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When combining lumped mesoscopic electronic components to form a circuit, quantum fluctuations of
electrical quantities lead to a nonlinear electromagnetic interaction between the components, which is
generally not understood. The Landauer-Büttiker formalism that is frequently used to describe non-
interacting coherent mesoscopic components is not directly suited to describe such circuits since it assumes
perfect voltage bias, i.e., the absence of fluctuations. Here, we show that for short coherent conductors of
arbitrary transmission, the Landauer-Büttiker formalism can be extended to take into account quantum
voltage fluctuations similarly to what is done for tunnel junctions. The electrodynamics of the whole circuit
is then formally worked out disregarding the non-Gaussianity of fluctuations. This reveals how the
aforementioned nonlinear interaction operates in short coherent conductors: Voltage fluctuations induce a
reduction of conductance through the phenomenon of dynamical Coulomb blockade, but they also modify
their internal density of states, leading to an additional electrostatic modification of the transmission. Using
this approach, we can quantitatively account for conductance measurements performed on quantum point
contacts in series with impedances of the order of RK ¼ h=e2. Our work should enable a better engineering
of quantum circuits with targeted properties.
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I. INTRODUCTION: INTERACTIONS
IN QUANTUM CIRCUITS

At small scales and low temperatures, electronic com-
ponents become quantum: Their state is not described by
classical currents and voltages anymore but by operators
that have quantum fluctuations. When considering several
of these components interconnected at a scale larger than
the electronic coherence length (so that electronic inter-
ferences between components vanish), one recovers the
familiar lumped-element description of the whole circuit,
just like taught in high school for classical electrical circuits
[Fig. 1(a)]. In such a circuit, the Kirchhoff laws apply to the
operator-valued currents and voltages, including their
quantum fluctuations, at all frequencies for which the
lumped description applies. The enforcement of these laws
requires that the various branches of the circuit accom-
modate for the presence of each other. This accommodation
can be seen as a fluctuation-mediated electromagnetic
interaction that is nonlocal in space and frequency, render-
ing the system generally nonlinear. In practice, this non-
linear interaction is understood quantitatively only in a few,
restricted quantum circuits. The aim of the present work is
to reach a more general understanding of how this

interaction operates. For the sake of simplicity, we only
consider circuits in which neither static charging effects nor
the Kondo effect occur (semi-isolated “islands” have either
negligible or extremely large charging energy). Let us start
by reviewing the different levels at which this interaction
has been taken into account and understood in lumped
quantum circuits so far.

A. Different states of consideration and handling
of the interactions in lumped quantum circuits

In the case of nearly nondissipative circuits (such as, e.g.,
qubit circuits), one can generally write a Hamiltonian and
solve the Schrödinger equation to work out this complex
electromagnetic interaction implicitly and globally, sparing
the need to understand how it operates in detail. In contrast,
in open quantum circuits biased out of equilibrium, no such
global solving method exists, and so far, they were
considered mostly in restrictive situations where such a
fully developed interaction between various parts of a
circuit does not occur.
In particular, when investigating an individual quantum

component, it is most frequently connected to macroscopic
leads, which naturally nearly implement an ideal (i.e.,
classical, fluctuationless) voltage-bias situation in which
the Landauer-Büttiker (LB) scattering formalism [2,3] can
be used. However, knowing (theoretically or experimen-
tally) the behavior of the component only under this
situation is not sufficient to predict its behavior when
inserted in an arbitrary quantum circuit.
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A case where voltage fluctuations have a well-
understood effect on a quantum component is that of a
tunnel junction. The junction indeed becomes nonlinear in
the presence of voltage fluctuations, with its conductance at
low voltages that can be strongly reduced. This phenome-
non is known as the dynamical Coulomb blockade (DCB)
and is quantitatively explained by the PðEÞ theory [4–6]. In
this theory, however, the tunnel current through the junction
being weak, the junction’s backaction on the rest of the
circuit is disregarded. The PðEÞ theory hence considers
only a unidirectional interaction (i.e., without the
“reaction” part), but the phenomenon of DCB itself can
be seen as the generic signature of the interaction. The case
of a channel of arbitrary transmission where voltage
fluctuations are small (so that conductance changes remain
small, too) is also well understood [7–10], with predictions
similar to the tunnel-junction case but with the reduction of
the conductance multiplied by the channel’s Fano factor.
Finally, situations where a full fluctuation-mediated

interaction (with action and reaction) takes place are under-
stood only in a few cases: (i) for a single channel of arbitrary
transmission connected to a pure resistor, which has been
addressed by a wide range of techniques with more or less
restrictive hypotheses [11–15], and (ii) in the case of a
resonant level in series with resistors [16–18]. In Ref. [19], it
was shown that both cases can be well accounted for by
using a mapping of these systems onto the physics of an
impurity in a Tomonaga-Luttinger liquid (TLL). This map-
ping predicts scaling laws for the conductance with a
characteristic energy scale that is, however, not predicted.
Importantly, there are no theories readily applicable for
nonohmic environments such as high impedance resonant

structures thatwere recently used in experiments probing the
radiative signatures of DCB [20–22].

B. Outline of the article

In this article, we work out how the fluctuation-mediated
interaction occurs in a somewhat general dissipative circuit
consisting of a short coherent component (SCC) that can be
described in the LB formalism and an arbitrary external
circuit with substantial quantum fluctuations. In Sec. II, we
first show that the usual LB formalism that describes ideal
voltage-biased situations can be simply extended in the
spirit of the PðEÞ theory, to take into account quantum
voltage fluctuations that are slower than the traversal time
of electrons through the coherent component. We show and
discuss how quantum fluctuations qualitatively modify the
current noise and the admittance of the SCC predicted in
the LB formalism. In a second step, we show that by
disregarding the non-Gaussianity of all fluctuations and
treating them on an equal footing, the electrodynamic
response of the SCC and the fluctuations in the circuit
can be formally worked out simultaneously in a self-
consistent manner, in the presence of an arbitrarily strong
interaction and including nonequilibrium situations. Our
synthesis of LB and PðEÞ theories clearly pinpoints how
the electromagnetic interaction takes place, acting, in
particular, on the internal charge degree of freedom in
the SCC arising from finite dwell time.
In Sec. III, we illustrate the use of our formal general

solution and show that the predictions obtained in this
approach are able to account for measurements performed
on quantum point contacts in 2DEGs with arbitrary trans-
mission, with minimal assumptions on the experiments.

FIG. 1. (a) Schematics of a hypothetical quantum circuit where electrical quantities are operators with quantum fluctuations. We single
out a mesoscopic two-terminal electronic component Q1 in the circuit. The Landauer-Büttiker formalism is extended to describe
transport in the component, taking into account voltage fluctuations. This electron scattering approach predicts that the component
generates current fluctuations, which the whole circuit transforms into matching voltage fluctuations. (b) The energy dependence of the
scattering matrix implies that the component has an implicit internal node with an associated degree of freedom (V̂3) whose dynamics
needs to be taken into account. The small ac-signal electrodynamics of the component is described by an admittance matrix, which
depends not only on the scattering matrix of Q1 but also on the voltage fluctuations across Q1 that are determined by the whole circuit.
The drawing shows a possible lumped-element equivalent circuit of the admittance matrix [1]. (c) Disregarding non-Gaussianity, current
and voltage fluctuations at a given bias point are related simply by the small ac-signal (locally linear) electrodynamics of the full circuit.
As seen from Q1, the rest of the circuit is also described by an admittance matrix Yext that includes, in particular, all geometrical
capacitances. The voltage fluctuations ~V1, ~V2, ~V3 across Q1 result from the noise sources in the whole circuit (drawn here as current
sources), all treated on the same footing. Depending on the circuit details, the lumped elements depicted here may depend on the dc bias
condition, resulting in a globally nonlinear response of the system.
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II. FORMAL SOLUTION OF INTERACTING
TRANSPORT IN SHORT COHERENT

CONDUCTORS

A. Description of the system

We consider a two-terminal SCC, embedded in a circuit
that has substantial voltage fluctuations [Fig. 1(a)]. This
circuit is fairly general and may include conventional linear
components such as inductors, capacitors, and resistors, as
well as nonlinear quantum components such as other SCCs
(that would be simultaneously treated by the method we
describe here). We assume that the leads that interconnect
the various components are longer than the coherence length
so that electronic interferences do not occur between the
various components but that they are still short enough to
neglect propagation effects at the frequencies we consider.
We know that electrical transport in such a coherent
conductor taken isolatedly is well described using the LB
scattering formalism [23] relevant for noninteracting elec-
trons. Our aim is to extend the LB description of quantum
components in order to take into account electromagnetic
fluctuations in their surrounding circuit and their interaction
with electrical transport. To this end, each node in the circuit
is considered as an LB electronic reservoir whose potential
has quantum fluctuations and which feeds the components
with its local electronic distribution function. For simplicity,
we assume the short conductor has only two leads, but our
approach is easily generalized to several leads.

