm. Future work will examine
these aspects.

V. DISCUSSION

We have presented a well-defined, statistically robust
algorithm to characterize the structure and topology of
weighted networks in three space dimensions. This method
exactly matches known techniques in two dimensions and
thus represents a natural extension and generalization of
these earlier methods. Our quantification method can be
used to understand the underlying architecture of 3D
graphs in a way not possible before, as we have shown
in the example of the adapting networks, where the γ ¼ 0.3
and γ ¼ 0.8 graphs may have wildly different weight
distributions but are revealed to be structurally similar
nonetheless. Indeed, working with traditional classification

(a)

(b)

FIG. 15. (a) Average vein length L versus topological asym-
metry A for the coach network (large green square), and the low-
and high-threshold train one (large blue diamond and red circle,
respectively). The small symbols represent networks with the
same underlying topology as the coach network (small green
squares), and the low- and high-threshold train one (small blue
diamond and small red circle, respectively), but randomized edge
weights. (b) Degree distribution of the topologies of the coach
and train networks. The numbers of nodes Pk of degree k can be
approximated by a power law.
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methods that attempt to leverage primarily edge-weight
families has recently shown to be necessarily incomplete
[24,36]. Additionally, the inclusion of some kind of
topological information to supplement that weight infor-
mation is known to be desirable. Our cycle-coalescence
algorithm represents just such a tool but includes sensitivity
to the geometry of the weight placement as well—given
networks with the same underlying topology and weights
drawn from the same distribution, it is easily possible to
construct examples that functionally have very different
architecture that no previously extant characteristic could
distinguish. We reiterate that while the relevance of the
abstract mapping of the network to a low-genus surface is
intuitive and clearly powerful, a deep, underlying under-
standing of exactly what physical or biological attributes of
these systems are laid bare by this mapping is still an
important question for future work.
Furthermore, our characteristic prescription is insulated

against noise, as we have demonstrated only weak to
nonexistent sensitivity to simple variance in graph size,
while the doubly statistical nature of the tool protects
against tile misidentification. We point out that such
misidentification must always remain a possibility for
any algorithm that is expected to run in reasonable time
for even moderately sized networks, as the complete
removal of the possibility of tile misidentification would
represent a solution to the NP-hard graph-genus problem.
The presentation of the algorithm adopts a language that

assumes that the shortest basis cycles constitute a tiling of
an embedding of the surface. Choosing the shortest cycle
basis as our minimal basis is important, as short cycles
contain edges that are topologically close by. A shortest
cycle basis as a starting point of our cycle-coalescence
algorithm ensures that the higher branches of the character-
istic tree (branches that are furthest from the tree root)
describe the architecture of local neighborhoods of the
graph. Although there is always the possibility of a
degeneracy in the minimal basis, i.e., two different bases
with the same total number of edges, we do not expect that
the exact choice of minimal basis will affect the results
significantly, as all the minimal bases should be good
descriptors for the local neighborhoods. However, a differ-
ent prescription for choosing the tiles might be appropriate
for different classes of networks that have unusual edge-
weight distributions or are not 3-regular. Similarly, an
extension of the algorithm is needed to treat networks that
have treelike components or, in general, bridges (edges
whose deletion creates disconnected components).
There has even been recent interest in the study of graphs

and networks that live embedded in a given complex
surface from the start [37]. Our work represents a pathway
to bring the developments and techniques designed for the
study of these networks to bear on all 3D networks.
It is our belief that this cycle-coalescence characteriza-

tion of three-dimensional networks will find wide

applicability across many physical and biological repre-
sentatives, hopefully uncovering new ways of thinking
about these systems. From organ vasculature to neural
networks, ant farms or hyphal networks to root networks of
clonal colonies like quaking aspen, force networks in sand
piles to airline routing, new descriptive and predictive
modeling is possible.
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APPENDIX: NETWORK EVOLUTION MODEL

The network evolution model we have chosen to use here
is governed by a system of equations, describing transport,
conservation, and adaptation. The model is explained in
detail in Ref. [33]. The flow in the network is considered to
be Hagen-Poiseuilleian laminar tube flow, so the transport
equation for each edge is simply

Qkl
ij ¼ Cij · ðpkl

i − pkl
j Þ: ðA1Þ

Qkl
ij is the flow through the edge fi; jg, when node k is

a source and node l a sink. The hydrostatic pressure
difference Δpkl

ij ≔ pkl
i − pkl

j along the tube between the
pressures pkl

i and pkl
j defined at the nodes i and j acts as a

potential difference from which the flow arises. The
proportionality factor is the conductivity of the tube,
denoted as Cij.
Meanwhile, from flow conservation at each node i and

the current boundary conditions, we have

X
j;∀ fi;jg∈E

Qkl
ij ¼ ðδik − δilÞ · ζ; ðA2Þ

where E is the set of all edges. For each node, the sum of
incoming flows must equal the sum of outgoing flows,
unless the node is a source or sink that contributes an
additional flow, ζ ≥ 0.
The ensemble averaged mean flow is

hjQijji ≔
1

N·ðN−1Þ
2

X
ðk;lÞ∈P

jQkl
ij j; ðA3Þ

where P is the set of all node pairs, and flows are
considered equally in both directions.
Finally, we model the adaptation process with a differ-

ential equation describing the time evolution of the con-
ductivities Cij ¼ CijðtÞ:

dCijðtÞ
dt

¼ β · f

�hjQijðtÞji
ϵ

�
− α · CijðtÞ: ðA4Þ
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This equation features a positive, nonlinear feedback term
β · fðhjQijðtÞji=ϵÞ that grows an edge’s conductivity as a
function of the scaled mean flow hjQijðtÞji=ϵ through itself.
Balancing this term is a negative, exponential decay term
−α · CijðtÞ. The parameters β ≥ 0 and ϵ > 0 scale the
feedback and the flow through one edge; α ≥ 0 is the
exponential decay parameter. The feedback function is
sigmoidal, fðxÞ ¼ ½xγ=ð1þ xγÞ�.
At each step of the algorithm, we calculate hjQijji for a

particular set of conductivities and then apply Eq. (A4) to
get a new, updated set of conductivities. We evolve this
model until it reaches a steady state, and the conductivities
attain their final equilibrium values.
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