B. Standard description of transport
in the LB formalism

Our starting point is the standard expression of the
current in lead m ¼ 1, 2 of the SCC in the Landauer-
Büttiker scattering formalism as formulated in Ref. [24],

ImðtÞ¼
e
h

Z
dEdE0½a†mðEÞamðE0Þ−b†mðEÞbmðE0Þ�eiðE−E0Þt=ℏ;

where am ¼ ðam1…amMÞ and bm ¼ ðbm1…bmMÞ are vec-
tors of operators which, respectively, annihilate incoming
carriers and outgoing carriers in lead m, and where
j ¼ 1…M indexes the channels we consider in the leads
(each spin direction counting for its own channel). What
these operators describe are precisely Landau’s Fermi
liquid quasiparticles. They obey the relations

faijðEÞ; a†klðE0Þg ¼ fbijðEÞ; b†klðE0Þg¼ δijδklδðE − E0Þ;
faijðEÞ; aklðE0Þg ¼ fbijðEÞ; bklðE0Þg ¼ 0;

ha†i ðEÞajðE0Þi ¼ Trðρa†i ðEÞajðE0ÞÞ
¼ δijδðE − E0ÞfiðEÞIM;

where δ is the Dirac delta function, δαβ is the Kronecker
symbol, IM is the identity matrix of sizeM, ρ is the density

matrix, and fmðEÞ is the quasiparticle distribution function
in the reservoirs m ¼ 1, 2 which is not necessarily thermal.
The outgoing operators are connected to the incoming
operators by the usual scattering matrix S with dimensions
2M × 2M,

�
b1
b2

�
¼ S:

�
a1
a2

�
;

defined in the absence of the external circuit. Then, we can
express the currents using only incident modes,

ImðtÞ ¼
e
h

Z
dEdE0½a†1ðEÞ a†2ðEÞ�

· AmðE;E0Þ ·
�
a1ðE0Þ
a2ðE0Þ

�
eiðE−E0Þt=ℏ; ð1Þ

with the matrix Am expressed in terms of the M ×M
submatrices of S,

AmðE;E0Þ

¼
�
IMδm1−S†

m1ðEÞSm1ðE0Þ −S†
m1ðEÞSm2ðE0Þ

−S†
m2ðEÞSm1ðE0Þ IMδm2−S†

m2ðEÞSm2ðE0Þ

�
:

ð2Þ

The average current in lead 1 is then

hI1ðtÞi ¼ hI1i ¼
e
h

Z
dE

n
(I − S†

11ðEÞS11ðEÞ)f1ðEÞ

− S†
12ðEÞS12ðEÞf2ðEÞ

o

¼ e
h

Z
dE(f1ðEÞ − f2ðEÞ)TðEÞ; ð3Þ

with TðEÞ ¼ TrS†
12ðEÞS12ðEÞ ¼

P
M
n¼1 TnðEÞ (each spin

direction counts for a channel) the total transmission of the
SCC that does not depend on the direction considered. The
dc current in lead 2 is obtained by exchanging indices
1 and 2 and is therefore opposite because of the orientation
convention chosen: hI2i ¼ −hI1i. However, this relation
for the average values of the currents does not hold for
instantaneous values because the operators I1 and −I2
defined by Eq. (1) are different. This can be traced to an
internal (charge) degree of freedom in the SCC, whose
density of states is due to energy dependence of the
scattering matrix. Indeed, the “differential-mode” current
1
2
ðI1 − I2Þ can be viewed as the current actually flowing

through the SCC, while the “common-mode” current
I1þ I2 corresponds to a charge accumulation on an implicit
internal node of the SCC [see Figs. 1(b) and 2] that can be
seen as one electrode of the “quantum capacitance” of the
SCC introduced by Büttiker [25–27]. This internal degree
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of freedom can have a significant impact on the SCC
dynamics, leading to nonintuitive behavior (see, e.g.,
Ref. [28]) because we are all familiar with current-
conserving electronic components. In order to unravel the
complexity brought by this internal dynamics, it is convenient
in the following to explicitly add a third terminal correspond-
ing to the internal node of the SCC and in which flows the
(displacement) current I3ðtÞ ¼ −I1ðtÞ − I2ðtÞ (with the asso-
ciated matrix A3 ¼ −A1 − A2). This third terminal is at an
electrostatic potential V3 and is connected to the rest of the
circuit only through geometrical capacitances that, in our
approach, are considered part of the external circuit. In this
three-terminal device, gauge invariance is respected, and
charge accumulation does not occur anymore, which enables
us to use the usual circuit reasoning and techniques. Provided
one adds the relevant geometrical capacitances in the external
circuit, this will also properly take into account screening
effects [26,29] in the limit where the SCC’s internal state can
be described by a single potential.

C. Adding voltage fluctuations to the
Landauer-Büttiker formalism

1. Fluctuations of reservoir potentials

Now, we incorporate the voltage fluctuations across
the SCC which are due to the electromagnetic degrees of
freedom in the circuit. We separate the potential of each
reservoir into a dc potential Vm ðm ¼ 1; 2Þ and a fluctuating
part ~VmðtÞ. The dc potential is incorporated in the electro-
chemical potential, while the fluctuating part leads to a
time-dependent phaseφmðtÞ¼ðe=ℏÞR t

−∞
~VmðτÞdτðm¼1;2Þ,

which is shared by all electrons in a given reservoir. Even
though the quasiparticles are noninteracting, they are related
to the original electrons and have the same electrochemical
potential; they are hence influenced by the potentials, just
like the electrons. We then rewrite Eq. (1) as

ImðtÞ ¼
e
h

Z
dEdE0½a†1ðEÞe−iφ1ðtÞ a†2ðEÞe−iφ2ðtÞ�

· AmðE;E0Þ ·
�
a1ðE0Þeiφ1ðtÞ

a2ðE0Þeiφ2ðtÞ

�
eiðE−E0Þt=ℏ

which can be reverted to the original form of Eq. (1), but with
a modified S matrix [see Eq. (4) below] where the anti-
diagonal blocks pick a global phase �iφðtÞ, where φðtÞ ¼
φ2ðtÞ − φ1ðtÞ is the time integral of the fluctuating voltage
~VðτÞ ¼ ~V2ðτÞ − ~V1ðτÞ across the SCC. In this formulation,
the fluctuations of the reservoir voltages simply adda random
phase factor to the scatteringmatrix elements that correspond
to transferring a quasiparticle from one lead to the other,
otherwise leaving the modulus of the scattering amplitudes
a priori unchanged (this point is discussed more in depth
below). This phase factor is the same as that appearing in the
tunneling Hamiltonian used in the PðEÞ theory and can be
seen as a charge translationoperator [6]which tightly couples
the transfer of an electrical charge e in the electromagnetic
circuit to the quasiparticle transfer in the scatterer.
Introducing such a phase factor is also closely related to
what is done in the presence of a classical ac drive [30–32],
and likewise, it is reasonable if the typical dwell time τ of the
quasiparticles in the SCC is short compared to the period
of the ac drive or, here, the relevant time scale of phase
fluctuations in the electromagnetic environment.

2. Fluctuations of the internal potential

Much like the potential of the reservoirs, the potential V3

of the internal node may also fluctuate under the influence
of the stochastic scattering of electrons in the SCC, or by
capacitive coupling to external signals. This effect was
previously considered in, e.g., Ref. [29] in the case of a
QPC, where it was shown that fluctuations of the internal
potential (assumed uniform) induce a global phase shift

FIG. 2. (a) QPC in series with an RC circuit. The circuit can be biased by a dc voltage source, and an additional small ac excitation
enables measuring its differential conductance using a lock-in technique. In the experimental implementation, the RC circuit could be
short-circuited on chip in order to measure the effect of its presence. When the switch is closed, the QPC is voltage biased: Voltage
fluctuations are suppressed, and the usual LB description applies. (b) Lumped-element model of the QPC. Assuming the QPC is
symmetric with respect to exchange of nodes 1 and 2, the lumped-element model of Fig. 1(b) has only two independent elements and can
be represented as shown here, where C3ðωÞ ¼ Y3ðωÞ=iω is the quantum capacitance of the conductor and Y0ðωÞ its two-point
admittance. In this panel, we also symbolically represent the internal node of the device and, in grey, the geometrical capacitances that
may affect it and which are not (and cannot be) included in the admittance matrix obtained from the electronic scattering matrix.
(c) Small-signal equivalent of the full circuit used to determine voltage fluctuations across the QPC. In the simple case we consider here,
the general analysis [see Eq. (12) and Fig. 1(c)] reduces to a simple parallel combination of two-terminal components. Y3 is greyed out
because it has a negligible contribution in the fluctuations across the QPC.
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ϕðtÞ≡φ3ðtÞ¼ ðe=ℏÞR t
−∞

~V3ðτÞdτ for the whole scattering
matrix.

3. Modified scattering matrix

Finally, the full modified scattering matrix that
minimally takes into account all potential fluctuations is
written as

~SðE; tÞ ¼ eiϕðtÞ
�

S11ðEÞ S12ðEÞeiφðtÞ
S21ðEÞe−iφðtÞ S22ðEÞ

�
: ð4Þ

Here, the presence of both energy and time arguments in ~S
corresponds to our separation between static quantities (E)
and dynamic quantities ðtÞ. This decoupling of time scales
is the first key hypothesis we make in this work. Otherwise,
one would need to consider the dynamics of the electrons
crossing the SCC while interacting with a time-varying
field [33], and the modification of the scattering matrix
would depend both on the internal structure of the scatterer
and on the detailed dynamics of phase fluctuations,
breaking the simple and universal factorization of phase
fluctuations we consider here in ~S. The relevant dwell time
in the SCC can be estimated as the Wigner-Smith time
τ ∼maxℏ½dTnðEÞ=dE�. Note that the simple evaluation of

the dc currents as hImðtÞi [Eq. (3)] in the scattering
formalism is determined by the transfer probabilities of
independent single electrons between the leads for which
the phase factors just introduced have no effect. However,
after an electron is transferred, the transfer of a subsequent
electron is affected by the circuit’s transient (phase)
response to the current pulse of the first electron, and this
modifies the dc current. We now focus on these correlation
effects at the heart of the DCB effect.

D. Current fluctuations and admittance:
Dynamics of the SCC

Let us first consider the 3 × 3 nonsymmetrized stationary
current correlation [3,23,34] matrix SIIðtÞ whose elements
are given by

ðSIIðtÞÞmn ¼ SImInðtÞ
¼ hImðtÞInð0Þi− hImihIni; m; n ∈ f1…3g:

At most, three elements of SIIðtÞ are independent since they
obey SImInðtÞ ¼ ðSInImð−tÞÞ� [35], and the correlators
involving I3 are trivially related to those involving only
I1 or I2. Carrying out the evaluation similarly to
Refs. [3,23,34], the current correlators can be expressed as

SImInðtÞ ¼
e2

ℏ2

Z
dεdε0eiðε−ε0ÞtTr

���
f1ðεÞ 0

0 f2ðεÞ

�
: ~Amðε; ε0; tÞ:

�
f−1ðε0Þ 0

0 f−2ðε0Þ

�
: ~Anðε0; ε; 0Þ

�
em

�
; ð5Þ

where ~AmðE;E0; tÞ is the matrix AmðE;E0Þ of Eq. (2), with ~Sð…; tÞ replacing Sð…Þ, and h…iem denotes averaging over the
electromagnetic degrees of freedom. We also introduced the short-hand notation for the complementary fermionic
distribution functions in the reservoirs f−iðεÞ≡ 1 − fiðεÞ. In order to clarify general features of the above matrix
expression, let us explicitly show one element as an example:

SI1I2ðtÞ ¼ −
e2

ℏ2

XM
n¼1

Z
dεdωe−iωt

n
eJþðtÞf1ðεÞtnðεÞr�1nðεÞf−2ðεþ ℏωÞtnðεþ ℏωÞr�2nðεþ ℏωÞ

þ eJ−ðtÞf2ðεÞt�nðεÞr2nðεÞf−1ðεþ ℏωÞr1nðεþ ℏωÞt�nðεþ ℏωÞ
þ f2ðεÞt�nðεÞf−2ðεþ ℏωÞtnðεþ ℏωÞðr2nðεÞr�2nðεþ ℏωÞ − 1Þ
þ f1ðεÞtnðεÞf−1ðεþ ℏωÞt�nðεþ ℏωÞðr�1nðεÞr1nðεþ ℏωÞ − 1Þ

o
; ð6Þ

where r1n ¼ ðS11Þnn, r2n ¼ ðS22Þnn are the reflection
amplitudes in the nth channel when arriving from lead 1
or 2, respectively, and tn ¼ ðS12Þnn is the transmission
amplitude. We also introduced the notations

eJ�ðtÞ ¼ he�iφðtÞe∓iφð0Þiem ð7Þ

for the phase correlators. It is a general feature of
all the correlators SImInðtÞ that the eJ�ðtÞ factors appear

only in terms that have Fermi factors f�1f∓2, which
hence correspond to the transfer of an electron from one
reservoir to the other, while the terms f�1f∓1 and f�2f∓2

correspond to second-order scattering processes in which
an electron returns, after a short time, to its initial reservoir
but at a different energy. Note that, at this level, the
fluctuations of the internal potential simply vanish.
From the current correlators, using the linear response

theory [35,36], we formally get the admittance matrix
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YðωÞ ¼ 1

ℏω

Z
θðtÞ2S−IIðtÞðeiωt − 1Þ dt

2π
ð8Þ

that describes the small-ac signal electrodynamics of the
SCC around its dc bias point: For a vector of infinitesimal
excitations [dV1ðωÞ, dV2ðωÞ, dV3ðωÞ], the response cur-
rents are given by ½dI1ðωÞ; dI2ðωÞ; dI3ðωÞ� ¼ YðωÞ.
[dV1ðωÞ, dV2ðωÞ, dV3ðωÞ] [37]. In Eq. (8), S−IIðtÞ ¼
1
2
ðSIIðtÞ − SIIð−tÞÞ ¼ iImSIIðtÞ is the time-antisymmetric

part of the current correlator and θ the Heaviside function.
The symmetries of the current correlators imply
YijðωÞ ¼ Yjið−ωÞ� ¼ YjiðωÞ. Let us stress that although
the linear response theory Eq. (8) is usually invoked in
equilibrium situations, it remains rigorously valid for
nonlinear systems in arbitrary stationary out-of-equilibrium
situations [35,38] (e.g., in the presence of a finite dc bias
voltage V ¼ V1 − V2), provided all quantities entering
Eq. (5) [and thus Eq. (6)] are taken in the out-of-
equilibrium state. The nonlinear I − V characteristics of
the SCC is obtained by integrating the differential con-
ductance [e.g., Y11ðω ¼ 0Þ] with respect to the bias
voltage. The locally linear electrodynamic behavior of
the SCC described by this admittance matrix can be
represented using the three-component lumped model [1]
shown in Fig. 1(b), as a three-terminal charge-conserving
component. Let us finally note that the scattering matrix
describes individual quasiparticle transfers but not dis-
placement currents. Hence, the electrodynamic model of
the SCC we have just derived from the scattering matrix
must generally be complemented by additional geometrical
capacitances present in the device and which here, for
convenience, we incorporate in the description of the
external circuit (see below).

1. Differences with the standard results
of the LB formalism

In the absence of voltage fluctuations due to an external
circuit, the phase correlators have no effect ðeJ�ðtÞ ¼ 1Þ,
and from Eqs. (5) and (8), one recovers the known
expressions for the noise and admittance in the LB
formalism [23,39]. In particular, in that case, Büttiker,
Prêtre, and Thomas gave a particularly simple and compact
expression of the equilibrium admittance [Eq. (2) in
Ref. [24]],

Y11ðωÞ ¼ GK

XM
n¼1

Z
dε

fðεÞ − fðεþ ℏωÞ
ℏω

× ð1 − r�1nðεÞr1nðεþ ℏωÞÞ

Y12ðωÞ ¼ −GK

XM
n¼1

Z
dε

fðεÞ − fðεþ ℏωÞ
ℏω

× t�nðεÞtnðεþ ℏωÞ: ð9Þ

From this result, one can show that at frequencies ω≲ τ−1,
the dynamics of the SCC is simple: In addition to the dc
conductance of the SCC determined by its total channel
transmission (i.e., the “Landauer formula”), the admittance
has an additional imaginary term iEω proportional to
frequency, where E is called the “emittance” of the SCC
[27], related to a partial internal DOS.
In the presence of voltage fluctuations, however, the

presence of the eJ�ðtÞ phase correlators in the elements of
SIIðtÞ [e.g., Eq. (6)] will imprint the dynamics of the
electromagnetic environment onto the SCC and make our
predictions regarding the system differ qualitatively from
the above standard LB results. Notably, the zero-bias
conductance of the SCC [given by Eq. (8) for ω ¼ 0
and V1 − V2 ¼ 0] cannot be identified anymore with its
total transmission, resulting in the first key result: The
“Landauer formula” is not generally valid in quantum
circuits because of voltage fluctuations. Also, the above
simple equations (9) for the admittance cannot be simply
modified in the presence of voltage fluctuations because
matrix symmetries assumed in their derivation (for details,
see Ref. [3]) are broken by the presence of the phase
correlators. In short, just like for a tunnel junction, in the
presence of voltage fluctuations, transport in the SCC can
no longer be regarded as an internal property; it depends
nontrivially on the external circuit through the phase
correlator, and this is the second key result of our work.
Interestingly, in our approach, one distinguishes two

types of contributions to the elements of the noise and
admittance matrices: those having factors eJ�ðtÞ, which are
hence affected by voltage fluctuations, and those that
are insensitive to fluctuations. Thus, each element of the
admittance matrix of a SCC [or each element of the
lumped-model equivalent shown in Fig. 1(b)] can be
formally viewed as two well-identified independent
“components” connected in parallel:

(i) one affected by voltage fluctuations and subject to
the dynamical Coulomb blockade in much the same
way as a tunnel junction in the PðEÞ theory,

(ii) and one insensitive to voltage fluctuations,
consequently having an intrinsic electrodynamic
behavior like a conventional macroscopic electronic
component.

Finally, the fluctuations of the electromagnetic environment
modify not only the conductance of the SCC as is well
known, for instance, for a tunnel junction, but it also
reduces the quantum capacitance −i∂ωY33ðω ¼ 0Þ of the
SCC, which is a new kind of DCB effect unveiled by our
approach. In Sec. III, we show, on an example, how this
effect on the quantum capacitance induces an electrostatic
modification of the S matrix, which may have large
consequences on the transport properties of the system.
Let us observe that, arguing that in SCCs the Thouless
energy ℏ=τ exceeds all other relevant energy scales, many
works on SCCs with partially open channels simply
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disregard the energy dependence of the S matrix and hence
the quantum capacitance. Consequently, such an approach
cannot apprehend the DCB of the quantum capacitance
effect we discuss here.

E. Phase fluctuations

Now that we have determined how voltage fluctuations
affect the current noise and admittance of the SCC through
the correlators eJ�ðtÞ ¼ he�iφðtÞe∓iφð0Þi, we still need to
determine these correlators in order to fully solve the
transport problem in the circuit. To this end, we assume
that the bulk effect of the fluctuations on transport can be
captured satisfactorily by considering only second-order
correlation functions of the currents and voltages (or,
equivalently, phases), i.e., disregarding the non-
Gaussianity of the fluctuations. This is our second key
hypothesis. Within this approximation, J�ðtÞ is expressed
simply in terms of the phase correlator SφφðtÞ ¼
hφðtÞφð0Þi [6],

eJ�ðtÞ ≃ eSφφðtÞ−Sφφð0Þ ≡ eJðtÞ: ð10Þ

In essentially all the literature on the dynamical Coulomb
blockade, the phase autocorrelation function SφφðtÞ is
evaluated using the fluctuation-dissipation theorem (FDT)

SφφðtÞ ¼ 2

Z þ∞

−∞

dω
ω

ReZeffðωÞ
RK

e−iωt

1 − e−βℏω
; ð11Þ

with Zeff the effective environment impedance, as seen
from the SCC and assumed in equilibrium at temperature T
[with β ¼ ðkBTÞ−1]. Here, this expression is not applicable
for two reasons. First, since the SCC is described by an
admittance matrix, the equivalent external circuit as seen
from the SCC (which may contain other SCCs) needs to be
described by an impedance matrix Zext of the same size or,
equivalently, an admittance matrix Yext ¼ Z−1

ext with a
lumped element decomposition as in Fig. 1(b). Second,
the system we consider may be driven out of equilibrium by
a dc voltage, in which case the FDT invoked in Eq. (11) is
not applicable (nonequilibrium phase correlators have also
been considered for tunnel junctions, e.g., in Refs. [40,41]).
Here, we take a more general approach and consider the

current noises of all parts of the circuit to act as sources that
relax through all possible conduction paths, including the
SCC, as shown in Fig. 1(c). We then evaluate the resulting
phase fluctuations in the circuit assuming that fluctuations
are small enough so that the local linearity provided by the
linear response theory adequately connects the current and
phase fluctuations. This invocation of the linear response
theory again involves only second-order correlators, con-
sistent with our approximation of Gaussian fluctuations.
The matrix describing the phase fluctuations in the circuit

ðSφφðtÞÞmn ¼ Sφmφn
ðtÞ ¼ hφmðtÞφnð0Þi m; n ∈ f1…3g

is then linked to the current fluctuations through the (linear)
matrix equation (for a derivation see Ref. [42])

SφφðtÞ ¼
1

ℏRK

Z þ∞

−∞

dω
ω2

(YðωÞ þ YextðωÞ)−1 · (SIIðωÞ

þ SextII ðωÞ) · ½(YðωÞ þ YextðωÞ)−1�†e−iωt; ð12Þ

where SIIðωÞ ¼
R
SIIðtÞeiωtðdt=2πÞ is the current noise

matrix of the SCC determined above in the frequency
domain and SextII is the current noise matrix of the external
circuit [43]. In such a formulation, the SCC and its external
surrounding circuit play a symmetric role in the
determination of the phase fluctuations, thereby imple-
menting the backaction of the SCC on the circuit.
This extends what was done for large-conductance
tunnel junctions in Ref. [44]. If the external circuit can
be assumed at equilibrium, the FDT gives SextII ðωÞ ¼
2ReðYextðωÞÞ½ðℏωÞ=ð1 − e−βℏωÞ�. The two-point phase
fluctuations across the SCC that enter the current fluctua-
tions and admittance matrices [Eqs. (5) and (8)] through
Eq. (10) are given by

SφφðtÞ ¼ ½ 1 −1 0 �·SφφðtÞ·

2
64

1

−1
0

3
75; ð13Þ

while the phase correlator of the internal node, responsible
for the “noise at the gate” [39,45], is ðSφφðtÞÞ33. In a tunnel
junction, the phase correlator Eq. (11) is indeed recovered
from Eqs. (12) and (13) if one assumes that the current
in the junction is so small that it has no backaction on the
rest of the circuit, which hence remains in equilibrium;
then, one has jSIIðωÞj ≪ jSextII ðωÞj [implying jYðωÞj ≪
jYextðωÞj], SI2I2 ¼ SI1I1 ¼ −SI1I2 (forbidding any internal
degree of freedom), and equilibrium noise. Hence, our
expressions Eqs. (12) and (13) broadly generalize the
evaluation of the phase correlator made in the standard
PðEÞ theory to components with an internal degree of
freedom, which have an arbitrarily large backaction on the
circuit, and to out-of-equilibrium situations. Furthermore,
this formulation is directly usable for multiterminal SCCs
as well. Given that it ensures the global consistency of
fluctuations in the circuit in a systematic manner inde-
pendently of any detail of the circuit, we think it constitutes
another important step taken in this work.

F. Closing the loop

In our approach, Sφφ, SII, and Y are obviously inter-
dependent quantities, so the set of Eqs. (5), (10), (12),
and (13) needs to be solved self-consistently. Such a self-
consistent approach for the electrodynamics was used
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previously to describe low-resistance normal-state tunnel
junctions [44] and Josephson junctions [46]. In the former
case, it has been successfully checked experimentally, and
it was shown to correspond to a self-consistent harmonic
approximation that minimizes the free energy in the path-
integral description of the system [47]. The self-consistent
solution discussed here greatly extends previous results,
as it can now handle an arbitrarily strong nonlinear inter-
action between a SCC of arbitrary transmission and any
(possibly nonlinear) surrounding circuit, including out-of-
equilibrium situations, provided the non-Gaussianity of
fluctuations can be disregarded. Yet, the nonlinearity is still
captured owing to the factorization of the phase correlation
function eJðtÞ in part of the current noise [Eq. (5)]. In the
frequency domain [e.g., in YðωÞ], this factorization for-
mally becomes a convolution product [with the PðEÞ
function [6], precisely] that mixes different frequencies,
as expected in a nonlinear system.
At this point, we can sketch how the interaction operates:

The partition noise of quasiparticles at the SCC generates
plasmonic modes whose current and voltage fluctuations
are related by the (locally linear) electrodynamics of the
whole circuit. The low-frequency, large-wavelength plas-
monic (bosonic) modes propagating in the conductors
mediate an effective electron-electron interaction among
branches in the whole circuit (and even among the partially
open Landauer channels of the SCC itself), corresponding
to a random phase approximation (RPA) treatment of
electron-electron interactions. This effective interaction is
normally ignored in the LB approach, built on strictly
noninteracting Landau quasiparticles; its effect here is
encapsulated in the eJ�ðtÞ terms of Eq. (5). In several
theoretical works, this coupling of quasiparticles with the
electromagnetic field is handled through the “bosonization”
technique [12,18]. In the tunnel limit, the link between the
electron-electron interaction and the phase correlator eJ�ðtÞ
was discussed in Refs. [6,48,49].

G. Validity of approximations

Let us now recap and discuss the two key hypotheses we
made: (i) the decoupling of time scales between electronic
scattering and electromagnetic fluctuations, and (ii) phase
fluctuations regarded as being Gaussian in order to capture
the bulk of the transport properties.

(i) Our hypothesis of rapid quasiparticle scattering
compared to the typical time scale of electromag-
netic fluctuations will be consistent if exp JðτÞ ∼ 1,
meaning that during the time an electron crosses the
SCC, it sees essentially a static-field configuration,
and different configurations of the fluctuating volt-
age are averaged in the succession of quasiparticle
scattering events. Otherwise, as already said, ~S
cannot simply be obtained from S defined in the
absence of an environment as we have assumed.

(ii) Gaussian fluctuations are the bare minimum one
may consider when aiming for a theory incorporat-
ing fluctuations. Electronic circuits rigorously have
Gaussian fluctuations only when the electrodynam-
ics is purely linear and the system is in a thermal
coherent state [50]. Here, the system is clearly
nonlinear, and it can moreover be kept out of
equilibrium by a dc voltage; thus, the range of
validity of our approximation needs to be checked.
Putting theoretical boundaries to this approximation
would require us to consider higher-order cumulants
[51,52], which is beyond the scope of this paper.
Nevertheless, we qualitatively expect our approach
to fail in some cases, for instance, when phase
fluctuations become large in systems where charge
quantization effects in some part of the circuit cannot
be ignored.

III. CONCRETE CASE: THE QUANTUM
POINT CONTACT

In the remainder of the article, we illustrate how our
theory operates in the case where the SCC is a single-
channel quantum point contact (QPC) in series with an RC
impedance [Fig. 2(a)]. For such a setup, measurements of
the reduction of the conductance due to an on-chip RC
environment (i.e., DCB effect) were carried out by Pierre
and co-workers [10,19,53]. The results of such measure-
ments are shown in Fig. 3 as a function of the “intrinsic”
transmission of the QPC. Let us recall that these experi-
ments were shown to follow scaling laws [53] predicted by
the mapping of the system to an impurity in a TLL
[12,14,19] and by a renormalization group approach
[11,13], but these scalings require a reference point which
they cannot predict.

A. First simplifications

Compared to the formal general case discussed in Sec. II,
this experimental setup brings several simplifications:
(i) The QPC is tuned to have a single channel (with the
spin degeneracy lifted by a magnetic field) so that the S
matrix is only 2 × 2, (ii) because of the symmetric design of
the QPC, its S matrix is assumed to be symmetric with
respect to leads 1 and 2, and (iii) it was experimentally
checked that heating effects were negligible, enabling us to
use Fermi functions at the experiment’s temperature for the
electronic distribution functions in both reservoirs. The
correlators have the symmetries SI2I2ðVÞ ¼ SI1I1ð−VÞ ¼
SI1I1ðþVÞ with respect to V ¼ V1 − V2, the dc voltage
drop across the conductor, so that Y22 ¼ Y11. Hence, only
two independent noises or admittances are needed to
describe the QPC. In that case, it is convenient to describe
transport in terms of the common mode current I3 already
introduced above and the differential mode current
I0 ¼ 1

2
ðI1 − I2Þ. The fluctuations SI0I0 and SI3I3 as well
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as the corresponding admittances Y0 and Y3 are readily
obtained from the elements of SIIðtÞ and YðωÞ in Sec. II:

SI0I0 ¼
1

2
ðSI1I1 − SI1I2Þ; ð14Þ

SI3I3 ¼ 2ðSI1I1 þ SI1I2Þ; ð15Þ

Y0 ¼
1

2
ðY11 − Y12Þ; ð16Þ

Y3 ¼ 2ðY11 þ Y12Þ; ð17Þ

with all these quantities implicitly depending on the dc bias
voltage V. The admittance Y0 describes transport through
the QPC when, in addition to V, a small symmetric
differential ac voltage is applied on the QPC; it yields
the usual two-terminal differential conductance in the
zero-frequency limit, dIðVÞ=dV ¼ Y0ðω ¼ 0Þ, and sub-
sequently the I − V characteristics by integration over V.
On the contrary, Y3 gives the response of the QPC
submitted to the same small ac voltage on both leads; it
describes charge accumulation in the QPC and is essen-
tially capacitive at low frequencies ðY3ðω ∼ 0Þ ∼ iC3ωÞ,
with C3 ¼ e2D, D ¼ dN=dE being the local density of
states at the QPC [24,27]. Figure 2(b) shows a lumped-
model description of the QPC. This model can be seen as
the result of a triangle-star (a.k.a. Δ-Y) circuit trans-
formation of Fig. 1(b), specialized to the case we consider

here. In Fig. 2(b), we also show additional geometrical
capacitances which are not taken into account in the
admittance matrix Y since it derives from the scattering
matrix that describes only quasiparticle transfers and not
displacement currents. Finally, in this case, the general
small-signal linear response analysis leading to the phase
correlation function [Eqs. (12) and (13)] is simplified [see
Fig. 2(c) vs Fig. 1(c) for the general case]:

SφφðtÞ¼
2

RK

Z þ∞

−∞

dω
ω2

�
SI0I0ðωÞþ

1

4

iCgω

Y3ðωÞþ iCgω
SI3I3ðωÞ

þ 2R
1þðRCωÞ2

ℏω

1−e−βℏω

�
jZeffðωÞj2e−iωt; ð18Þ

where

ZeffðωÞ ¼
�
Y0ðωÞ þ

1

4

iCgωY3ðωÞ
Y3ðωÞ þ iCgω

þ 1

R
þ iCω

�−1
;

ð19Þ

and which further reduces to Eq. (11) in equilibrium.

B. Model for the scattering matrix

The general form of the quasiparticle scattering matrix
for the time-reversal symmetric and spatially symmetric
single-channel QPC is [54,55]

FIG. 3. Left panel: Relative DCB reduction of conductance of a QPC as a function of a reference transmission T ref of the QPC obtained
using the Landauer formula in a situation where DCB is suppressed. Symbols are data from Fig. 3 of Ref. [19], and lines are adjustments
using our theory. The curves are obtained combining the two right graphs. Top right panel: Relative reduction of conductance due to
generalized the dynamical Coulomb blockade for energy-independent transmission given by Eqs. (24) and (27) and the parameters of
Table I. Because of the self-consistency of the phase fluctuations, these curves very slightly deviate from the straight line (shown as
dashes). These straight lines would generalize the ð1 − T 0Þ Fano factor reduction of the tunnel limit of DCB previously known to be valid
only in the case of weak reduction of conductance. Bottom right panel: Modified transmission of the QPC due to a change of the quantum
capacitance, calculated using the parameters of Table I. In this panel and the left panel, the transmission T ref on the horizontal axis
represents either the bare channel transmission T 0 (top curve) or the “high voltage” transmission T ∞ (bottom curves, see text).
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SðEÞ ¼ eiϕðEÞ
�
−irðEÞeiα tðEÞ

tðEÞ −irðEÞe−iα
�

ð20Þ

in which α is a real number and ϕðEÞ, tðEÞ, rðEÞ are all real
functions, with rðEÞ2 þ tðEÞ2 ¼ 1 ensuring particle con-
servation. The usual way to model a QPC is to assume a
parabolic saddlelike potential at the constriction which, for
the first mode, leads to a transmission probability known as
the Kemble formula [23,56], similar to a Fermi function

T ðEÞ ¼ tðEÞ2 ¼ 1

e2π½E0−E�=ℏΩ þ 1
; ð21Þ

with E0 being the maximum energy of the effective 1D
potential for the first mode at the constriction and Ω the
characteristic frequency of the electrons in this 1D para-
bolic potential. In this model, both the global phase ϕðEÞ
and the (constant) backscattering phase α drop out of this
probability and other results. What is often simply called
the “channel transmission” in, e.g., the Landauer formula is
actually the transmission taken at the Fermi level,
T 0 ≡ T ðE ¼ 0Þ. There is a biunivocal relation between
the saddle-point energy E0 and T 0:

E0 ¼
ℏΩ
2π

log
1 − T 0

T 0

; ð22Þ

and T 0 can itself be obtained from the conductance at
temperatures T ≪ ℏΩ=kB and in the absence of voltage
fluctuations. In experiments, when the gate voltage is
changed, the electronic fluid adapts to the externally
applied field, resulting in a new self-consistent effective
potential barrier height. Likewise, for a finite bias voltage
across the barrier, its shape is expected to change following
a redistribution of charges [57]. Here, we simply assume
that the shape of the barrier can be regarded as fixed in the
bias voltage range used in the experiment. In that case,
the effect of a dc voltage between the reservoirs can be
simply accounted for by including it in the scattering phase
φðtÞ → φðtÞ þ ieVt=ℏ in ~S [Eq. (4)], leading to phase
correlators he�iφðtÞe∓iφð0Þiem ¼ eJðtÞe�ieVt=ℏ.
Values for ℏΩ depend on the exact geometry of the QPC,

and for short QPC, they are typically a fraction of meV in
GaAs heterostructures.

C. Further approximations

At this point, we could proceed and evaluate numerically
Eqs. (5), (8), (16)–(18) until self-consistency is reached.
However, such a numerical solution would essentially hide
how the theory actually operates in detail, thus making it
harder to reach a thorough understanding. In order to better
expose how our theory works, in the following we resort to
analytical methods. To this end, we exploit the initial
hypothesis that Ω is the fastest dynamics in the system
which enables further approximations. This approach also

yields new analytical results that can be related to pre-
vious works.

1. Energy-independent transmission

Let us first consider the limit where Ω → ∞. In that
limit, the energy dependence of the scattering matrix of the
QPC can be disregarded, making the replacement
T ðEÞ → T 0. Then, Eqs. (5), (14), and (15) give SI3I3 ¼ 0

(there is no internal degree of freedom in this limit), while

SI0I0ðtÞ ¼ 2π
GK

ℏ

�
ð1 − T 0ÞT 0eJðtÞγðtÞ2 cos

eVt
ℏ

þ T 2
02γðtÞ

�
; ð23Þ

where γðϵÞ ¼ R
dε0fðε0Þð1 − fðε0 þ ϵÞÞ ¼ ϵ=ð1 − e−ϵ=kBTÞ,

γðtÞ ¼ R
dεγðεÞe−iεt=ℏ is its inverse Fourier transform, f is

the Fermi function, GK ¼ 1=RK and T is the temp-
erature of the reservoirs. In the spectral domain SI0I0ðωÞ ¼R ðdt=2πÞSI0I0ðtÞeiωt, using PðEÞ¼R∞

−∞eJðtÞþiEt=ℏdt=ð2πℏÞ
[6], this becomes

SI0I0ðωÞ ¼ GKðð1 − T 0ÞT 0ðγ � Pðℏωþ eVÞ
þ γ � Pðℏω − eVÞÞ þ T 2

02γðℏωÞÞ;

where * denotes convolution. In the above expressions for
the current noise, the ð1 − T 0ÞT 0 term is identical to the
current noise of a tunnel junction [21] with tunnel con-
ductance GKð1 − T 0ÞT 0, while the T 0

2 term also corre-
sponds to a tunnel junction but at zero voltage, without
environment ðeJðtÞ ¼ 1;PðEÞ ¼ δðEÞÞ and a conductance
GKT 2

0, the latter junction being hardly distinguishable from
a macroscopic resistor. This decomposition was already
obtained in Refs. [7,8] in the case of weak DCB.
Applying the linear response formula Eq. (8), we

immediately obtain Y3 ¼ 0, and, using known results for
the DCB of a tunnel junction in real-time formulation [44],
the admittance of the QPC is

Y0ðω; VÞ ¼ GKT 0½1þ ð1 − T 0ÞFðω; J; V; TÞ�; ð24Þ

where

Fðω; J; V; TÞ ¼ 2π

ðℏβÞ2
Z þ∞

0

�
sinh

πt
ℏβ

�
−2
ImeJðtÞ

× cos
eVt
ℏ

e−iωt − 1

−iω
dt ð25Þ

(for the T 0
2 noise term, there is no F term). In that limit, the

QPC behaves as a genuine two-terminal conductor, and its
dynamics is that obtained for a resistor in parallel with
high-conductance tunnel junctions in Ref. [44], with, in
particular, a self-shunting effect taken into account in JðtÞ.
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It also generalizes, to arbitrary impedances, the ð1 − T 0Þ
linear suppression of the dynamical Coulomb blockade
previously derived only in the small-impedance, weak-
blockade limit [7,8] and observed in experiments [9,10].
In this Ω → ∞ limit, one may drop both SI3I3 in Eq. (18)

and Y3 (or C3) in Eq. (19) [they are both OðΩ−1Þ]. This
yields

JðtÞ ¼ 2

RK

Z þ∞

−∞

dω
ω2

�
SI0I0ðωÞ þ

2R
1þ ðRCωÞ2

ℏω

1 − e−βℏω

�

×

���� 1

Y0ðωÞ þ 1
R þ iCω

����
2

ðe−iωt − 1Þ; ð26Þ

which, in equilibrium (at jeVj≲ kBT), reduces to

JðtÞ ¼ 2

RK

Z þ∞

−∞

dω
ω

Re

�
1

Y0ðωÞ þ 1
R þ iCω

�
e−iωt − 1

1 − e−βℏω
:

ð27Þ

The actual phase correlation function J is obtained from the
self-consistent solution of Eqs. (23), (24), and (26) [or (27)
in equilibrium]; it depends on the total effective impedance
as seen from the QPC leads, itself depending through Y0 on
the transmission T 0 of the QPC, on the temperature, and
on the dc voltage. In the absence of environment R → 0, so
that JðtÞ ¼ 0 and one recovers the usual LB results, not
requiring self-consistency. Numerically solving the self-
consistent equations in this energy-independent transmis-
sion limit in the presence of the impedance, we predict that
the relative reduction of the conductance (with respect to
the conductance given by the “Landauer formula”) is nearly
linear with the transmission of the QPC (see top right panel
of Fig. 3), with a tiny convexity due to the self-shunting
effect of Y0 in JðtÞ. Obviously, this does not account for the
experimental data of Pierre and co-workers, and one needs
to consider the energy dependence of the scattering matrix,
at least in leading order.
In any case, the function Fðω; J; V; TÞ entering the

admittance is bounded between 0 and −1, with the actual
value depending on the relative value of the energy scales
kBT, eV, ℏω and ℏωc, where ωc is the cutoff frequency of
the total admittance Y0ðωÞ þ ð1=RÞ þ iCω determining the
phase correlator. When maxðkBT; eVÞ ≫ ℏωc, F ∼ 0 and
DCB is suppressed, while for minðkBT; eV;ℏωÞ ≪ ℏωc,
F ∼ −1 corresponding to maximum strength DCB. Thus,
the dc conductance Y0ðω ¼ 0; VÞ of the QPC is such that
T 2

0 ≤ RKY0ðω ¼ 0; VÞ ≤ T 0, showing that, as already
mentioned, the usual “Landauer formula” does not hold
in the DCB regime.

2. Energy-dependent transmission: Leading-order terms

The leading-order term in Y3 that enables us to capture
the effect of the environment on the internal degree of

freedom for large but noninfinite Ω isOðΩ−1Þ. We evaluate
it by taking the zero-temperature limit S0I3I3 of SI3I3 [Eqs. (5)
and (15)] but with the phase correlations still evaluated at
finite temperature and voltage. Hence, one simply replaces
the distribution functions by Heaviside step functions

f�iðεÞ → θð∓ εÞ;

in which case the energy integrals in Eq. (5) can all be
evaluated analytically. The corresponding analytical result
for S0I3I3 is written as

S0I3I3 ¼ S0RI3I3ðt; E0Þ þ cos
eVt
ℏ

eJðtÞS0JI3I3ðt; E0Þ;

where S0RI3I3ðt; E0Þ and S0JI3I3ðt; E0Þ are, respectively, the
“resistorlike” and “junctionlike” noise of the common
mode current I3, whose large expressions involving special
functions are given in Ref. [42]. In the following, we
actually need only the zero-frequency quantum capacitance

C3ðE0;J; VÞ ¼ −i∂ωY3ðω ¼ 0Þ;

C3ðE0;J; VÞ ¼
1

ℏ

Z
∞

0

t2Im

�
S0RI3I3ðt; E0Þ

þ cos
eVt
ℏ

eJðtÞS0JI3I3ðt; E0Þ
�
dt
2π

; ð28Þ

which depends on the channel transmission T 0 (or, equiv-
alently, E0), the phase correlation function JðtÞ, and the dc
voltage. Using the fact that SI3I3ðtÞ is peaked at short times
ðt≲ Ω−1Þ, and the hypothesis that the phase does not vary
much on that time scale, it is then justified to expand eJðtÞ ≃
1þ J0ð0Þt in Eq. (28); furthermore, using [6]

J0ð0Þ ¼ −
i π

RKCtot
;

with Ctot being the total capacitance as seen from the QPC
[possibly including −i∂ωY0ðω ¼ 0Þ; see Eq. (27)], one can
evaluate the DCB correction to the quantum capacitance

C3ðE0;J; VÞ
≃ C3ðE0; J ¼ 0; VÞ

−
π

ℏRKCtot

Z
∞

0

t3 cos
eVt
ℏ

Re½S0JI3I3ðt; E0; J ¼ 0Þ� dt
2π

:

ð29Þ

Interestingly, in this last expression, the environmental
resistance R drops out (but the time-scale decoupling
hypothesis still requires RCtotΩ ≫ 1). This expression also
confirms the fact that in our approach, the quantum
capacitance is modified by the electromagnetic environment
and differs from that predicted in the usual LBapproach.Our
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result, Eq. (29), generalizes, to quantum fluctuations, the
change of the quantum capacitance produced by a classical
ac drive [30], which also only occurs if the scattering matrix
is energy dependent.
At the OðΩ−1Þ order we consider here, the approxima-

tions leading to the phase correlator Eq. (26) [or Eq. (27) in
equilibrium] are still valid. Thus, JðtÞ does not depend
directly on C3, which hence does not enter in the self-
consistent determination of the admittance at a given
transmission. On the other hand,C3 depends on the channel
transmission both directly through the expression of
S0I3I3 and indirectly through the T 0 dependence of Y0ðωÞ
in J. Below, we discuss how T 0 depends on C3 through
electrostatics, thereby creating another level of self-
consistency.

D. DCB of the quantum capacitance:
Modification of the transmission

Consider the thought experiment where, by adjusting the
gate voltage, one sets the bare transmission T 0 of the QPC
in the absence of any external impedance (in that case, the
usual Landauer formula applies, and the conductance is a
measurement of T 0) and subsequently inserts the RC
impedance in series with the QPC. As discussed in general
terms above, the phase fluctuations due to the RC envi-
ronment partly reduce both Y0 and Y3 with respect to the
“bare” case, reducing, respectively, the conductance (see
Fig. 3) and the quantum capacitance C3 of the QPC. The
reduction of C3 (i.e., the LDOS) changes the dc charge
configuration in the QPC, which impacts the self-consistent
effective 1D potential and notably its height. Consequently,
the transmission T 0 of the channel set in the absence of
environment takes a new value T �

0. In models taking into
account electron-electron interactions in a QPC [58], a
similar reduction of the LDOS is obtained by increasing the
interaction parameter, resulting in a reduction of the
conductance at a fixed bare barrier height. A reduction
of the LDOS is also predicted in a TLL with an impurity
[59] that is known to map onto the QPC with the ohmic
environment considered here [12]. In our approach, inter-
actions are handled by the electrostatics of the system like
in Refs. [55,60].
Let us consider the electrostatic configuration of the

channel, including the effect of the geometrical capaci-
tances depicted in grey in Fig. 2(b). In the experiment, the
gate is made of metal with a much larger density of states
than the 2DEG of the QPC, so it has a negligible quantum
capacitance [29]. The difference of the electron charge
eNðE0Þ and the background charge eNþ in the channel is
equal to the total charge on the geometrical capacitors from
the channel to the other conductors [61],

eNðE0Þ − eNþ

¼ CgðV3 − VgÞ þ C1ðV3 − V1Þ þ C2ðV3 − V2Þ; ð30Þ

where C1 and C2 denote the geometrical capacitances from
the channel to the reservoirs (further geometrical capaci-
tance may be added as needed). Furthermore, the energy
barrier height is simply E0 ¼ −eV3, and the total number of
electrons in the QPC for a given barrier height is

NðE0Þ ¼
1

e2

Z
Emax

E0

C3ðEÞdE; ð31Þ

with the LDOS given by the quantum capacitance

1

e2
C3 ¼

dN
dE

ðEFÞ ¼ −
dN
dE0

;

with the last equality coming from the assumption that the
shape of the potential is fixed and controlled by the barrier
height. In Eq. (31), Emax is a cutoff energy, where the
channel is assumed to be fully depleted (Emax ≫ ℏΩ) and
which is needed to avoid a logarithmic divergence due to
the naive QPC model we use. Equation (30) then links the
barrier height to the various voltage sources in the circuit

CgtotE0 þ
Z

Emax

E0

C3ðEÞdE

¼ −eCgVg − eC1V1 − eC2V2 þ eNþ; ð32Þ
with Cgtot being the sum of all geometrical capacitance
connecting the channel to other nodes.
We now consider the two situations of the thought

experiment where the QPC sees a zero (respectively, finite
RC) impedance environment, and we denote its barrier
height E0 (resp. E�

0); its LDOS is given by C3ðE0; J ¼ 0Þ
[resp. C�

3 ¼ C3ðE�
0; JðE�

0ÞÞ], where we made explicit that,
according to Eq. (28), C3 depends on the barrier height also
through the phase correlator J. By considering Eq. (32) in
the two different situations for the same gate and reservoir
voltages, one may relate E0 and E�

0,

CgtotE�
0 þ

Z
Emax

E�
0

C�
3ðEÞdE ¼ CgtotE0 þ

Z
Emax

E0

C3ðEÞdE;

which leads to the differential relation linking E0 and E�
0:

dE�
0

dE0

¼ Cgtot − C3ðE0Þ
Cgtot − C�

3ðE�
0Þ
; ð33Þ

where C3ðE0; J ¼ 0Þ is known analytically from the zero-
temperature result [Eq. (28), with eJðtÞ ¼ 1, and results in
Ref. [42]], and E�

0ðE0Þ is the value of the DCB-affected
energy barrier as a function of the bare energy barrier.
The initial condition for this differential equation is
E�
0ðE0 ¼ EmaxÞ ¼ Emax, where it is assumed that no elec-

trons are left in the channel so they cannot alter the
potential. Using Eqs. (21) and (22), one then obtains the
DCB-modified transmission T �

0ðT 0Þ ¼ T ðE�
0ðE0ðT 0ÞÞÞ,

and we predict that the DCB-modified admittance of the
QPC is given by Eqs. (24) and (25), with T �

0 in place of T 0:
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Y0ðω; VÞ ¼ GKT �
0

�
1þ ð1 − T �

0Þ
2π

ðℏβÞ2
Z þ∞

0

�
sinh

πt
ℏβ

�
−2

× ImeJðtÞ cos
eVt
ℏ

e−iωt − 1

−iω
dt

�
: ð34Þ

This strong prediction is the central result of this section,
and it stresses the distinctions to be made between the bare
transmission T 0, the DCB-modified transmission T �

0, and
the dimensionless dc conductance T �2

0 ≤ RKYðω ¼ 0;
V ¼ 0Þ ≤ T �

0 in theDCB regime. Equation (33) furthermore
shows that the change of the transmission upon inserting the
impedance is not universal: The modified transmission
inherits the C3 dependence on the bias voltage and on the
temperature, which depends on the type of scatterer consid-
ered, and, even for a given type of scatterer, the relative value
of the quantum capacitance and the total geometric capaci-
tance of the channel of the QPC depend on the sample
geometry, the dielectric constants, the 2DEG density, etc.
In their experiments, Pierre and co-workers tried to

closely implement this thought experiment: The samples
incorporated an on-chip switch that enabled them to short-
circuit the resistance [see Fig. 2(a)], suppressing the
fluctuations of the environment. When the switch is closed,
one hence measures a zero-bias conductance given by the
bare transmission T 0 of the channel, and, when the switch
is opened, a DCB-reduced conductance. However, the
switch being itself an auxiliary QPC, switching it without
changing the set point of the primary QPC requires a
careful cancellation of the capacitive cross talk between the
QPCs. This cancellation relies on measurements performed
on the system tuned at different operation points, and there
is no means of ensuring directly that the cross talk is
properly canceled while the DCB measurements are taken,
leaving the possibility that a small systematic error is made.
In order to avoid this possible cross-talk cancellation issue,
Pierre and co-workers used another protocol for some data

sets shown in Fig. 3 (see the Supplemental Material of
Ref. [19] and Table I): They measured the conductance in
the presence of the environmental impedance but at a bias
voltage eV∞ ≫ ℏ=RC, where the voltage dependence
flattens out, extracting a transmission T ∞ which they
assumed to be somehow identical to the bare transmission
(checking this assumption itself brings us back to the cross-
talk cancellation issue). In our analysis, however, the
quantum capacitance in the presence of the impedance
clearly differs (at all voltages) from its bare value because
of the second right-hand side term in Eq. (29).
Consequently, from the electrostatic equilibrium stand-
point, such a “high-voltage” measurement is not equivalent
to shunting the environment and consequently does not
give us access to the bare channel transmission T 0. Using
our analysis of the channel’s electrostatics, one may still
relate the high-voltage energy barrier E∞ (corresponding to
transmission T ∞) to the DCB-affected zero-voltage energy
barrier E�

0 through the differential equation

dE�
0

dE∞
¼ Cgtot − C�

3ðE∞; V∞Þ
Cgtot − C�

3ðE�
0; V ¼ 0Þ : ð35Þ

However, in our simple model, the total channel charge
NðE0Þ [Eq. (31)] entering the electrostatic balance Eq. (30)
[which yields Eq. (35)] is such that its impedance-
independent part depends differently on the high-energy
cutoff Emax at zero and finite voltage. Therefore, unlike for
Eq. (33) where all quantities are taken at the same (null)
voltage, setting the initial condition for Eq. (35) is not
independent of the choice of the upper energy bound.
Within our model, this cutoff dependence can be solved by
the introduction of an additional adjustable parameter U
in the initial condition for Eq. (35), E�

0ðE∞ ¼ EmaxÞ ¼
Emax þ U, with respect to the fully zero-bias protocol using
the switch.

TABLE I. Sample parameters and adjustable parameters used in Fig. 3. The sample parameters R, C, and T were
taken from Ref. [19]. The temperature value for R ¼ RK=3, RK=2 that the authors gave (in parentheses) was,
however, raised to 22 mK in order for the conductance reduction predicted in the tunnel limit by the PðEÞ theory
(third row) to better agree with the measured conductance reduction. The fourth row indicates which experimental
protocol (see text) was used to provide the reference transmission T ref . The last two rows are the adjustable
parameters (see text) used to provide the adjustments shown in Fig. 3. For the R ¼ 80 kΩ sample, the parameters
indicated by an asterisk can be raised simultaneously without affecting the prediction much.

R 6.3 kΩ RK=3 RK=2 80 kΩ
C 2.3 fF 2.2 fF 2.8 fF

T 54 mK (17 mK) 22 mK (16 mK) 22 mK 20 mK

ðδG=GKT refÞT ref→0 −62% (−85%) −82% (−92%) −89% −98%
T ref (exp. protocol) T 0 (switch) T ∞ (V∞ ¼ 63 μV) T ∞ (V∞ ¼ 82 μV)

2πU=ℏΩ – 0.45 0.7 1.75 (*)

Cgtot=MaxðC3Þ 1.37 1.36 2.5 (*)
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E. Comparison with the experimental results
of Pierre and co-workers

We now compare the results of the previous section to
the experimental results of Pierre and co-workers. The
procedure used for the data set with R ¼ 6.3 kΩ, which
was measured using the switch protocol, is the following.
One first self-consistently solves transport in the QPC with
a given fixed transmission (i.e., a given E0) of the QPC, in
the presence of the environment: For the given value of E0,
we define a proper sampling of the functions JðtÞ and
Y0ðωÞ and initialize Y0ðωÞ ¼ GKT 0. Then, we iterate
numerically Eqs. (23), (24), and (27) until suitably con-
verged. We repeat this calculation for a set of energies
−Emax ≤ E0 ≤ Emax with Emax ≫ ℏΩ, i.e., exploring the
whole range of transmissions T 0 ∼ 0 → T 0 ∼ 1. This
yields tabulated values of the conductance GðE0Þ ¼
Y0ðω ¼ 0; E0Þ and of C�

3ðE0Þ. In a second step, using
the tabulated values of C�

3, we numerically solve the
differential equation, Eq. (33), with the initial condition
E�
0ðEmaxÞ ¼ Emax. While doing this, the ratio of the

geometrical capacitance to the quantum capacitance (more
precisely, CgtotℏΩ=e2) is our single adjustable parameter.
Let us stress that this parameter could, in principle, be
evaluated from the QPC geometry and material parameters,
thereby making our theory fully predictive. Finally, using
this solution and the tabulated conductance, one predicts
the Coulomb-blockaded QPC admittance in the experi-
ment, for a given transmission T 0 in the absence of
environment, as GðE�

0ðE0ðT 0ÞÞÞ. Using Eq. (21), we can
also plot the Coulomb-blockaded channel transmission T �

0

as a function of the bare (or high-voltage) channel trans-
mission as T �

0ðT 0Þ ¼ T ðE�
0ðE0ðT 0ÞÞÞ (see bottom right

panel of Fig. 3). For the data sets R ∈ fRK=2;
RK=3; 80 kΩg) which were measured using the high-
voltage protocol yielding the T ∞ reference transmission,
the procedure is similar but requires an additional set of
self-consistent calculations at bias voltage V∞ and use of
the differential equation (35) with the initial condition
E�
0ðEmaxÞ ¼ Emax þU, with Cgtot and U as adjustable

parameters.
In Fig. 3, we compare the predictions of our approach to

the experimental data of Ref. [19]. When doing so, we use
the values of the environmental resistance and of the
capacitances that are given in Ref. [19]. As for the
temperatures, we have also used the values given in
Ref. [19] for the 6.3 kΩ and 80 kΩ samples, but for the
RK=2 and RK=3 data (that were taken on the same sample;
see Ref. [19]), we have used T ¼ 22 mK [62], instead of
the reported 16 mK and 17 mK. We found this change
necessary for the model to recover the quite precisely
measured conductance in the tunnel limit for the RK=3 data,
and because not adjusting this starting value would spoil
the adjustment at all other transmissions. The values of the
adjustable parameters used to produce the theoretical
curves in Fig. 3 are given in Table I.

F. Discussion

We find that our theory can adjust the data well for the
full range of transmission and environmental impedance
explored in the experiments of Pierre and co-workers,
including for the strongest DCB with R≃ 3.1RK . These
adjustments illustrate the crucial role (Fig. 3, bottom right
panel) played by the DCB of the quantum capacitance
introduced in Sec. II and improve significantly on the
approximate phenomenological adjustment previously
proposed in Refs. [19,53] (see Ref. [42]).
We observe that the Gaussian approximation for the cor-

relators seems to be sufficient to explain thewhole parameter
space explored in the experiments of Pierre and co-workers.
In such a circuit without any quasi-isolated electrode where
charging effects could occur, the parameters that would be
needed in order to observe a significant departure from our
predictions (and hence requiring us to consider higher-order
cumulants [51,52]) are thus an open question.
The quality of the adjustments shown in Fig. 3may evenbe

surprising given the extremely sketchy model used for the
QPC. We notably (i) use a 0D modeling of the QPC that
neglects the spacial distribution of charges inside the channel
[60,61], (ii) assume a potential barrier of variable height but
with a fixed shape, and (iii) assume that the geometrical
capacitances are independent of the gate voltage, which is
known to be not strictly valid in a QPC around the pinch-off
[63]. These latter two approximations are both expected to
break down when the channel gets depleted. A more realistic
model (e.g., Ref. [64]) taking these effects into accountwould
furthermore eliminate the need for the high-barrier energy
cutoff that necessitated an extra adjustable parameter in the
voltage dependenceof the electrostatic balance equation (32),
as discussed above. Once this is done, one should be able to
relate our theory to the predicted [11–14] and observed [19]
scaling laws of the conductance with the bias voltage.
Although we leave this for future works, we believe the
nonuniversal energy scale contained in this scaling should
somehow be related to the nonuniversality we find in the
DCB-induced electrostatic modification of the transmission.
Finally, the analysis developed in this section is merely a

special case of the fairly general one developed in Sec. II,
which should apply equally well to systems other than the
QPC in an ohmic environment considered here. For
instance, it could address DCB caused by a high-
impedance resonant mode, which can be implemented
experimentally [22] and which has not been considered
theoretically so far at finite transmission. In addition, it
could describe a quantum dot (treated as a single resonant
level) by using the Breit-Wigner scattering matrix instead
of Eq. (20) for the QPC considered here. As always, for our
approach to be consistent, the dwell time in the structure
will be shorter than the typical time scale of electromag-
netic fluctuations. Away from the level’s resonance, the
energy dependence of the Breit-Wigner scattering matrix
vanishes, so this condition is always verified whatever the
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transmission of the dot. In that case, the dot operates in the
cotunneling regime and behaves as an effective single
tunnel barrier. Close to the resonance, however, this
approach is restricted to relatively open dots. For more
closed dots, instead of using the global scattering matrix of
double-barrier systems, with some more work one should
be able to consider the individual scattering matrices of the
two barriers and the (short) propagation in between in the
presence of the fluctuating fields. We believe the measure-
ments performed in carbon nanotubes and reported in
Refs. [17,65] could be analyzed in this way.

IV. CONCLUSIONS, SCOPE,
AND GENERALIZATIONS

We have considered the effect of quantum voltage
fluctuations in a short coherent conductor embedded in
an arbitrary external circuit. We have shown how fluctua-
tions in such a circuit can be consistently incorporated at
the minimal level into the Landauer-Büttiker formalism.
This is achieved by assuming that fluctuations are all
Gaussian and taking into account the backaction of the
conductor itself on the rest of the circuit, including in
nonequilibrium situations. Our approach synthesizes the
LB and PðEÞ theories and formally solves the electrody-
namics of quite general quantum electronic systems. This
analysis shows how low-frequency electromagnetic modes
generically mediate interactions by correlating successive
electron transfer and make the system nonlocal and non-
linear. It also unveils a new effect whereby voltage
fluctuations combined with the energy dependence of
the scattering matrix induce a change in local electronic
DOS in the scatterer, which may have a large impact on its
transport properties.
Detailed predictions can be derived from the general

description, provided one knows the form of the energy-
dependent scattering matrix. We discuss the specific case of
a single-mode quantum point contact of arbitrary trans-
mission. In that case, we explicitly work out how phase
fluctuations reduce the DOS of the device and change its
overall transmission in a predictable, albeit nonuniversal
way. Once this effect is taken into account, we widely
generalize the predictions of the usual dynamical Coulomb
blockade theory [a.k.a. PðEÞ theory] to arbitrary trans-
mission and arbitrary environment impedance, in which the
conductance is not a direct measurement of the (modified)
transmission, unlike in the standard Landauer-Büttiker
scattering theory. Using this approach, we are able to
account for experimental data of QPCs in series with
resistances up to a few RK for which no fully predictive
theory existed.
Overall, our derivation involves only concepts familiar to

electronics engineers, and it can be easily implemented
numerically for any given model of scattering matrix and
external impedance for which it should apply equally well.

Given the similarity of our approach with the usual PðEÞ
theory, many results previously obtained for tunnel junc-
tions in that framework should be amenable to a generali-
zation in short coherent conductors. In particular, results for
photon-assisted transport [22,40,66,67] or results regarding
the properties of the radiation emitted by tunnel junctions
[68–70] could be extended to finite transmissions.
Conversely, questions addressed in the LB formalism, like
e.g. heat transport [71,72], can now be revisited by taking
into account the effect of fluctuations.
Finally, by contributing to the better general under-

standing of quantum circuits, this work should open up
new perspectives in the engineering of their properties. One
could, for instance, design an electromagnetic environment
that implements some type of (passive or active) feedback
on a coherent conductor [73], or structure it to achieve
different properties at different frequencies.
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